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Abstract— Identifying the prevailing polluting sources would
help the distribution system operators in acting directly on the
cause of the problem, thus reducing the corresponding negative
effects. Due to the limited availability of specific measurement
devices, ad-hoc methodologies must be considered. In this regard,
Compressive Sensing-based solutions are perfect candidates. This
mathematical technique allows recovering sparse signals when
a limited number of measurements are available, and thus
overcoming the lack of Power Quality meters.

In this paper, a new formulation of the `1-minimization
algorithm for Compressive Sensing problems, with quadratic
constraint, has been designed and investigated in the framework
of the identification of the main polluting sources in Smart
Grids. A novel whitening transformation is proposed for this
context. This specific transformation allows the energy of the
measurement errors to be appropriately estimated and thus bet-
ter identification results are obtained. The validity of the proposal
is proved by means of several simulations and tests performed
on two distribution networks for which suitable measurement
systems are considered along with a realistic quantification of
the uncertainty sources.

Index Terms—Compressed sensing; Harmonic analysis, Har-
monic distortion; Harmonic Source Estimation; Matching pursuit
algorithms; Power distribution; Power Quality; Smart Grids.

I. INTRODUCTION

The evolution of distribution grids into new generation
networks, known as Smart Grids (SGs), is leading to numerous
changes in the behaviour of these systems. In particular,
the increasing presence of non-linear loads and distributed
generators, mostly power electronics-based, contributes to the
increment of the harmonic pollution in the network. Conse-
quently, different problems arise, such as unexpected failures
of sensitive devices, increase of power losses, increase of the
management costs and so on [1].

Different solutions to monitor the state of the network in
terms of harmonics have been proposed in literature [2]–
[5], but their implementation in real networks is not always
possible. These techniques require the direct monitoring of

Dr. Pegoraro work was partially funded by Fondazione di Sardegna for the
research project “SUM2GRIDS, Solutions by mUltidisciplinary approach for
intelligent Monitoring and Management of power distribution GRIDS”.

D. Carta, C. Muscas, P. A. Pegoraro, A. V. Solinas, and S. Sulis are with
the Department of Electrical and Electronic Engineering of the University
of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy (email: [daniele.carta,
carlo.muscas, paolo.pegoraro, v.solinas, sara.sulis]@unica.it).

(c) 2021 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other users, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective
works for resale or redistribution to servers or lists, or reuse of any copyrighted
components of this work in other works. DOI:10.1109/TIM.2020.3036753
Publisher version:https://ieeexplore.ieee.org/document/9252160

the system, and, due to the large size of the distribution
systems, and the costs of Power Quality (PQ) meters, it is
not always feasible to deploy them, unless highly uncertain
pseudo-measurements are used to integrate the available mea-
surements. In this regard, alternative solutions for harmonic
estimation in power systems have been proposed, such as
machine learning-based techniques [6], [7], wavelet-based
solutions [8] and many others [9].

In this paper, the final goal is the identification of the
harmonic sources, which would allow system operators to
act directly on the cause of the problem. This approach,
called Harmonic Source Estimation (HSoE), was presented
in [10], [11], specifically for distribution networks. Due to
the characteristics of the problem (under-determined systems,
consequent to the limited number of measurements, and sparse
state vectors), in [12] and [13] the Compressive Sensing
(CS) was applied in the framework of HSoE. This recent
mathematical technique is applied in many fields of science
with very promising results, from image reconstruction for
medical applications [14], [15] to pattern recognition [16],
and communication systems [17]. In particular, the algorithms
in [13] can be applied to both generic analysis (considering
multiple harmonic orders at the same time) and specific anal-
ysis (focused on a single harmonic order). These solutions are
meant to be directly implemented in a SG scenario, and thus
are based on the use of modern measurement devices, capable
to provide synchronized harmonic phasor measurements, such
those proposed in [18] and [19].

The accuracy of the harmonic measurements plays a key
role in the source detection, as well as in any other PQ
application. For example, the ratio of inductive Voltage and
Current Transformers (respectively VTs and CTs) is typically
defined only at rated frequency, whereas the metrological
characteristics of these transducers tend to decrease in pres-
ence of non-sinusoidal signals [20]. Recent works in literature
[21], [22] have underlined how the output of measurement
transducers could be compensated in harmonic measurements.

Since the CS problem can be approached with different
techniques, in [23] the performance of two CS-based al-
gorithms, Block Orthogonal Matching Pursuit (BOMP) and
`1-minimization, applied to the HSoE analysis have been
evaluated, under different measurement uncertainty conditions.
Both BOMP and `1-minimization are largely applied for
recovering sparse signals, due to their specifications. The
BOMP is often chosen due to the ease of implementation
and the low computational burden, whereas `1 algorithms are
typically slower but provide more accurate results. In fact, in
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[23] it has been shown that the BOMP algorithm is particularly
sensitive to measurement errors, especially with reference to
phase angle measurements, whereas the `1 algorithm proved
to be more stable against the variation of the measurement
uncertainties, and thus it is the most promising candidate for
HSoE applications.

This paper is the technical extension of the paper [23],
and aims at further improving the performance of the `1-
minimization approach considered in [23] (here referred to
as (P1)), exploiting the proper modelling of the measurement
uncertainties. With reference to the general formulations of the
`1-minimization problems, in [24] the effect of noise has been
considered through the so-called (P2) formulation, whose
solution relies on the definition of an error energy bound.

Based on these results, in this paper, a new `1-minimization
algorithm for HSoE is presented. The proposed method is
based on a novel formulation of HSoE problem, referred to
as (P2) in the following, which is tailored for the specific
context. In fact, it includes appropriate information on the
boundaries of the synchronized harmonic measurement errors.
Furthermore, a whitening transformation able to maintain in-
formation on the measurement error distributions is proposed,
thus allowing the accurate definition of a measurement error
energy bound necessary to tune (P2). The paper includes
a discussion on the theoretical aspects concerning measure-
ment uncertainties involved in the definition of the algorithm
and their validation through appropriate tests. Among oth-
ers, the whitening transformation properties are statistically
validated. The proposed algorithm overcomes the limits of
HSoE algorithm (P1) presented in [23] thanks to the new
uncertainty modeling. Its performance is verified by testing
it on simulated distribution test grids, assuming the presence
of suitable measurement systems and considering different
accuracy scenarios.

II. ESTIMATION FRAMEWORK

A. Harmonic Source Estimation Model

The identification of the harmonic sources in a SG can be
carried out by estimating the harmonic contribution injected
into the network by each source, load or generator, for all the
harmonic orders of interest. In fact, given the generic harmonic
order h, it is possible to formulate the problem as the following
linear model:

yh = Ahuh + eh (1)

where yh ∈ CM represents the vector of the M harmonic
phasor measurements, voltage and/or current, with reference
to the harmonic order h, whose corresponding measurement
errors are represented with vector eh ∈ CM . The measurement
matrix Ah ∈ CM×N relates the measurements to the vector
uh ∈ CN of the N unknown harmonic currents injected
by each potential source. Since the measurement matrix is
obtained by considering both lines and loads, its entries
change when different harmonic orders are considered, due
to the changes in the model of the network. As already
mentioned, the so-called “forcing” vector uh is populated
with the harmonic contributions of each source, whose values

can vary significantly due to the different levels of pollution
provided by every source. Consequently, based on the level
of injected pollution, it is possible to distinguish between
poorly/non-polluting sources and mainly/prevailing polluting
sources. The first group is typically the largest one, and, by
neglecting the contributions of these sources, it is possible to
obtain an unknown sparse vector.

The model in (1) can be also expressed in terms of real
and imaginary components of both vectors and matrices.
This formulation, based on real vectors, is appropriate when
evaluating the impact of the measurement uncertainties, as it
will be presented in Section III. In particular, by denoting
with the superscripts r and x, respectively, the real and the
imaginary entries, the system in (1) becomes:

yh =

[
yrh
yxh

]
=

[
Ar
h −Ax

h

Ax
h Ar

h

] [
urh
uxh

]
+

[
erh
exh

]
= Ahuh+eh (2)

where yrh , <[yh] = [yrh,1, . . . , y
r
h,M ]T denotes the real part

of the measurement vector, with the superscript T representing
the transpose operation, and yxh , =[yh] = [yxh,1, . . . , y

x
h,M ]T

denotes the corresponding imaginary part. Same considera-
tions hold for the other vectors and matrices in (2).

In the following, for sake of simplicity, the subscript h will
be omitted, since all the considerations will refer to a single
harmonic order.

B. Compressive Sensing Algorithms

Compressive Sensing, also called Compressed Sensing, is
a mathematical technique that allows sparse signals to be
sensed by requiring a limited amount of input information.
A generic vector u is sparse if its quasi-norm ‖u‖0, where
‖·‖α denotes the `α norm, is lower than its cardinality. In
particular, the number of S non-zero entries in u denotes
its sparsity level: the vector is defined S-sparse, and it is:
‖u‖0 ≤ S < dim(u). Furthermore, a non-sparse vector
could admit a sparse representation when represented in a
different base or, as in the identification of the prevailing
harmonic sources, if the entries of a vector are characterized
by different orders of magnitude, those with lower value
can be neglected and considered as zero. These vectors are
thus termed compressible, approximately sparse or relatively
sparse, and CS theory can still be applied to recover the
prevailing entries.

The basis formulation of CS consists in a minimization of
a `0 norm (the same symbols as in the previous section are
here used for the sake of simplicity):

(P0) min ‖u‖0 s.t. Au = y (3)

This problem is NP-hard to solve with any classic combina-
torial problems solver [25], but the sparse vector can be also
recovered through approximated techniques.

One of the most commonly implemented algorithms for
CS application is the Orthogonal Matching Pursuit (OMP)
[26]. This greedy algorithm is often chosen due to its ease
of implementation and the fast computation. It is in fact an
iterative algorithm that performs as many iterations as the
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number of non-zero entries one wants to recover. During each
iteration, the OMP selects the most correlated column of the
measurement matrix to the residuals, adds it to a temporary
matrix and uses it to both estimate a new non-zero entry and
update the ones estimated in the previous iterations.

Another common approach consists in approximating (3)
with a `1-minimization problem. In literature ([27], [28]), it
has been shown that, in absence of measurement errors, if the
measurement matrix obeys the Restricted Isometry Property
(RIP), an unknown vector u can be recovered by solving the
following (P1) problem:

(P1) min ‖u‖1 s.t. Au = y (4)

It is evident that real observations are always characterized
by errors, which cannot be neglected. In this regard, in [24]
the (P1) problem was readdressed by including information
on the perturbation on the observations:

(P2) min ‖u‖1 s.t. ‖Au− y‖2 ≤ ε (5)

where ε represents the bound of the norm of the error vector. In
this formulation, the definition of the optimization parameter ε
plays a key role in the recovery process. In fact, if ε is correctly
determined, the (P2) formulation performs better than (P1)
under noisy conditions, as proved in [24].

Since the definition of ε is not trivial, in the following, a
theoretical approach for its evaluation in the case of HSoE is
presented and then validated through simulations.

III. ERROR ENERGY EVALUATION

In the previous section, two different formulations of the
`1-minimization approach have been presented, respectively
labelled as (P1) and (P2). These formulations are here
applied to HSoE. In particular, while (P1) addresses the
`1-minimization of an exact linear under-determined system,
the (P2) formulation considers a more realistic approximated
linear system:

Au ' y (6)

where the misfit between the harmonic measurement vector y
and the model Au is `2-bounded, with the drawback of an
increase in computational complexity. More specifically, the
measurement error vector in (2) and the error bound in (5) are
related, thus:

ξe = ‖e‖22 ≤ ε
2 (7)

where ξe = ‖e‖22 is the energy of the harmonic phasor mea-
surement error vector in rectangular components, hereinafter
referred to as “error energy”. Moreover, if the mean µξe and
the standard deviation σξe of the error energy distribution are
known, the corresponding bound can be chosen according to
ε2 = µξe +λσξe where λ allows changing the confidence level
associated with the inequality ‖e‖22 ≤ µξe + λσξe (typically
λ ≥ 2 is needed to have a high probability).

It is worth underlying that in [24] the computation of mean
and standard deviation of the noise is straightforward, since
it is assumed that all the entries in the error vector follow
the same (and known) distribution, Gaussian or uniform, with

the same mean value and standard deviation. Same hypothesis
does not hold when evaluating harmonics in power systems,
due to the following main reasons:

1) harmonic measurements are characterized by different
behaviours, due to the differences in the measured quanti-
ties (voltages and currents) and the measured parameters
(magnitude and phase angle);

2) due to the transformations performed in (2), the distri-
butions of the entries in the final measurement vector
differ from the originals, and are unknown. This holds
also for the entries of the corresponding measurement
error vector.

The first problem is well known, and addressed by means
of the whitening transformation presented in the following.

A. Whitening transformation

In order to take into account properly the accuracy of
each measurement, it is necessary to perform the so-called
“whitening” transformation. This procedure allows, through
the left-multiplication of (2) by a square whitening matrix W
(also in this case subscript h will be omitted for simplicity),
weighting each measurement according to its uncertainty. In
fact, the entries of W are defined such that the transformation
allows assigning lower weights to the measurements with
higher uncertainties, and vice versa.

Performing a whitening transformation means applying a
linear transformation to the random vector y in order to
obtain a new random vector yw, having the identity matrix
as covariance matrix, that is Σyw

= I.
The covariance matrix of a column vector is defined as:

Σy = E[yyT ] (8)

where the symbol E is the expectation operator. Thus, it is
possible to observe that:

∀W : WTW = Σ−1
y

yw , Wy =⇒ Σyw = I
(9)

Given the i-th generic measured phasor, with magnitude
ρi and phase angle φi, its corresponding real and imaginary
components, respectively yri and yxi , can be obtained with the
non-linear transformation:

yri = ρi cos(φi)

yxi = ρi sin(φi)
(10)

whose Jacobian matrix, around the measurement point, is J:

Ji =

[
cosφi −ρi sinφi
sinφi ρi cosφi

]
(11)

By considering the standard deviations of both magnitude
and phase, respectively denoted by σρi and σφi , it is possible
to obtain the corresponding 2× 2 covariance matrix:

Σρi,φi =

[
σ2
ρi 0
0 σ2

φi

]
(12)

and, through the application of the uncertainty propagation law
[29], the covariance matrix referred to the corresponding real
and imaginary components:
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Σyri ,y
x
i

= Ji

[
σ2
ρi 0
0 σ2

φi

]
JTi =

=

[
ρ2
iσ

2
φi

sinφ2
i + σ2

ρi cosφ2
i (σ2

ρi − ρi
2σ2
φi

) sinφi cosφi
(σ2
ρi − ρi

2σ2
φi

) sinφi cosφi ρ2
iσ

2
φi

cosφ2
i + σ2

ρi sinφ2
i

]
(13)

By extension, assuming that magnitude and phase angle
measurement errors for all the measured phasors are uncor-
related, it is possible to obtain the covariance matrix of the
overall measurement vector Σy as:

Σy = JΣρ,φJT (14)

where Σy is the covariance matrix of all the real and imag-
inary parts of the considered phasor measurements, and J
is the Jacobian matrix of overall transformation. It is worth
underlying that, if all the M measured phasors are considered
uncorrelated, the overall covariance matrix in amplitude and
phase, Σρ,φ, is diagonal. Thus, by defining its inverse square
root as follows:

Σ
− 1

2

ρ,φ =



σ−1
ρ1 0

. . .
σ−1
ρM

σ−1
φ1

. . .
0 σ−1

φM


(15)

it is possible to notice that an infinite number of whitening
matrices that satisfy (9) are available. In fact, given any
orthogonal matrix Q ∈ R2M×2M , it is possible to observe
that:

Σ−1
y =J−TΣ

− 1
2

ρ,φΣ
− 1

2

ρ,φJ−1 =

=(J−TΣ
− 1

2

ρ,φQT )(QΣ
− 1

2

ρ,φJ−1)

∀Q : QQT = QTQ = I

(16)

where the whitening matrices can be defined as:

WQ , QΣ
− 1

2

ρ,φJ−1 (17)

In [13] and [23], the matrix allowing the whitening of the
measurements has been obtained by means of the Cholesky
factorization of the overall covariance matrix, Σy = UT

CUC,
and assigning WC = U−TC , which satisfies (9). Thus, by
denoting with the subscript wC the result of the whitening
transformation through the Cholesky factorization, the system
with the whitened measurements results in:

ywC
, WCy =WCAu + WCe =

=AwC
uwC

+ ewC

(18)

where ewC
= WCe is the whitened measurement error vector.

However, this particular whitening matrix does not allow
solving also the second problem. In fact, even assuming
uniform distributions for the errors of both magnitudes and
phase angles in y, the entries of the whitened error vector
ewC

are no longer uniform.

The principal cause of this difference is the polar-to-
rectangular transformation applied to the error vector:

e ' Jeρ,φ (19)

where eρ,φ = [eρ1 , . . . , eρM , eφ1 , . . . , eφM
]T . In fact, it is

possible to observe that the information on the distributions of
eρ,φ entries is lost when applying the Jacobian transformation.
Moreover, the further application of the whitening matrix WC

is not able to recover the original distributions.
To prove this, let consider two harmonic phasor measure-

ments (V1 and I9,10, with reference to the test scenario that
will be presented in Section IV-A), whose errors on both mag-
nitude and phase angle in eρ,φ = [eρV1

, eρI9,10 , eφV1
, eφI9,10

]T

are uniformly distributed. Their possible values have been
obtained for 106 Monte Carlo (MC) trials. The entries of
eρ,φ have been randomly extracted according to uniform
distributions, whose limits were defined using the “low-
uncertainty level” that will be discussed in Section IV-A.
During each trial, the polar-to-rectangular transformation (10)
has been applied to the measured values, in order to obtain
e = [erV1

, erI9,10 , e
x
V1
, exI9,10 ]T . By looking at the histograms

of its entries, shown in Fig. 1, it can be seen that the polar-
to-rectangular transformation modifies the distributions of the
measurement errors.
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Fig. 1. Histograms of real and imaginary component of voltage and current
measurements NOT whitened.

Finally, the error vector has been whitened by means of
WC . In Fig. 2 the entries of the whitened error vector
ewC

= [ewC
1 , ewC

2 , ewC
3 , ewC

4 ]T are shown. It is evident that
these distributions are not uniform, as stated previously.
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Fig. 2. Histograms of the components of the voltage and current rectangular
measurements whitened via WC .
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To overcome this problem, and in order to be able to
determine a feasible bound of the error measurement vector,
an appropriate whitening matrix is proposed in the following.

B. Proposed whitening matrix

A suitable whitening can recover the information on the ini-
tial measurement error distributions, which are modified due to
the polar-to-rectangular transformation. The proposed matrix
will be labelled as WR, where the subscript R indicates that
this transformation has the feature to recover the information.

Starting from equation (17), among all the infinite solutions
that could fit the requirements, the use of the following
whitening matrix is proposed:

WR = Σ
− 1

2

ρ,φJ−1 (20)

The new whitened error vector ewR
becomes:

ewR
= WRe = Σ

− 1
2

ρ,φJ−1e (21)

and it can be directly related to the original error vector, in
polar coordinates as follows:

ewR
' Σ

− 1
2

ρ,φJ−1Jeρ,φ = Σ
− 1

2

ρ,φeρ,φ (22)

Observing (15), it is immediate to notice that, in (22),
Σ
− 1

2

ρ,φ has the only effect of re-scaling each component of
the magnitude and phase error vector eρ,φ by its standard
deviation (measurement standard uncertainty). It is thus pos-
sible to affirm that, under the first order approximation due
to the linearization of the error propagation and through the
whitening matrix WR, it is possible to obtain a white error that
maintains the useful information on the original measurement
error distributions that was lost in the polar-to-rectangular
transformation.

Consequently, starting from the same harmonic phasor
measurements previously considered, the distributions of the
whitened error, ewR

= [ewR
1 , ewR

2 , ewR
3 , ewR

4 ]T , obtained by
means of the proposed WR are shown in Fig. 3.
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Fig. 3. Histograms of the components of the voltage and current rectangular
measurements whitened via WR.

Thus, starting from magnitude and phase measurement
errors uniformly distributed, it is possible to obtain whitened
measurement error vectors whose entries are still uniformly
distributed. Similar considerations hold for any initial distri-
bution. It is then possible to overcome both problems presented
at the beginning of this section.

Moreover, by observing (17) it is possible to notice that all
whitened vectors that can be obtained applying any whitening
transformation to the same original error vector, have the same
energy error. Indeed:

∀Q : QQT = QTQ = I

‖We‖22 =
∥∥∥QΣ

− 1
2

ρ,φJ−1e
∥∥∥2

2
= ‖Q‖22

∥∥∥Σ− 1
2

ρ,φJ−1e
∥∥∥2

2
=

=
∥∥∥Σ− 1

2

ρ,φJ−1e
∥∥∥2

2
= ‖WRe‖22

=⇒‖ew‖22 = ‖ewR
‖22

(23)

where ew , We is the generic whitened error vector.
Therefore, if, due to a specific whitening transformation, it
is possible to estimate the error energy distribution of the
resulting whitened error vector, this estimation holds for all
the whitened error vectors that can be obtained from the same
error vector.

It is worth noting that computing WR is immediate because
it is available directly by the construction of Σy.

C. Evaluation of the error energy bound

Once the distributions of the entries of the measurement
error vector are known, it is possible to determine the error
bound. As shown in Section II-B, this parameter plays a
key role in the application of the (P2) problem, and if it
is incorrectly evaluated it could lead to a decrease in the
performance of the algorithm.

Let consider M harmonic phasor measurements, whose
errors, on both magnitude and phase angle, are uniformly
distributed. The i-th component of the corresponding ewR

is a
uniform random variable with unitary standard deviation and,
by indicating it with ewR,i, it is possible to write:

ewR,i ∼ U(−
√

3,
√

3) ∀i = 1, . . . , 2M (24)

Thus, the energy of the whitened error vector is the sum of
squared uniform random variables:

ξew , ‖ew‖22 = ‖ewR
‖22 =

2M∑
i=1

e2
wR,i (25)

The sum of n squared uniform random variables ∼ U(−∆,∆)

has mean value n∆2

3 and standard deviation ∆22
√
n

3
√

5
. In the case

at hand, according to (24), ∆ =
√

3 and n = 2M , which leads
to:

µξew = mean(ξew
) ' 2M

σξew = std(ξew
) ' 2

√
2

5
M

(26)

Considering (7), along with the above mentioned inequalities
and results in [24], it is possible to set the error bound
according to:

ε2w = µξew + λσξew (27)

choosing λ according to the desired confidence level.
In order to verify the validity of (27), starting from a

set of 11 harmonic phasor measurements, with the same
characteristics of those considered in Section IV-A, the dis-
tribution of the error energy has been evaluated. Moreover,
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to show graphically that all the whitened error vectors are
characterized by the same energy, the histograms of the energy
of the whitened errors ewC

and ewR
obtained with the two

transformations presented above (WC and WR) and evaluated
by means of 106 MC trials, are reported in Fig. 4. The 95-
th and the 99-th percentile of each whitened error energy
distribution are represented, respectively, with red and magenta
dashed lines, while the value of ε2w (estimated by choosing
λ = 2) is denoted with the black dashed line. As expected, it
is possible to observe that the two distributions are perfectly
identical, with 95-th percentile equal to 29.0630 and the 99-th
percentile equals to 32.0938. Moreover, the ε2w calculated by
means of (27) stays between the 95-th and the 99-th percentile
of the whitened error energy distribution (and is equal to
30.3905). Thus, λ = 2 appears a good compromise in practice
to avoid underestimation of ξew

or overestimation of the misfit.
Consequently, in the following, λ = 2 is chosen for the
evaluation of the error bound ε used in the (P2) formulation.

Fig. 4. Histograms of ξew = ‖ewC ‖22 and ξew = ‖ewR‖22, in the presence
of measurements whitened with WC and WR.

IV. HSOE TESTS AND RESULTS

In order to compare the different performance of the two
formulations of the `1-minimization problem, (P1) and (P2),
both algorithms have been implemented in the HSoE frame-
work applied on simulated test distribution grids.

A. Test set-up

The first considered test grid is a small distribution network,
shown in Fig. 5, at rated frequency of 60 Hz and nominal
voltage Vn = 4.16 kV. The system is composed of 13 nodes
with a possible polluting load connected to each one of them,
with the only exception of node 1, where the substation is
connected.

Fig. 5. Scheme of the 13-bus test grid.

Loads are modelled through an ohmic-inductive impedance,
whose parameters are defined according to the nominal powers
reported in Table I, connected in parallel with an ideal current
source that represents the non-linearity of the load, and thus
the harmonic pollution injected into the system.

TABLE I
NOMINAL LOADS CONFIGURATION

Load Pn [kW] Qn [kvar]
L2 160 110
L3 120 90
L4 170 125
L5 380 220
L6 120 90
L7 70 60
L8 290 210
L9 230 130
L10 490 190
L11 130 90
L12 380 220
L13 170 150

The current injected by the l-th load is obtained by summing
up the harmonic contributions of all the considered harmonic
orders. In this study, the odd harmonic orders from the 3-rd
to the 15-th have been considered, and the magnitude of the
pollution level has been defined in percentage with respect to
the nominal currents of each load. The default values for each
harmonic order are reported in Table II.

TABLE II
HARMONIC FORCING CURRENTS CONFIGURATION

Harmonic order h 3 5 7 9 11 13 15
Magnitude [%] 5 5 3 3 3 1 1

During the tests, by considering two possible sources si-
multaneously polluting (thus a sparsity level S = 2), all the
Nc =

(
12
2

)
= 66 couples of polluting loads have been consid-

ered. When polluting, the loads have all the harmonics in Table
II. To focus on the performance of the proposed solutions and
the impact of the uncertainty sources, the nominal loads have
been considered in all the tests.

With reference to the analysis of a possible SG scenario,
it has been considered that synchronized harmonic phasor
measurements, node voltages (Vi, with reference to the i-th
node) and branch currents (Ii,j , with reference to the branch
delimited by nodes i and j), derived from PMU-like devices
are available in 6 nodes of the network: node 1 (V1), node
3 (V3 and I3,4), node 5 (V5 and I5,6), node 8 (V8), node 9
(V9, I9,10 and I9,11) and node 12 (V12 and I12,13). Further
analyses on optimal placement of the measurement devices
are out of scope of this paper, and thus are not considered in
the following.

To assess the validity of the proposed methodologies, as a
starting test, both (P1) and (P2) algorithms have been tested
in an ideal measurement scenario, neglecting measurement
errors. It is evident that these tests do not correspond to the real
operating condition of the system, but they are fundamental
to establish the best possible performance of the algorithms
in this context. In the presence of the ideal conditions for
the considered measurement configuration, it was possible
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to detect perfectly both polluting loads in each of the Nc
considered combinations.

Nevertheless, as presented above and discussed, for exam-
ple, in [13], measurement uncertainties play instead a key
role in HSoE, and their impact on the performance of the
estimation algorithms has to be suitably investigated. In the
following, the impact of measurement uncertainties on the
two different formulations (P1) and (P2) is evaluated by
means of MC trials. During each trial, for both magnitude and
phase angle of every measured harmonic phasor, the additive
term representing the measurement error has been extracted
from uniform distributions, whose limits have been defined
in accordance with three different uncertainty levels (low,
medium, high) summarized in Table III, where the error on
the magnitude is referred to the percentage of the measured
value.

TABLE III
MAXIMUM MEASUREMENT ERRORS

Max Magnitude Error
[%]

Max Phase Angle Error
[crad]

low 0.5 0.6
medium 2.5 3

high 5 6

All the simulations have been performed in MATLAB
environment, by considering the routines l1eq_pd and
l1qc_logbarrier, for solving the (P1) and the (P2)
problems, respectively, which are part of the `1-MAGIC
library presented in [30]. The vectors recovered with the `1-
minimization algorithms are not exactly sparse, as each entry
is in general different from zero. Once the solution of the
(P1) and (P2) problems is obtained, the S sources with the
maximum absolute values are classified as polluters. The ε
value in (5) has been evaluated by means of the error energy
evaluation framework presented in Section III with λ = 2.

B. Test results

In this section, the performance of the two algorithms is
presented and compared. The identification results will be
represented by means of the so-called Recall, also known as
sensitivity, often used in pattern recognition applications and
that in our case corresponds to the correct detection rate. Given
NS polluting sources and denoting, respectively, with NT
and NF the number of true and failed identifications of the
polluting sources provided by the algorithm, the recall can be
defined as:

Recall =
NT

NT +NF
=
NT

NS
(28)

It is immediate to see that Recall ∈ [0, 1], where 1 holds
when perfect detection is obtained.1 In this study, the case
of two sources polluting simultaneously is assumed and, as

1Recall parameter is usually reported together with Precision parameter
that in this work is omitted since, in this specific analysis, the parameters
assume identical values. Indeed, Recall and Precision parameters express
the percentage of correct identifications with respect to the relevant identifica-
tions and to the total amount of detection, respectively. In this work, for each
trial, the number of polluters and the number of identifications are constant
and equal in both cases to NS = 2, thus Recall = Precision.

mentioned above, 66 different non-repetitive combinations are
possible. For each combination of polluting sources, denoted
by the subscript c = {1, · · · , Nc}, and given NMC = 1000
MC trials, it is possible to define the corresponding average
Recall as:

Recallc ,
1

NMC

NMC∑
t=1

NTc,t
NSc,t

=

∑NMC

t=1 NTc,t
NMCNS

(29)

considering that NS is constant for each trial.
Once (29) is defined, it is also possible to consider the over-

all mean and standard deviation of Recallc as performance
indices of the algorithms:

µRc =

∑NC

c=1Recallc
NC

σRc
=

√∑NC

c=1(Recallc − µRc
)2

NC − 1

(30)

In Fig. 6, the intervals of Recallc values together with
the mean values are visible for both algorithms and for each
uncertainty level, with reference to the 3-rd, 5-th and 7-th
harmonic orders. It is possible to observe that, due to the fact
that Recallc has limited range [0, 1], its means are close to
the maximum values when uncertainty is low, and the trends
are always highly not-symmetric.
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Fig. 6. Recall intervals and mean values, harmonic orders h = 3, h = 5 and
h = 7.

In Table IV, the obtained µRc and σRc for the analysis of the
3-rd, 5-th, and 7-th harmonic orders are reported for (P1) and
(P2) by rows, with the different uncertainty levels by columns.
As expected, for both algorithms, µRc

values decrease, while
σRc

increases, when the considered uncertainty level increases.
Moreover, it is worth underlying that also the differences
between the performance of the two algorithms increase ((P2)
has always higher detection performance) with the uncertainty
level, which is due to the two different formulations of
the problem. In fact, as discussed above, the possibility of
including information on the measurement error in the (P2)
algorithm, through the definition of the error bound ε, is the
key to achieve better performance.

It has to be noticed that, while the evaluation of the µRc

provides information on the overall performance of the two
algorithms, the σRc

value reveals information on the stability
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TABLE IV
Recall PARAMETERS FOR THE TWO ALGORITHMS (13-BUS TEST CASE)

Harmonic
order

Uncertainty level
Low Medium High

µRc σRc µRc σRc µRc σRc

h = 3
(P1) 0.993 0.032 0.878 0.187 0.833 0.219
(P2) 0.998 0.013 0.945 0.128 0.917 0.151

h = 5
(P1) 0.992 0.037 0.873 0.194 0.827 0.222
(P2) 0.999 0.004 0.951 0.112 0.916 0.148

h = 7
(P1) 0.991 0.039 0.868 0.200 0.817 0.223
(P2) 0.999 0.003 0.953 0.106 0.912 0.148

of the performance across different conditions. In particular,
the higher σRc

values for (P1) suggest that the identification
provided by (P1) is less stable towards the variation of
polluting sources.

By focusing on the identification results of each polluting
source, it is possible to further highlight the different per-
formance results of (P1) and (P2). In this regard, in Fig.
7 the detection of load L2 is reported, with reference to the
5-th harmonic order, in percentage with respect to the 1000
MC trials used for each possible combination of polluting
loads. In the x-axis the second polluting load for each scenario
is reported, whereas blue and red lines denote, respectively,
the average detection rate of load L2 provided by (P1) and
(P2). By looking at the top plot, which refers to the lower
uncertainty level considered in the tests, it is possible to see
that both algorithms correctly identify load L2 when combined
with any other load. On the contrary, by looking at the mid
and bottom plots, which refer to the medium and high level
of uncertainty respectively, it is evident that the performance
of both algorithms decreases, and especially that obtained by
(P1) algorithm. When the lowest accuracy is assumed, (P2)
algorithm detects correctly load L2 more than 55% of the
times, for any possible combination of polluting sources, while
(P1) detection reaches the same result only for one of the 11
combinations.

L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13
0%

25%

50%

75%

100%

P1

P2

Low

L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13
0%

25%

50%

75%

100%

C
o

rr
e

c
t 

d
e

te
c

ti
o

n
 o

f 
lo

a
d

 L
2

P1

P2

Medium

L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13

Other polluting loads

0%

25%

50%

75%

100%

P1

P2

High

Fig. 7. Detection of load L2, harmonic order h = 5.

In Fig. 8 and in Fig. 9, the percentage of detection of
loads L7 and L11, when polluting with the other loads, is
reported. These figures underline how the performance of
both (P1) and (P2) can vary significantly. While load L11
is always detected, despite the considered uncertainty level,
the detection of load L7 is more sensitive to the increase in
measurement uncertainty. In particular, it is evident how, even

when the effects of measurement uncertainties are correctly
taken into account, the metrological characteristics of the
measurement devices play a key role in the detection of the
polluting sources, and high-accuracy instruments could lead to
significantly better detection rates.
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Fig. 8. Detection of load L7, harmonic order h = 5.
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Fig. 9. Detection of load L11, harmonic order h = 5.

C. Tests on a larger network

To further test the validity of the proposed technique, ad-
ditional analyses have been conducted on a larger distribution
network, characterized by 49 nodes and 20 measurement
points, whose characteristics are reported in the Appendix.
Furthermore, to give a wider perspective, the performance
of both (P1) and (P2) algorithms are here compared also
with the performance of a weighted least square minimum
norm technique (WLS for brevity in the following), already
proposed in [13] as a term of comparison.

In Table V, the comparison results are presented following
the same test approach as in the previous tests (that is testing
all the Nc =

(
48
2

)
= 1128 possible polluting couples for three

uncertainty levels and 1000 MC trials), with reference to the
3-rd and the 5-th harmonic orders, by means of the mean and
standard deviation of the Recall indicator, as defined in (30).
The results show that the proposed (P2) algorithm, thanks to
a correct uncertainty modelling, clearly outperforms the other
two methods in all the tested conditions.

V. CONCLUSIONS

The identification of the harmonic sources in distribution
networks represents an important task for the system operator,
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TABLE V
Recall PARAMETERS FOR THE THREE ALGORITHMS (49-BUS TEST CASE)

Harmonic
order

Uncertainty level
Low Medium High

µRc σRc µRc σRc µRc σRc

h = 3
WLS 0.823 0.259 0.815 0.259 0.743 0.243
(P1) 0.945 0.114 0.829 0.240 0.743 0.242
(P2) 0.989 0.058 0.941 0.135 0.893 0.169

h = 5
WLS 0.823 0.258 0.813 0.259 0.733 0.241
(P1) 0.945 0.119 0.826 0.242 0.731 0.239
(P2) 0.989 0.055 0.946 0.125 0.894 0.165

that could act directly on the source of the problem, to reduce
the negative effects. The use of ad-hoc designed algorithms,
such as compressive sensing-based methodologies, allows
overcoming the problems related to the limited availability
of power quality meters. Nevertheless, the performance of
the identification algorithms depends on the measurement
uncertainties, and their impact cannot be neglected.

In this paper, starting form the theoretical aspects involved
in the evaluation of the measurement uncertainties, and the re-
duction of their impact on HSoE algorithms, a new formulation
of the `1-minimization problem has been proposed. In order
to maximize the performance of the proposed formulation,
a whitening matrix allowing the recovery of information on
the distributions of the measurement errors, and thus the
estimation of the corresponding bounds, has been presented.
The effectiveness of the proposed solution has been tested
by comparing its detection performance to both a previous
formulation of the `1-minimization and a weighted least square
minimum norm approach. The tests have been performed in a
controlled environment through simulations performed on two
distribution grids, taking into account different scenarios for
the possible measurement systems available on the grids. The
results underline how the proposed formulation, presenting an
appropriate modelling of measurement uncertainties, achieves
the best detection performance. This modelling appears then
as the necessary step to make the algorithms more robust in
view of future on-field implementation by system operators.

APPENDIX

MODEL OF THE 49-BUS TEST SYSTEM

The main characteristics of the 49-bus test system, respec-
tively in terms of topology, nominal loads and measurement
configuration, are presented in Fig. 10, Table VI and Table
VII.

Fig. 10. Topology of the 49-bus test grid.

TABLE VI
NOMINAL LOADS CONFIGURATION OF THE 49-BUS TEST SYSTEM

Loads Pn [kW] Qn [kvar]
L2, L20, L33, L38 48 33
L3, L21, L34, L39 36 27
L4, L22, L35, L40 51 38
L5, L23, L36, L41 81 48
L6, L24, L37, L42 36 27
L7, L14, L26, L44 27 18
L8, L25, L32, L43 42 24
L9, L15, L29, L45 69 39
L10, L16, L30, L46 78 39
L11, L17, L31, L47 39 27
L12, L18, L27, L48 90 45
L13, L19, L28, L49 51 45

TABLE VII
MEASUREMENT CONFIGURATION OF THE 49-BUS TEST SYSTEM

Bus Voltage V1, V3, V5, V8, V9, V12, V15, V18, V21, V22
V24, V27, V29, V32, V34, V36, V39, V41, V45, V48

Branch Current
I3,4, I5,6, I9,10, I9,11, I12,13, I15,16

I15,17, I18,19, I22,23, I24,25, I27,28, I29,30
I29,31, I34,35, I36,37, I39,40, I41,42, I45,46, I45,47, I48,49
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