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Abstract 

Nearly 1.35 million people are killed annually on roads around the world and an additional 50 million are 

injured or disabled. Road traffic crashes are estimated to be the eighth leading cause of death globally for all 

age groups, the first among children and young people aged 5-29 years. These numbers highlight the urgency 

of the road safety issue for all governments and administrations. In their efforts to improve safety, road 

network managers can benefit from decision support tools able to assist them in monitoring and managing 

road safety interventions. This paper proposes a DEA-based decision support method to assist urban road 

safety management practitioners in identifying those roads where the needs to improve safety are the 

greatest. The method is applied to an Italian urban road network to define a hierarchy of hazardous road 

locations based on safety conditions. The social cost of accidents is used here for the first time as the only 

output indicator while the average number of conflict points at intersections and traffic flow are used as 

inputs. Both Constant Returns to Scale and Variable Returns to Scale DEA models, each oriented to input and 

output, are used. The comparison of the results makes it possible to identify the DEA model that seems best 

suited to be used as a decision support tool to advise urban road safety management by enabling a more 

careful definition of targeted priority lists of interventions.  

 
Keywords: Benchmarking Road Safety; Data Envelopment Analysis; Risk Evaluation; BCC and CCR models 

 

1. Introduction 

https://www.sciencedirect.com/science/journal/2213624X
https://www.sciencedirect.com/science/journal/aip/2213624X
https://www.sciencedirect.com/science/article/pii/S2213624X20300717?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S2213624X20300717?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S2213624X20300717?via%3Dihub#!
https://doi.org/10.1016/j.cstp.2020.07.007
https://www.sciencedirect.com/science/journal/2213624X


2 
 

Road accidents are today one of the most critical health and social issues. They are estimated to be the 

eighth leading cause of death globally for all age groups and the first cause for children and young people 

aged 5–29 years.  According to the latest World Health Organization (WHO) Global Status Report on Road 

Safety, about 1.35 million people die each year as a result of a road accident while 50 million people are 

reported to be injured (WHO, 2018). Low- and middle- income countries are the most affected, accounting 

for more than 90% of the world’s road traffic deaths. The road traffic death rate is over three times higher in 

low-income countries than in high-income countries. Road crashes cause major social costs not only in terms 

of increased travel times and property damage but above all in relation to the consequent human life losses 

and serious injuries that place heavy burdens on households as well as on national economies. Every year, 

road traffic injuries are estimated to cost $518 billion USD worldwide and $65 billion USD in low- and middle-

income countries; the latter exceeds the total amount that these countries receive in development assistance 

(WHO, 2018).  

Within this context, an increasing number of countries are taking actions and initiatives to promote road 

safety and several supporting strategies and programmes have been launched and put into effect in the last 

years (EC, 2010). The European White Paper on Transport Policy (EC, 2001) targeted the objective of halving 

the overall number of road deaths in the European Union by 2010. This challenging objective was missed in 

2010 (the EU mean value was -35%) but updated and reinforced in the Road Safety Programme 2011-2020. 

In the Communication of 20 July 2010 “Towards a European road safety area, policy orientations on road 

safety 2011-2020”, the EU Commission stated the strategic objectives of the EU to halve the number of road 

deaths by 2020 compared to 2010 and to move close to zero fatalities by 2050 (EC, 2010). A new interim 

target of halving the number of serious road injuries by 2030 from the 2020 baseline was then endorsed in 

the Valletta Declaration of March 2017 (Valletta Declaration, 2017). In 2018, in the framework of an overall 

road safety strategy, the EU Commission adopted the proposal for a revised directive amending the existing 

Directive 2008/96/EC on road infrastructure safety management, also known as RISM Directive (EC, 2008). 

The new Directive 2019/1936, which came into force on 16 December 2019 and has to be transposed into 

national law by Member States by 17 December 2021 (EC, 2019), intends to address the shortcomings of the 

previous Directive 2008/96/EC by strengthening road infrastructure safety management procedures and 

extending the scope beyond the TEN-T network. It recognizes risk-based network-wide road safety 

assessment as an effective tool to identify road sections that require more attention and to prioritise 

interventions to improve safety. It also stresses that to improve safety performance of existing roads, 

investments should be targeted at road sections that show the highest accident concentration and the 

highest accident reduction potential.  

One possible way to monitor and evaluate road safety performance is by using dedicated indicators. The 

European Transport Safety Council (ETSC) defines safety performance indicators as any measure causally 

related to accidents or injuries, used in addition to a count of accidents or injuries in order to assess safety 

performance or understand the process that leads to the accident (Hermans et al., 2009). The importance of 

setting performance targets was first highlighted in the United Nations General Assembly Resolution 

A/70/260, adopted in April 2016 (UNGA, 2016). In the same year, the WHO in collaboration with other United 

Nations agencies and the United Nations regional commissions, started a process of developing voluntary 

global performance targets on road safety risk factors. A comprehensive set of 12 voluntary global 

performance targets for road safety was developed in November 2017 by Member States. An informal 

consultation of Member States on road safety indicators guided by the discussion paper developed by the 

WHO (WHO, 2017) was convened in February 2018. During the meeting, representatives of more than 35 

Member States reached consensus on a set of indicators covering process and outcomes for each of the 12 

global targets. Indicator values may vary from country to country depending on the specific policy measures 

applied concerning, among other things, regulations on the use of alcohol and drugs when driving, speed 
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limits, obligations on protective systems and so on (Safetynet, 2005). Methodologies for estimating safety 

performance of highways and streets to inform the highway transportation decision-making process are also 

provided in The Highway Safety Manual (AASHTO, 2010). The latter is a guidance document for incorporating 

quantitative safety analysis into highway transportation project planning and development processes. It 

includes, a.o., guidance for the identification of sites with potential for crash or severity reduction, project 

prioritization, predictive methods for infrastructure improvement project alternative analysis. 

Due to the large amount of data and factors involved, decision-making in the road safety policy context is 

far from simple (Dell’Acqua et al., 2011). Decision makers often have to make complex decisions regarding 

the use of public funds in a framework that prioritizes a limited number of interventions within a tight budget. 

In this regard, a hierarchy of hazardous road sections based on safety conditions can represent a useful tool 

for supporting decision-making, as it enables transportation managers to establish intervention priorities for 

future actions. This paper proposes and tests a decision support method based on Data Envelopment Analysis 

(DEA) to assist road safety management practitioners in identifying those road sections where the needs to 

improve safety are the greatest. While in the road safety field, DEA has become popular mainly for comparing 

countries (Hermans et al., 2009) or provinces (Amelian et al., 2017) on the performance of different risk 

aspects of their road systems, in this study DEA is applied to an urban road network in order to create a list 

of intervention priorities based on safety conditions. Specifically, the case study concerns the urban road 

network of a medium-sized Italian city. Four DEA models are tested to identify the one that seems best suited 

to be included in the decision support tool for defining priority lists in road safety interventions, and thus 

provide a decision framework to advise urban road safety management. To this end, both BCC (Variable 

Returns to Scale) and CCR (Constant Returns to Scale) DEA models are used, each oriented to both inputs and 

outputs. Comparison of the results makes it possible to identify the model that best suits the peculiarities of 

the application case.  

The paper is structured as follows: Section 2 presents a summary table of multi-criteria decision-making 

methods applied to road safety with a focus on DEA applications. Section 3 provides a basic explanation of 

DEA and introduces the evaluation model that was designed for the specific case study. Section 4 illustrates 

the application, the methodology used and the experimentation results. Section 5 discusses and compares 

the results of the four DEA models applied. Section 6 concludes and, with a view to method transferability, 

summarizes the basic methodological steps for applying the proposed DEA-based decision support tool to 

other territorial contexts. 

 

2. An overview of the literature on DEA and other multi-criteria decision-making methods for road safety 

Road safety performance are typically based on different criteria related to diverse aspects of the 

phenomenon. In the past two decades, there has been a growth of interest by policy makers in the use of 

composite indices for road safety assessment that aggregate in a summary indicator the various parameters 

at hand (Coll et al., 2013; Chen et al., 2015; Castro Nuño and Arévalo-Quijada, 2018). Most of the available 

methodologies for assessing road safety composite indicators rely on multi-criteria decision-making (MCDM) 

methods (Sarrazin and De Smet, 2016), each with its own advantages and disadvantages (El Gibari et al., 

2019; Wątróbski, 2016; Velasquez and Hester, 2013). Table 1 summarizes the main strengths and weaknesses 

of the most common MCDM methods in the light of their application to road safety performance.  

 

Table 1. Synoptic table of the most common MCDM methods applied to road safety performance. 

Method 

 

Strengths Weaknesses Examples of 

application to road 

safety 
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AHP - Analytic Hierarchy Process 

 

Easy to use. Scalable.  Susceptible to rank reversal. 

Problems of interdependence 

between criteria and alternatives. 

Can be subject to inconsistencies 

in judgment and ranking criteria. 

 

Agarwal et al., 2013; 

Khorasani et al, 2013; 

Yuan et al., 2013 

BA - Budget Allocation 

 

Easy to implement. Primarily based on experts’ 

opinions, can result in biased 

weightings. 

 

Hermans et al., 2009b 

Concordance Analysis  Identifies the best choice 

(“α problem”). 

 

Cannot be used for ranking 

purposes, unless by forcing the 

model. 

 

Fancello et al., 2015 

DEA - Data Envelopment Analysis  Quantifies efficiency. Rates 

the efficiency of alternatives 

against each other. Can 

handle multiple inputs and 

outputs. 

 

Assumes that all inputs and 

outputs are exactly known.  

 

Antić et al., 2020; Ganji 

and Rassafi, 2019b; 

Alper et al., 2015; 

Bastos et al., 2015; 

Sadeghi et al., 2013; 

Shen et al., 2011; 

Hermans et al., 2009 

 

EWM - Equal Weighting Method 

 

Easy to implement. Implies assumptions of equal 

importance of the indicators. 

Nardo et al., 2005; 

Saisana and Tarantola, 

2002. 

 

ELECTRE  

 

Takes into account 

uncertainty and vagueness. 

 

Outcomes can be hard to explain 

in practical terms. The lowest 

performances under certain 

criteria are not identifiable. Not 

useful for ranking purposes 

involving the allocation of public 

financial resources (it requires 

three thresholds defined a priori 

by the user) 

 

El Mazouri et al., 2019; 

Fancello et al., 2014; 

Fancello et al., 2015 

MAUT – Multi-Attribute Utility 

Theory 

 

Takes uncertainty into 

account. Can incorporate 

the preferences of the 

decision makers. 

 

Data intensive. Requires strong 

assumptions and can be 

subjective. 

Rassafi et al., 2018 

PROMETHEE – Preference 

Ranking Organization Method for 

Enrichment Evaluation  

Easy to use. Eliminates scale 

effects among alternatives. 

 

Requires the assignment of 

weights but does not provide a 

clear methodology to assign 

values. 

Castro-Nuño and  

Arévalo-Quijada, 2018; 

Sarrazin and De Smet, 

2015. 

 

TOPSIS - Technique for Order 

Preferences by Similarity to Ideal 

Solutions  

 

Easy to use. Maintains the 

same amounts of steps 

regardless of problem size. 

 

Does not consider attributes 

correlation. Difficult to weight 

attributes. 

Chen et al., 2015; Rosić 

et al., 2017; Bao et al., 

2012; Qazvini et al., 

2016; Fancello et al., 

2019 

 

VIKOR Easy to use. The ranking-list may not include 

all the alternatives. 

Fancello et al., 2019 
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Among the existing decision methods for evaluating different alternatives, DEA has been chosen for this study 

as, in the opinion of the authors, the following features make it an attractive tool for prioritizing road safety 

interventions in urban contexts: 

− while some MCDM methods provide only the best solution (e.g., Concordance Analysis) or a partial 

ranking-list (e.g., VIKOR), DEA always returns a complete hierarchic list using a detailed score;  

− differently from other MCDM methods which require subjective assumptions (e.g., Electre III, BA, 

MAUT), DEA does not use any subjective parameter; 

− while some MCDM models (e.g., TOPSIS and VIKOR) use indicators or algorithms for which the 

relationship between inputs and outputs may not be immediate, DEA results are easily understood 

by decision makers; 

− differently from other MCDM methods (e.g., PROMETHEE, EWM), DEA does not require obtaining 

and considering any distribution function and related assumptions; 

− DEA allows to consider an input or an output approach, thus supporting decision makers both in 

maximizing objectives and in minimizing resources; 

− the nonparametric nature of DEA, through the identification of the efficiency frontier, allows to 

identify not only the most efficient units but also their distance from inefficient ones (e.g., this allows 

to evaluate how many resources must be added for the DMU to reach efficiency); 

− in road safety problems, decision makers usually have precise data to be used for inputs, which 

bypasses one of the DEA’s main weaknesses. 

Numerous studies have already recognized DEA as a powerful decision-making method for evaluating road 

safety performance, a.o., Ganji and Rassafi (2019) and Hermans et al. (2008a). Some selected examples of 

DEA applications to road safety from the most recent literature (starting from 2008) are discussed below. 

The paper by Hermans et al. (2008b) implemented a DEA model to assess road safety performance of 21 EU 

countries based on the number of traffic fatalities per million inhabitants; in this study all indicators were 

treated as outputs. This model was further implemented in the paper by Hermans et al. (2009) through an 

optimal Road Safety Score which minimizes the ratio of weighted sum of outputs (crashes and fatalities) to 

weighted sum of inputs (speed, trauma management, vehicles, infrastructure, alcohol and drugs and 

protective systems) to compare road safety performance of 21 EU countries. The study by Shen et al. (2011) 

applied a DEA model based on the standard input-oriented model to compute the efficiency of 19 EU 

countries in terms of road safety performance. In this study, authors defined 13 behaviour of road users as 

the inputs of the model and introduced the number of fatalities, serious injuries and slight injuries per million 

people and the number of crashes per million people as outputs. Shen et al. (2012) applied DEA to draw an 

overall picture of the road safety risk in the 27 EU Member States. They used the measures of exposure to 

risk as the inputs of the model (inhabitants, passenger-kilometres and passenger cars) and the number of 

road fatalities as output. Egilmenez (2013) applied an input-oriented DEA model to compare road safety of 

50 US states using seven inputs, including highway safety expenditure, the number of vehicles, the number 

of drivers, vehicle miles travelled, road length, road condition and safety belt usage rate, and the ratio of 

total annual time to the number of fatalities as output. Alper et al. (2015) implemented a DEA model to assess 

road safety performance of municipalities in Israel based on two inputs (Annual National Road Safety budget 

allocated to each municipality and total of teaching hours dedicated to traffic safety education) and fourteen 

outputs related to accidents and persons involved in accidents. A multiple layer DEA technique was 

implemented by Bastos et al. (2015) to benchmark road safety performance of 27 Brazilian states; mortality 

rate and fatality were used as the main outputs. Behnood et al. (2014) used an inverted input-oriented CCR 

model to evaluate a relative inefficiency index for 30 provinces of Iran. They considered as undesirable 

outputs the number of fatalities per kilometre and the number of fatalities per total road length. A Multi 
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Criterial Decision Making method for selection of optimal road safety composite index with examples from 

DEA and TOPSIS method was developed by Rosic et al. (2017) while Shah (2017) proposed a two-stage 

approach for road safety risk evaluation consisting of DEA in combination with artificial neural networks to 

assess the risk level of road segments and identify those characterized by high-risk. Sadeghi et al. (2013) 

incorporated the segmentation procedure into DEA to identify and prioritize accident-prone sections based 

upon efficiency concept to emphasize accidents with respect to traffic, geometric and environmental factors. 

Recently, Ganji and Rassafi (2019; 2019b) applied a double-frontier DEA model to assess the productivity of 

Iranian regional safety programmes in reducing the number of road fatalities. 

Almost all the papers analyzed apply DEA as a benchmarking technique for comparing countries, states or 

provinces on the safety performance of their road systems and related policies: the identification of the 

efficiency frontier is used to identify both the most efficient units and their distance from inefficient ones. 

Focusing the analysis on the urban territorial context, this paper proposes and tests a DEA-based decision 

support tool to assist urban road safety management practitioners in identifying a hierarchy of hazardous 

roads based on safety conditions. The relative efficiency of each road is measured as the ratio between input 

and output data computed based on DEA approach.  

 

3. The DEA method 

The efficiency of a unit in relation to a group of similar process units was first evaluated by Farrell in 1957 

(Farrell, 1957). Broadly speaking, the concept of efficiency is used to characterize the utilization of resources 

and thus the performance of processes transforming a set of inputs into a set of outputs. The concept of 

efficiency is relative as it implies that the performance of a unit is compared to a standard. DEA is a 

performance measurement technique that can be used for evaluating the relative efficiency of decision-

making units (DMUs). In the application proposed in this paper, urban roads are identified as DMUs. The first 

basic DEA model, the so-called Constant Returns to Scale model, also known as CCR, was developed in 1978 

by Charnes, Cooper and Rhodes (Charnes et al., 1978). In a typical DEA model, the objective is to compare 

the efficiency of similar elements based on predetermined inputs and outputs. Therefore, a DMU is 

considered the element to be compared. For each DMU, the efficiency is defined as the ratio of the weighted 

sum of outputs to the weighted sum of inputs. A score equal to one indicates an efficient unit. The main 

advantage of DEA is that it does not require any subjective weighting procedure while benchmarking similar 

units and an overall performance score for a DMU can be derived as efficiency (Egilmez and McAvoy, 2013). 

The weights of inputs and outputs are thus not assigned in a subjective way by the decision-maker but 

attributed by the calculation model so that the efficiency of the DMU is always maximized.  

To measure the relative efficiency of any DMU 𝑝, the traditional DEA model is structured as a linear 

divisive programming problem (Beasley, 2003): 

maximize                  𝑍𝑝𝑞 =  
∑ 𝑢𝑖𝑝𝑦𝑖𝑞

𝑠
𝑖=1

∑ 𝑣𝑗𝑝𝑥𝑗𝑞
𝑡
𝑗=1

                                                          (1) 

 

subject to: 

 

𝑞 = 1, 2, … , 𝑛                                                                                                         (2)                                     

 

0 ≤
∑ 𝑢𝑖𝑝

𝑠
𝑖=1  𝑦𝑖𝑞

∑ 𝑣𝑗𝑝
𝑡
𝑗=1 𝑥𝑗𝑞

≤ 1          𝑞 = 1, … , 𝑛                                                           (3) 
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𝑢𝑖𝑝  ≥  ∈                                  𝑖 = 1, … , 𝑠                                                            (4) 

 

𝑣𝑗𝑝  ≥  ∈                                  𝑗 = 1, … , 𝑡                                                            (5) 

 

where: 

𝑛 number of DMUs being evaluated; 

𝑠 number of outputs; 

𝑡 number of inputs; 

𝑢𝑖𝑝       weight attached to 𝑖-th output (𝑖 = 1, … , 𝑠) for DMU 𝑝 (𝑝 = 1, … , 𝑛); 

𝑣𝑗𝑝       weight attached to 𝑗-th input (𝑗 = 1, … , 𝑡) for DMU 𝑝 (𝑝 = 1, … , 𝑛); 

𝑦𝑖𝑝       value of 𝑖-th output (𝑖 = 1, … , 𝑠) for DMU 𝑝 (𝑝 = 1, … , 𝑛); 

𝑥𝑗𝑝   value of 𝑗-th input (𝑗 = 1, … , 𝑡) for DMU 𝑝 (𝑝 = 1, … , 𝑛); 

𝑧𝑝𝑞   relative efficiency of DMU 𝑞 (𝑞 = 1, … , 𝑛) when evaluated using the weights associated with 

DMU 𝑝 (𝑝 = 1, … , 𝑛); 

∈ infinitesimal constant. 

 

Equation (1) maximizes the efficiency of the considered DMU 𝑝. Equation (2) defines the efficiencies of all 

DMUs 𝑞 with respect to the weights chosen for 𝑝, while Equation (3) ensures that all efficiencies are between 

0 and 1. Equations (4) and (5) ensure all weights of outputs and inputs are positive.  

The CCR model assumes that all the DMUs operate on an optimum scale with constant returns to scale. This 

means that for a decision-making unit using an input X to produce an output Y, it is feasible to produce αY 

using αX amount of input (with α scalar).  

To estimate efficiencies whether an increase or decrease in input or outputs does not result in a proportional 

change in the outputs or inputs, Banker et al. (1984) developed the DEA model for variable returns to scale 

(BCC). Both CCR and BCC models can be oriented to inputs or outputs. In input-oriented models, the objective 

is to continue producing the same outputs with minimum inputs, in output-oriented models the objective is 

to maximize outputs using the minimum amount of inputs. 

In this study, both input- and output- oriented models are used to compare two different scenarios. The 

former is used to represent the scenario whose goal is to vary traffic flows and the number of conflict points 

while maintaining the same number of road accidents. The latter is used to represent the scenario whose 

goal is to vary the number of road accidents while maintaining the same traffic flows and number of conflict 

points. 

 

3.1. Definition of the input and output parameters used in this application  

This study proposes a decision support tool based on DEA to support public administrations when planning 

activities and interventions related to road safety. The proposed decision support tool is used to compare 

the safety performance of a set of urban roads based on several variables related to road safety: traffic flows, 

number of conflict points at intersections, number of road accidents, number of deaths and injuries in road 

accidents. Differently from previous studies which used an approach of road segmentation to define road 

segments based on parameters such as fixed length, distance between two intersections or accident factors 

(Abdel-Aty and Radwan, 2000; Cafiso et al., 2008; Sadeghi et al., 2013), this application considers whole urban 

roads as DMUs. This choice responds to the operational needs of local administrators who, in urban areas as 

the one analyzed, mostly act based on safety assessments conducted at the level of whole roads rather than 
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predefined sections. Identification of urban roads as DMUs is done according to the following homogeneity 

criteria:  

- same functionality level; 

- similar capacity level; 

- similar traffic flows. 

Identified urban roads are treated as production units capable of generating a certain amount of accidents 

using selected inputs. Factors influencing the occurrence of accident must be carefully chosen to ensure that 

they are representative and closely linked to the safety performance of the DMUs. Inputs should be selected 

from among those road safety parameters that can be modified through regulatory and road engineering 

interventions. Furthermore, to determine the input and output values easily and rapidly, the parameters 

must be chosen from those already in the possession of local authorities or otherwise readily obtainable 

through traffic and geometric surveys. In the application proposed, the social cost of accidents is considered 

for the first time as the only output while the average number of conflict points at intersections and traffic 

flow are used as inputs. The identification of these variables has been derived from the line of research of 

the authors in the field of multi-criteria methods applied to road safety (Fancello et al., 2015; Fancello et al., 

2019). 

The first input parameter (𝑥1) is traffic flow divided by the length (𝑙) of the urban road (equation 6). The 

𝑥1 parameter is calculated as the Average Annual Daily Traffic (𝐴𝐴𝐷𝑇) divided by the length in meters of the 

urban road. The 𝐴𝐴𝐷𝑇 is defined as the total yearly volume of vehicle traffic on a road divided by 365 days 

(Board, 2010). The AADT has been divided by the length of the road in order to have a normalized parameter 

which allows us to compare fairly homogeneous roads even of very different lengths.  

𝑥1 = 𝐴𝐴𝐷𝑇
𝑙⁄         (6) 

The second input parameter (𝑥2) is the average number of conflict points at intersections (equation 7). 

The 𝑥2 parameter is calculated as the sum of the number of conflict points at intersections divided by the 

number (𝑚) of road intersections. The number of conflict points includes all types of conflict points (diverge, 

merge and crossing). Let 𝑐𝑝𝑧 be the sum of conflict points at intersection 𝑧, 𝑥2 can be formulated as: 

𝑥2 =
∑ 𝑐𝑝𝑧

𝑚
𝑧

𝑚⁄           (7) 

The output parameter (𝑦) is the social cost of accidents (𝑆𝐶). 𝑆𝐶 represents an aggregate measure of all 

the costs that road crashes inflict on the community. It includes not only material losses but also pain and 

suffering as defined in the Italian Legislative Decree n. 35/2011.  

Let 𝑑 be the number of road deaths, 𝑓 the number of injuries and 𝑔 the number of road accidents. The value 

of 𝑦 is calculated using the equation and coefficients defined in the study attached to Executive Decree n.189 

24/09/2012 of the Italian Ministry of Infrastructure and Transport (equation 8): 

𝑦 = 𝑆𝐶 = 1,503,990 € ∙ 𝑑 + 42,219 € ∙ 𝑓 +  10,986 € ∙ 𝑔               (8) 

where the average cost for each death is estimated at 1,503,990 €, the average cost for an injury is estimated 

at 42,219 € and the average general cost of an accident with damage to persons is estimated at 10,986 €. 

The total 𝑆𝐶 of accidents in a given road network and in a given time horizon can therefore be calculated by 

multiplying the average cost per death and the average cost per injury respectively by the number of deaths 

and the number of injuries from road crashes, to which we add the average general cost per accident 

multiplied by the number of road crashes with damage to persons recorded in that network in the time 

horizon considered. 
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As is known, a DEA model identifies those units that are efficient for a combination of input-output ratios. 

In this research, the most efficient DMU is defined as the road characterized by the fewest accidents, injuries 

and deaths with the highest traffic flows and conflict points at the intersections. An efficient road is thus a 

road that experiences fewer undesirable outputs as a result of more desirable inputs. Therefore, to make 

data appropriate for the basic DEA model standards and maintain the goal of inputs minimization and outputs 

maximization, in this study data are modified by inversing values of both inputs (traffic flows and number of 

conflict points) and outputs (number of road accidents and number of deaths and injuries). A similar inverted 

approach has been applied in Shen et al. (2012) and Ganji and Rassafi (2019). 

4. Application 

This section illustrates the application area and data, the methodological steps used to apply DEA to the 

selected case study and presents the numerical results. 

4.1 Application area and identification of DMUs 

The case study of interest concerns the urban road network of Villacidro, Sardinia (Italy). Villacidro is a 

medium-sized town (13.888 inhabitants as of December 31st, 2018) with a dense road network characterized 

by a high number of intersections and low traffic volumes. The Strategic Plan of the road map of Villacidro 

was approved in 2015 and, according to analyses on traffic flows and road safety, it identified nine urban 

roads as being more hazardous. These nine roads constitute the decisional set of the proposed DEA 

application; they meet the homogeneity criteria defined above: 

- they are all urban arterial roadways, as defined in the Villacidro Strategic Plan; 

- they are characterized by similar traffic volumes (average AADT > 2,700 vehicles/day); 

- they have similar capacity (average capacity > 1,200 vehicles/hour). 

Figure 1 shows the road map of the selected urban area; the nine roads of interest are identified through an 

ID. 

 

 
Figure 1. Road map of Villacidro.  

 

4.2 Application data 

DMUs ID 

1.  via NAZIONALE NORD 

2.  via NAZIONALE CENTRO 

3.  via NAZIONALE SUD 

4.  via PARROCCHIA 

5.  via REPUBBLICA 

6.  via ROMA 

7.  via SASSARI 

8.  via SAN GAVINO 

9. via GUIDO 

ROSSA 
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Input (𝑥1, 𝑥2) and output (𝑦) values were determined for each road forming part of the decisional set, 

specifically: 

− AADT data (𝑥1) were taken for granted from the Strategic Plan of Villacidro; 

− data on the length of roads (𝑙) were derived from the dwg maps of the Strategic Plan of Villacidro; 

− the number of conflict points (𝑥2) was calculated as the sum of diverging, merging and crossing 

conflict points at the various intersections; 

− the social cost (𝑦) was calculated according to equation (8) using data on road deaths, injuries and 

accidents from 2009-2013.  

Table 2 lists both input (𝑥1, 𝑥2) and output (𝑦) values for each DMU. 

 

Table 2. Input and output values for the nine DMU’s. 

   𝑫𝑴𝑼 𝑰𝑫  𝟏
𝒙𝟏

⁄ = 𝒍
(𝑨𝑨𝑫𝑻)⁄  𝟏

𝒙𝟐
⁄ = 𝒎

(∑ 𝒄𝒑𝒛
𝒎
𝒛 )⁄  𝟏

𝒚⁄ = 𝟏
𝑺𝑪⁄  

1. via NAZIONALE NORD 0.1491547895 0.1190476190 0.0000020344 

2. via NAZIONALE CENTRO 0.0619933238 0.1428571429 0.0000102935 

3. via NAZIONALE SUD 0.1451540866 0.1200000000 0.0000005715 

4. via PARROCCHIA 0.2384041518 0.1139240506 0.0000023399 

5. via REPUBBLICA 0.2613524992 0.1571428571 0.0000030126 

6. via ROMA 0.5191944619 0.2500000000 0.0000005480 

7. via SASSARI 4.4557823129 0.1363636364 0.0000071752 

8. via SAN GAVINO 0.2192771084 0.1304347826 0.0000055070 

9. via GUIDO ROSSA 0.9726688103 0.0694444444 0.0000133019 

 

 

 

4.3 Application methodology 

To measure the efficiency score of the nine urban roads, the following four DEA models were applied to 

the same decisional set:  

− CCR model input-oriented (hereinafter CCR-I, test n.1); 

− CCR model output-oriented (hereinafter CCR-O, test n.2);  

− BCC model input-oriented (hereinafter BCC-I, test n.3); 

− BCC model output-oriented (hereinafter BCC-O, test n.4). 

4.4 Application results 

The experimentation was performed using the DEAP 2.1 freeware software developed by Coelli (1996). 

Tables 3 to 6 show the results of the four DEA models applied. In all the tests, each DMU was characterized 

through the following factors: 

− score (equal to 1 for efficient DMUs, lower than 1 for less efficient ones); 

− general rank (hierarchical position of the DMU); 

− projection of the input and output values onto the DEA frontier (the hierarchical position of the 

projection on the frontier is shown in brackets);   
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− percentage distance between the actual value of an input (or output) and its projection. The 

greater the distance, the less efficient the DMU. 

 

Table 3. Results of CCR-I, test n.1. 

DMU ID Score Rank Projection of 𝟏 𝒙𝟏
⁄  Distance (%) Projection of 𝟏 𝒙𝟐

⁄  Distance (%) 

1. via NAZIONALE NORD 0.2156 7 0.032   (7) -78.441 0.025   (7) -78.441 

2. via NAZIONALE CENTRO 1 1 0.061   (4) 0 0.142   (1) 0 

3. via NAZIONALE SUD 0.0604 8 0.008   (9) -93.963 0.007   (8) -93.963 

4. via PARROCCHIA 0.237 5 0.056   (6) -76.298 0.027   (6) -76.298 

5. via REPUBBLICA 0.2313 6 0.060   (5) -76.868 0.036   (5) -76.868 

6. via ROMA 0.0253 9 0.013   (8) -97.467 0.006   (9) -97.467 

7. via SASSARI 0.2747 4 0.524   (2) -88.225 0.037   (4) -72.53 

8. via SAN GAVINO 0.5085 3 0.111   (3) -49.153 0.066   (3) -49.153 

9. via GUIDO ROSSA 1 1 0.972   (1) 0 0.069   (2) 0 

 

Table 4. Results of CCR-O, test n.2. 

DMU ID Score Rank Projection of 𝟏 𝒚⁄  Distance (%) 

1. via NAZIONALE NORD 0.2156 7 9.4E-06   (9)  363.844 

2. via NAZIONALE CENTRO 1 1 1E-05      (6) 0 

3. via NAZIONALE SUD 0.0604 8 9.5E-06   (8) 1556.33 

4. via PARROCCHIA 0.237 5 9.9E-06   (7) 321.912 

5. via REPUBBLICA 0.2313 6 1.3E-05    (4) 332.301 

6. via ROMA 0.0253 9 2.2E-05    (2) 3847.26 

7. via SASSARI 0.2747 4 2.6E-05    (1) 264.032 

8. via SAN GAVINO 0.5085 3 1.1E-05   (5) 96.669 

9. via GUIDO ROSSA 1 1 1.3E-05   (3) 0 

 

Table 5. Results of BCC-I, test n.3. 

DMU ID Score Rank 
Projection of 

𝟏
𝒙𝟏

⁄  
Distance 

(%) 

Projection of 
𝟏

𝒙𝟐
⁄  

Distance 
(%) 

Projection of 
𝟏

𝒚⁄  
Distance 

(%) 

1. via NAZIONALE NORD 1 1 0.149   (7) -0.001 0.119   (8) -0.001 2E-06 0 

2. via NAZIONALE CENTRO 1 1 0.061   (9) 0 0.142   (3) 0 1E-05 0 

3. via NAZIONALE SUD 1 1 0.145   (8) -0.001 0.120   (9) -0.001 5.7E-07 0 

4. via PARROCCHIA 0.998 5 0.237   (3) -0.198 0.113   (5) -0.198 3.2E-06 38.853 

5. via REPUBBLICA 0.7446 7 0.194   (6) -25.54 0.117   (7) -25.54 3E-06 0 

6. via ROMA 0.4552 9 0.236   (4) -54.482 0.113   (6) -54.482 3.2E-06 488.926 

7. via SASSARI 0.5093 8 0.972   (2) -78.171 0.069   (2) -49.075 1.3E-05 85.385 

via SAN GAVINO 0.9286 6 0.203   (5) -7.14 0.121   (4) -7.14 5.5E-06 0 

via GUIDO ROSSA 1 1 0.972   (1) 0 0.069   (1) 0 1.3E-05 0 

 

Table 6. Results of BCC-O, test n.4. 

DMU ID Score Rank 
Projection of 

𝟏
𝒙𝟏

⁄  
Distance 

(%) 

Projection of 
𝟏

𝒙𝟐
⁄  

Distance 
(%) 

Projection of 
𝟏

𝒚⁄  
Distance 

(%) 

1. via NAZIONALE NORD 0.9997 3 0.14915 0 0.11905 0 2.035E-06   (9) 0.032 
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2. via NAZIONALE CENTRO 1 1 0.06199 0 0.14286 0 1.029E-05   (6) 0 

3. via NAZIONALE SUD 0.2382 8 0.14515 0 0.12 0 2.399E-06   (8) 319.811 

4. via PARROCCHIA 0.6913 4 0.2384 0 0.11392 0 3.380E-06   (7) 44.646 

5. via REPUBBLICA 0.2751 7 0.26135 0 0.12679 -19.317 1.095E-05   (4) 263.547 

6. via ROMA 0.0464 9 0.51919 0 0.106 -57.599 1.180E-05   (3) 2054.16 

7. via SASSARI 0.5394 5 0.97268 -78.17 0.06945 -49.074 1.330E-05   (1) 85.388 

8. via SAN GAVINO 0.5093 6 0.21928 0 0.13018 -0.196 1.081E-05   (5) 96.353 

9. via GUIDO ROSSA 1 1 0.97267 0 0.06944 0 1.330E-05   (2) 0 

 

A number of considerations can be drawn by comparing the general DMUs ranking with the ranking of the 

projections: 

− Table 3 - CCR-I model: the ranking of the 1 𝑥1
⁄  projection shows only three common positions with 

the general DMUs ranking (1st, 3rd and 7th place) while the ranking of the 1 𝑥2
⁄  projection maintains 

six common positions (1st, 3rd, 4th, 7th, 8th and 9th place). It means that 𝑥2 contributes to the general 
DMUs ranking more than 𝑥1. Some examples can help to understand: the DMU called “via Nazionale 

Centro”, which ranks fourth in the 1 𝑥1
⁄  projection and first in the 1 𝑥2

⁄  projection, keeps the top also 

of the general DMUs ranking. Conversely, “via Sassari”, which ranks second when considering the 
1

𝑥1
⁄  projection and fourth when considering the 1 𝑥2

⁄  projection, maintains fourth place also in the 

general DMUs ranking. 

− Table 4 - CCR-O model: only one common position (8th place) emerges from the comparison between 

the general DMUs ranking and the ranking of the 1
𝑦⁄  projection. Three DMUs are in the first five 

places in both rankings: “via Guido Rossa”, “via Sassari” and “via San Gavino” rank respectively first, 
fourth and third in the general DMUs ranking and third, fifth and first in the ranking of the 1

𝑦⁄  

projection. 

− Table 5 - BCC-I model: when comparing the general DMUs ranking, with the rankings of the 1 𝑥1
⁄  and 

1
𝑥2

⁄  projections, it emerges that only two DMUs are in the first five places: “via Guido Rossa” ranks 

first in all rankings and “via Parrocchia” ranks fifth, third, and fifth respectively. 
Moreover, some DMUs (“via Nazionale Nord”, via Nazionale Centro” and “via Nazionale Sud”) which 

are on the top of the general DMUs ranking, are on the bottom of the two projection rankings (7th, 

9th, 8th place in the 1 𝑥1
⁄  projection rank and 8th, 3rd, 9th place in the 1 𝑥2

⁄ projection rank). It means that 

there is not a strong objective correlation between the relative efficiency and the inputs used to 

calculate it.  

− Table 6 - BCC-O model: only one common position (8th place) emerges from the comparison between 

the general DMUs ranking and the ranking of the 1 𝑦⁄  projection. Two DMUs are in the first five places 

in both rankings: “via Guido Rossa” and “via Sassari” rank respectively first and fifth in the general 
DMUs ranking, and second and first in the ranking of the 1

𝑦⁄  projection. Even in this case, these 

differences show that there is not a strong objective correlation between the relative efficiency and 
the output used to calculate it.  

 

Figures 2 to 5 show graphically the positioning of each DMU with respect to the relative distance between 

the real value of the data and its projection onto the efficiency frontier. The closer the point is to the origin 

of the axes, the greater the efficiency of the DMU. For example, looking at Figure 2, “via Roma” and “via 

Nazionale” are the most efficient DMUs being both very close to the origin while the most distant “via Guido 

Rossa” and “via Nazionale Centro” are the less efficient ones. 
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Figure 2. CCR-I, test n.1.    Figure 3. CCR-O, test n.2. 

 

  

Figure 4. BCC-I, test n.3.    Figure 5. BCC-O, test n.2. 

 

 

5. Discussion  

Table 7 shows and compares the general rank of each DMU in the four tests. Looking at the results, it 

emerges that the rank of DMUs sometimes varies with the specific model (CCR or BCC) and approach (input- 

or output-oriented) used. Several considerations can be drawn from the analysis of the ranks and projection 

data:  

− the Constant Returns to Scale (CCR) model produces the same ranking when using input- and output-

oriented approaches. This is a major advantage for the application of the CCR model in road safety 

as it allows authorities to consider different perspectives, depending on the objectives (input- or 

output-oriented), while obtaining the same result; 

− in the CCR input-oriented model (Table 3) the ranking seems more influenced by the “number of 

conflict points” variable (𝑥2) than by the “AADT” (𝑥1). It could be explained through the features of 

the road network examined, which is characterized by low traffic volumes and high number of road 

intersections. As for the CCR output-oriented model (Table 4), it is not possible to prove a direct 

relationship with the "social cost" output (𝑦), being the general ranking of DMUs different from the 

ranking of the projections in almost all cases; 
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− the Variable Returns to Scale (BCC) model produces different results when using input- and output- 

oriented approaches. When the input-oriented approach is used, 4 DMUs out of 9 are positioned on 

the frontier and can be considered as equally efficient.  Such a result is not useful for the purpose of 

the study as the model does not differentiate adequately between efficient and inefficient DMUs, 

thus providing a non-practical hierarchy; 

− by comparing the rankings provided by the BCC input-oriented and BCC output-oriented models, it 

emerges that 5 DMUs out of 9 have the same rank. In the remaining cases, models can sometimes 

yield very different results. An example is "via Nazionale Sud", which is in first place in the BCC input-

oriented test and in eighth place in the BCC output-oriented test; 

− by comparing the rankings provided by the CCR (both input- and output-oriented) and BCC output-

oriented models it emerges that only four DMUs out of nine maintain the same rank in the three 

tests. 

Table 7. General rank of the DMUs in the four tests. 

DMU ID 
CCR Input-oriented 

(Test 1) 
CCR Output-oriented 

(Test 2) 
BCC Input-oriented 

(Test 3) 
BCC Output-oriented 

(Test 4) 

1. Via Nazionale Nord 7 7 1 3 
2. Via Nazionale Centro 1 1 1 1 
3. Via Nazionale Sud 8 8 1 8 
4. Via Parrocchia 5 5 5 4 
5. Via Repubblica 6 6 7 7 
6. Via Roma 9 9 9 9 
7. Via Sassari 4 4 8 5 
8. Via San Gavino 3 3 6 6 
9. Via Guido Rossa 1 1 1 1 

  
These results prove the usefulness of the CCR model, both input- and output-oriented, as a convenient 

decision support tool for hierarchical analyses in road safety. The CCR model can indeed provide a robust 

hierarchy both in the case of an input or output approach. Conversely, the variability of the hierarchical 

results provided by the BCC model with the two approaches (input and output) makes it unsuitable for 

prioritizing road safety interventions, as the hierarchy provided is less stable. This is further confirmed by the 

impossibility to identify an objective relationship between the relative DMUs efficiency and the input and 

output values, as highlighted by the ranking of their projections. 

 
6. Conclusions 

This paper has proposed a DEA-based decision support procedure that could provide a decision 

framework to advise urban road safety management. The proposed procedure has been applied to an Italian 

urban road network in order to identify a list of intervention priorities based on the safety conditions of its 

roads. The designed evaluation model considers the social cost of accidents as the only output indicator and 

the average number of conflict points at intersections and traffic flow as inputs. To assess the suitability of 

the various DEA models to provide a robust hierarchy to be used by decision-makers for prioritizing road 

interventions, both BCC (Variable Returns to Scale) and CCR (Constant Returns to Scale) DEA models were 

applied, each oriented once to inputs and once to outputs.  

The application results have made it clear that to ensure the validity of the DEA method for decision-making 

purposes, particular attention must be paid to the choice of the specific model to be applied. According to 

the application results, the CCR model seems to provide a robust hierarchy for both the input and output 

approaches, whereas the BCC model leads to different hierarchical results, depending on the approach used.  

The CCR model seems to provide a more objective and general assessment of the DMUs performance, while 

the BBC model appears to mainly explore the DMUs “behaviour” in terms of technical and scale differences. 

The CCR model may be more suitable for the definition of priority lists considering that road network 
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practitioners usually need a general hierarchy of hazardous road locations based on safety conditions. The 

outcomes of the study thus confirm the usefulness of the DEA approach as a road safety decision support 

tool and indicate that CCR models seem better suited than BCC models to be used by road managers for 

defining priority lists in road safety interventions. 

As for the input and output variables, the results of the application on the case study have shown that the 

number of conflict points at the intersections seems to affect road safety performance more than traffic flow. 

This may indicate that in urban contexts similar to the one analyzed (medium-sized towns characterized by 

dense road networks and limited traffic volumes) greater attention must be paid by road managers to 

reducing conflict points rather than limiting traffic.  

The basic methodological steps for applying the method on other urban contexts can be summarized as 

follows: 

1. Selection of DMUs within the urban road network based on the following homogeneity criteria 
(it implies the availability of data for all DMUs):  

− functionality level;  

− road capacity;  

− traffic volumes;  
2. Measurement of inputs and outputs: 

− inputs: average number of conflict points at intersections and traffic flow; 

− output: social cost of accidents; 
3. Choice of the approach, depending on the objectives of the analysis:  

− input-oriented: if the decision maker wants to maximize traffic flows and the number of 
conflict points while maintaining the same number of road accidents; 

− output-oriented: if the decision maker wants to minimize accidents while maintaining 
the same traffic flows and number of conflict points; 

4. Application of the DEA CCR model and validation of the ranking-list. 
A final consideration concerns an inherent limitation of DEA methods related to the selection of the input 

and output variables. As DEA is a nonparametric method that measures relative efficiency by comparing it 

with the possible production frontiers of DMUs with multiple inputs and outputs, its validity strongly depends 

on the proper choice of the input and output variables. The latter must be carefully chosen using data mining 

techniques to ensure that they are representative and closely linked to the safety performance of the DMU. 

In this study, the selection of the social cost of accidents as the only output and the average number of 

conflict points at intersections and traffic flow as inputs were derived from a careful data mining process 

conducted by the authors in previous studies.  

As a future development of the research, further analyzes will be implemented to compare the performance 

of the CCR input-oriented and CCR output-oriented model so as to confirm their validity as a decision support 

instrument and highlight any differences and application specificities.  
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