

Università degli Studi di Cagliari

PHD DEGREE

Dipartimento di Matematica e Informatica

Dottorato di Ricerca in Matematica e Informatica

Cycle XXXIII

TITLE OF THE PHD THESIS

Composing quadrilateral meshes for animation

Scientific Disciplinary Sector(s)

INF/01

PhD Student: Stefano Nuvoli

Supervisor(s): Prof. Riccardo Scateni
Prof. Nico Pietroni

 Final exam. Academic Year 2019 – 2020
Thesis defence: April 2021 Session

Stefano Nuvoli gratefully acknowledges Sardinian Regional Government for the
financial support of his PhD scholarship (P.O.R. Sardegna F.S.E. - Operational
Programme of the Autonomous Region of Sardinia, European Social Fund 2014-
2020 - Axis III Education and training, Thematic goal 10, Investment Priority 10ii),
Specific goal 10.5.

Contents

1 Introduction 3

2 Related works 5
2.1 Quad-meshing and retopology . 5
2.2 Composing surfaces . 7
2.3 Automatic skinning . 8

3 QuadMixer: composing watertight pure quadrilateral meshes 11
3.1 Overview . 12
3.2 Methods . 17

3.2.1 Optimal Patch Retraction 17
3.2.2 Patch Subdivision . 19
3.2.3 Subdivision Optimization 24
3.2.4 On the existence of a valid solution 27
3.2.5 Final quadrangulation . 28

3.3 Implementation details . 28
3.3.1 The detaching tool . 29
3.3.2 Smoothing the surface nearby the intersection curve 29

3.4 Results . 30
3.5 Discussion . 31

3.5.1 Limitations and Future Works 34

4 SkinMixer: composing skinned models for animation 39
4.1 Overview . 41
4.2 Methods . 45

4.2.1 Determining the resulting skeleton 47
4.2.2 Vertex select values . 47
4.2.3 Determining the resulting surface 53
4.2.4 Boundary stitching . 60
4.2.5 Quadrangulation . 63
4.2.6 Skinning weight transfer . 65

iv CONTENTS

4.2.7 Implementation details . 74
4.3 Results . 75
4.4 Discussion . 80

4.4.1 Limitations . 80
4.4.2 Future works . 82

5 Conclusions 85

A Automatic surface segmentation for seamless fabrication using 4-
axis milling machines 87
A.1 Introduction . 87
A.2 Related work . 90

A.2.1 Height-field surface decomposition 90
A.2.2 Volume decomposition . 90

A.3 Automatic fabrication planning . 91
A.3.1 Prefiltering . 93
A.3.2 Determining the best overall milling orientation 94
A.3.3 Determining the optimal decomposition into height fields . . 97
A.3.4 Detail recovery . 101
A.3.5 Generating the fabrication sequence 102

A.4 Implementation and results . 108
A.4.1 Computational and machining setup 108
A.4.2 Performance and quality evaluation 108
A.4.3 Limitations . 111
A.4.4 Illustration of the fabrication process 114

A.5 Conclusions . 115

Bibliography 119

Bibliography 119

Stefano Nuvoli Composing quadrilateral meshes for animation

Abstract

The modeling-by-composition paradigm can be a powerful tool in modern animation
pipelines. We propose two novel interactive techniques to compose 3D assets that
enable the artists to freely remove, detach and combine components of organic
models. The idea behind our methods is to preserve most of the original information
in the input characters and blend accordingly where necessary.

The first method, QuadMixer, provides a robust tool to compose the quad
layouts of watertight pure quadrilateral meshes, exploiting the boolean operations
defined on triangles. Quad Layout is a crucial property for many applications since
it conveys important information that would otherwise be destroyed by techniques
that aim only at preserving the shape. Our technique keeps untouched all the
quads in the patches which are not involved in the blending. The resulting meshes
preserve the originally designed edge flows that, by construction, are captured and
incorporated into the new quads.

SkinMixer extends this approach to compose skinned models, taking into account
not only the surface but also the data structures for animating the character. We
propose a new operation-based technique that preserves and smoothly merges
meshes, skeletons, and skinning weights. The retopology approach of QuadMixer
is extended to work on quad-dominant and arbitrary complex surfaces. Instead of
relying on boolean operations on triangle meshes, we manipulate signed distance
fields to generate an implicit surface. The results preserve most of the information
in the input assets, blending accordingly in the intersection regions. The resulting
characters are ready to be used in animation pipelines.

Given the high quality of the results generated, we believe that our methods
could have a huge impact on the entertainment industry. Integrated into current
software for 3D modeling, they would certainly provide a powerful tool for the
artists. Allowing them to automatically reuse parts of their well-designed characters
could lead to a new approach for creating models, which would significantly reduce
the cost of the process.

Introduction 3

Chapter 1

Introduction

The generation of high-quality 3D assets is a significant part of the production
pipeline in the entertainment industry. Modeling complex models from scratch
requires highly skilled artists with extensive professional training at a considerable
cost. Moreover, these efforts are, in many cases, not exploitable multiple times.
While for architectural and mechanical shapes, the high standardization of the
basic elements allows the reuse of components, the creation of organic models with
less structured shape often starts from scratch.

In the industry, the creation of a 3D character for animation purposes is
composed of several tasks, often reserved for high-skilled professionals. Firstly, a
modeler designs the surface quad layout, usually from scratch. Then, a professional
rigger builds a bone structure (skeleton) that lies inside the model volume and he
paints the skinning weights for each of its bone. Finally, an animator assigns a
transformation to each bone to generate the poses for animating the model. All
these processes (especially the weight panting) are time-consuming, error-prone,
and, therefore, highly expensive [JDKL14]. Actually, the last three processes are
not serially performed, but they are repeatedly iterated until a satisfying result is
obtained. We refer to this delicate and challenging process as skinning.

Our work takes inspiration from the modeling-by-composition paradigm. The
primary purpose of this approach is to directly combine parts from existing models
to synthesize new ones. The result is quite intuitive and suitable for novice users,
by allowing them to rapidly assemble complex 3D models. Currently, the field of
modeling-by-composition is quite active and it is generating promising results.

However, all the proposed solutions cannot produce a fully quadrangulated or a
quad-dominant mesh. Their output is always limited to triangulated surfaces, even
if quadrilateral meshes have become a standard in several fields, including CAD,
automotive design, and animation. Mostly, this is due to the fact that, for human
beings, it is more natural to manipulate quadrilateral flows than unorganized
triangles. Moreover, to our knowledge, there is no method for composing, along

Stefano Nuvoli Composing quadrilateral meshes for animation

4 Introduction

with the surface, the skinning information needed for model animation.
Coarse quad layouts are often manually created by professional artists. Typical

modeling systems used in the industry [Aut18, Pil17, Pix99] allows the user to
manually draw vertices and edges on a surface. Since this manual procedure is
time-consuming and error-prone, a series of sketch-based retopology approaches
[CK14,TPS14,MTP+15] have been proposed. These semi-automatic approaches
automate a large part of the process while allowing the user to efficiently modify
the topology of the layouts without having to start from scratch.

While automatic quadrangulation and automatic skinning techniques can gen-
erate excellent results, the manual design of the characters is still considered by
content creators as part of the artistic process. The artists employ their semantic
knowledge and experience to adjust the layout in the context of the particular
application needs. Undoubtedly, this cannot be comparable to the results of the
state-of-the-art automatic methods. For this reason, the preservation of the original
quad layout and skinning information during the composition process is crucial to
allow the effective use of modeling-by-composition in the field of the 3D assets.

In this thesis, we propose two different methods for composing and blending
quadrilateral meshes by an automatic retopology process. They are illustrated in
detail in Chapter 3 and Chapter 4. Furthermore, in Chapter 4, we propose an
approach to blend the skinning information, such as skeletons and skinning weights,
along with the surface.

Part of the results obtained in this thesis have been presented at a conference
and have been published in the following article [NHE+19]:
S. Nuvoli, A. Hernandez, C. Esperança, R Scateni, P Cignoni, N Pietroni.
QuadMixer: layout preserving blending of quadrilateral meshes.
2019, ACM Transactions on Graphics (TOG), vol. 38 number 6, pages 1-13.

In appendix A, we illustrate a contribution in the Digital Fabrication field.
Even if it is not related to the main subject of this thesis, the candidate spent
considerable time on this project during his Ph.D. studies. The proposed technique
enables the fabrication of 3D complex shapes from a single block of material using
4-axis CNC milling machines. An article has been submitted to a peer-reviewed
journal and it has successfully passed the revision phase.

Stefano Nuvoli Composing quadrilateral meshes for animation

Related works 5

Chapter 2

Related works

Various combining techniques that follow the modeling-by-composition paradigm
have been proposed since [FKS+04]. Most of these methods allow for cutting
arbitrary surface parts from one model and automatically stitching them to existing
holes into another [SBSC06,SS10,ZWC+10]. In [BMBZ02] detail transfer techniques
are used to copy high-frequency details.

Recently, many efforts have concentrated on the other important task of sug-
gesting or choosing which parts to combine. Modern techniques provide fully
automated frameworks to indicate the widest choice of possible results.

2.1 Quad-meshing and retopology

Robustly generating functional quad layouts and quad meshes is a well-studied
research field. Extensive surveys on this topic are available [BLP+13,Cam17a] as
well as shorter and more introductory papers [Cam17b].

In the following, we will concentrate the discussion on the most closely related
topics: the user-assisted generation of quad meshes and the meshing of polygonal
patches.

Interactive quadrangulation tools Many methods have been proposed to
automatically design coarse quad layouts [BLK11,TPP+11,CBK12,BLP+13]. Most
of these try to cope with specific needs in the production. For instance, [MPP+13,
ZCZ+18] considers the deformation affecting a mesh during an animated sequence
to generate a quad layout that remains good for all animation frames. While
these automatic approaches are successful on several quantitative metrics (like
singularity placement and coarseness), in production pipelines there is the need
for a more art-controlled quad generation process. Due to the global nature of
the problem, small changes in the user-provided initial constraints may completely

Stefano Nuvoli Composing quadrilateral meshes for animation

6 Related works

alter the generated quad mesh. The combination of this global behavior with
the non-interactive nature of these automatic approaches makes the tuning of
parameters an unintuitive and time-consuming task.

Therefore, many approaches have considered the issue of helping this manual
quadrangulation process leaving most of the control to the final user. Bessmeltsev et
al. [BWSS12] developed a technique for generating quad-dominant meshes starting
from an input 3D curve network sketched by the user; with this approach, geometry
and topology are defined based on regions identified by closed 3D paths.

Inspired quadrangulation [TIN+11] can also be considered related to our ap-
proach. In this work, the authors transfer quadrangulations between surfaces on
a per-partition basis (e.g., head, arm, torso) via cross-parameterization. Unfortu-
nately, this approach does not provide precise local control over the mesh layout.
Instead, our method enables the direct combination of portions of quad meshes.

Finally, connectivity editing operations have been developed to enable users
to modify existing quad meshes by moving pairs of irregular vertices [PZKW11].
These methods provide lower-level local operators and they can be integrated with
practices of the previous class to fine-tune the mesh topology.

Quad-meshing patches In our pipelines, we face the issue of completing a
partial quad mesh. This task is an essential part of all sketch-based retopology
techniques [TPSS13,PBJW14,TPS14].

In these semi-automatic approaches, a patch layout is first interactively sketched
over the input surface. Then, each patch side is subdivided into many edges
as prescribed by the user [SWZ04, NSY09, YNB+13] and finally automatically
quadrangulated.

The present work also requires quadrangulating patches defined by their sides,
which can be done using filling patterns generated procedurally as in [PBJW14].
In [TPSS13,TPS14], a set of manually designed patterns are expanded to tessellate
arbitrary polygons with up to 6 sides.

More recently Marcias et al. [MTP+15] proposed another approach for filling
with quad patches a 2D n−sided patch by using a pattern-based algorithm that
uses a trained database of quadrangular patches. We expect to produce triangular
patches that are relatively small compared to the input meshes and we propose
using Takayama’s method [TPS14]. While Marcias’ method is generally better
for controlling the edge flow, in our case, the edge flow is given by exploiting the
existing field around the boundary of the patches.

Stefano Nuvoli Composing quadrilateral meshes for animation

Related works 7

2.2 Composing surfaces

Our approaches smoothly compose portions of quadrilateral meshes in 3D assets.
In the following, we will concentrate the discussion on the two different approaches
for composing and extracting surfaces: mesh arrangements and implicit surface
blending and reconstruction with signed distance fields.

Mesh arrangements In Chapter 3, a fundamental step of the approach is the
detection and computation of the intersection between the triangulated surfaces. A
vast literature exists on how to solve this problem robustly and efficiently, and we
exploited the boolean operations of [ZGZJ16] for triangulated meshes. Moreover,
the idea of trying to limit the modification on a mesh when performing boolean
operations [PCK10], or repair the result [BK05], has been already explored. The
approach of [CK10] can also perform boolean operations on generic input polygonal
meshes. Finally, in [CLSA20] the authors propose a method that enables a faster
computation of mesh intersection for challenging triangle meshes. However, no
solutions can smoothly composite quad meshes as the proposed approaches.

Signed distance fields In Chapter 4, we propose a method for composing
surfaces based on the manipulation of signed distance fields. Signed distance fields
(SDF) provide a powerful implicit representation of surfaces and volumes. They are
broadly used tools in Computer Graphics, with applications in collision detection
[MASS15,XB16], surface reconstruction [CT11,TF18], and rendering. In recent
years, researchers have been focusing on improving the time and memory efficiency in
the computation of such fields [Mus11,SFP12,KDB16,MLJ+13]. Boolean operations
on SDFs, such as union, difference, and intersection are common operations in
geometrical design and modeling [FP05].

The process of determining the sign of the field for given 3D coordinates can be
extremely challenging for surfaces with open boundaries, self-intersections, or non-
manifold faces. [JKS13] proposed a robust method for an input-output segmentation
that deals with these kinds of artifacts. Moreover, [BDS+18] extended this method
to obtain faster evaluations, at the expenses of the approximation of the output
values.

Blending implicit surfaces The blending of implicit surfaces has been widely
studied by researchers in Computer Graphics. The applications vary from simulating
the animation of fluids or particular substances [DG95, BGOS06] to modelling
surfaces [WGG99,SPS04,dWv09,BBCW13,GBC+13,ATW+17]. The goal of these
methods is to efficiently obtain a continuous and smooth resulting shape, taking
into account the fidelity with respect to the input models. In the past years, the

Stefano Nuvoli Composing quadrilateral meshes for animation

8 Related works

editing of level-set implicit surfaces have been broadly studied, and many efficient
solutions have been proposed [MBWB02,BMPB08,EB10].

In Chapter 4, we propose a new approach for automatically blend signed distance
fields into a new one, following the skinning weight information in characters.

2.3 Automatic skinning

In Chapter 4, we illustrate a method to compose skinned models, preserving most of
the original information. In the following, we will briefly discuss some methods for
performing automatic skinning of characters and retargeting of skinning weights.

Automatic skeletons and weights Due to the high cost of the process, many
researchers focused in the past decades to automatically generate the skeleton and
its associated weights for a given surface. A more detailed review on automatic
generation of skeletons and skinning weights can be found in [JDKL14].

The modern automatic skeleton extraction methods are mainly based on two
approaches [JDKL14]: one takes advantage of surface flows to converge on a curved
skeleton (surface flow-based methods [TAOZ12,WP02,WL08,HWCO+13]), while
the other aims to find a skeleton through the segmentation of shapes (segmentation-
based methods [BTST12]). Some of these approaches are example-based, having as
input a given a set of example poses or the topology of the skeleton [BP07,SY07].

The automatic skinning weight process leverages on finding an optimized
energy that satisfies properties of continuity and shape-awareness [DdL13,KS12,
JBPS11,JWS12,LL14]. These properties are necessary to avoid artifacts during the
deformation of the character. Even if state-of-the-art methods generate excellent
results, the problem is yet to be solved.

The quality of the results of the automatic methods is not comparable to the
artist-designed characters. We could apply these methods to the output surface of
our method. However, the original skinning information would be completely lost,
while our method entirely preserves most of it.

Skinning weight retargeting Weight retargeting is the process that transfers
the skinning weights of a model to a new character with a similar topology. Recently,
many efforts have been made to solve this problem.

In [DLG+13], the authors present a method to retarget anatomical structures
from one model to another, including the skeleton bones and skinning weights. Avril
et al. [ARG+16] proposes a semi-automatic method for transferring skeletons and
skinning weights, also between characters with different topologies. In [PCYQ18],
the authors propose a retargeting of the weights using surface matching and interpo-
lation based on bi-harmonic distance. They obtain excellent results, by extending

Stefano Nuvoli Composing quadrilateral meshes for animation

Related works 9

the traditional point-based dynamics method (PBD) to match geometrically and
physically-based constraints.

Our approach is also based on reusing the painted weights of characters to
determine the weights of a new model. However, the primary difference with the
methods above is that our data-driven approach deals with more than one skinned
character. Moreover, we want to entirely preserve portions of the surface, skeleton,
and the associated weights, and blend accordingly in the intersection areas. Finally,
our approach natively deals with different skeleton topologies.

Stefano Nuvoli Composing quadrilateral meshes for animation

QuadMixer: composing watertight pure quadrilateral meshes 11

Chapter 3

QuadMixer: composing
watertight pure quadrilateral
meshes

Figure 3.1: QuadMixer, the proposed blending technique. We can assemble
pieces of different models respecting the original quad meshing. In less than ten
minutes we detached and combined these body pieces to automatically obtain the
pure quad mesh shown on the right.

QuadMixer is a novel technique to compose quad meshes. Our modeling principles
take inspiration from the classical boolean operations defined on triangle meshes,
but with operators redesigned to work on quadrilateral meshes. QuadMixer mimics
all the conventional boolean operations that are available for triangle meshes such
as union, intersection, and difference. While it is generally a challenging task
to define stable boolean operations, their result can be defined precisely in the
context of triangle meshes [ZGZJ16]. In contrast, this is not true for generic quad
meshes. Concerning boolean operations, a first evident difference between a quad

Stefano Nuvoli Composing quadrilateral meshes for animation

12 QuadMixer: composing watertight pure quadrilateral meshes

mesh and a triangle mesh is that the former does not admit a unique piecewise
discretization. Hence, the single intersection between two quadrilateral elements
cannot be unequivocally defined. In this light, we might refer to our operations
as blending to distinguish them from classical boolean operations on triangle meshes.

We summarize the main contributions of this chapter as follows:

• We propose a new technique to mimic boolean operations on quad meshes.
Our system blends quad meshes preserving, as much as possible, the original
quadrangulation.

• We define a new technique to robustly define a region of interface/blending
between two intersecting surfaces whose boundary can be quadrangulated.

• We defined a strategy to ensure that the intersection between two quadran-
gulated models admits a valid quadrangulation.

• We integrated our technique in an interactive tool and demonstrated its
practical use on modeling scenarios.

3.1 Overview

Given a pair of two-manifold watertight meshes composed only of quadrilateral
elements, our method blends them into a new, closed, two-manifold, pure quadrilat-
eral mesh. Our approach preserves of the majority of the shapes’ layout, remeshing
accordingly only where needed (Figure 3.2).

As opposed to triangle meshes, performing blending on quadrilateral meshes
poses extra challenges: while splitting triangles on a local basis will always result
in a valid triangle mesh, quad meshes must be manipulated taking into account
their entire connectivity. Indeed, the majority of applications, such as subdivision
surfaces or finite element analysis, require the flow of the edges to be aligned with
geometric features, imposing several conditions on the global structure and the
placement of irregular vertices. Relying solely on local modifications [TPC+10]
cannot, in general, enforce such global characteristics.

A simple way to tackle this problem might be to transform the quad mesh
into triangles first, perform the boolean operation, and finally use a quad-meshing
algorithm based on global parametrization [JTPS15,BZK09] or cross-field tracing
[PPM+16,MPZ14] to obtain a sound quadrilateral mesh. However, this approach
will inevitably modify the entire mesh. This result is far from ideal from a modeling
point of view, as an artist would more likely prefer to preserve as much as possible the
connectivity he has designed. As illustrated in Figure 3.3, a complete quadrilateral

Stefano Nuvoli Composing quadrilateral meshes for animation

QuadMixer: composing watertight pure quadrilateral meshes 13

Figure 3.2: The idea behind our method. The blue and green surface represent
the preserved quad layout of the two meshes. The remaining portion is the surface
remeshed with respect to the boundary constraints.

re-meshing using the approach of [JTPS15] on the result of the boolean operation
will inevitably cause the loss of most of the features designed by the artist, like the
eyes of the pig or the armadillo.

Among commercial software packages, to the best of our knowledge, only the
Modo suite [Vis18] provides a tool, called MeshFusion [Vis18], that can combine
quad-based mesh representations with boolean operations while partially preserving
their structure. Here, the user authors a tree of boolean operations with coarse quad
meshes as the leaves; during editing, the system silently computes and displays a low-
level representation, consisting of a quad-dominant mesh, obtained by subdividing
the coarse quad representations, and performing the boolean operation over the
subdivided results (considered as triangular meshes in the intersections). Therefore,
differently from our case, a quad-pure representation of the result is never explicitly
computed, and the results include triangulated regions around the intersection
lines. Figure 3.4 shows a comparison between the quad-dominant representation
obtained by MeshFusion and the result of our method.

A fundamental task is to preserve as much as possible the connectivity of the
original quadrangulated models and change the elements only in regions modified
by the boolean operation. Figure 3.5 shows an overview of our entire pipeline.

• We first compute a patch decomposition of the quadrilateral meshes by using
a simple motorcycle graph [EGKT08] tracing algorithm (see Figure 3.5.a) or
solely emanating separatrices from irregular vertices.

• We split each quad into two triangles, and we perform the boolean operation
using the implementation of [ZGZJ16] (see Figure 3.5.b).

Stefano Nuvoli Composing quadrilateral meshes for animation

14 QuadMixer: composing watertight pure quadrilateral meshes

Setup

Instant Meshes

QuadMixer

Figure 3.3: Comparison of QuadMixer and remeshing approaches. Current
solutions ([JTPS15] for example) require to re-mesh entirely the results of the
boolean operation and original connectivity is lost. Our system efficiently preserves
the connectivity and is capable of blending two different connectivities

Stefano Nuvoli Composing quadrilateral meshes for animation

QuadMixer: composing watertight pure quadrilateral meshes 15

Setup MeshFusion QuadMixer

Figure 3.4: Comparison of QuadMixer and MeshFusion [Vis18]. The dif-
ference in the intersection portion of the mesh is noticeable.

• We select the patches that have not been modified by the boolean operation.
We retract the sides of the patches that are partially affected by the boolean
operations. Those patches are the ones that contain only a subset of the
original set of quads (see Figure 3.5.c). At this stage the mesh can be divided
into two sets: a quadrilateral mesh Q0 and a triangle mesh T (see Figure
3.5.c) which share a common boundary.

• We smooth these internal patches to generate a fair geometry surface, more
straightforward to be nicely quadrangulated. The user can control the amount
of introduced smoothing.

• We trace a set of internal patches P on the triangulated mesh T (see Figure
3.5.d). This step uses the definition of a cross-field [DVPS14] and applying a
tracing algorithm [CBK12].

• We solve an Integer Quadratic Program with linear constraints to derive the
optimal subdivision for each side of the patches P . The energy formulation
balances regularity of the patches (to avoid inserting unnecessary irregular
vertices) with the global uniformity of edge sizes (see Figure 3.5.e). The
number of subdivisions along the border sides of P are constrained to match
the corresponding subdivisions on Q0.

• We quadrangulate each patch using the data-driven approach proposed
in [TPS14] (see Figure 3.5.f) obtaining a new quadrangulated mesh Q1. The
union of Q1 and Q0 provides the final result.

Stefano Nuvoli Composing quadrilateral meshes for animation

16 QuadMixer: composing watertight pure quadrilateral meshes

(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Overview of our processing pipeline. (a) Given two separate
quadrilateral meshes we compute an initial patch layout for each; (b) then quads
are split to form triangular meshes, which are then combined. (c) We update the
patch layout for the patches that are affected by the boolean operation. (d) We
split the triangulated portion of the surface into sub patches. (e) We derive the
optimal subdivision for each side. (f) We perform the final quadrangulation.

Stefano Nuvoli Composing quadrilateral meshes for animation

QuadMixer: composing watertight pure quadrilateral meshes 17

3.2 Methods

Figure 3.6: Quad patch layout extraction. On the left: the input quad layout;
in the center: the patch layout with separatrices; on the right: the patch layout
typical of motorcycle graph.

The input to our method consists of pure quadrilateral meshes. They can be
the result of automatic methods or, more usually, models produced by a digital
artist. The first step of our pipeline extracts a quad patch layout. This step is not
difficult and consists of tracing all the separatrices stemming from irregular vertices
(see Figure 3.6). Each separatrix is defined as a sequence of edges starting at a
singular vertex (i.e., a vertex of valence different from four) and ending at another
singular one. When applied to manually-modeled meshes, this process typically
produces well-structured and compact patch decompositions, since the tools used
by the artists tend to align the singularities naturally. As an alternative, we can
contemporanily propagate all the separatrices and stop tracing each separatrix
as soon as it crosses another one. Literature usually describes this procedure as
tracing motorcycle graphs [EGKT08]. While this tends to create fewer patches, it
can easily introduce t-junctions in the patch layout. We do not need to make any
particular assumption on the structure or the alignment of the separatrices. Hence,
both approaches are valid as they produce quadrilateral patches. Any algorithm
capable of improving the regularity of the patch layout (such as [TPP+11,BLK11])
is not useful in this context since it might modify the original edge flow designed
by the artist.

3.2.1 Optimal Patch Retraction

Given two pure quadrilateral meshes QA and QB, along with their original quad
patch layouts (Figure 3.7.a), we start by splitting each quad element along its
smaller diagonal to transform QA and QB into two triangle meshes T A and T B

. Next, we perform the boolean operation between T A and T B using [ZGZJ16].
The result is the new triangle mesh T bool. Notice that the triangles in T bool are
of two kinds: (i) the triangles from the input quads; (ii) the triangles modeling
the intersection region between the two meshes. The exact implementation of the

Stefano Nuvoli Composing quadrilateral meshes for animation

18 QuadMixer: composing watertight pure quadrilateral meshes

(a) (b) (c) (d) (e) (f)

Figure 3.7: Patch layout retraction. (a) The initial patch layout of the two
meshes. (b) The two quad meshes are split into triangle meshes to perform
the boolean operation, and then the triangles are clustered to recompose the
original quads when possible. (c) Original patches are retracted to maintain a
certain geodesic distance from intersection line. (d) The new patches are extracted
by repeatedly finding the largest rectangles composed of quads in the partially
preserved patches. (e) Small patches are pruned. (f) The final quadrangulation.

boolean operations guarantees that the vertices of the new triangles lie on the input
mesh.

We now need to rebuild the quad patch layout. We start by preserving the
quads of QA and QB that do not contain triangles not changed in the boolean
operation (Figure 3.7.b). Then we consider, as part of a blending area that will
be remeshed, also the quads that are close to the intersection curve to provide
sufficient space to blend between quadrilateral layouts smoothly. For this area, we
consider the quads on each side where their geodesic distance to the intersection
line is below a given threshold of δr which is proportional to the average edge of the
retracted patches (Figure 3.7.c). At this point, we have a collection of un-organized
quads that we need to assemble into patches by building a new layout. The idea is
to prefer the formation of large, compact rectangular patches with a regular and
straight boundary with the remaining triangulated surface. For this purpose, we
repeatedly search, in the set of un-organized quads, the largest inscribed rectangle
composed only by quads not associated with any entirely preserved patch (Figure
3.7.d). Specifically we use the largest rectangle in a histogram (see [Mor94], chapter
21) algorithm to generate this new set of rectangular patches.

Finally, we perform a pruning step that eliminates all the newly created patches
having a number of forming quads below a given threshold (Figure 3.7.e). We set
this threshold as a fraction of the average area of the current patches.

At the end of this step, we obtain a new quad-only mesh Q0 and a triangulated
surface T 0. Notice that because of the robust and precise implementation of the
boolean operations, the triangle and the quad meshes will necessarily share the

Stefano Nuvoli Composing quadrilateral meshes for animation

QuadMixer: composing watertight pure quadrilateral meshes 19

same set of boundary edges, that is, the boundary of Q0 coincides precisely with
the boundary of T 0.

3.2.2 Patch Subdivision

We now need to transform the triangulated portion of the surface T 0 into a quad
mesh Q1 that, once attached to the preserved quadrangulation Q0, will become
the final quad mesh of the mixed shape. To be able to join the two portions
correctly, we must match, for each portion of the boundary of Q1, the number of
subdivisions of Q0 along the common border. Since the number of edges along the
boundaries is unchangeable, the problem becomes untractable with methods that
derive quadrangulations from field-aligned global parameterizations [BZK09]. To
the best of our knowledge, none of these methods can guarantee to produce valid
quadrangulations for an arbitrary subdivision of the boundaries.

Hence, we rely on procedural methods that are explicitly designed to produce
valid quadrangulations for a given input boundary subdivision. These methods
automatically insert singularities in the interior of the patch to accommodate for
the changes in the resolution needed to match the prescribed boundary subdivisions.
However, these methods work only on input patches homeomorphic to a disk, and
with a given maximum number of sides. In particular, the method by Takayama et
al. [TPS14] requires the number of sides of the input patch to be between three
and six. As a consequence, to use this method in our pipeline, we need to split the
triangulated surface T 0 into patches respecting these requirements.

Field-aligned Patch Tracing We produce a valid decomposition via a two-step
process: (i) we first derive a smooth cross-field; (ii) we iteratively trace polylines
along the cross-field to create a proper patch decomposition. Every trace starts
from a border vertex and ends on another border vertex, following the flow of
the underlying field. To ensure that the patch layout will blend smoothly with
the existing quadrangulation Q0 at the border, we align the cross-field along the
boundaries, and we smooth it in the interior. We can also include in the field
computation any additional conditions on prescribed curvature directions. However,
given the small areas covered by the boundaries, these conditions are usually not
taken into account.

The following are the steps of the subdivision pipeline (Figure 3.8):

• We perform a re-meshing of the initial surface T 0 keeping fixed all triangles
that have an edge on the boundary. We use this step to remove badly shaped
triangles appearing along the intersection lines, blending the tessellation with
the boundary constraints. This pre-processing step increases the robustness of

Stefano Nuvoli Composing quadrilateral meshes for animation

20 QuadMixer: composing watertight pure quadrilateral meshes

(a) (b) (c) (d) (e)

Figure 3.8: Patch tracing procedure. (a) The Initial patch; (b) The re-meshing
step; (c) Cross field computation; (d) Concave corner tracing; (e) Final splitting
of the patches to match the requirements. This patch is the one shown in the
accompanying video when displaying the two intersecting fertility models.

the overall approach. We use the iterative approach included in the Meshlab
framework [CCC+08].

• We compute a smooth cross field that conforms to the boundary using the
poly-vector field smoothing [DVPS14]. The cross-field is computed for each
face and then re-interpolated for each vertex considering the invariance to π

2

rotations.

• We split all concave corners by tracing polylines with an end-point in the
corner using [CBK12].

• We iteratively re-apply this step for any sub-patch not yet respecting the
conditions imposed by the constrained quadrangulation algorithm.

Patch configuration After computing a cross-field on the triangle mesh T 0 (for
a more exhaustive description of cross-fields see [VCD+17]), we classify each border
vertex of the triangle mesh T 0 as convex (if less than π − π/8), concave (if greater
than π + π/8), or flat elsewhere. The classification of a vertex vi (see Figure 3.8
for an example) is based upon the angle between the two edges of T 0 incident on
vi. We iteratively trace polylines until each patch has a number of sides between
three and six.

Each vertex has a different number of possible directions for tracing the splitting
pipelines (yellow arrows in Figure 3.9): the concave vertices have two tracing
directions, the flat vertices have one tracing direction, and the convex vertices have
no tracing directions. To reduce the number of sides in the patch, we repeatedly
trace the subdividing polylines (the red lines in Figure 3.9) following the tracing

Stefano Nuvoli Composing quadrilateral meshes for animation

QuadMixer: composing watertight pure quadrilateral meshes 21

directions. Note that each split of a patch reduces the number of sides in the two
resulting parts by, at least, one.

Figure 3.9: Corner classification. On the top left the initial corner classification:
we mark each angle either as convex or as concave; on the top right we show the
directions stemming from concave vertices that we use for splitting the patch in
quads; on the bottom we show how we can split the concave corner into a flat and
a convex corner using a single trace (left), or into three convex corners using two
traces at the same time.

Each split changes also the classification of the associated boundary vertex as
follows (see Figure 3.8 for examples of this reclassification):

• A single trace splits a concave corner into a convex and a flat corner.

• Two traces stemming from the same concave corner split it into three convex
corners.

• A trace splits a flat corner into two convex corners.

• Two orthogonally intersecting traces originate four convex corners.

• A trace can never split a convex corner.

Notice that the two corners resulting from a split belong to different sub-patches.

Stefano Nuvoli Composing quadrilateral meshes for animation

22 QuadMixer: composing watertight pure quadrilateral meshes

Cross-field generation To associate a cross-field to the triangle mesh T 0, we use
the anisotropic field tracing strategy as proposed in [CBK12]. Following [KNP07],
given a surface M , with the exception of the singularities, we make four copies of
each point p ∈ M . We associate each copy to one direction of the cross-field. Then
each copy of p encodes both its position and one of the orientations of the cross field.
This process creates M4, which is a stratification of the original manifold surface M .
Space M2 is the quotient space of M4 obtained by identifying pairs of opposite di-
rections. Hence M2 is composed only by two sheets. Each sheet encodes a line-field.
We discretize M4 for tracing following the ap-
proach proposed by [CBK12]. Given an input
manifold surface equipped with a per-vertex
cross-field, we create a graph with four nodes
on every vertex, one for each direction of the
cross-field [CBK12].

We connect each node with the neighbors
whose position is within the visibility cone of its
emanating direction, for each position, we choose
the copy having the more aligned direction. We
also augment the graph with vertices belonging
to the 1-ring to provide more degrees of freedom
to the tracing process.

Given an initial node (which corresponds to a
vertex and a field direction), the tracing process
is a propagation process where at every step we
select the connected nodes whose position is the
most aligned with the field. This way, we have
a fast and robust tracing setup.

In our experiments, we always have accurate
results and, thus, we do not use more sophisti-
cated trace strategies (e.g., the ones described in [MPZ14] or [PPM+16]). These
methods usually require a more complex pre-processing step, and this might affect
the interactivity of the modeling process negatively.

Once we have linked the cross-field to the mesh, every vertex has an associated
tracing direction in the M4 domain, as described in [CBK12]. When two traces
intersect, we classify their intersection either as tangential or as orthogonal by
looking at the index of the field in M2. We want to avoid inserting any tangential
crossing in the final layout, as they tend to create poorly shaped, elongated patches.
Orthogonal intersections, instead, create a well-shaped patch layout that efficiently
captures the structure of the underlying field. Figure 3.10 shows the difference
between the two types of intersections.

Stefano Nuvoli Composing quadrilateral meshes for animation

QuadMixer: composing watertight pure quadrilateral meshes 23

Figure 3.10: Trace intersections. Tangential (left) and orthogonal (right) path
intersections.

Concave vertex tracing We trace the polylines that split the patches,
choosing first the ones that have an end-point
in a concave vertex. When multiple alternative
traces are available, we follow these selection
heuristics: (i) we never add a new trace if it
introduces tangential intersections; (ii) we favor
traces starting from concave vertices not yet
split; (ii) we prefer shorter traces to longer ones.

As we repeat the process in the sub-patches
still having concave vertices, we dramatically
reduce the probability of tangential collisions.
At the end of the process, all concave vertices should vanish, and we have a correct
convex patch layout. This condition is necessary to make the procedural quad mesh
generation of [TPS14] to generate high-quality quadrilateral elements. Although
we have no theoretical guarantee to be able to split all concave corners, we never
encountered any failure case in our editing session, even for complex configurations.

Patch splitting At this point, we must still check that each generated patch
has no more than six sides, where every side of the patch consists of a sequence
of edges between convex corners, and that it is homeomorphic to a disk. If we
find an unsuitable patch, we first initialize a dense set of candidate traces that
do not intersect tangentially. This set is obtained by tracing from all flat border
vertices, and iteratively removing traces having tangential intersections, favoring
the shortest ones. The result of this final step is the patch layout for T 0.

Discussion Another possible strategy to procedurally quadrangulate a disk-like
3D surface has been proposed by Peng et al. [PBJW14]. This approach requires first
to derive a bijective parametrization of the triangular patch; then the final patch

Stefano Nuvoli Composing quadrilateral meshes for animation

24 QuadMixer: composing watertight pure quadrilateral meshes

layout is produced by tracing straight lines in the bidimensional parametric space.
While we share some ideas with that approach (like the classification between
concave and convex corners and the emanating directions), we do not require
any bijective parametrization, and this is a significant advantage. The decision
to trace paths directly on the surface is crucial to make the method general and
reliable. Constructing a low distortion bijective parametrization can be difficult and
time-consuming for the general case and even particularly tricky for the thin regions
which can result from the boolean operations. Moreover, designing a cross-field
that aligns to boundary constraints leads the traced subdivision to blend the flow
among the existing quadrangulations smoothly.

3.2.3 Subdivision Optimization

Once we derive a proper patch layout, we have to devise the optimal integer
subdivision for each edge. We set up a global Integer Program with multiple
quadratic objective functions, and linear constraints that contribute to obtaining a
proper tessellation:

(i) A patch admits a quadrangulation only if the sum of boundary subdivisions
is even [TPS14].

(ii) The subdivisions on the boundaries are constrained to match the preserved
quadrangulated mesh.

(iii) To increase the isometry of the tessellation, we penalize the discrepancy
of each side with respect to its ideal subdivision. We compute the ideal
subdivision for each patch that has a border by averaging the edge size of
adjacent quads. Then we propagate that value on internal patches, and we
smooth between adjacent patches in order to discourage abrupt changes of
resolution.

(iv) To increase the regularity of the tessellation, we favor the equality of opposite
edges for every 4-sided patches.

Objectives (i) and (ii) are hard constraints that have to be satisfied to admit a
valid quadrangulation, while (iii) and (iv) are energy terms that favor the formation
of nicely shaped quad layouts.

We define an integer positive variable ei for each sub-side. This variable
represents the number of edges into which the sub-side will be subdivided in
the final quadrangulation. Because our patch layouts admit the formation of
T-junctions, we must split each side of a patch into sub-sides by considering all of

Stefano Nuvoli Composing quadrilateral meshes for animation

QuadMixer: composing watertight pure quadrilateral meshes 25

(a) (b)

(c) (d)

Figure 3.11: Optimization procedure inside a patch. The figure illustrates an
example with actual values. In (a) each side is divided into sub-sides, considering
all incident t-junctions of adjacent patches (numerical values in red); in (b) we
show that the sum of all the edge sizes must be even; in (c) we show how regularity
pushes equal subdivisions on the opposite sides of the quad patch; in (d) we show
how isometry encourages each sub-side to match geometrically sound values.

the subdivision with respect to the adjacent patches. An example of edge variable
definition is shown in Figure 3.11.a.

We first define a least squares isometry energy term that penalizes the discrep-
ancy of every ei from its ideal size êi:

min
∑

(ei − êi)
2

s.t. ei ≥ 1
(3.1)

The ideal size êi is a decimal number calculated as a function of the edge size
in the fixed boundaries (i.e. the subdivision values of the original quadrangulated
meshes). This information is defined for each chart in the boundaries, and then it
is smoothly propagated in the inner charts.

Every subdivision ei should be at least 1. For each sub-side on the border B,
we also add a linear constraint to force its value to match the one defined by the
quadrilateral mesh.

ei = qi ∀ei ∈ B (3.2)

Stefano Nuvoli Composing quadrilateral meshes for animation

26 QuadMixer: composing watertight pure quadrilateral meshes

As previously stated, a quadrangulation is only possible if the sum of its
subdivision is an even number. Hence, for each patch Pk, we include an additional
linear constraint:

∑
ej = 2n ∀ej ∈ Pk

n ≥ 1
(3.3)

For a quadrilateral patch, we want to favor the formation of a regular grid
tessellation. Hence, for each quadrilateral patch, we add an energy term that favors
the equality of opposite sides:

min (
∑

eu∈S0

eu −
∑

ew∈S2

ew)
2 +

(
∑

eu∈S1

eu −
∑

ew∈S3

ew)
2 (3.4)

where S0, S1,S2 and S3 are the four sides of the quadrilateral patch. We use a
parameter 0 < α < 1 to blend the two properly normalized energy terms expressed
by equation 3.1 and 3.4. The effect of this parameter on the final quadrangulation
is quite intuitive (see Figure 3.12). We verified in our experiments that a value of
α = 0.5 is a good compromise between regularity and isometry. For complex quad
layouts, we can use norm one minimization in equation 3.1 to speed up the entire
process, in such case, both equation 3.1 and 3.4 are modified such that the least-
squares energy term is substituted with an absolute difference. This modification
can speed the solving up to a factor of 10 when using ∼ 150 subdivision variables.
While this approximation might accumulate the error on single variables (rather
than distributed in as the least-squares minimization), we experimented that it
works pretty well in practice.

α = 0.01 α = 0.5 α = 0.99

Figure 3.12: Regularization term effect. The regularization term governs the
distribution of singularities and the isometry of the tessellation.

Stefano Nuvoli Composing quadrilateral meshes for animation

QuadMixer: composing watertight pure quadrilateral meshes 27

3.2.4 On the existence of a valid solution

In order to derive a proper subdivision assignment, it is necessary that every
connected component of the triangulated patch decomposition has an even number
of subdivisions at the boundary. Indeed, in case this pre-condition is not verified,
it is not possible to obtain a quadrangulation of such a patch: regardless of the
internal patch subdivision, an odd subdivision at the boundary will necessarily
introduce an unsolvable set of constraints.

Figure 3.13: Solvability for closed topologies with genus zero. Removing
quads from a watertight pure quadrilateral mesh always generates boundaries of
an even number of subdivisions.

Luckily, this happens only in particular cases. In the general case, when blending
two genus-zero quadrilateral meshes, the intersection curves will always define over
each mesh disk-like regions that, by construction, will be bounded by an even
number of quads (Figure 3.13). However, when higher genus meshes are involved,
it can happen that the intersection curves cut out, over one of the meshes, regions
with a more complex topology that are bounded by multiple boundaries. In this
case, it still holds that the overall sum of the subdivisions of all the boundaries is
even, but single boundaries can have an odd number of subdivisions. Figure 3.14
shows such an example: the intersection between a torus with a pentagonal section
and a box. In this case, every single boundary over the torus will have five sides,
and the connected component identified by the intersection curves over the torus
(with a non disk-like topology) has an overall even number of sides (10). However,
the two blending regions that we need to quadrangulate will have an odd number of
sides, making their direct quadrangulation not possible. To solve this problem, we
could refine the whole connected component with non disk-like topology in order
to make these boundaries even. However, to make this modification minimal, we
search for the shortest polychord, connecting two odd boundaries and we refine
only this strip of quads [DSSC08].

Note that it is always possible to find such a connecting polychord. First
consider that the overall number of the edges on the open boundary is even (by
construction: they have been generated by removing quads from a closed mesh).
Without loss of generality assume we have just two open boundaries A, B both
with an odd edges number. Consider all the polychords exiting from the edges of
A; by contradiction suppose that there is no polychord going from A to B, then all

Stefano Nuvoli Composing quadrilateral meshes for animation

28 QuadMixer: composing watertight pure quadrilateral meshes

Figure 3.14: Non-feasible example. A torus with a pentagonal section intersects
a block (left). The patch surrounding the intersection curve has a boundary with
an odd number of sides (5 on the torus and 8 on the block) and therefore cannot
be quadrangulated. Refining a polychord makes the boundary even (6 and 8 sides)
and the patch become quadrangulable.

the polychords start and end on A covering an even number of edges, that is wrong
because we assumed A has an odd number of edges. To handle the more generic
case where you have more than just two open odd boundaries, first, consider that
all the even boundaries could be virtually closed by quads in any way, leaving
only an even number of odd boundaries; it is then evident that these remaining
boundaries can be handled, pair by pair, as explained.

3.2.5 Final quadrangulation

At this point, we have a set of disk-like triangle patches whose sides are between
the limits imposed by the quadrangulation algorithm. Also, every patch has a
single boundary. We then map the boundary of the patch onto the borders of a
regular polygon and use this mapping as a constraint to parameterize the interior
using least-squares conformal maps [LPRM02]. We compute the quadrangulation
in parametric 2D space using [TPS14], and then we interpolate the 3D positions of
the vertices in parametric space.

3.3 Implementation details

To test the proposed layout preserving blending technique, we have implemented
a small interactive system that allows to detach portions of meshes and freely
combine them controlling the degree of smoothness.

Stefano Nuvoli Composing quadrilateral meshes for animation

QuadMixer: composing watertight pure quadrilateral meshes 29

3.3.1 The detaching tool

(a) (b) (c) (d)

Figure 3.15: Detaching tool. The user select a sequence of opposite points on
the model (a); Two offset surfaces are created (b) and (c); Two pieces are obtained
using the intersection with the offset surfaces.

To detach components we followed an approach similar to the one proposed
in [JLCW06]: the user has to select pairs of opposite points on the surface that
defines a smooth polyline loop that splits the mesh into two separate components.
Once we have divided the mesh into two distinct parts, we close the holes, and we
create an offset surface that is used to detach the portion of the mesh using an
intersection boolean operation. Figure 3.15 shows this pipeline.

3.3.2 Smoothing the surface nearby the intersection curve

Given two meshes, the user can smooth along the intersection of the two meshes
providing a more attractive organic look to the final result. However, the smoothing
should not be too invasive and let that part of the original mesh remain as close to
the original as possible.

We apply this initial smoothing step on the triangulated mesh resulting from the
first boolean operation. We first select the intersection curve, then we propagate
a geodesic from the intersection curve toward the interior, and we choose the
subset of vertices whose geodesic distances are below a certain threshold (we
use a 5% of the diagonal of the bounding box). Then we perform a Laplacian
smoothing on this subset of vertices. Intuitively, the vertices that are close to the
intersection lines should move more than the ones that are far away. To obtain
this effect, we linearly weight the effect of the smoothing w.r.t. to the geodesic

Stefano Nuvoli Composing quadrilateral meshes for animation

30 QuadMixer: composing watertight pure quadrilateral meshes

(a) (b) (c) (d)

Figure 3.16: Intersection curve smoothing effect. (a) The result of the boolean
operation; (b) the first smooth steps on the triangulated mesh; (c) The quadrangu-
lation step with tangent space smoothing; (d) the final result after the last step of
Laplacian smooth.

distance from the intersection line (see Figures 3.16.a and 3.16.b). Once the final
quadrangulated mesh is obtained, we perform an additional smooth step in tangent
space that successfully redistributes the total distortion. This step is localized
to a neighborhood of the new created surface. Finally, we perform a Laplacian
smooth close to the intersection line. Figures 3.16.c and 3.16.d show how these
smooth operations can significantly improve the final tessellation. As with any
other blending tool, we let the user exert control over the smoothing steps and on
the area of influence.

3.4 Results

We performed our tests on a laptop computer with an Intel i7-8750H processor with
16GB of RAM. We used Gurobi [GO18] to solve the minimization of Section 3.2.3.
All the code is single-threaded and not highly optimized; it has been implemented
using the VCG Library [CNR13], CG3Lib [MN21], libigl [JP+16], Eigen [GJ+14]
and CGAL [FP09]. To test the robustness of the proposed approach, we iteratively
added merging operations on rotated versions of the fertility model. Our technique
always produced a two-manifold closed quadrilateral surface. Figure 3.19 shows
some of the first steps of the test. In Figure 3.17, we show a full set of combinations
among six meshes having different topologies, complex connectivity, or intricate
geometric details.

We tested our method on a collection of professionally designed quadrangulated
animals. Some of the results are shown in Figure 3.18. The presented models have
been produced through interactive editing sessions by the authors. We composed
models by simply detaching portions of the body from one animal and combining
them with the body of another animal. Our method always succeeded in producing
a two-manifold quadrilateral surface. Most of the original quad layout has always
been successfully preserved, and our method was able to create a smooth flow in

Stefano Nuvoli Composing quadrilateral meshes for animation

QuadMixer: composing watertight pure quadrilateral meshes 31

the blended portions of the meshes. The operations have always been performed
within 1 second for meshes in the animal dataset.

The merging operations of Figure 3.19 required up to 15 seconds for some of the
blending operations. As expected, the running time is proportional to the number
of triangles in the blending area that in this specific test case can involve most of
the original surface. Timings are summarized in Table 3.1.

Figure 3.20 reports the distribution of distortion in individual elements relative
to the experiment shown in Figure 3.3. Distortion has been computed by using the
distance with respect to the ideal quad as defined in [PTP+15]. As shown in the
histograms, our method does not affect the overall quality of the quads.

Table 3.1: Time efficiency. Execution time of each step of the pipeline for
the examples generated with QuadMixer. Times are all in millisecond with the
exception of the total time which is reported in seconds.

Models K Tris Bool Trace Solve Quad Other Total

Dolphin ∪ Alpaca 3 / 2 92 79 25 44 11 0.25
Alpaca ∪ Dolphin 5.4 / 1.6 93 68 24 62 17 0.26
Mannequinn ∪ Alpaca 5.3 / 2 156 94 26 80 32 0.39
Lizard ∪ Elephant 6.2 / 2.4 144 174 29 93 23 0.46
Elephant ∪ Lizard 7.8 / 1.2 162 126 159 149 39 0.64
Armadillo ∪ Pig 9.1 / 4.6 338 259 160 198 86 1.04
Monkey ∪ Dolphin 10.7 / 3 328 198 702 360 54 1.64
Monkey ∩ Dolphin 10.7 / 3 313 166 202 27 32 0.74
Monkey / Dolphin 10.7 / 3 315 347 904 173 56 1.80
Monkey ∪ Mannequinn 10.7 / 5.3 391 451 1324 356 118 2.64
Monkey ∩ Mannequinn 10.7 / 5.3 379 129 51 12 28 0.60
Monkey / Mannequinn 10.7 / 5.3 392 206 162 299 53 1.11
Rockerarm ∪ Rod 47.6 / 17.7 790 822 720 701 238 3.27
Fertility ∪ Fertility 26.2 / 26.2 2649 3102 2402 438 223 8.81
Fertility2 ∪ Fertility 39.5 / 26.2 4179 5052 4073 728 883 14.92
Fertility3 ∪ Fertility 59 / 26.2 1628 2055 1700 920 1102 7.41

3.5 Discussion

We proposed a novel powerful pipeline for freely composing quadrilateral meshes.
Our method takes advantage from boolean operations to smoothly blend between

Stefano Nuvoli Composing quadrilateral meshes for animation

32 QuadMixer: composing watertight pure quadrilateral meshes

Figure 3.17: Results. All the pairwise joins of six meshes, different in genus,
complexity, and details.

Figure 3.18: Editing session results. An overview of some results obtained with
our modelling tool.

Stefano Nuvoli Composing quadrilateral meshes for animation

QuadMixer: composing watertight pure quadrilateral meshes 33

Figure 3.19: Robustness. Iteratively merging the fertility model to check the
robustness of the proposed approach.

Stefano Nuvoli Composing quadrilateral meshes for animation

34 QuadMixer: composing watertight pure quadrilateral meshes

Figure 3.20: Quad distortion. Distortions of the quads of Figure 3.3 measured
using the metric defined in [PTP+15] (0 means no distortion).

quadrilateral meshes keeping as much as possible the tessellation of the original
surfaces. We integrated our technique into an interactive system and tested its
effectiveness in a modeling scenario. Given the robustness and the visual quality
of the generated meshes, we believe that our composing technique might become
a powerful tool in current production pipelines allowing artists to rapidly exploit
portions of existing models instead of resorting to complete re-topology sessions.

Moreover, our method can successfully mimic all the boolean operations, such
as union, difference, and intersection (Figure 3.21).

3.5.1 Limitations and Future Works

This method works only for watertight manifolds. In fact, it relies on the Boolean
operations described by Zhou et al. [ZGZJ16] that are unable to process non-
watertight or non-manifold shapes. Moreover, our input meshes must be composed
of only quadrilaterals. Indeed for triangle or quad-dominant meshes we cannot
guarantee the existence of a valid quadrangulation. In Chapter 4 we present an
extension of this method that allows to blend also quad-dominant, non-watertight
or non-manifold meshes.

Stefano Nuvoli Composing quadrilateral meshes for animation

QuadMixer: composing watertight pure quadrilateral meshes 35

Figure 3.21: Boolean operations on quadrilateral meshes. Our algorithm
can mimic any boolean operation on quad meshes generating a well-shaped quad
mesh which reuses the most of the initial layout. We show here, from left to
right: the input consisting of two quad meshes (a dolphin D and a chimpanzee C)
interactively placed in the scene; the two differences; their intersection; the union,
which is, typically, the most interesting operation from a semantic standpoint.

Stefano Nuvoli Composing quadrilateral meshes for animation

36 QuadMixer: composing watertight pure quadrilateral meshes

Our technique, currently, cannot efficiently preserve sharp features, as shown in
Figure 3.21. An exact boolean operation will introduce sharp features, especially
for the difference operation. However, it is usually not a problem for the blending
of models designed by artists, where we prefer to have smooth surfaces near
the intersection curve. In any case, our framework can be extended to include
sharp feature preservation: feature alignment can be enforced in the step of field
calculation, and the features can be included as traces in the patch subdivision step.
The same can be done along the intersection curve. Additionally, the field can be
constrained to align with these feature lines together with boundaries. Finally, the
vertices along sharp features must have a special treatment during the smoothing.
These extensions would guarantee the preservation of sharp features.

Another limitation of our method is its dependence on the initial resolution
and the initial patch layout. We experimented that, as can be expected, the better
results are obtained if the two meshes have a similar resolution (see Figure 3.22),
which can be attributed to the intrinsic limitations of quad mesh modeling. One
practical solution to this problem consists in matching the resolutions by using some
subdivision steps before performing the boolean operation. Figure 3.23 instead
shows the sensitivity of the method to two different initial patch layouts.

Figure 3.22: Different resolution limitation. Blending of meshes with different
resolution can result in poor surface preservation.

Our method cannot guarantee that the produced quadrangulation variates
smoothly while the user variates the intersection configuration. The accompanying
video and the examples shown in Figure 3.24 (top) shows this limitation: while
the arm moves slowly to the bottom, the produced quadrangulation might have
some unexpected change in the tessellation. This limitation might affect the overall
usability. The patch layout procedure can be redesigned to variate continuously
under small modifications of the intersecting region. We believe this can be a
compelling topic for future work.

Nevertheless, we experimented a simple procedure which already provides
encouraging improvements: we randomly perturb the intersection configuration,

Stefano Nuvoli Composing quadrilateral meshes for animation

QuadMixer: composing watertight pure quadrilateral meshes 37

Figure 3.23: Sensitivity with respect to two different initial patch layout.
Motorcycle graph (left) and emanating separatrices (right).

and we select the best tessellation for a given metric. For this experiment we used
as metric a linear combination between the quality of the quadrilateral elements
and the number of singularities: 0.3 ∗Qt + 0.7 ∗Avd, where Qt is the average quad
quality using the metric in [PTP+15] and Avd is the average absolute valence deficit
(the absolute difference of valence for each vertex from 4). We show the result
obtained with this improvement Figure 3.24 (bottom).

Figure 3.24: The variation of the tessellation configurations. Close geometric
configuration might cause abrupt changes in the tessellation (top); such an artefact
can be mitigated with simple improvements (bottom).

Finally, our approach can fail in the extreme case when the boolean operations
do not preserve any of the original quads, e.g., the space around the intersection
lines covers all the remaining meshes: in this case our algorithm will not produce a
valid patch decomposition and therefore will not be able to generate a quad meshing.
However, this kind of situations is well managed by a complete re-meshing of the

Stefano Nuvoli Composing quadrilateral meshes for animation

38 QuadMixer: composing watertight pure quadrilateral meshes

result since with such a configuration the original quad structure could probably
not preserved.

Acknowledgments The base meshes of the animals shown in figures 3.1,
3.3, 3.6, 3.15, 3.18, and 3.23 have been professionally modeled by Paul Gonet
(gonzou3d.carbonmade.com) and are available on BlenderMarket. The author
granted us the right of redistributing the remixed models shown in the figures
under the CC-BY-NC-SA license.

Stefano Nuvoli Composing quadrilateral meshes for animation

https://gonzou3d.carbonmade.com/

SkinMixer: composing skinned models for animation 39

Chapter 4

SkinMixer: composing skinned
models for animation

Figure 4.1: SkinMixer, the proposed blending technique. We can assemble
components of different models with arbitrary complex geometry. In the process,
also the data structures for skeletal animations are blended accordingly.

In the last chapter, we introduced a robust approach for blending components
of watertight pure quadrilateral meshes. Unfortunately, the assets for animation
in the industry (for example for video-games or films) are often composed of
quad-dominant meshes with open boundaries, for which not even manifoldness
is guaranteed. QuadMixer relies on the Boolean operations described by Zhou
et al. [ZGZJ16], hence it cannot deal with this kind of meshes. Furthermore, it

Stefano Nuvoli Composing quadrilateral meshes for animation

40 SkinMixer: composing skinned models for animation

considers only the surface and ignores the data structures for skeletal animations
of the input models.

Successfully composing not only the geometry but also the skinning information
could have a huge impact on the industry. Indeed, despite the research efforts in
the past decades, the skinning process is still usually manually performed [JDKL14].
Skinning (or rigging) is the task of creating a skeleton that is embedded into the
surface and determining how its bone transformations influence the deformation
of each vertex in the surface mesh. As we already introduced in Chapter 1, these
tasks are highly time-consuming and are usually performed by high-skilled artists.
Reusing parts of high-quality designed character could certainly reduce the costs of
these such expensive tasks.

Hence, we propose SkinMixer, a novel technique to compose parts of skinned
models, taking into account not only the surface but also the data structures for
skeletal animations. We perform operations on the skeleton joints of character
models that allow us to remove, detach, and merge their components. The surface
meshes, skeletons, and skinning weights are blended into a new model that is
immediately usable in animation pipelines.

The idea behind this method is to exploit the skinning information to guide
the entire blending process. Indeed, the skinning weights contain semantic infor-
mation that link surfaces to skeletons and vice-versa. This approach allows us to
automatically determine the resulting surface for each joint-based operation.

The method for the surface composition uses the retopology method described
in Chapter 3, but it is extended to work on arbitrary complex surface meshes.
Briefly, it blends volumetric signed distance fields in order to obtain an isosurface
that describes the output. Differently from the boolean operation, the result does
not present sharp features in the intersection curves, but natively smoothly merges
the input surfaces.

We summarize the main contributions of this chapter as follows:

• We define a robust method that smoothly blends arbitrary complex surfaces
into a quad-dominant mesh, preserving most of the layouts.

• We define a robust method that transfers the skinning weights of the two
input models into the new model, preserving most of the original information
and blending where necessary.

• We exploit the semantic information of the skinning weights to guide the
blending processes.

Stefano Nuvoli Composing quadrilateral meshes for animation

SkinMixer: composing skinned models for animation 41

4.1 Overview

Given two model characters C1 and C2, our method blends components of them
into a new model C. Each model is composed of a surface mesh, a skeleton, and
their related skinning weights. Similarly to QuadMixer, the original information of
the input models are preserved as much as possible and merged accordingly only
where needed.

Artists design skeletons as a hierarchical structure in which the joints (or handles)
are the articulation points through which we can control the model deformations.
This forms a tree structure, where nodes are the joints that are connected by several
directed segments, called bones. Clearly, these joints are placed in key points that
have a strong semantic meaning. For example, in a human character, we will
usually find a skeleton joint for each corresponding articulation of the human body.
Figure 4.2.a shows the skeleton for a human arm.

Furthermore, the skinning weights describe for each vertex the amount of
influence of the bones, and therefore, the influence of their transformation during the
animation process. Obviously, they also contain meaningful semantic information
that links the skeleton joints to the mesh vertices. Figure 4.2.b shows the skinning
weight values for a joint.

(a) (b) (c)

Figure 4.2: Rigging skeleton and skinning weights. The rigging skeleton of
the arm of a human character (a), the skinning weights related to the joint in yellow
(b), and a pose obtained applying a Dual Quaternion Skinning method [KCvO07]
(c). In (b) the colors represent the amount of influence: blue maximum influence
(1), red zero influence (0), and green middle value (0.5).

Stefano Nuvoli Composing quadrilateral meshes for animation

42 SkinMixer: composing skinned models for animation

Figure 4.3 shows some of the input models used in this chapter. The hu-
manoid characters are all taken from the Mixamo framework [Bla14], while the
Elephant in Figure 4.3.d belongs to a dataset available in the Unity Asset Store
(see Acknowledgments at the end of the chapter).

We propose an operation-based interactive process, in which each operation
is performed on skeleton joints belonging to one or two models. Interactively
performed by the user, operations allow us to detach, remove, and merge components
of our characters at will. Contrarily to QuadMixer, in which the user had to
manually select the position of the meshes or the detaching curve, we exploit the
skeleton structure to automatically guide the user in his operations.

We define three operations:

• Remove: it removes the skeletal components that descend from the selected
joint. Most of the original layout of the model is preserved, and the surface
is closed near the selected joint position.

• Detach: it preserves all the skeletal structure that descends from the selected
joint, removing each ancestor. The surface is closed accordingly, preserving
most of the original layout of the model.

• Replace: it performs a remove operation for a model and a detach operation
for the other one. Most of the original layouts are preserved, while the surface
in the intersection area is the result of a blending process. In the resulting
model, the two joints involved in the operation will be merged into a single
one. Note that the interface automatically moves the entire character involved
in the remove operation, in a way that the rest poses of the two concerned
joints match with each other. Then, the user can optionally scale, translate,
and rotate the two models at will.

Note that these operations cannot be performed on root or leaf nodes of the skeleton
tree. Figure 4.4 shows the effect of the operations on Crypto and Zlorp models of
Figure 4.3.

While the hierarchy of the bones implicitly defines our operation outcome for
the skeleton, defining the resulting surface and transferring the skinning weights
are more challenging tasks. The idea behind our method is to exploit the skinning
weight semantic information to find the desired output surface. In particular, we
assign for each mesh vertex a fuzzy value (between 0 and 1) that represents its
survival in the resulting mesh. A vertex with an associated value of 1 will be entirely
kept in the result, whereas a vertex with a value of 0 will be lost. Intermediate
values represent their weight in the merging process. From now onward, we refer
to these values as vertex select values.

Stefano Nuvoli Composing quadrilateral meshes for animation

SkinMixer: composing skinned models for animation 43

(a) Crypto (b) Zlorp

(c) Timmy (d) Elephant

(e) Dreyar (f) Gas Mask

Figure 4.3: Skinned models. Some skinned models.

Stefano Nuvoli Composing quadrilateral meshes for animation

44 SkinMixer: composing skinned models for animation

Remove Crypto arm

Detach Zlorp arm

Replace Crypto arm with Zlorp arm

Figure 4.4: Operations. The first row shows the result of removing the right arm
from the Crypto model. The second shows the detaching of the right arm of the
Zlorp model. The last Figure shows a replace operation, in which the right arm of
the Crypto model is replaced with the right arm of the Zlorp model.

Stefano Nuvoli Composing quadrilateral meshes for animation

SkinMixer: composing skinned models for animation 45

We summarize as follows the proposed pipeline (Figure 4.5):

• The user interactively performs operations to our models. The select values
for each vertex are computed according to the operations performed (Figure
4.5.a).

• The resulting skeleton is trivially created according to the operations per-
formed (Figure 4.5.b).

• According to the select values, for each operation we find the surface portion
to be preserved and to be blended for each model (Figure 4.5.c).

• We embed the surfaces to be merged in volumetric signed distance fields,
that are properly blended together. We attach the blended surface to the
preserved portions of the input meshes (Figure 4.5.d).

• The surface is then quadrangulated using a similar approach to the one
proposed in Chapter 3 (Figure 4.5.e).

• The skinning weights are determined for the new surface and the new skeleton,
preserving most of the original information and using the select values to
blend where necessary (Figure 4.5.f).

4.2 Methods

The input to our method consists of skinned models, each composed of a mesh,
a skeleton, and its skinning weights. Conventionally, from now onward, we can
refer to the character model C as the tuple C = (M,S,W), where M is the mesh,
S the skeleton, and W the skinning weight function. We define a mesh M as the
couple M = (V, F) where V and F are respectively the sets of the vertices and the
faces. Each skeleton S is composed of a set of joints J and their connectivity. W
represents a function that is defined for each pair of vertices and skeleton joints.

In the following Subsections, we show:

• How to create the resulting skeleton;

• How to generate the vertex select values ;

• How to obtain the resulting surface using a distance field blending process;

• How we quadrangulate the surface and we stitch it to the preserved one;

• How to determine the resulting skinning weights of the model;

Stefano Nuvoli Composing quadrilateral meshes for animation

46 SkinMixer: composing skinned models for animation

(a) (b) (c)

(d) (e) (f)

Figure 4.5: An overview of the proposed pipeline. The user performs oper-
ations on the models (a), the resulting skeleton is determined (b), the preserved
portions of the surfaces are identified (c), a new surface is extracted by manipulat-
ing signed distance fields (d), the surface is quadrangulated (e), and the skinning
weights are determined for each skeleton joint (f).

Stefano Nuvoli Composing quadrilateral meshes for animation

SkinMixer: composing skinned models for animation 47

4.2.1 Determining the resulting skeleton

The resulting skeleton for the operations described in the last section is straightfor-
ward:

• In case of a remove operation, we keep all the joints that do not descend from
the selected joint.

• In case of a detach operation, we keep all the joints that are descendants of
the selected joint.

• In case of a replace operation, we perform a remove operation to the first
model and a detach operation to the second. The two selected joints are then
merged into a single one. The rest pose is determined by averaging the rest
poses of the concerned joints.

We define a function k : J → {0, 1} for each model C for which an action has been
performed. This function assigns to each joint j ∈ J a boolean value: 1 means that
the joint has survived after performing the operation, 0 otherwise. Having these
values, the new skeleton can be trivially created, connecting all the components
accordingly.

4.2.2 Vertex select values

For each model C, the skinning weights W : V × J → [0, 1] is a function that
maps for each pair of vertex and skeleton joint a value between 0 and 1. Note that,
for each vertex v ∈ V , a common requirement of any animation pipeline is that∑

j∈J W (v, j) = 1 [JDKL14]. For example, if this condition does not hold, skinning
algorithms such as Dual Quaternion Skinning [KCvO07] would not work properly.
Generally, we assume that this condition is always satisfied.

Skinning weights represent the vertex deformation with respect to each joint
transformation during the animation process. We exploit these valuable insights to
generate weights that are used to determine the resulting surface. In particular,
we want to assign to each vertex a value from 0 to 1. This value represents the
influence of that part of surface in the resulting model. Figure 4.6 shows, with a
transparency effect, the preview result of each operation.

For each vertex v ∈ V , we define a function w(v), called weight function, as:

w(v) =
∑

j∈J

W (v, d) ∗ k(j) (4.1)

where k(j) is the boolean function defined for each skeleton joint in the previous
Subsection. In other words, the function w for a vertex v is simply the summation
of its skinning weights related to the joints which have survived in the operation.

Stefano Nuvoli Composing quadrilateral meshes for animation

48 SkinMixer: composing skinned models for animation

Remove Replace Detach

Figure 4.6: Select values for each operation. The transparency shows the
select value assigned to each vertex. Where the value is near 0, the surface is
transparent. On the other hand, the surface is completely opaque where the value
is near 1.

We apply a Laplacian smoothing to this function, keeping untouched the function
in the vertices with values close to 0 or 1. In particular, given a threshold t (in
our examples t = 0.99) we smooth the function for the vertices v ∈ V for which
1− t < w(v) < t holds. Figure 4.7 paints on the surface the resulting function for
the remove and detach operations on a joint.

The select value s(v) is then computed for each vertex v as:

s(v) = w(v)
1−o
o with o =

h+ 1

2
(4.2)

where −1 < h < 1 is the hardness parameter. Note that the value o only normalizes
the parameter h from [−1, 1] to [0, 1], and that for h = 0 we have s(v) = w(v).

The hardness parameter enables the user to choose how to smoothly distribute
the intermediate values of w (0.0 < w(v) < 1.0) on the surface. In case of a value
greater than 0, the surface will have higher select values and, then, more influence
in the blending process described below. On the contrary, for a value of less than 0,
the surface will have a lower influence. Figure 4.8 shows the effect of the hardness
parameter in a detach operation. This parameter is very useful in the detach and
remove operations since it determines the position where the surface will be closed.
Later, we will show the effect of this parameter for the replace operation. The
graphs in Figure 4.9 show the effect of the hardness parameter on the select value
function.

Stefano Nuvoli Composing quadrilateral meshes for animation

SkinMixer: composing skinned models for animation 49

Remove Detach

Figure 4.7: Weight function for detach and remove operations. The colors
represent the value of the function on the surface: blue color means the values are
near 1, green where the values are near 0.5, and red color represent surface where
the vertex select values are near 0.

Stefano Nuvoli Composing quadrilateral meshes for animation

50 SkinMixer: composing skinned models for animation

-0.99 -0.5 0.0 0.5 0.99

Figure 4.8: Hardness effect on select values. The figure shows how the hardness
parameter (varying from −0.99 to 0.99) influences the select values in a detach
operation. The first row shows the select values, using the same color notation
previously used (blue = 1.0, green = 0.5, red = 0.0). The second row shows the
select values using transparency.

Stefano Nuvoli Composing quadrilateral meshes for animation

SkinMixer: composing skinned models for animation 51

-0.99 -0.5

0.5 0.99

Figure 4.9: Hardness effect in select values. The graphs show the effect of the
hardness parameters on the final select values computed as a function of the weight
function. In the x-axis, there is the weight function w, in the y-axis the resulting
select value s.

Stefano Nuvoli Composing quadrilateral meshes for animation

52 SkinMixer: composing skinned models for animation

Rigid components As we already stated, meshes of real-world assets can be
non-watertight, quad-dominant and non-manifold. Furthermore, they could be
composed of several disjoint connected components. Figure 4.3.e and 4.3.f show two
examples. The armor features of the Dreyar model and all devices and pockets in
the Gas Mask models are portions of surfaces that are not topologically connected.
From a semantic point of view, these components are less important than, for
instance, the bust or the head: they are just a decorative feature. Usually, during
the skeletal animations, all the vertices of these components mostly deform in the
same way. For this reason, we name them rigid components.

Disjoint components could be a problem for our field extraction. For example,
they could intersect with each other, leading to major problems while signing the
field. The intersections of decorative components with more significant portions of
the surface is rather common in the assets available in the market. To solve this
problem, it is reasonable to have a special treatment for the rigid components: in
our operations, they will either be entirely preserved or be discarded.

Surface topology information is not enough to identify these portions of the
surface. Figure 4.10 shows a model that has several semantic meaningful portions of
the surface that are not connected. Note that the semantic important components
(such as bust, the head, and the legs) will deform similarly to the corresponding
ones in watertight models such as Zlorp in Figure 4.3.b.

Figure 4.10: Dreyar connected components. The Dreyar model is composed
of a high number of disjoint connected components.

For each connected component, we can determine as follows whether it is rigid
or not. We find the minimum wmin and maximum wmax of the function w(v) for
its vertices. Given a rigidity factor r (in our examples r = 0.8), a component is
rigid if and only if:

1− r ≤ wmin and wmax ≥ r (4.3)

Stefano Nuvoli Composing quadrilateral meshes for animation

SkinMixer: composing skinned models for animation 53

If a component is rigid, we entirely preserve the component if the average select
value s for each vertex of the component is greater than 0.5, otherwise, we discard
it. Note that preserving a component means to set all its vertex select values to
1.0, whereas discarding means to set them to 0.0. Figure 4.11 shows some rigid
components for the Dreyar model.

The hardness parameter can also influence the outcome for the rigid components,
as shown in Figure 4.12. This allows us to automatically decide the outcome for
each rigid component of the model. Nevertheless, to allow the user to interactively
choose which rigid components to preserve or discard would be a reasonable feature
for our modeling tool interface.

4.2.3 Determining the resulting surface

The vertex select values describe, using a value between 0 and 1, the influence of
each vertex on the resulting surface. First, we find for each model the faces to
be preserved and the faces to be discarded. The surface to be preserved is simply
the set of the faces which have an average vertex value (calculated on the incident
vertices) equal to 1. On the other hand, the faces with an average select value
equal to 0 are discarded.

We apply a regularization process to avoid holes or isolated faces in the borders
of the preserved surface. In particular, we consecutively perform an opening and
a closing operation on the selected faces, using the mathematical morphologi-
cal operators described in [CKS00]. This will increase the quality of the final
quadrangulation and the robustness of the boundary stitching step.

At this point, we determined a portion of the surface that will be entirely
preserved in the final model and a portion which will be entirely lost. The
remaining faces, neither discarded nor preserved, will be used for determining a
new surface that will be quadrangulated. Note that the discarded faces will be
completely ignored in the further steps of the pipeline.

Signed field extraction For each mesh M of the operation, our objective is to
extract a signed distance field, that will be used for determining a new surface
to be quadrangulated. To avoid interferences in the fields caused by portions of
meshes not involved in the operations, we consider only the portion of the mesh
which are neither preserved nor discarded. This approach also natively solves the
matter of the rigid components, since they are entirely either preserved or discarded.
For robustness and implementation reasons, in the field calculation, we take into
account also the faces of the preserved meshes that lie near the boundaries. This
is performed by a growing approach: all connected faces at a given radius from a
boundary vertex are involved in the field extraction. In our tests, to be as robust

Stefano Nuvoli Composing quadrilateral meshes for animation

54 SkinMixer: composing skinned models for animation

Figure 4.11: Rigid components. The colors (blue = 1.0, green = 0.5, red = 0.0)
represent the skinning weight values on the surface related to the skeleton joint in
yellow. The shown connected components have a similar value for all their vertices,
therefore they are rigid: deformations have the same effect for each vertex.

0.00 -0.50 -0.75

Figure 4.12: Hardness effect in rigid components. The hardness parameter
influences the average select value in the rigid components. Hence, we can exploit
this functionality to interactively preserve or discard components. In a Remove
operation, a lower hardness value results in discarding surface (top). On the
contrary, Detach operations with negative hardness values result in preserving more
surface (bottom).

Stefano Nuvoli Composing quadrilateral meshes for animation

SkinMixer: composing skinned models for animation 55

as possible in case of a tiny surface, we used a radius corresponding to the size of
15 unit voxels, even if a lower value could be used.

For each portion of mesh, we compute its unsigned distance fields using a library
(OpenVDB [MLJ+13]) that allows performing robust and efficient operations on
fields using a hierarchical and sparse data structure. Then, we sign the field using
the fast generalized winding number described in [BDS+18]. Note that this step
enables the process to deal with non-watertight meshes.

After the signing operation, the field has not continuous values in the areas
where the surface was not closed, as shown in Figure 4.13.c. This is not ideal
for the blending approach described below. Hence, we extract a closed isosurface
using an efficient dual marching cube algorithm [Nie04] and we re-calculate the
signed distance fields F1 and F2. This task could be performed more efficiently by
a zero-preserving smoothing, but we chose to use the robust signed field extraction
of the library to fully exploit the hierarchical and sparse organization of data.

Figure 4.13 illustrates the entire field extraction process for a non-watertight
surface. Figure 4.14 shows some meshes obtained by the signed field extraction
process in an actual replace operation.

Remove and detach operations: closing by signing the field In the case
of the detach and remove operations, we have a single field F that already defines
an isosurface. However, we desire to smoothly close the surface where the vertex
select values are near 0.5. Indeed, the select values close to 0.5, highlighted in
green in the first row of Figure 4.8, define an isoline that appropriately segments
the surface in two regions.

For this reason, we compute the signed distance field as explained above selecting
all the faces that are incident in vertex that have a select value in the interval
(0.5, 1) (the extremities of the interval are not included). The resulting surface will
be stitched to the preserved mesh and then quadrangulated.

Replace operation: blending signed fields For the replace operation, the
task is more challenging. Indeed, we have to find a way to manipulate the given
fields to obtain an isosurface that represents the blending of the input meshes.

We generate the distance field for the mesh including only the faces that have
an average select value (calculated on the incident vertices) in the interval (0, 1).
Given the signed distance fields F1 and F2, we want to blend them in a single field
F , following the select values s1 and s2.

In each field, for each voxel, we have useful information, that is the origin
polygon. It identifies the face in the input meshes that lies at the minimum
distance. Using these insights, we can embed the select values in two fields S1 and
S2. The select values for each voxel are obtained by interpolating on the closest

Stefano Nuvoli Composing quadrilateral meshes for animation

56 SkinMixer: composing skinned models for animation

(a) (b) (c) (d)

Figure 4.13: Field extraction. 2D representation of field extraction. Colors
are interpolated in this manner: green color represents positive distance values,
red negative values, and white where the field is near zero. From left to right:
the original shape (a), the unsigned distance field (b), the signed field (with the
isosurface in black) that presents discontinuities (c), and the final signed distance
field (d).

(a) Remove (b) Detach

Figure 4.14: Extracted field isosurface. Given the faces neither preserved nor
discarded, we extract a signed distance field. In this figure, we show the resulting
isosurface. Note in (b) how the process properly handles the spurious border faces.

Stefano Nuvoli Composing quadrilateral meshes for animation

SkinMixer: composing skinned models for animation 57

point of the origin polygon. Note that our input models are quad-dominant, and
they can contain some triangular or pentagonal faces. In case of a triangle, we
interpolate by the well-known triangle barycentric coordinates. The interpolation
of the select values on a polygon with more than 3 sides is simply performed by
triangulating the polygon using a new vertex in the barycenter (assigning to it the
average select value of the polygon), and then interpolating in the triangle on which
the point lies. For the sake of simplicity, we used this interpolation approach also
for quadrilaterals faces, even if bilinear interpolation could give more robust and
accurate results. Figure 4.15.c illustrates the color interpolation on a quadrilateral
using our approach.

(a) (b) (c)

Figure 4.15: Barycentric interpolation on a quadrilateral. A quadrilateral
with colors defined per vertex (a), interpolation by splitting the quadrilateral with
one of the diagonals (b), and interpolation by splitting in the barycenter (c). The
image on the right (c) illustrates the proposed interpolation method.

Given the distance fields F1, F2 and the select value fields S1, S2, for each voxel
X = (x, y, z) the key equation that performs the field blending F is defined as:

F(X) =
S1(X) ∗ F1(X) + S2(X) ∗ F2(X)

S1(X) + S2(X)
(4.4)

However, we want to guarantee that the surface is as closest as possible to the
original ones where the corresponding select values are close to 1. On the other
hand, we want to smoothly blend where both the surfaces have an intermediate
value. Given a threshold t (in our examples t = 0.99) we compute the field F as:

• if S1(X) ≥ t and S2(X) < t

F(X) = F1(X) (4.5)

• if S1(X) < t and S2(X) ≥ t

F(X) = F2(X) (4.6)

Stefano Nuvoli Composing quadrilateral meshes for animation

58 SkinMixer: composing skinned models for animation

• if S1(X) ≤ 1− t and S2(X) ≤ 1− t

F(X) = 0.5 ∗ F1(X) + 0.5 ∗ F2(X) (4.7)

• otherwise: Equation 4.4

Equation 4.4 describes the core of the blending process, where intermediate
values are merged together to obtain the desired surface. Equation 4.5 and 4.6
guarantee that the surface is as closest as possible to the original meshes where the
select values are close to one. Equation 4.7 guarantees the continuity of the field in
case of low or zero select values. Figure 4.16 illustrates the entire field blending
process with a 2D sketch.

Figure 4.16: 2D representation of the field blending process. On the left
and right the two signed distance fields of the input models, in the center the
resulting field. We show the shapes (top) and the distance fields using the same
color notation of Fig. 4.13 (bottom).

Stefano Nuvoli Composing quadrilateral meshes for animation

SkinMixer: composing skinned models for animation 59

Figure 4.17: Field blending. Blending of two fields. On the left and right the
isosurfaces of the two input fields, in the center the isosurface of the blended field.

R: 0.5, D: -0.5 R: 0.0, D: 0.0 -R: 0.5, D: 0.5

Figure 4.18: Hardness effect in field blending. We show the effect of the
hardness parameter in the field blending on the same setup of Figure 4.17. R and D
stand for the hardness for, respectively, the removed and the detached component.
On the left, we preserve more of the detached component. On the right, we preserve
more of the removed component. In the center, we show the zero hardness result.

Stefano Nuvoli Composing quadrilateral meshes for animation

60 SkinMixer: composing skinned models for animation

At this point, we can extract the isosurface from the field F . Figure 4.17 shows
an actual field blending example. The outcome blended surface will be stitched to
the two preserved meshes and will be quadrangulated, as described in Subsections
4.2.4 and 4.2.5.

Figure 4.18 shows the hardness parameter effect in the replace operation. Note
that hardness parameters, especially for high and low values (close to −1 or 1), can
reduce the quality of the resulting shape. Indeed, the select values would be less
widely and uniformly distributed on the surface.

Refining the isosurface The resulting isosurface is a watertight surface. How-
ever, where the select values are near 1, we want open boundaries that will be
stitched to the preserved meshes. Moreover, we want these boundaries to be as
closest as possible to the borders of the preserved meshes. Hence, we delete each
vertex of the isosurface mesh for which the origin polygon is a preserved face. In
this way, by construction, we create boundaries that are close to the preserved
mesh borders.

4.2.4 Boundary stitching

At this point, we have the quad layouts that have been preserved from the original
models, and a triangle mesh resulting from the operations on the distance fields
(blending for the replace operation, closing with field signing for the detach and
remove operations). A requirement for applying the retopology approach proposed
in Chapter 3 (Section 3.2) is that the triangle mesh and the preserved mesh must
share the same boundaries. The two meshes are not connected, however, as we
already stated, their boundaries are quite close by construction.

Hence, we edit the triangle mesh along its boundaries, in order to have the
same boundary vertices of the preserved quad layouts. The key idea for solving the
problem is to split the boundary edges of the triangle mesh in correspondence of
each border vertex of the preserved mesh, and then perform multiple edge collapse
operations in order to keep only the vertices that lie in the preserved meshes. By
splitting an edge, we mean to add a new vertex between the two vertices that form
the edge itself, appropriately adjusting the tessellation. Figure 4.19 illustrates the
entire boundary stitching process.

Regularization First, we perform a pre-processing step on the triangle mesh to
obtain regular and smooth borders. This is a very useful property for a stitching
task. In particular, we use the opening morphological operator described in [CKS00]
on the boundaries of the triangle mesh. Fig. 4.19.a shows the triangle mesh with
the regularized boundaries.

Stefano Nuvoli Composing quadrilateral meshes for animation

SkinMixer: composing skinned models for animation 61

(a) (b)

(c) (d)

Figure 4.19: Boundary stitching. The preserved quad layout and the triangle
mesh are stitched together by their border edge loops. The regularized input
boundary loops (a), the edges are split following the parameterization (b), the edge
collapse operations are performed (c), and the surface is smoothed (d).

Pairing Let Ep be the set of the border edge loops (or chains) of the preserved
mesh and Eq the ones of the triangle mesh extracted from the blended implicit
surface. Each of their elements is an ordered list of vertices (v1, ..., vk) which
describe the edge chains. Then, we find all the best pairs (ep, eq) with ep ∈ Ep and
eq ∈ Eq that will be stitched together. This is performed by iteratively selecting
the pairs with the least average distance between their closest points until all the
elements of Ep or Eq have been assigned. Obviously, in the pairing process, we do
not consider the border chains which were already boundaries of the original models.
Furthermore, we discard all the connected components whose border loops have
not been paired. This allows us to ignore the spurious components that may arise
from the selection using the select values of the faces to be preserved or discarded.

Finding the parameterization Then, for each pair (ep, eq), we solve an opti-
mization problem to find a parameterization t for the edge loop eq of the triangle
mesh. This parameterization will guide the boundary stitching process. More
precisely, we want to add vertices in the boundaries of the triangle mesh eq in

Stefano Nuvoli Composing quadrilateral meshes for animation

62 SkinMixer: composing skinned models for animation

correspondence, according to the parameterization t, of each boundary vertex of ep.
For a point v in the edge chain eq, we define δ(v) as the projection of v in

the preserved edge chain ep. The length parametrizations start from the closest
coordinates sq, sp = δ(sq) in the two edge loops. Hence, we have lp(sp) = 0 and
lq(sq) = 0. Then, we apply a 3D Laplacian smoothing to the edge chains and we
parametrize them by their arc length in smoothed space. We refer to these length
parameterizations in smoothed space as lp and lq.

Given the ordered list of consecutive vertices in eq (v1, ..., vk) for which v1 = sq,
we find the parameterization t by minimizing the following energy:

argmin
t

α ∗D + (1− α) ∗R

where D =
k∑

i=1

(t(vi)− lp(δ(vi)))
2

R =
k∑

i=1

(t(vi)− lq(vi)))
2

subject to t(vi) < t(vi+1) 1 ≤ i < k

(4.8)

The D term is the deformation objective term, and it encourages the parame-
terization t to match the parametric value of the closest point projected on the
edge loop ep. The regularity term R, instead, encourages t to match the length
parameterization lq of eq. The parameter α blends between the two objective terms.
In our implementation, we used α = 0.9. For this optimization problem, we took
inspiration from the approach proposed in [DYY16], even if in this case the problem
is slightly different. Indeed, they deform both the edge loops to match with each
other.

Edge split operations For each vertex in ep, we perform a split operation on
an edge of eq, creating a new vertex with the same coordinates of the vertex in ep.
The edge to split is determined by matching the values in t with the ones of the
length parameterization of ep. Note that the constraint in the last row of Eq. 4.8
forces the parameterization to be a monotone function w.r.t. the vertex order in
the edge chain. The average length of the edges in the two paired loops can be
quite different since the discretization in the Marching Cubes algorithm is usually
denser than the one in the original models. Our method is robust to this kind of
mismatches since we create new vertices that refine the edges of the triangle mesh
exactly where needed. Fig. 4.19.b shows the effect of the edge splitting operations.

Edge collapse operations Then, we iteratively perform several edge collapse
operations in the triangle mesh, preserving only the new vertices resulting from

Stefano Nuvoli Composing quadrilateral meshes for animation

SkinMixer: composing skinned models for animation 63

the splitting operations, i.e. the vertices lying in the preserved mesh. If it is
not possible to perform the edge collapse, we add one or more triangle to close
the surface with a simple hole filling algorithm. Nevertheless, due to the regular
tessellation of the dual marching cubes, it never happened in our experiments. Fig.
4.19.c shows the triangle mesh after the edge collapse operations. After this step,
the meshes have coinciding boundaries, as required to perform the quadrangulation
approach described in Chapter 3.

Surface smoothing Finally, two Laplacian smoothing steps are performed on
the surface, keeping fixed the vertices on the boundaries. The first one adaptively
smooths near the boundaries, in order to avoid flipped faces after the stitching
process and to encourage a smooth connection to the preserved surface. The
second is a simple Laplacian smoothing applied to avoid the artifacts due to the
volumetric sampling of Marching Cubes. For the first smoothing step, we want a
high smoothing effect near the boundaries, and a low effect far from them. Hence,
we linearly weight the effect of the smoothing w.r.t. the select value in the fields
S1 and S2. Where the select values are lower or equal to a given threshold (0.9
in our tests), the smoothing has no effect. On the contrary, where select values
are near 1, the smoothing effect is maximum. The effect is linearly blended for
intermediate values between the threshold and 1. In our examples, we performed 5
smoothing iterations. The second smoothing step is a simple Laplacian smoothing
with a fixed weight: in our implementation, we performed 5 iterations with weight
0.7 for each vertex. Fig. 4.19.d shows the result of the smoothing process.

4.2.5 Quadrangulation

We compute the quadrangulation as described in the Subsections 3.2.2, 3.2.3, 3.2.5.
However, the feasibility of the quadrangulation cannot be guaranteed using the
method proposed in Subsection 3.2.4. Indeed, the mesh could be quad-dominant,
and the polychord splitting method works only for pure quad-meshes.

However, in this case, we do not have the constraint for the mesh to be composed
of quadrilaterals only. Therefore, we can add triangles to guarantee the feasibility
of the quadrangulation process. Particularly, if needed, we add a triangle in a
chosen border side in order to increase or reduce the subdivision on the border
by 1. The triangle is added in the longest edge if the subdivision value has been
increased, or in correspondence of the shortest edge otherwise.

Which border side and whether to increase or reduce its subdivision is chosen
by adding a term to the ILP optimization (Subsection 3.2.3). In particular, in
the optimization problem, we allow each fixed border side to vary by 1 (-1 or
+1), assigning a high cost in the objective function when this happens. Let bi

Stefano Nuvoli Composing quadrilateral meshes for animation

64 SkinMixer: composing skinned models for animation

(a) (b)

(c) (d)

Figure 4.20: Quadrangulation. Some final quadrangulations. (a) and (b) show 2
replace operations respectively on the models Timmy and Crypto and the models
Crypto and Zlorp. (c) and (d) are respectively a detach operation on the model
Gas Mask and a remove operation on the model Zlorp.

Stefano Nuvoli Composing quadrilateral meshes for animation

SkinMixer: composing skinned models for animation 65

be the fixed border vertex number, and ei = [bi − 1, bi + 1] be the target subside
subdivision. We add to the objective function the term |bi − ei| ∗M where M is a
high number. In this way, we constraint the method to add a single triangle in an
edge loop only when the parity hard constraint is not satisfied.

Figure 4.20 shows some final quadrangulated surfaces obtained with our method.

4.2.6 Skinning weight transfer

At this point in the pipeline, we have successfully generated the skeleton and the
mesh for the resulting model. However, this model is not ready to be animated.
Indeed, we have not transferred the information about the skinning weight yet.
Skinning weights W1 and W2 are defined for each possible pair of vertex and joint
of the related input model. We want to reuse this data for determining the skinning
weights of the new model.

Most of the original vertices and some parts of the skeletons are preserved
after performing the operations. For these preserved pairs, we simply transfer the
corresponding skinning weight values. However, we have to find a way to transfer
the data in the correspondence of the new surface generated by each operation.

Below, we show how we successfully perform this task. First, we find two
injective mappings between the joints of the resulting skeleton and the joints of
each input model. Using this information, the skinning weights are then computed
using an approach similar to the blending process in Subsection 4.2.3.

Skeleton joint matching When we determine the resulting skeleton, we simply
transfer the survived skeleton joints of each input model. Hence, we already have
an implicit matching between some of two input skeleton joints and the output
joints. In case of a remove or detach operation, all the joints have a corresponding
birth joint in an input model. However, for the replace operation, we can only infer
a partial matching between the input and the resulting skeleton.

The partial matching is enough to determine the skinning weights for the
preserved surface, however, we would lose some information in the new surface
that has been quadrangulated. For instance, the skinning weight information in
Figure 4.21.c would be lost in correspondence of the lower part of the knee of the
character in Figure 4.21.b. Indeed, differently from 4.21.a, we do not have any link
between the joints in yellow of Figures 4.21.b and 4.21.c.

Hence, to properly transfer the skinning weight, we find two injective mappings
γ1 : S → S1 and γ2 : S → S1, that link every joint of S to a joint of each input
skeletons.

This mapping must be precise in the joints that are topologically close to the
joint that has been merged (i.e. parents or children). On the other hand, we do

Stefano Nuvoli Composing quadrilateral meshes for animation

66 SkinMixer: composing skinned models for animation

(a) (b) (c)

Figure 4.21: Information lost due to the partial matching. On the left and
right (a) and (c) the input skinning weights for the joints highlighted in yellow. On
the center (b) the resulting blended model. The usual color notation has been used.
Some of the skinning weight information in (c) would be lost where the surface has
been blended.

not need a perfect matching in topologically far joints. Indeed, it is unlikely that
such a joint could contain skinning information about the new surface.

Therefore, we use a simple heuristic algorithm to find such mappings. Let γ
be the desired matching function. First, we initialize γ with the partial matching
inferred by construction during the skeleton creation. Therefore, for the preserved
joint jp, derived from jo of the input model, we have γ(jp) = jo.

Let j ∈ J be a joint of the resulting skeleton and q a joint in the input skeleton
(S1 or S2). The following process is repeated until γ has been computed for each
joint j ∈ J . At each iteration, we assign γ(j) = q for the values of j and q that
maximize:

argmax
j,q

αT ∗ T (j, q) + αG ∗G(j, q) + αM ∗M(q) (4.9)

where T represents the topological matching score, G the geometrical matching
score and M is a term that gives priority to the non-matched joints.

The term T encourages the mapping to follow the topology of the skeletons. It

Stefano Nuvoli Composing quadrilateral meshes for animation

SkinMixer: composing skinned models for animation 67

is defined as:

T (j, q) = 0.5 ∗ f(pj, pq) + 0.5 ∗ (
Cj∑

cj

Cq∑

cq

f(cj, cq)

|Cj| ∗ |Cq|
) (4.10)

where pj and pq are respectively the parents of the joints j and q, Cj and Cq are
respectively the set of children of the joints j and q; the function f is defined as:

f(a, b) =

{
1 if γ(a) = b

0 otherwise

The term G encourages the mapping to follow the geometry inferred by the rest
poses of the skeleton. In particular, we match the directions of the bones related
to the joint. We define dp(a) as the unit vector from the rest pose of the parent of
a to the rest pose of the joint a. We define dc(a) as the average unit vector from
the rest pose joint a to the rest pose of the children of the joint a. Therefore, the
term G is defined as:

G(j, q) = 0.5 ∗ (dp(j) • dp(q)) + 0.5 ∗ (dc(j) • dc(q)) (4.11)

where the symbol • denotes the dot products. We obtain the maximum value of 1
if the directions match.

The term M gives priority to the joints q that have not been matched yet. It is
defined as:

M(q) =

{
0 if the joint q has been already matched

1 otherwise
(4.12)

We want the heuristic to principally depend on the tree topology information,
and to follow geometrical features when there is uncertainty. Hence, in our tests
we used the values αT = 0.45, αG = 0.05, αM = 0.50.

This matching heuristic works perfectly if the two skeleton topologies coincide.
However, if the topologies are even slightly different, we have inconsistent results in
joints that are topologically far from the merging joint. Nonetheless, the method
works fine for the topologically close joints and, therefore, successfully solve our
matching problem for determining the skinning weights. In case we want to perform
animation retargeting or other more complex operations (see future works in Section
4.4), we need to find a more clever matching method.

Blending the skinning weights As we already stated, we simply transfer the
skinning weight values for the preserved vertices and joints of a model. However,

Stefano Nuvoli Composing quadrilateral meshes for animation

68 SkinMixer: composing skinned models for animation

each operation produces a new surface that has been quadrangulated. Replace
operations blends portions of the two input surface into a new one, whereas remove
and detach operations create a new surface that closes the shape.

Given a vertex v ∈ V lying in the quadrangulated surface and a joint j ∈ J in the
resulting model, let X ∈ R

3 be the coordinates of the vertex v. The related skinning
weight W (v, j) can be computed by interpolating the corresponding skinning weight
for the corresponding joint in the input model. The process exploits the information
about the origin polygon of the distance field, using the same interpolation method
with barycentric coordinates described in Subsection 4.2.3 (Figure 4.15.c).

Then, the result skinning weights for the quadrangulated new surface are
computed as follow:

• For a replace operation:

W (v, j) =
S1(X) ∗ W̃1(X , γ1(j)) + S2(X) ∗ W̃2(X , γ2(j))

S1(X) + S2(X)
(4.13)

where we refer to the interpolated skinning weights on the two input models
as W̃1(X , γ1(j)) and W̃2(X , γ2(j)). γ1 and γ2 are the corresponding joint
mappings obtained as described above. Obviously, as in Subsection 4.2.3, S1

and S2 are the volumetric fields containing the interpolated select values.

• For the remove and detach operations:

W (v, j) = W̃ (X , γ(j)) (4.14)

where W̃ (X , γ(j)) are the interpolated skinning weights and γ the joint map-
ping of the single input model. However, the result of a remove operation
could have leaf joints, originating from a non-leaf handle in the input. Con-
ventionally, leaf joints are usually a decorative feature for the skeleton, and
should not represent any deformation. Therefore, we simply accumulate to
their parent the related skinning weight values.

Note that we handle the select value borderline cases as we described in Subsec-
tion 4.2.3. Finally, we perform a per-vertex normalization of the skinning weights,
to guarantee that the constraint

∑
j∈J W (v, j) = 1 is satisfied for each vertex

v ∈ V .
Figure 4.22 shows a pose of an animation for the resulting model of Figure 4.23.

Figure 4.23 and 4.24 show some results of the skinning weights blending process for
two replace operations. In the second row of Figure 4.24, it is clear how the flows
of the skinning weights are captured and blended together using the select values.
Finally, Figure 4.25 and 4.26 show the resulting skinning weights for, respectively,
a remove and a detach operation.

Stefano Nuvoli Composing quadrilateral meshes for animation

SkinMixer: composing skinned models for animation 69

Figure 4.22: A pose of the resulting model. The animation is provided by the
Mixamo [Bla14] framework. The pose for the resulting mesh is obtained simply by
transferring the animation keyframes local transformation of the survived joints of
each model. We generated the pose using the Dual Quaternion skinning [KCvO07]
algorithm.

Stefano Nuvoli Composing quadrilateral meshes for animation

70 SkinMixer: composing skinned models for animation

(a) (b) (c)

(d) (e) (f)

Figure 4.23: Skinning weight blending. Skinning weight of the resulting model
of a replace operation for the models Crypto and Timmy. On the left and right
are shown the input skinning weights, on the center the resulting skinning weights.
The first row shows the skinning weights for the joint in yellow, using the usual
color notation. The second row shows the so-called contour shader, that shows
the isolines of the fractional part of the values, blending from red (0.00) to green
(0.99).

Stefano Nuvoli Composing quadrilateral meshes for animation

SkinMixer: composing skinned models for animation 71

(a) (b) (c)

(d) (e) (f)

Figure 4.24: Skinning weight blending. Skinning weight of the resulting model
of a replace operation for the models Crypto and Zlorp. On the left and right are
shown the input skinning weights, on the center the resulting skinning weights.
The first row shows the skinning weights for the joint in yellow, using the usual
color notation. The second row shows the so-called contour shader, that shows
the isolines of the fractional part of the values, blending from red (0.00) to green
(0.99).

Stefano Nuvoli Composing quadrilateral meshes for animation

72 SkinMixer: composing skinned models for animation

(a) (b)

(c) (d)

Figure 4.25: Skinning weight transfer. Skinning weight of the resulting models
of a detach operation for the model Gas Mask. Note that the leaf joint has no
influence on any vertex of the mesh. On the left the input skinning weights, on
the right the resulting skinning weights. The first row shows the skinning weights
for the joint in yellow, using the usual color notation. The second row shows the
so-called contour shader, that shows the isolines of the fractional part of the values,
blending from red (0.00) to green (0.99).

Stefano Nuvoli Composing quadrilateral meshes for animation

SkinMixer: composing skinned models for animation 73

(a) (b)

(c) (d)

Figure 4.26: Skinning weight transfer on a detach operation. Skinning
weight of the resulting models of a remove operation for the model Zlorp. Note
that the two joints corresponding to the shoulders have some amount of influence
where the model has been detached. On the left the input skinning weights, on
the right the resulting skinning weights. The first row shows the skinning weights
for the joint in yellow, using the usual color notation. The second row shows the
so-called contour shader, that shows the isolines of the fractional part of the values,
blending from red (0.00) to green (0.99).

Stefano Nuvoli Composing quadrilateral meshes for animation

74 SkinMixer: composing skinned models for animation

4.2.7 Implementation details

We developed an interface which allows the user to load characters and perform
operations on them. The user can apply several operations to multiple models,
however, they are not immediately performed. On the contrary, a preview of the
result using transparency is provided. When the user is satisfied, he can generate
the output results at once.

Each operation is performed separately. In particular, we generate and ma-
nipulate a separate volumetric field for each remove, detach or replace operation.
Even if this results in lower performances, this allows
us to perform multiple operations on the same models
without having any interference in the field operations.
The Figure on the right shows an example of two re-
place operations on the Crypto model for which a single
volumetric field could generate interferences due to the
closeness of the involved surfaces. The left leg belongs
to the Dreyar model, while the right leg belongs to the
Timmy model. Such a result could not be possible by
manipulating a single volumetric field.

Border stitching and skinning weight blending are
also performed separately for each operation. On the
other hand, the final preserved faces in the input mesh
and the final new surface to be quadrangulated are found
by gathering and joining together the information of each
field. Therefore, the quadrangulation is performed in a
single step.

Note that our method does not work properly if there
is not any preserved region of the input models that
divide and lie among each of the new surfaces generated
by different operations. Indeed, this would result in
components that are not connected together. Nevertheless, this can happen only
for operations on consecutive joints (i.e. a joint and one of its children) and/or for
hardness parameters near −1 or 1. For this reason, we did not handle this case for
the time being. This could be handled by connecting the disconnected components
or by avoiding the absence of preserved faces between the new surfaces.

The voxel size of the fields is determined as a function of the average length of
the meshes. We find the minimum average edge length among the models involved
in the operations. Then, the chosen voxel size corresponds to this value multiplied
by a factor 0.7.

Stefano Nuvoli Composing quadrilateral meshes for animation

SkinMixer: composing skinned models for animation 75

4.3 Results

We performed our tests on a laptop computer with an Inteli7-6700HQ processor
with 16GB of RAM. We used OpenVDB [MLJ+13] for the high-performance
field operations. Gurobi [GO18] to solve all the minimization problems. In the
implementation, also the following libraries have been used: VCG Library [CNR13],
CG3Lib [MN21], libigl [JP+16], Eigen [GJ+14] and CGAL [FP09].

Figure 4.27 shows some of the results obtained with our method. The generation
of these results required up to about 15 seconds. The running time is influenced by
the number of operations performed, the voxel size and the size of the intersected
area. The most expensive operations in terms of time and memory footprint are
the extraction and blending of the fields. This is because we cannot fully exploit
the sparsity and hierarchical organization of data during the field signing and
blending operations. Timings are summarized in Table 3.1. Note that all the code
is single-threaded and not highly optimized. Moreover, a dense volumetric sampling
has been used, even if wider voxels could have been used without any problem.

Table 4.1: Time efficiency. The execution time of some steps of the pipeline for
the examples generated in Figure 4.27. Times are all in seconds. FE stands for Field
Extraction, SB for surface blending, BQ for border attaching and quadrangulation,
and WB for the skinning weight blending.

Models FE SB BQ WB Total

Elephant - Timmy (stomach) 1.5 2.1 1.9 1.0 6.5
Timmy - Dreyar - Crypto (arms and head) 3.8 6.3 4.2 1.3 15.6
Timmy - Crypto (leg) 0.8 1.4 1.2 0.7 4.1
Crypto - Zlorp (stomach) 1.1 1.9 1.4 0.9 5.3
Gas Mask - Zlorp (legs) 1.8 2.7 2.0 1.2 7.7

Resulting skinning weight evaluation Figures 4.28, 4.29 and 4.30 show a
comparison of the skinning weights obtained with our blending method and the
skinning weights generated by the automatic method of Maya [Aut] (“closest
distance”). In each figure, the same pose has been calculated for both results with
the Dual Quaternion Skinning [KCvO07] method. A particular shading to highlight
artifacts on the surface has been used.

Figures 4.28 and 4.29 show that our resulting weights are usually better than the
ones obtained with the automatic tool. Both figures illustrate how the automatic
generation creates weights that result in a volume shrinking during the deformation.

Stefano Nuvoli Composing quadrilateral meshes for animation

76 SkinMixer: composing skinned models for animation

Figure 4.27: Results. Some results generated with our method. Every input
model of Figure 4.3 has been used at least once. Some characters are the outcome
of several operations applied on more than two models.

Stefano Nuvoli Composing quadrilateral meshes for animation

SkinMixer: composing skinned models for animation 77

Ours Automatic generation

Figure 4.28: Skinning weight comparison. A comparison between the skinning
weights generated by our method (left) and the automatically generated weights
(right) for the model Timmy - Crypto (leg) of Figure 4.27. Red arrows indicate
some artifacts and flaws on the deformed surfaces. The automatic tool produced
volume shrinking, while our method preserved most of the original skinning weights.

Moreover, in Figure 4.29, the features in the bust, in the stomach and in the knees
present visible artifacts when deformed. In the results of our blending approach,
the surface and the skinning weights not lying in the intersection area are deformed
exactly how the artists meant because we entirely preserved those components.

In Figure 4.29 the pictures in the bottom show a zoom of the intersection area.
In this case, our method successfully blended and incorporated the weights of the
original models, producing an undoubtedly better result than the automatic tool.
On the other hand, Figure 4.30 shows a case where our method can create artifacts
in the intersection area. However, also in this case, the automatic generation
produced artifacts unwanted by the artist in correspondence of the components we
preserved, while our method was flawless.

Our method to determine skinning weights works properly in case we replace
components of characters with components of a similar shape. In the operation that
merges the Timmy and the Elephant models, the shapes involved in the blending
were too different. See Section 4.4.1 for a detailed discussion on this matter.

Stefano Nuvoli Composing quadrilateral meshes for animation

78 SkinMixer: composing skinned models for animation

Ours Automatic generation

Figure 4.29: Skinning weight comparison. A comparison between the skinning
weights generated by our method (left) and the automatically generated weights
(right) for the model Crypto - Zlorp (stomach) of Figure 4.27. Red arrows indicate
some artifacts and flaws on the deformed surfaces. The automatic tool result
presents several artifacts.

Stefano Nuvoli Composing quadrilateral meshes for animation

SkinMixer: composing skinned models for animation 79

Ours Automatic generation

Figure 4.30: Skinning weight comparison. A comparison between the skinning
weights generated by our method (left) and the automatically generated weights
(right) for the model Elephant - Timmy (stomach) of Figure 4.27. Red arrows
indicate some artifacts and flaws on the deformed surfaces. Our method presents
worse results in the intersection area, but it perfectly performs for the components
which have been preserved.

Stefano Nuvoli Composing quadrilateral meshes for animation

80 SkinMixer: composing skinned models for animation

4.4 Discussion

We propose a novel method to compose skinned model components into new char-
acters ready to be used in animation pipelines. We extended the surface retopology
approach of Chapter 3 to natively blend arbitrary complex surfaces. Furthermore,
we present some techniques to compose also the data structures necessary to ani-
mate the characters, such as skeletons and skinning weights. SkinMixer produces
excellent results in most of the cases, however, more work should be done to
increase performances and robustness. In the following subsections, we discuss
some limitations and possible future works.

4.4.1 Limitations

As we anticipated at the end of the last chapter, our method can fail in determining
proper skinning weights in case of the composition of shapes too different from each
other. Actually, this is a problem that can be found in the surface blending process
as well. Indeed, to obtain a proper result, the characters in a replace operation
should be adequately positioned. For example, we want to avoid that the involved
shapes intersect orthogonally or have a too different orientation. Furthermore, the
vertex select values in the two fields should vary monotonically along a direction in
a way that they are complementary with respect to each other. For example, it
would not be ideal that, in a given voxel, we have select values near 0 or 1 in both
the fields.

Figure 4.31 shows a problematic replace operation for the models Timmy and
Elephant. The involved surfaces do not match in their orientation, and they
orthogonally intersect with each other. The resulting surface is not satisfactory.
In Figure 4.27 the outstanding result has been obtained by manually positioning
the input characters in order to have a similar orientation and a proper match
between the select value fields. In this case, even if our method performed very
well in blending the geometry, the skinning weights in the intersection area are not
flawless, as shown in Figure 4.30. This is due to how we interpolate select values
and skinning weights using the origin polygons of the fields.

However, Figure 4.32 shows a difficult case for which our blending approach
produced a satisfactory result. Even if the surfaces have not a similar orientation,
the select values in the two fields are distributed well enough to allow the method
to produce an acceptable result.

When the surfaces involved in the replace operation are in a proper position and
have a similar orientation, the results are impressive. For the replace operations of
Figure 4.27, we never performed any manual positioning, except for the Timmy -
Elephant character. Figure 4.33 shows a successful result, in which we replace a
leg of the Timmy model with an arm of the Crypto model.

Stefano Nuvoli Composing quadrilateral meshes for animation

SkinMixer: composing skinned models for animation 81

(a) (b)

Figure 4.31: Surface blending limitation. The involved surfaces intersect with
each other and the select values of the two model do not vary accordingly. Our
method cannot produce a satisfactory output.

(a) (b) (c)

Figure 4.32: Difficult case for our blending approach. Even if the two surfaces
were not oriented accordingly, the method handled well this case. From left to right
are shown: operation setup (a), resulting model (b), skinning weights related to
the joint in yellow (c).

Stefano Nuvoli Composing quadrilateral meshes for animation

82 SkinMixer: composing skinned models for animation

(a) (b) (c)

Figure 4.33: Operations on semantically different components. Our method
performs well when the surface orientation and the vertex select values of the models
accordingly match in the volume. From left to right are shown: operation setup
(a), resulting model (b), skinning weights of the joint in yellow (c).

Operations on volumetric fields can be expensive in terms of time and memory
complexity. As we already stated, we choose the voxel size as a function of the
average edge length in the input meshes. However, we must be careful to do not
choose a too low value. Indeed, a too dense sampling in the volumetric field could
lead to a huge memory complexity during the process.

4.4.2 Future works

In the previous subsection, we presented the limitation of the method in the case
of shapes not oriented properly or too different from each other. Furthermore,
we prefer selecting values in the two shapes that monotonically grow in opposite
directions. It would be interesting to automatically find and suggest to the user
the best orientation and position for the detached model in a replace operation.
This could be performed by solving an optimization problem to find the best affine
transformation to be applied to the characters. The objective function could be a
value that describes how the vertex select values of the two models “match” in the
field.

Stefano Nuvoli Composing quadrilateral meshes for animation

SkinMixer: composing skinned models for animation 83

Our method does not take into account the symmetry of the tessellation. For
example, Figure 4.20.b shows a symmetric shape for which the quadrangulation does
not present symmetry. Further research on this matter would be very interesting
and it would significantly improve the visual quality of our results. A possible
solution to this problem would be to detect symmetric regions of the shape analyzing
the geometric features (we could also consider the tessellation of the input models)
and force the patch subdivision procedure (Subsection 3.2.2) and the subdivision
optimization (Subsection 3.2.3) to generate symmetric results. While, due to its
heuristic nature, it could be challenging to guarantee this property in the tracing
procedure, we can obtain symmetric results in the ILP optimization by simply
adding a cost in the objective function that forces symmetric patches to have the
same subdivision values. The state of the art report in [MPWC13] shows some
candidate methods for symmetry detection.

In Chapter 3 we used boolean operations for composing the two quadrilateral
meshes. In this Chapter, instead, we determine the new surface by a smooth
blending of signed distance fields. It would be interesting to have the option to
perform the union of the shapes, similarly to QuadMixer. This union operation can
be performed directly on the distance fields, by selecting the minimum distance
value for each voxel. This approach could be implemented by only changing a little
step of the pipeline.

In our pipeline, we did not take into account the animations already defined for
each character. While it is trivial to simply transfer the local transformation of
each input animation for the corresponding skeleton joints, it would be great to
find a way to automatically retarget the complete animations on the new character.

Finally, we have not taken into account the 3D texture of the assets. For the
preserved surface, it is trivial to transfer the texture data since we have a direct
mapping between vertices. However, determining new texture for intersection area
is challenging. It would be interesting to apply some data-driven texture synthesis
algorithms to generate such textures.

Acknowledgments Many thanks to Fabrizio Corda for helping me with the
animation pipeline and the conversion of the datasets. Most of the rigged models
showed in this chapter are taken from Mixamo [Bla14]. The African Elephant
has been professionally designed by Jan Pecnik (https://connect.unity.com/u/jan-
pecnik) and it is available for purchase in the Unity Asset Store.

Stefano Nuvoli Composing quadrilateral meshes for animation

Conclusions 85

Chapter 5

Conclusions

In this thesis, we presented novel techniques in the context of the modeling-by-
composition paradigm. We proposed two operation-based methods that allow
the user to freely compose parts of input 3D assets. In the current pipeline used
in the industry, generating high-quality 3D assets is a daunting and expensive
task, performed by high-skilled artists. The proposed methods enable to perform
operations as detaching, removing and merging of input character components,
automatically preserving most of the valuable work performed by the professional
designers.

In Chapter 3 we introduced a robust method for blending geometrical compo-
nents of pure quadrilateral meshes, taking inspiration from the boolean operations
defined for triangle meshes. Chapter 4 extends this retopology approach to work
on complex shapes with a quad-dominant tessellation. Moreover, it illustrates a
novel method to preserve and merge the data structures for skeletal animations
during the composition.

The methods are robust and produce output characters of excellent visual
quality. For SkinMixer, we also obtained remarkable results during the model
animation. However, in the intersection regions, the resulting surface and skinning
weights could be imperfect. Nonetheless, the output of our methods can always be
an exceptional starting point for a refinement process of the artist.

By analyzing the impressive results obtained, we believe that the proposed
approaches could be a powerful tool in the entertainment industry. Integrated into
current software packages for model design, the artists would be able to rapidly
assemble parts of their model into a new one ready to be animated. This would
greatly reduce the cost of the design process, that usually consists of a complete
editing session starting from scratch.

Stefano Nuvoli Composing quadrilateral meshes for animation

Automatic surface segmentation for seamless fabrication using 4-axis milling machines 87

Appendix A

Automatic surface segmentation
for seamless fabrication using
4-axis milling machines

We introduce a novel geometry-processing pipeline to guide the fabrication of
complex shapes from a single block of material using 4-axis CNC milling machines.
This setup extends classical 3-axis CNC machining with an extra degree of freedom
to rotate the object around a fixed axis. The first step of our pipeline identifies the
rotation axis that maximizes the overall fabrication accuracy. Then we identify
two height-field regions at the rotation axis’s extremes that are used to secure the
block on the rotation tool. We segment the remaining portion of the mesh into a
set of height-fields whose principal directions are orthogonal to the rotation axis.
The segmentation balances the approximation quality, the boundary smoothness,
and the total number of patches. Additionally, the segmentation process takes
into account the object’s geometric features, as well as saliency information. The
output is a set of meshes ready to be processed by off-the-shelf software for the
3-axis tool-path generation. We present several results to demonstrate the quality
and efficiency of our approach to a range of inputs.

A.1 Introduction

Digital fabrication technologies, which aim at producing physical objects from their
digital representation, have significantly progressed in recent years. Thanks to
the coupling between the increase in automation, accuracy and flexibility and the
reduction in reproduction costs, applications of digital fabrication are booming in
many areas [NKI+18].

The most common technologies for physically producing 3D shapes can be

Stefano Nuvoli Composing quadrilateral meshes for animation

88 Automatic surface segmentation for seamless fabrication using 4-axis milling machines

broadly subdivided in two classes: Additive Manufacturing techniques (3D printing),
which build objects by adding material layer by layer, and Subtractive Manufacturing
techniques (CNC machining), which construct objects by cutting material away
from a solid block.

Additive technologies have the major advantage that they decouple the manu-
facturing process from the geometric complexity of the fabricated object. Computer
graphics and geometry processing boosted the use of 3D printing in multiple con-
texts and have recently explored its limits for the production of complex functional
shapes [SEPC16]. The increasing availability of inexpensive 3D printers has further
widened the potential user base, leading to a booming market.

While 3D printing may be considered optimal for small-scale production or
rapid prototyping [NKI+18], industrial productions often require the manufactured
products to be produced in large numbers and to comply with physical constraints
that are inconsistent with additive technology (e.g., robustness or usage of natural
materials such as wood or stone). Contrarily to 3D printing, CNC machining
is usually faster and capable of producing massive parts using a wide range of
materials. Moreover, since shapes are carved out from solid blocks of material,
the resulting objects are structurally more robust than those created with a layer-
depositing process. Therefore, subtractive manufacturing remains the dominant
process in industrial settings.

Unfortunately, subtractive manufacturing has strict geometric constraints that
impose severe limitations on the class of fabricated objects. In particular, tradi-
tional 3-axis CNC machining requires the manufactured object to be a height-field.
Consequently, the mass production of intricate shapes is challenging, if not impossi-
ble, since it needs an expert to plan, then manually adjust the object’s orientation
to accommodate the different working directions. For these reasons, considerable
effort has been spent on extending the fabrication DOFs. However, this task often
requires expensive machines (e.g., 5-axis milling tools or robotic arms) controlled
by complex automated planning systems [Tan14], making the user base of these
advanced solutions considerably narrower from that of 3D printing.

In this context, 4-axis CNC milling has a particular position in the spectrum
of fabrication technology. It operates on the same axes of a 3-axis machine, but
also includes the rotation around one of the axes. By enabling the rotation of
the volume between each carving operation, it supports the manufacturing of a
much broader range of forms, at a buying and maintenance expense that is only
marginally higher than that of the classical 3-axis solutions. The primary purpose
of path planning in 4-axis CNC machinery is to derive the optimal rotation axis
and the minimum setup directions. Unfortunately, the few solutions that exist
in the state-of-the-art are not capable of producing complex shapes, forcing the
extensive use of manual interventions (see Sec. A.2).

Stefano Nuvoli Composing quadrilateral meshes for animation

Automatic surface segmentation for seamless fabrication using 4-axis milling machines 89

We introduce a novel pipeline to fabricate complex shapes from a single block
of material using a 4-axis CNC machine. We first devise the rotation axis that
maximizes the surface’s orthogonality to the milling directions while fitting the
object in the fabrication workspace (i.e., the raw material block). Then, we fabricate
the object’s largest area by milling towards a sequence of directions orthogonal to
the rotation axis. Finally, we mill the extremities secured to the rotation axis. To
derive the optimal set of directions, we segment the object into multiple height-
fields, which are then ordered into a milling sequence. The subdivision jointly
optimizes individual height-field approximation quality, boundary smoothness, and
the total number of patches, while avoiding unwanted collisions between the milling
tool and the surface. Additionally, this segmentation process exploits saliency
information (automatically-generated or user-provided) to avoid possibly visible
seams in highly-detailed or semantically important surface regions. Figure A.1
shows, from left to right, the proposed pipeline.

Input
Rotation
axis Fabrication

Real
object

Saliency
based
segmentation

Figure A.1: Our processing pipeline in a nutshell (left to right): we first
compute the rotation axis on the input mesh; we then partition the mesh in
millable height-field portions (including the top and bottom ones) taking also into
account the information of the saliency map; we compute a milling sequence and
fabricate the object using the 4-axis milling machine; we clean up the result to
obtain the final real object.

Our main contribution is a novel integrated optimization scheme that extends
height-field decomposition approaches to the 4-axis fabrication setup. The proposed
method is effective and practical. By exploiting the extra rotation axis, we extended
the range of shapes that can be manufactured to a single solid piece of material,
making subtractive fabrication an appealing solution for a wide range of users. In
contrast to previous techniques that split objects into multiple components that
are assembled afterward, our method produces seamless and robust shapes (see
Sec. A.4). Furthermore, by reducing 4-axis fabrication to a sequence of 3-axis
milling processes, we can directly use any of the many 3-axis fabrication drivers
available in the industry, making our solution immediately applicable in practice.

Stefano Nuvoli Composing quadrilateral meshes for animation

90 Automatic surface segmentation for seamless fabrication using 4-axis milling machines

A.2 Related work

There is a vast literature on CNC machining in Computer-aided design and mechan-
ical engineering. Most of that research focuses on optimizing the tools and their
path for the milling process and does not emphasize the surface decomposition.
The task of planning the global carving process, and ensure the tool accessibility,
is usually allocated to the experts. The increase in modeling capabilities and the
resulting complexity of available 3D shapes made this manual task harder. So a lot
of literature in Computer graphics studied how to automatically decompose the
surface or the milled volume into parts that are suitable for CNC fabrication.

A.2.1 Height-field surface decomposition

A common strategy to overcome the limitations of CNC machines is to decompose
the object into multiple height-fields. A 3-axis CNC machine can fabricate each
height-field part individually, and then the pieces are manually assembled afterward.
One of the first methods that followed this idea is the decomposition proposed by
Alemanno et al. [ACP+14]. However, this method requires the user to specify the
surface decomposition manually. Since it does not consider the assembly process,
its usage is mostly limited to the simple cases of 3D-assembled low-reliefs. Most of
the literature on height-field decomposition for fabrication is related to moldable
pieces. Herholz et al. [HMA15] decompose the surface into different height fields,
defining the components of a rigid mold. This approach allows the user to extract
the casted objects. Flexmolds [MPBC16] and Metamolds [AMG+18] use a relaxed
visibility constraint to produce a more general patch decomposition that involves
the use of deformable molds. While the task of planning a casting and a milling
process have significant overlap (they both strive for high-field patch arrangements),
the latter requires special care to guarantee that the tool can access the carving
area at any moment during fabrication and that the milling angles produce good
quality carvings.

A.2.2 Volume decomposition

Several methods consider the volume of the fabricated object during the optimiza-
tion process [SEPC16]. Most of the techniques that use additive manufacturing
decompose the object into multiple components that can fit the 3D printer’s
workspace. Chopper [LBRM12] decomposes the model into pyramidal parts that
minimize the use of supports [HLZCO14]. Dapper [CZL+15] optimizes the packing
of the parts in the printing volume. Recently, Filoscia et al. [FAG+20] proposed a
new method to decompose a 3D-printed object into portions that minimize the
visual impact of the seams. However, these methods are not directly related to

Stefano Nuvoli Composing quadrilateral meshes for animation

Automatic surface segmentation for seamless fabrication using 4-axis milling machines 91

the planning of subtractive fabrication. The decomposition strategy proposed by
Araujo et al. [ACA+19] guarantees an assembly sequence. Regarding molding,
composite molds [AMG+19] are the only ones that consider explicitly the volume
surrounding the casted object.

Most of these methods aim for height-field approximations or consider the
volumetric access to allow for assembly. However, they are designed for additive
fabrication or casting, while subtractive techniques pose additional challenges. Since
the milling tool carves the object from the outside toward the inside instead of
merging planar layers, extra constraints should guide the milling angles and secure
the milling tool’s accessibility. Fanni et al. [FCM+18] proposed a decomposition
method based on polycube mappings and analyzed the manufacturability of their
decomposition for additive and subtractive techniques, taking into account both
3- and 4-axis milling. Since their method does not take into account special
constraints relative to subtractive techniques, their final decompositions prove
feasible in practice just for additive techniques. The approach proposed by Muntoni
et al. [MLS+18] decomposes, instead, a 3D object into height fields, then projects
the decomposition toward the interior, covering the entire volume and, at the
same time, ensuring each piece to be manufacturable with 3-Axis CNC machines.
The final model is obtained by reassembling the pieces after fabrication, leading
to visible seams and reducing the physical robustness of the fabricated model.
To avoid decomposing the object into multiple parts, DSCarver [ZZX+18] uses
a (3+2) axis milling machine, that acts like a traditional 3-axis milling machine
during carving, but supports two-degree-of-freedom (2-DOF) rotation of the drilling
tool between each milling pass. DSCarver automatically plans and optimizes the
different phases and rotation angles by covering the input surface with a minimum
number of accessible regions and then extracting a set of machinable patches from
each accessible region. Thanks to the extra degrees of freedom, this method can
produce significantly complex objects in a single piece, including high-genus ones.
Their approach, however, requires full exploitation of the 3+2 DOFs.

To the best of our knowledge, none of the proposed methods is specifically
designed for 4-axis CNC machines, a popular choice for industrial production.

A.3 Automatic fabrication planning

A 4-axis CNC machine extends the classical 3-axis CNC device with an extra degree
of freedom corresponding to the object’s rotation around an axis. In a typical
manufacturing setup, as illustrated in Figure A.2, the carved volume is fixed to
a rotating shaft through a solid flat base. Thus, the fabrication of a general 3D
object starting from a solid block of material (called stock) must involve at least
three phases to cover the entire surface. In particular, while we can fabricate the

Stefano Nuvoli Composing quadrilateral meshes for animation

92 Automatic surface segmentation for seamless fabrication using 4-axis milling machines

Figure A.2: Our fabrication setup. The milling tool on the left has three degrees
of freedom in the operational field of the machine; the rotating shaft adds the
fourth one.

large majority of a shape by exploiting the different milling directions provided by
the rotation axis, two additional fabrication phases are necessary to carve the top
and bottom segments that were not accessible during the first phase. Figure A.3
illustrates the entire process.

Our automatic fabrication planning method aims at finding the most efficient
and accurate plan to organize the milling process. We decompose the fabrication
process into a sequence of 3-axis milling processes. Each fabrication stage produces a
suitably oriented height-field representation of a small surface region. In particular,
for a given rotation axis α, we partition the object into three different regions: a
side region, a top region, and a bottom region. We then approximate each of the
bottom and top parts as a single height field whose elevation is aligned with α,
and the side region as a set of height fields whose elevations are orthogonal to α.
Hence, our automatic fabrication planning involves the following steps:

• We prefilter the geometric detail of the object to produce a regularized
representation suitable for further processing (Sec. A.3.1).

• We find the rotation axis α that produces the best height-field approximations
in the three regions (top, bottom, and side). Intuitively, in this optimization
process, we favor the orthogonality of the fabricated surface to the resulting

Stefano Nuvoli Composing quadrilateral meshes for animation

Automatic surface segmentation for seamless fabrication using 4-axis milling machines 93

(a) (b)

Figure A.3: Fabrication process outline. We first carve the set of height-fields
on the side of the model from the raw block of material (a); then, we unpin the
block from the rotation tool, and we mill the two height-fields (top and bottom)
(b). Notice that we use a mold to keep the model correctly in place for milling the
second between top and bottom.

milling directions (Sec. A.3.2).

• Given the rotation axis α, we segment the model into a set of non-overlapping
height fields. We first derive the top and bottom regions that can be fabricated
as a single height field. Then, using a graph-cut algorithm, we segment the
remaining side regions into a set of height fields that can be fabricated by
rotating around α, taking into account fabricability, efficiency, and accuracy
criteria (Sec. A.3.3).

• We recover the details lost in the prefiltering phase (Sec. A.3.4).

• We produce the final fabrication plan, determining the order of fabrication of
the individual charts and the process to produce each of them (Sec. A.3.5).

Details on each of these different steps are provided in the following sections.

A.3.1 Prefiltering

Since a rough meshing can cause several problems to segmentation algorithms,
we initially re-mesh the input shape to a dense and regular uniform tessellation.
Additionally, high-frequency details might induce excessive fragmentation in the
final height-field decomposition. To tackle this issue, we use the same approach as
Muntoni et al. [MLS+18], that allows users to sacrifice the fidelity to the input to
enable a more natural and faster fabrication. We first remove high-frequency surface
details using the low-pass Taubin filter [Tau95]. Then, after the segmentation, we
reintroduce high-frequency features while enforcing the fabricability constraints

Stefano Nuvoli Composing quadrilateral meshes for animation

94 Automatic surface segmentation for seamless fabrication using 4-axis milling machines

(see Sec. A.3.4 for more information). This pre-processing step is optional and
controlled by the user.

A.3.2 Determining the best overall milling orientation

The choice of the rotation axis α has a massive impact on the quality of the final
segmentation and fabrication (see Figure A.4 for an illustration of the effect of
selecting two different rotation axes). The first step of our method is, therefore,
the selection of the axis that provides the best fabrication accuracy while tightly
fitting the model inside the stock. To do so, we must solve two problems. First of
all, we must determine how a given rotation axis partitions the surface into the
side, top, and bottom fabrication regions (Sec. A.3.2). Then, we must foresee how
a given partitioning will impact the overall fabrication accuracy (Sec. A.3.2).

(a) (b)

Figure A.4: Effect of axis selection. The choice of the axis in (a) leads to
height-fields of varying height, thus worsening the tool-path creation; the axis
shown in (b), while keeping the same number of height-fields to carve, leads to
more homogeneous, in size and depth, ones.

Stefano Nuvoli Composing quadrilateral meshes for animation

Automatic surface segmentation for seamless fabrication using 4-axis milling machines 95

Partitioning into top, bottom, and side regions

As we previously stated, given a rotational axis, we should partition the input
geometry into three regions: the top and bottom areas (fixed to the rotation axis)
and the side region (milled by exploiting the extra rotation degree of freedom). For
a given rotation axis α, we fabricate the top and bottom regions along with the
directions +α and −α. Given an input 3D mesh M, we search for two disjoint
top Ptop ⊂ M and bottom Pbottom ⊂ M regions. A face fi ∈ M is visible along
a direction d if the dot product between face normal ni and d is less than zero
and it is not occluded along d. This visibility definition allows taking into account
simultaneously for fabricability and access to the milling tool.

Given a rotation axis α, the top Ptop and bottom Pbottom regions should be
composed by the largest set of connected faces which are visible along −α and
+α respectively. Additionally, those regions should also be as close as possible to
the shape extremities along the rotation axis. Thus, we first initialize the top and
bottom regions using the extremity faces (i.e., the face incident to the top-most
or bottom-most vertex) along the rotation axis. We then iteratively grow each of
those regions until it reaches the visible face having the largest distance along the
rotation axis. The remaining faces compose the side region. Notice that, given a
rotation axis, it is always possible to select two extremity faces to initialize the top
and bottom regions. Notice also that, by definition, the three regions are disjoint.
Figure A.5 shows the resulting decomposition.

Finding the best axis

Determining a provably optimal axis, in theory, would require the evaluation of
all the effects it has on fabrication. This is however very costly, and could lead to
repeatedly segment the model for several orientations, as the objective function
can have many local minima (see Sec. A.3.3). We propose here a more efficient
approximate solutions, that decouples axis selection from segmentation, rapidly
determining a good, if not provably optimal, axis before the segmentation using
only geometric measures on the mesh.

Intuitively, the rotation axis that will produce the highest quality is the one
that maximizes the overall alignment of the fabricated surface normal with the
milling directions. The alignment is calculated separately for each component. For
each of the top and bottom regions, where milling is aligned with the axis direction,
given a candidate rotation axis d, we compute the alignment as the sum of the dot

Stefano Nuvoli Composing quadrilateral meshes for animation

96 Automatic surface segmentation for seamless fabrication using 4-axis milling machines

(a) (b)

Figure A.5: Decomposition into regions given an axis. (a) Original model.
(b) Smoothed model with top height field in blue, bottom height field in red, and
side region in gray,

product between face’s normal and the rotation axis, respectively:

Atop =
∑

fi∈Ptop

ai ∗ (ni • d) (A.1)

Abottom =
∑

fi∈Pbottom

ai ∗ (ni • −d) (A.2)

where ai and ni are the respectively the area and the normal of the face fi.

Instead, for the remaining faces on the side, we must favor the orthogonality of
the face normals to the rotation axis. This copes with the fact that the milling
machine will work on a shaft, which will be orthogonal to the rotation direction.

Aside =
∑

fi∈Pside

ai ∗ (1− |ni • d|) (A.3)

To compute the axis, we compute a large set of candidate direction d1, ..., dk.
The k directions, with k = 2000 for the examples in this chapter, are uniformly
distributed on a hemisphere using a Fibonacci sphere algorithm [SJP06]. We then
choose the one that maximizes A = Atop + Abottom + Aside.

Stefano Nuvoli Composing quadrilateral meshes for animation

Automatic surface segmentation for seamless fabrication using 4-axis milling machines 97

A.3.3 Determining the optimal decomposition into height
fields

Once we establish the rotation axis, we can partition the input geometry into
the three regions using the method of Sec. A.3.2. The top and the bottom areas
are height fields fabricated in a single pass by milling along the main direction of
the rotation axis. However, the side area is a complex surface, whose fabrication
requires to rotate the object during fabrication. The space of the possible milling
directions for the side region is composed of all the directions which are orthogonal
to the rotation axis. However, in order to plan an efficient and accurate milling
process, we should promote the formation of large smooth patches, as they support
a continuous motion of the milling tool [ZZX+18]. Hence, the main task of this
segmentation process is to choose an optimal subset of directions and, at the
same time, associate each direction with a surface patch composed of a set of
faces. The patches constitute a partitioning of the side region, and they should
not overlap. This class of problems can be efficiently solved using a multi-label
graph-cut optimization [BVZ01] using discretized milling directions as labels.

Segmentation

We sample a set of uniformly generated fabrication directions L orthogonal to the
chosen rotation axis (we used 120 possible directions in all the examples shown in
this chapter) and we define a label for each direction. We have to find a labelling
function ℓ : P → L that assigns a direction (label) to each face in P . The graph-cut
algorithm derives the optimal labeling by minimizing a function:

argmin
ℓ

∑

f∈P

D (f, ℓ) +
∑

(p,q)∈E

S (p, q, ℓ)

where E is the set of edges. D(t, ℓ) is the fidelity (or data) term and describes the
cost of assigning the fabrication direction ℓ to the face f . Intuitively, this term
tends to label each face in its optimal direction. S(p, q, ℓ) is the smooth term and
describes the cost of assigning a given label to two adjacent faces p and q. This
term favors the formation of a compact and smooth patch layout and holds the
total number of patches.

The fidelity term should consider how much the face normals are aligned
with the milling direction. Secondarily, we should avoid associating a face to a
direction along which it is occluded by other object portions; indeed, that will
prevent the milling tool from reaching the target point in the volume during the
milling process. The visibility is precomputed per-face, per-direction using collision
detection accelerated by an AABB Tree structure. In case of collision, we simply

Stefano Nuvoli Composing quadrilateral meshes for animation

98 Automatic surface segmentation for seamless fabrication using 4-axis milling machines

assign an infinite cost. We define the fidelity term as:

D(f, ℓ) =

{
1− nf • ℓ (f) if f is visible from ℓ (f)

∞ otherwise
(A.4)

where nf is the normal of the triangle.
The smoothness term S(p, q, ℓ) minimizes the overall boundary lengths and

determines the shape and location of the boundary between one patch and the
others.

Since patch boundaries are the regions where one milling sequence is inter-
rupted and then continued from another orientation, to improve the manufacturing
process’s quality, we should concentrate them in areas with low detail. In order
to take into account this factor, we assume that our mesh is enriched by saliency
information, providing at each face a measure of regional importance [LVJ05] (see
Sec. A.3.3). We define the smoothness term as:

S(p, q, ℓ) =

{
c+ d C (p)+C (q)

2
if ℓ (p) 6= ℓ (q)

0 otherwise
(A.5)

where c is the compactness term, d is the saliency factor and C the face saliency. The
compactness term c, by influencing the number of patches, controls the smoothness
of the segmentation. The saliency factor d is multiplied by the average saliency
of the concerned faces, which is higher if the face is considered perceptually more
important, and prevents the formation of boundaries that separate a salient area
(see Sec. A.3.3).

Saliency computation

Our algorithm can use any per-face saliency factor to encode semantic and/or
geometric information. It can be the result of an automatic, semi-automatic,
or interactive processes. In our framework, we have implemented both a fully
automatic method and an interactive tool.

For automatic saliency computation, we start by computing at each vertex the
multi-scale saliency metric C (v) proposed by Lee et al. [LVJ05], dividing it by the
number of scales to normalize the value between 0 and 1. Sinche the multi-scale
approach tends to localize the high frequencies in small areas (Figure A.6a), our
final saliency field is found by propagating these peak values to their neighborhood
through a diffusion process. In practice, we first propagate the maximum value of
each vertex v to its neighborhood Nv, repeating this step a fixed number of times
(Figure A.6b), and then perform a Laplacian smoothing (Fig. A.6c). For the results
of this chapter, our experiments led us to apply 5 propagation and 20 smoothing

Stefano Nuvoli Composing quadrilateral meshes for animation

Automatic surface segmentation for seamless fabrication using 4-axis milling machines 99

steps. We finally compute the saliency C (f) for each face as the arithmetic means
of the value at its vertices.

We also support user-driven saliency determination by letting the user to
interactively select/unselect with a brushing tool the areas of interests (Figure
A.6d). This makes it possible, in particular, to have users mark semantically
important areas.

(a) (b) (c) (d)

Figure A.6: Saliency field computation. We show how we generate mesh
saliency for the Moai model. The salience values are between 0 (red), and 1 (blue).

Figure A.7 shows that the saliency term makes a large difference in the seg-
mentation, providing quality in the segmentation in a fully automatic way. The
last column presents the two final segmentations used to actually manufacture the
Batman and David models.

Charts optimization

Once we have our per-face segmentation ℓ, we can derive the pair-wise disjoint charts
C1, C2, C3, ...Cn. Each chart Ci ⊂ P is composed of a connected set of faces assigned
to a fabrication direction in L. Note that there could be multiple charts associated
with the same direction. The objective function for graph-cut segmentation favors
the formation of a small number of charts with regular boundaries and usually
avoids forming charts with multiple boundaries.

However, even if we use a large compactness term, we might end up with small
isolated charts, mostly due to occlusions in complex shapes. In order to improve

Stefano Nuvoli Composing quadrilateral meshes for animation

100 Automatic surface segmentation for seamless fabrication using 4-axis milling machines

(a) (b) (c)

(d) (e) (f)

Figure A.7: Effect of the saliency term on the segmentation. From left to
right: segmentation without considering saliency, final saliency values, segmentation
with saliency.

the efficiency of the fabrication process, we delete charts with an area of less than a
given threshold (in our experiments we used 0.01% of the total shape area). When
we delete a chart, we iteratively re-assign the faces to the best adjacent charts,
starting from the border and propagating in the interior. This strategy can assign
some face to a direction from which it is non-visible. In this case, we sacrifice
the exact fidelity of the shape to allow a simpler fabrication. Notice that this
step, similarly to pre-filtering (Sec. A.3.1), is optional and controllable by the user
through the tuning of the merging threshold.

The smoothness of the chart boundaries, moreover, plays a crucial role in a
high-quality result. Even if the graph-cut usually produces acceptable results, the
boundaries might depend on the initial tessellation (Figure A.8a). Therefore, we
perform a Laplacian smoothing of the boundary lines, re-projecting the coordinates
in the shape’s tangent space and refining the original triangle mesh. Figure A.8

Stefano Nuvoli Composing quadrilateral meshes for animation

Automatic surface segmentation for seamless fabrication using 4-axis milling machines 101

shows the effect of this process.

(a) (b)

Figure A.8: Boundary smoothing process. (a) Original segmentation. (b)
Segmentation after boundary smoothing.

A.3.4 Detail recovery

Once we have obtained the decomposition, for each chart, we reintroduce the
high-frequency details lost during pre-filtering (Sec. A.3.1) by using Laplacian
surface reconstruction framework [Sor06]. As in Muntoni et al. [MLS+18], we
constrain the reconstruction with height-field constraints that ensure fabricability,
without taking into account that high-frequency detail reintroduction could cause
some triangles to be no longer visible due to slight occlusions (Figure A.9). Again,
we sacrifice the exact fidelity of the shape to simplify the process. The tool-path
generation software will automatically produce the closest fabricable shape.

In particular, we iteratively minimize a given energy via coordinate descent,
deforming each vertex at a time and freezing the others. Let v be a vertex in the
deforming mesh M = (V ,F) and w its corresponding vertex in the original mesh.

Stefano Nuvoli Composing quadrilateral meshes for animation

102 Automatic surface segmentation for seamless fabrication using 4-axis milling machines

Figure A.9: Occlusion effects. Black faces represent triangles no longer visible
from the spindle after restoring the high frequencies.

Then we solve the following optimization problem:

argmin
v

||δv − δw||2 s.t. (A.6)

∀f ∈ F incident in v nf • ℓ (f) ≥ 0

where δ denoted the differential coordinates and nf denotes the face normal of f in
the mesh to be deformed. The new vertices generated by the boundary smoothing
have not a corresponding vertex in the original mesh. Thus, at each iteration,
we deform them in order to keep their differential coordinates unchanged in the
deforming mesh.

A.3.5 Generating the fabrication sequence

Our optimization pipeline allows us to use 4-axis machines by partitioning the
fabrication into a sequence of 3-axis milling processes. Thus, we can easily use any
available 3-axis fabrication driver to compute the tool-path for each height-field.

Stefano Nuvoli Composing quadrilateral meshes for animation

Automatic surface segmentation for seamless fabrication using 4-axis milling machines 103

The physical fabrication of objects composed of many charts poses, however,
extra considerations. As shown in Figure A.10a, depending on the depth of the
surface to mill, the drill bit could not reach that depth without tool collisions. For
each chart, we must guide the tool-path generator to engrave portions of volume,
ensuring accessibility and avoiding milling surfaces that belong to other charts. We
must thus embed each chart surface in the stock, computing the volume that has
to be carved to mill it (Sec. A.3.5), order the charts into a fabrication sequence
(Sec. A.3.5), and finally construct the final fabrication plan (Sec. A.3.5), By solving
these problems, we make it possible to use our pipeline with any of the available
3-axis software.

Embedding chart surfaces into the stock

In order to be fabricated, each shape to mill must embed its chart into the given
stock, meeting the following constraints:

• it contains the entire surface of the chart to mill;

• it does not contain surface assigned to other charts, or, when not possible, it
is minimum;

• it can be milled entirely without collisions of the drill bit.

Note that, in our examples, we used a cylinder as stock to maximize the final
result size and minimize scrap material, but any other shape is allowed.

(a) (b) (c)

Figure A.10: 2D representation of how we generate the surface for em-
bedding the chart surface into the stock. (a) Limitations of a surface that
is parallel with respect with the fabrication direction. (b) Surface that form a
given angle guarantees fabricability and manufacturing quality. (c) Reducing
manufacturing time with steps orthogonal to the fabrication direction.

For each chart, we have to propagate the surface from its boundaries to the
extremes of the fabrication volume. This propagated surface must guarantee both
physical access of the milling tool and high precision near the boundaries. As
illustrated in Figure A.10.a, the trivial solution could be to project the extrema of

Stefano Nuvoli Composing quadrilateral meshes for animation

104 Automatic surface segmentation for seamless fabrication using 4-axis milling machines

each chart in the direction orthogonal to the rotation axis (we would obtain parallel
walls) to obtain the portion of stock to mill. This choice would lead to collisions
and impossibility to mill near the boundaries. Instead, we tilt the walls until they
form an angle with the fabrication direction that avoids collisions when milling the
borders of the chart (Figure A.10.b). We tilt the walls only in the proximity of the
chart boundaries, while once at a safe distance we simply propagate orthogonal
walls until we reach the external surface of the stock (Fig. A.10c). This solution
allows for the physical access of the milling tool and, at the same time, minimizes
the possibility to collide with other patches. Figure A.11 shows an example of a
chart embedded in a stock.

Figure A.11: Chart embedded in the stock. Tilted walls are erected and then
step-like orthogonal walls are propagated until the external surface of the stock is
reached.

Ordering the charts

Each of the resulting meshes generated by the embedding procedure contains the
respective chart’s surface. However, as shown in Figure A.12, oblique walls might
intersect with other charts. In this case, we can improperly mill other portions of
the final surface. This interference must be solved by properly ordering the charts.

To derive the best ordering, given the n charts C1, ..., Cn forming the decompo-
sition of the side of our input shape, we define a n× n conflict matrix M, whose
entries M(c, d) (we consider only c 6= d) are defined as the total area of the surface
belonging to a chart d that would be disrupted while milling the chart c:

M(c, d) =
∑

f∈c

af s.t. f is reachable and f ∈ d (A.7)

where af denotes the face area in faces f of the embedded shape. In other words,
M(c, d) represents the cost, in terms of surface area, of fabricating a chart c before

Stefano Nuvoli Composing quadrilateral meshes for animation

Automatic surface segmentation for seamless fabrication using 4-axis milling machines 105

Figure A.12: Effect of improper charts ordering. The oblique boundary of
chart C2 intersects a portion of the surface of another C1 (highlighted in red). In
this case, the red area would be unintentionally removed when performing the
milling of C2.

a chart d. We want to find a chart ordering (c1, ..., cn) that minimizes the overall
cost:

argmin
(c1,...,cn)

n∑

i=1

n∑

j=i+1

M(ci, cj) (A.8)

We solve this optimization problem with a greedy approach. Conventionally,
let M(c, d) = 0 for c = d. At each iteration i, let C = {C1, ..., Cn} \ {c1, ..., ci−1}
be the set of charts that have been not processed yet. Then, we select the chart ci
as follows:

ci = argmin
c∈C

∑

d∈C

M(c, d) (A.9)

The cost term in the summation represents the surface of the chart ci having
conflicts during the current iteration. In case of equal costs, we choose the chart
ci that maximizes

∑
d∈C M(d, c), that is the area which will not conflict anymore

with other charts in the next iterations. Although this heuristic does not guarantee
to find the optimal solution, it works very well in practice. In all our experiments,
we were able to find a result with zero overall cost in all the cases, except for the
ones with cross-conflicts between charts. The part of the object belonging to charts
not yet milled is usually entirely hidden by our embedding method.

Stefano Nuvoli Composing quadrilateral meshes for animation

106 Automatic surface segmentation for seamless fabrication using 4-axis milling machines

Generating the final fabrication plan

Once we derive the best order, we can create the final fabrication plan. The 3-axis
driving software typically requires two input shapes per chart: one representing the
initial block of raw material to be carved (the stock) and the desired target shape.
Hence, by determining these meshes, we can easily produce our shapes with any
widely available 3-axis driver, completely abstracting from the usage of a 4-axis
machine.

Starting from the initial block and the first chart, we iteratively process each
target shape. In case it was not possible to avoid all the conflicts between charts, the
concerned surface is included in the target shape. In this way, we choose to fabricate
it with less accuracy from another direction, instead of losing a portion of the final
object. At each iteration, we use the resulting mesh of the previous step as the
initial stock. We use robust Boolean operations described by Zhou et al. [ZGZJ16]
to perform these operations. Fig. A.13 shows a simple 2D representation of the
process.

Figure A.13: Set of meshes generated by our method. On top, the stocks
(with the part that will be milled in a lighter color), and on bottom the resulting
shape. At each step, the resulting shape will be rotated and used as stock for the
next step. The ordering of the charts is computed in order to minimize the area
fabricated from a wrong direction.

Stefano Nuvoli Composing quadrilateral meshes for animation

Automatic surface segmentation for seamless fabrication using 4-axis milling machines 107

Finally, we generate the stock and target meshes for the top and bottom regions.
The process is similar, but we remove the volume around to easily remove the
waste material at the end of the manufacturing process. Indeed, the remaining
stock portions in the final target shape can be easily detached at the end of the
fabrication process, saving manufacturing time. The user can choose to process
first either the top or bottom region. We generate a mold for the first one to secure
and align the model to the machine during the fabrication of the second region.
Figure A.14 shows all the meshes generated for the Batman model.

(a) (b) (c) (d) (e)

(f) (g) (h)

Figure A.14: Fabrication sequence. The first row shows the initial stock (a) and
target shapes for side region (b, c, d, e). Each target shape is rotated properly and
used as stock for the next step. The second row shows the resulting mesh after
4-axis fabrication and the target shapes for the bottom (g) and top (h) regions.

Stefano Nuvoli Composing quadrilateral meshes for animation

108 Automatic surface segmentation for seamless fabrication using 4-axis milling machines

A.4 Implementation and results

Our approach has been implemented in C++, using cg3lib [MN21] and VCG
[CNR13] for geometry processing functions, Eigen [GJ+14] for linear algebra rou-
tines, libigl [JP+16] and CGAL [FP09] for mesh booleans. In this section, we
present results obtained on a broad range of organic models.

A.4.1 Computational and machining setup

All the fabrication plans have been computed on a workstation with a 6-cores Intel
i5-8600K processor clocked at 3.6 GHz and 16 GB of memory.

While our methods of general use, and can be applied to any 4-axis CNC
machines, all the models presented here were fabricated using a CNC machine
Stepcraft 2 840, with a working area (X, Y, Z) of 600 × 840 × 140 mm with an
added 4-axis module and an HF spindle 500 W by Stepcraft. For the roughing
phase, we employed a 3 mm flat cutter with two flutes, while for the finishing stage,
we used a 1 mm ball cutter with two flutes. The machine imposes limits on the
manufacturing size of the model. Our models must fit inside a cylinder of 70mm in
height and diameter. To drive the machine, we use Fusion 360 by Autodesk for the
tool-path generation.

A.4.2 Performance and quality evaluation

Our method has been evaluated on a variety of shapes (see Table A.1). Figure
A.15 shows the four results that have been manufactured and Figure A.16 presents
several results of the segmentation process. The proposed pipeline can successfully
fabricate objects with genus zero or higher.

Tab. A.1 provides statistics about our experiments. For each model, we report
the processing time. We split the timing into four intervals:

(i) computation of the saliency map to avoid placing seams on semantically
relevant portions of the shape;

(ii) identification of the rotation axis;

(iii) segmentation of the shape to associate each triangle to a single map linked
to a height-field;

(iv) partitioning the 4-axis process in a sequence of 3-axis milling.

All times are in seconds. As it is possible to observe, the segmentation is the task
requiring the highest computational effort. In the last column, we list the number

Stefano Nuvoli Composing quadrilateral meshes for animation

Automatic surface segmentation for seamless fabrication using 4-axis milling machines 109

Figure A.15: Fabricated models. For the four fabricated models we show here
(left to right): the initial shape; its saliency map; the two ends (in red and blue)
displayed on the smoothed model; the decomposition of the model in height-fields;
the fabricated object (in PVC for the kitten and the Buddha models, and wood for
the batman and David models).

Stefano Nuvoli Composing quadrilateral meshes for animation

110 Automatic surface segmentation for seamless fabrication using 4-axis milling machines

Buddha Max Planck Egea Pensatore

Dea Maneki Neko Eros Chinese Lion

Faget statue BU 3 holes Woman statue

Figure A.16: Several final segmentations. In our experiments we used com-
pactness term c = 30 and saliency factor d = 25.

Stefano Nuvoli Composing quadrilateral meshes for animation

Automatic surface segmentation for seamless fabrication using 4-axis milling machines 111

of resulting charts. As we can see, the number of charts is maintained very low
despite the shape complexity.

In our results, we applied the prefiltering described in Sec. A.3.1. To test their
fidelity, we computed the distance between the input surfaces and the results after
the reintroduction of high frequencies, using Metro [CRS98]. The resulting distance
is less than 1 × 10−2 on average, with 2 × 10−5 variance and a maximum value
of 1.7 × 10−2. All these values are relative to the bounding box diagonal of the
input models. We can thus conclude that, for the tested models, our fabrication
plan produces meshes that are very close to the original mesh. It should also be
noted that this accuracy is higher than what achievable in practice by our milling
machine (see Sec. A.4.1).

We also computed the total surface area that would be manufactured from a
direction that is different from the one planned in our segmentations, due to the
chart ordering problem described in Sec. A.3.5. This surface is on average 0.7% w.r.t.
the total surface of the input model, and 11 models have 0% of this surface, showing
the effectiveness of the greedy sorting method. In any case, manufacturing a chart
from a different milling direction from the planned one only reduces quality and
does not cause other major issues on the final result. For example, we successfully
manufactured the kitten model that had 2.9% of surface area manufactured from a
different direction.

In Tab. A.2, we report some of the physical measures regarding the fabrication
process of the objects we manufactured.

A.4.3 Limitations

Our pipeline can work on a reasonable range of shapes that can be found in
industrial applications. However, because of the intrinsic limitations of 4-axis
milling, it might fail when large portions of the model are not visible (due to
occlusions) from any direction generated by the 4th axis rotation. Figure A.17
shows a straightforward failure example.

Furthermore, our result is highly influenced by the choice of the rotation axis.
Since the proposed method relies on a heuristic, and occlusions are not fully taken
into account, we cannot guarantee the optimality of the result. For example, Figure
A.18 and Figure A.19 show the segmentation of two complex shape that, due to
occlusions, presents an excessive number of small charts. Additionally, removing
them as explained in Sec. A.3.3 could result in too many faces that are not visible,
leading to poor fidelity in the fabrication. The black faces in Figure A.18 represent
the surface that is non-visible. In general, for this kind of shapes, single-block
fabrication on 4-axis machines is very difficult if not impossible, and it would be
ideal to split the model into multiple components that can be fabricated separately
and assembled afterward.

Stefano Nuvoli Composing quadrilateral meshes for animation

112 Automatic surface segmentation for seamless fabrication using 4-axis milling machines

Table A.1: Model Statistics. The first column shows the number of faces (NF),
the next four columns (S, saliency; O optimal orientation; A face association; M
fabrication sequence and mesh generation) list the timing of the computation,
in the last column we report the number of obtained charts (NC). Times are in
seconds.

Model NF S O A M NC

3 holes 43K 0.77 5.88 23.71 12.53 6
Batman 120K 11.49 34.63 279.29 31.33 6
BU 72K 4.88 19.14 118.77 21.99 6
Buddha 120K 8.54 36.82 151.73 30.04 6
Chinese Lion 60K 2.87 15.32 67.30 33.59 8
David 60K 2.66 14.70 72.79 19.93 6
Dea 40K 4.56 21.47 206.55 22.69 6
Egea 30K 1.32 7.30 22.75 12.05 6
Eros 120K 9.23 35.68 201.58 41.87 8
Faget statue 60K 2.58 15.24 85.90 16.72 6
Kitten 37K 1.40 8.48 66.68 17.06 7
Max Planck 54K 2.25 13.84 80.68 17.20 6
Moai 40K 1.28 9.00 60.00 13.77 6
Maneki neko 44K 1.66 10.07 28.47 14.84 6
Pensatore 60K 2.64 15.52 59.01 23.17 7
Woman statue 60K 3.67 13.83 73.43 16.67 6

Table A.2: Model dimensions. We report, for the four fabricated models, the
size in millimeters of the target model and the initial stock.

Model Model height Stock diameter Stock length

Batman 70 72 92
David 54 62 86
Buddah 70 72 86
Kitten 70 72 88

Stefano Nuvoli Composing quadrilateral meshes for animation

Automatic surface segmentation for seamless fabrication using 4-axis milling machines 113

Figure A.17: Failure case due to intrinsic limitations of 4-axis milling. In
the depicted cup-shaped surfaces, faces in black are non-visible from any possible
direction.

Moreover, having a small bottom and top regions might results in practical
issues during the fabrication. These regions must be wide enough to sustain the
entire object weight during the entire manufacturing process. For example, the
blue and red regions in Figure A.19 could be a problem for the fabrication of a tiny
object. We can address this problem by simply adding a term in the optimization
problem described in Sec. A.3.2, that penalizes the formation of small top and
bottom areas. Alternatively, we can also discard the axis that generates top and
bottom regions smaller than a certain threshold. However, we cannot guarantee to
have a suitable solution for the general case.

Figure A.18: Limitations due to occlusions. A large occluded area could lead
to an excessive number of small charts and non-visible faces.

Stefano Nuvoli Composing quadrilateral meshes for animation

114 Automatic surface segmentation for seamless fabrication using 4-axis milling machines

Figure A.19: Limitations due to small top and bottom areas. The regions
must be wide enough to sustain the object during the fabrication.

A.4.4 Illustration of the fabrication process

In order to illustrate the practical usage of our pipeline in a CNC machining
workshop, we illustrate the complete fabrication process of a model.

The inset on the right shows how the block
is initially secured on the rotation tool (see also
Figure A.2). We used PVC cylinders as stock for
the kitten and the Buddha models, and wood
for the batman and David models. The cylinder
is mounted in the rotation axis between the step
motor and the tail-stock.

We start milling the side regions of the model,
first performing the roughing step using the
3mm flat cutter for each direction, and then
performing a finishing step with a 1mm ball
cutter. We show in Figure A.20 and Figure A.21
respectively the roughing process for the side
regions of the kitten model.

We then remove the block and place it on the
plane, and we perform the fabrication of the top,
the mold, and the bottom of the shape. Each
step is composed of a roughing and a finishing
phase. The precise alignment of the model at sub-millimeter tolerance, a strict
requirement of this phase, is facilitated by the creation of the mold. Figure A.22

Stefano Nuvoli Composing quadrilateral meshes for animation

Automatic surface segmentation for seamless fabrication using 4-axis milling machines 115

Figure A.20: Roughing phase. Side regions finished with a 3mm flat cutter.

Figure A.21: Finishing phase. Side regions finished with a 1mm ball cutter.

shows these three fabrication steps and how each block is secured to the machine
plane.

It’s worth noticing that the model’s small size (a few cm for the kitten) influences
its quality since the cutter cannot be smaller than 1mm. The ratio between the
cutter size and the shape size is an essential parameter of the fabrication step.
In Figure A.23a, we show that, at the end of the milling, a portion of the stock
initially surrounding the shape may still remain attached to it, due to limitations
in machine accuracy. The connection is very thin, and we can easily remove it
(Figure A.23b). To bring the model to a smooth shape in those cases, we can use a
rasp or sandpaper to remove the material along the seams (Figure A.23c). Despite
this disadvantage, we can obtain excellent results.

A.5 Conclusions

We introduced a novel automatic method for the fabrication of non-trivial shapes
using 4-axis milling machines. Our approach enables the fabrication of highly
detailed models in a single-block without visible seams, in contrast to previous
methods based on decomposition and reassembly. The introduction of saliency
information guarantees the fabrication of certain important areas of the model in a

Stefano Nuvoli Composing quadrilateral meshes for animation

116 Automatic surface segmentation for seamless fabrication using 4-axis milling machines

(a) (b) (c)

Figure A.22: Fabrication phases. Manufacturing the first of the two ends of the
model (a), and the second end of the model (c) using its mold (b).

(a) (b) (c)

Figure A.23: Fabricated model before and after the final sanding pass. In
(a) the model has still part of the stock that, initially, was surrounding it; in (b)
only the portion that is to be sanded is present. in (c), the final polished model,
using the mold as a base

Stefano Nuvoli Composing quadrilateral meshes for animation

Automatic surface segmentation for seamless fabrication using 4-axis milling machines 117

single pass.
The method has been designed to be easily integrable in current pipelines. First

of all, by letting the user control the accuracy and fidelity of the manufactured
model through user-controllable detail filtering thresholds, we enable the possibility
to sacrifice small details when necessary in order to obtain effective fabrication
plans. Moreover, the method has been designed to effectively fit within current
industrial fabrication settings with minimal upgrades.

With respect to the traditional methods relying on 3-axis milling machines, we
exploit an additional rotation axis, which has been specifically designed in order to
subdivide the entire process into a sequence of 3-axis carving passes. This leads our
approach to be immediately available to users that possess a 3-axis machine. Indeed,
the only requirement is the installation of a rotation shaft, which is a common
additional accessory for CNC machines. Furthermore, they can use, without any
restriction, any available 3-axis driver for path planning. We thus expect that our
proposed technique can immediately result in practical industrial applications, as
it significantly extends the range of shapes that can be automatically fabricated on
common low-cost machines.

Despite the significantly expanded class of fabricable models, not all meshes can
be produced using our single-pass approach. This limitation is generally due to the
fact that four DOFs may be not enough for manufacturing such shapes in a single
block. Extending to another DOF and using a 5-axis machine is not as straight-
forward as passing from 3 to 4-axis machines. One possible solution to overcome
these limitations could be to decompose the input shape into multiple cylindrical
components that can be fabricated independently using our method and assembled
afterward. With this approach, we would aim at producing free-form shapes, with
significantly fewer components than common height-field decomposition methods.

Stefano Nuvoli Composing quadrilateral meshes for animation

Bibliography 119

Bibliography

[ACA+19] Chrystiano Araújo, Daniela Cabiddu, Marco Attene, Marco Livesu,
Nicholas Vining, and Alla Sheffer. Surface2volume: Surface segmenta-
tion conforming assemblable volumetric partition. ACM Transaction
on Graphics, 38(4), 2019. 91

[ACP+14] Giuseppe Alemanno, Paolo Cignoni, Nico Pietroni, Federico Ponchio,
and Roberto Scopigno. Interlocking pieces for printing tangible
cultural heritage replicas. In Proc. GCH, pages 145–154. Eurographics
Association, 2014. 90

[AMG+18] Thomas Alderighi, Luigi Malomo, Daniela Giorgi, Nico Pietroni,
Bernd Bickel, and Paolo Cignoni. Metamolds: computational design
of silicone molds. ACM Transactions on Graphics, 37(4):136:1–136:??,
August 2018. 90

[AMG+19] Thomas Alderighi, Luigi Malomo, Daniela Giorgi, Bernd Bickel, Paolo
Cignoni, and Nico Pietroni. Volume-aware design of composite molds.
ACM Trans. Graph, 38(4):110:1–110:12, 2019. 91

[ARG+16] Quentin Avril, S. Ribet, Donya Ghafourzadeh, Olivier Dionne, Srini-
vasan Ramachandran, M. Lasa, Sahel Fallahdoust, and E. Paquette.
Animation setup transfer for 3d characters. Computer Graphics
Forum, 35, 2016. 8

[ATW+17] Baptiste Angles, Marco Tarini, Brian Wyvill, Löıc Barthe, and Andrea
Tagliasacchi. Sketch-based implicit blending. ACM Trans. Graph.,
36(6), November 2017. 7

[Aut] Autodesk, INC. Maya. 75

[Aut18] Autodesk. Mudbox, 2018. 4

[BBCW13] Adrien Bernhardt, Löıc Barthe, Marie-Paule Cani, and Brian Wyvill.
Implicit blending revisited. Computer Graphics Forum, 29:367–376,
05 2013. 7

Stefano Nuvoli Composing quadrilateral meshes for animation

120 Bibliography

[BDS+18] Gavin Barill, Neil G. Dickson, Ryan Schmidt, David I. W. Levin, and
Alec Jacobson. Fast winding numbers for soups and clouds. ACM
Trans. Graph., 37(4), July 2018. 7, 55

[BGOS06] Adam W. Bargteil, Tolga G. Goktekin, James F. O’Brien, and John A.
Strain. A semi-lagrangian contouring method for fluid simulation.
ACM Trans. Graph., 25(1):19–38, January 2006. 7

[BK05] Stephan Bischoff and Leif Kobbelt. Structure preserving CAD model
repair. Comput. Graph. Forum, 24(3):527–536, 2005. 7

[Bla14] Sue Blackman. Rigging with Mixamo, pages 565–573. Apress, Berkeley,
CA, 2014. 42, 69, 83

[BLK11] David Bommes, Timm Lempfer, and Leif Kobbelt. Global struc-
ture optimization of quadrilateral meshes. Comput. Graph. Forum,
30(2):375–384, 2011. 5, 17

[BLP+13] David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Cláudio T.
Silva, Marco Tarini, and Denis Zorin. Quad-mesh generation and
processing: A survey. Comput. Graph. Forum, 32(6):51–76, 2013. 5

[BMBZ02] Henning Biermann, Ioana M. Martin, Fausto Bernardini, and Denis
Zorin. Cut-and-paste editing of multiresolution surfaces. ACM Trans.
Graph., 21(3):312–321, 2002. 5

[BMPB08] A. Brodersen, K. Museth, S. Porumbescu, and B. Budge. Geometric
texturing using level sets. IEEE Transactions on Visualization and
Computer Graphics, 14(2):277–288, 2008. 8

[BP07] Ilya Baran and Jovan Popović. Automatic rigging and animation of
3d characters. ACM Trans. Graph., 26(3):72–es, July 2007. 8

[BTST12] Gaurav Bharaj, Thorsten Thormählen, Hans-Peter Seidel, and Chris-
tian Theobalt. Automatically rigging multi-component characters.
Comput. Graph. Forum, 31(2pt3):755–764, May 2012. 8

[BVZ01] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate
energy minimization via graph cuts. IEEE Transactions on pattern
analysis and machine intelligence, 23(11):1222–1239, 2001. 97

[BWSS12] Mikhail Bessmeltsev, Caoyu Wang, Alla Sheffer, and Karan Singh.
Design-driven quadrangulation of closed 3d curves. ACM Trans.
Graph., 31(6):178:1–178:11, 2012. 6

Stefano Nuvoli Composing quadrilateral meshes for animation

Bibliography 121

[BZK09] David Bommes, Henrik Zimmer, and Leif Kobbelt. Mixed-integer
quadrangulation. ACM Trans. Graph., 28(3):77, 2009. 12, 19

[Cam17a] Marcel Campen. Partitioning surfaces into quadrilateral patches: A
survey. Comput. Graph. Forum, 36(8):567–588, 2017. 5

[Cam17b] Marcel Campen. Tiling the bunny: Quad layouts for efficient 3d
geometry representation. IEEE Computer Graphics and Applications,
37(3):88–95, 2017. 5

[CBK12] Marcel Campen, David Bommes, and Leif Kobbelt. Dual loops
meshing: quality quad layouts on manifolds. ACM Trans. Graph.,
31(4):110:1–110:11, 2012. 5, 15, 20, 22

[CCC+08] Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepi-
ane, Fabio Ganovelli, and Guido Ranzuglia. Meshlab: an open-source
mesh processing tool. In Eurographics Italian Chapter Conference
2008, Salerno, Italy, 2008, pages 129–136, 2008. 20

[CK10] Marcel Campen and Leif Kobbelt. Exact and robust (self-
)intersections for polygonal meshes. Comput. Graph. Forum,
29(2):397–406, 2010. 7

[CK14] Marcel Campen and Leif Kobbelt. Dual strip weaving: interactive
design of quad layouts using elastica strips. ACM Trans. Graph.,
33(6):183:1–183:10, 2014. 4

[CKS00] R. Christian, L. Kobbelt, and H. Seidel. Extraction of feature lines
on triangulated surfaces using morphological operators. 2000. 53, 60

[CLSA20] Gianmarco Cherchi, Marco Livesu, Riccardo Scateni, and Marco
Attene. Fast and robust mesh arrangements using floating-point
arithmetic. ACM Trans. Graph., 39(6), November 2020. 7

[CNR13] CNR. The visualization and computer graphics library, 2013.
http://vcg.isti.cnr.it/vcglib/. 30, 75, 108

[CRS98] Paolo Cignoni, Claudio Rocchini, and Roberto Scopigno. Metro:
measuring error on simplified surfaces. In Computer graphics forum,
volume 17, pages 167–174. Wiley Online Library, 1998. 111

[CT11] F. Calakli and Gabriel Taubin. Ssd: Smooth signed distance surface
reconstruction. Computer Graphics Forum, 30:1993 – 2002, 11 2011.
7

Stefano Nuvoli Composing quadrilateral meshes for animation

122 Bibliography

[CZL+15] Xuelin Chen, Hao Zhang, Jinjie Lin, Ruizhen Hu, Lin Lu, Qixing
Huang, Bedrich Benes, Daniel Cohen-Or, and Baoquan Chen. Dapper:
decompose-and-pack for 3D printing. ACM Transactions on Graphics,
34(6):213:1–213:??, November 2015. 90

[DdL13] Olivier Dionne and Martin de Lasa. Geodesic voxel binding for
production character meshes. In Proceedings of the 12th ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, SCA ’13,
page 173–180, New York, NY, USA, 2013. Association for Computing
Machinery. 8

[DG95] Mathieu Desbrun and Marie-Paule Gascuel. Animating soft sub-
stances with implicit surfaces. In Proceedings of the 22nd Annual
Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’95, page 287–290, New York, NY, USA, 1995. Association
for Computing Machinery. 7

[DLG+13] Ali-Hamadi Dicko, Tiantian Liu, Benjamin Gilles, Ladislav Kavan,
Francois Faure, Olivier Palombi, and Marie-Paule Cani. Anatomy
transfer. ACM Transactions on Graphics (proceedings of ACM SIG-
GRAPH ASIA), 32(6), 2013. 8

[DSSC08] Joel Daniels, Cláudio T. Silva, Jason Shepherd, and Elaine Cohen.
Quadrilateral mesh simplification. ACM Trans. Graph., 27(5):148:1–
148:9, 2008. 27

[DVPS14] Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga Sorkine-
Hornung. Designing N -polyvector fields with complex polynomials.
Comput. Graph. Forum, 33(5):1–11, 2014. 15, 20

[dWv09] Erwin de Groot, Brian Wyvill, and Huub van de Wetering. Locally
restricted blending of blobtrees. Computers & Graphics, 33(6):690–
697, 2009. 7

[DYY16] Noah Duncan, Lap-Fai Yu, and Sai-Kit Yeung. Interchangeable
components for hands-on assembly based modelling. ACM Trans.
Graph., 35(6), November 2016. 62

[EB10] Manolya Eyiyurekli and David Breen. Interactive free-form level-set
surface-editing operators. Computers & Graphics, 34(5):621–638, 2010.
CAD/GRAPHICS 2009 Extended papers from the 2009 Sketch-Based
Interfaces and Modeling Conference Vision, Modeling & Visualization.
8

Stefano Nuvoli Composing quadrilateral meshes for animation

Bibliography 123

[EGKT08] David Eppstein, Michael T. Goodrich, Ethan Kim, and Rasmus
Tamstorf. Motorcycle graphs: Canonical quad mesh partitioning.
Comput. Graph. Forum, 27(5):1477–1486, 2008. 13, 17

[FAG+20] Irene Filoscia, Thomas Alderighi, Daniela Giorgi, Luigi Malomo,
Marco Callieri, and Paolo Cignoni. Optimizing object decomposition
to reduce visual artifacts in 3d printing. Computer Graphics Forum,
39(2), May 2020. 90

[FCM+18] Filippo A Fanni, Gianmarco Cherchi, Alessandro Muntoni, Alessandro
Tola, and Riccardo Scateni. Fabrication oriented shape decomposition
using polycube mapping. Computers & Graphics, 77:183–193, 2018.
91

[FKS+04] Thomas A. Funkhouser, Michael M. Kazhdan, Philip Shilane, Patrick
Min, William Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and David P.
Dobkin. Modeling by example. ACM Trans. Graph., 23(3):652–663,
2004. 5

[FP05] Sarah Frisken and Ronald Perry. Designing with distance fields.
volume 2005, pages 58–59, 01 2005. 7

[FP09] Andreas Fabri and Sylvain Pion. Cgal: The computational geometry
algorithms library. In Proc. ACM SIGSPATIAL conference on ad-
vances in geographic information systems, pages 538–539, 2009. 30,
75, 108

[GBC+13] Olivier Gourmel, Loic Barthe, Marie-Paule Cani, Brian Wyvill, Adrien
Bernhardt, Mathias Paulin, and Herbert Grasberger. A gradient-
based implicit blend. ACM Trans. Graph., 32(2), April 2013. 7

[GJ+14] Gael Guennebaud, Benoit Jacob, et al. Eigen: a c++ linear algebra
library, 2014. http://eigen.tuxfamily.org. 30, 75, 108

[GO18] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2018.
30, 75

[HLZCO14] Ruizhen Hu, Honghua Li, Hao Zhang, and Daniel Cohen-Or. Ap-
proximate pyramidal shape decomposition. ACM Transactions on
Graphics, 33(6):213:1–213:??, November 2014. 90

[HMA15] Philipp Herholz, Wojciech Matusik, and Marc Alexa. Approximating
free-form geometry with height fields for manufacturing. Comput.
Graph. Forum, 34(2):239–251, 2015. 90

Stefano Nuvoli Composing quadrilateral meshes for animation

124 Bibliography

[HWCO+13] Hui Huang, Shihao Wu, Daniel Cohen-Or, Minglun Gong, Hao Zhang,
Guiqing Li, and Baoquan Chen. L1-medial skeleton of point cloud.
ACM Trans. Graph., 32(4), July 2013. 8

[JBPS11] Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. Bounded
biharmonic weights for real-time deformation. ACM Trans. Graph.,
30(4), July 2011. 8

[JDKL14] Alec Jacobson, Zhigang Deng, Ladislav Kavan, and JP Lewis. Skin-
ning: Real-time shape deformation. In ACM SIGGRAPH 2014
Courses, 2014. 3, 8, 40, 47

[JKS13] Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung. Robust
inside-outside segmentation using generalized winding numbers. ACM
Trans. Graph., 32(4):33:1–33:12, 2013. 7

[JLCW06] Zhongping Ji, Ligang Liu, Zhonggui Chen, and Guojin Wang. Easy
mesh cutting. Comput. Graph. Forum, 25(3):283–291, 2006. 29

[JP+16] Alec Jacobson, Daniele Panozzo, et al. libigl: A simple C++ geometry
processing library, 2016. https://libigl.github.io. 30, 75, 108

[JTPS15] Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-
Hornung. Instant field-aligned meshes. ACM Trans. Graph.,
34(6):189:1–189:15, 2015. 12, 13, 14

[JWS12] Alec Jacobson, Tino Weinkauf, and Olga Sorkine. Smooth shape-
aware functions with controlled extrema. Comput. Graph. Forum,
31(5):1577–1586, August 2012. 8

[KCvO07] Ladislav Kavan, Steven Collins, Jǐŕı Žára, and Carol O’Sullivan.
Skinning with dual quaternions. In Proceedings of the 2007 Symposium
on Interactive 3D Graphics and Games, I3D ’07, page 39–46, New
York, NY, USA, 2007. Association for Computing Machinery. 41, 47,
69, 75

[KDB16] Dan Koschier, Crispin Deul, and Jan Bender. Hierarchical hp-adaptive
signed distance fields. In Proceedings of the ACM SIGGRAPH/Euro-
graphics Symposium on Computer Animation, SCA ’16, page 189–198,
Goslar, DEU, 2016. Eurographics Association. 7

[KNP07] Felix Kälberer, Matthias Nieser, and Konrad Polthier. Quadcover -
surface parameterization using branched coverings. Comput. Graph.
Forum, 26(3):375–384, 2007. 22

Stefano Nuvoli Composing quadrilateral meshes for animation

Bibliography 125

[KS12] Ladislav Kavan and Olga Sorkine. Elasticity-inspired deformers for
character articulation. ACM Trans. Graph., 31(6), November 2012. 8

[LBRM12] Linjie Luo, Ilya Baran, Szymon Rusinkiewicz, and Wojciech Matusik.
Chopper: partitioning models into 3d-printable parts. ACM Trans.
Graph, 31(6):129:1–129:9, 2012. 90

[LL14] Zohar Levi and David Levin. Shape deformation via interior
rbf. IEEE Transactions on Visualization and Computer Graphics,
20(7):1062–1075, July 2014. 8

[LPRM02] Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérôme Maillot.
Least squares conformal maps for automatic texture atlas generation.
ACM Trans. Graph., 21(3):362–371, 2002. 28

[LVJ05] Chang Ha Lee, Amitabh Varshney, and David W. Jacobs. Mesh
saliency. ACM Trans. Graph., 24(3):659–666, July 2005. 98

[MASS15] Nathan Mitchell, Mridul Aanjaneya, Rajsekhar Setaluri, and Efty-
chios Sifakis. Non-manifold level sets: A multivalued implicit surface
representation with applications to self-collision processing. ACM
Trans. Graph., 34(6), October 2015. 7

[MBWB02] Ken Museth, David E. Breen, Ross T. Whitaker, and Alan H.
Barr. Level set surface editing operators. ACM Trans. Graph.,
21(3):330–338, July 2002. 8

[MLJ+13] Ken Museth, Jeff Lait, John Johanson, Jeff Budsberg, Ron Henderson,
Mihai Alden, Peter Cucka, David Hill, and Andrew Pearce. Openvdb:
An open-source data structure and toolkit for high-resolution volumes.
In ACM SIGGRAPH 2013 Courses, SIGGRAPH ’13, New York, NY,
USA, 2013. Association for Computing Machinery. 7, 55, 75

[MLS+18] Alessandro Muntoni, Marco Livesu, Riccardo Scateni, Alla Sheffer,
and Daniele Panozzo. Axis-aligned height-field block decomposition
of 3d shapes. ACM Trans. Graph, 37(5):169:1–169:15, 2018. 91, 93,
101

[MN21] Alessandro Muntoni and Stefano Nuvoli. Cg3lib: A c++ geometry
processing library, January 2021. 30, 75, 108

[Mor94] Carroll Morgan. Programming from Specifications (2Nd Ed.). Prentice
Hall International (UK) Ltd., Hertfordshire, UK, UK, 1994. 18

Stefano Nuvoli Composing quadrilateral meshes for animation

126 Bibliography

[MPBC16] Luigi Malomo, Nico Pietroni, Bernd Bickel, and Paolo Cignoni. Flex-
molds: automatic design of flexible shells for molding. ACM Trans.
Graph, 35(6):223:1–223:12, 2016. 90

[MPP+13] Giorgio Marcias, Nico Pietroni, Daniele Panozzo, Enrico Puppo, and
Olga Sorkine-Hornung. Animation-aware quadrangulation. Comput.
Graph. Forum, 32(5):167–175, 2013. 5

[MPWC13] Niloy Mitra, Mark Pauly, Michael Wand, and Duygu Ceylan. Symme-
try in 3d geometry: Extraction and applications. Computer Graphics
Forum, 32, 09 2013. 83

[MPZ14] Ashish Myles, Nico Pietroni, and Denis Zorin. Robust field-aligned
global parametrization. ACM Trans. Graph., 33(4):135:1–135:14,
2014. 12, 22

[MTP+15] Giorgio Marcias, Kenshi Takayama, Nico Pietroni, Daniele Panozzo,
Olga Sorkine-Hornung, Enrico Puppo, and Paolo Cignoni. Data-driven
interactive quadrangulation. ACM Trans. Graph., 34(4):65:1–65:10,
2015. 4, 6

[Mus11] Ken Museth. Db+grid: a novel dynamic blocked grid for sparse
high-resolution volumes and level sets. page 51, 08 2011. 7

[NHE+19] Stefano Nuvoli, Alex Hernandez, Claudio Esperança, Riccardo Scateni,
Paolo Cignoni, and Nico Pietroni. Quadmixer: Layout preserving
blending of quadrilateral meshes, nov 2019. 4

[Nie04] Gregory M. Nielson. Dual marching cubes. In Proceedings of the
Conference on Visualization ’04, VIS ’04, page 489–496, USA, 2004.
IEEE Computer Society. 55

[NKI+18] Tuan D. Ngo, Alireza Kashani, Gabriele Imbalzano, Kate T.Q.
Nguyen, and David Hui. Additive manufacturing (3d printing): A
review of materials, methods, applications and challenges. Composites
Part B: Engineering, 143:172 – 196, 2018. 87, 88

[NSY09] Ahmad H. Nasri, Malcolm A. Sabin, and Zahraa Yasseen. Filling
N -sided regions by quad meshes for subdivision surfaces. Comput.
Graph. Forum, 28(6):1644–1658, 2009. 6

[PBJW14] Chi-Han Peng, Michael Barton, Caigui Jiang, and Peter Wonka.
Exploring quadrangulations. ACM Trans. Graph., 33(1):12:1–12:13,
2014. 6, 23

Stefano Nuvoli Composing quadrilateral meshes for animation

Bibliography 127

[PCK10] Darko Pavic, Marcel Campen, and Leif Kobbelt. Hybrid booleans.
Comput. Graph. Forum, 29(1):75–87, 2010. 7

[PCYQ18] Junjun Pan, Lijuan Chen, Yuhan Yang, and Hong Qin. Automatic
skinning and weight retargeting of articulated characters using ex-
tended position-based dynamics. Vis. Comput., 34(10):1285–1297,
October 2018. 8

[Pil17] Pilgway. 3dcoat, 2017. 4

[Pix99] Pixologic. Zbrush, 1999. 4

[PPM+16] Nico Pietroni, Enrico Puppo, Giorgio Marcias, Roberto Scopigno,
and Paolo Cignoni. Tracing field-coherent quad layouts. Comput.
Graph. Forum, 35(7):485–496, 2016. 12, 22

[PTP+15] Nico Pietroni, Davide Tonelli, Enrico Puppo, Maurizio Froli, Roberto
Scopigno, and Paolo Cignoni. Statics aware grid shells. Comput.
Graph. Forum, 34(2):627–641, 2015. 31, 34, 37

[PZKW11] Chi-Han Peng, Eugene Zhang, Yoshihiro Kobayashi, and Peter Wonka.
Connectivity editing for quadrilateral meshes. ACM Trans. Graph.,
30(6):141:1–141:12, 2011. 6

[SBSC06] Andrei Sharf, Marina Blumenkrants, Ariel Shamir, and Daniel Cohen-
Or. Snappaste: an interactive technique for easy mesh composition.
The Visual Computer, 22(9-11):835–844, 2006. 5

[SEPC16] Asla Medeiros e Sá, Karina Rodriguez Echavarria, Nico Pietroni,
and Paolo Cignoni. State of The Art on Functional Fabrication. In
A. Medeiros e Sa, N. Pietroni, and K. Rodriguez Echavarria, editors,
Eurographics Workshop on Graphics for Digital Fabrication. The
Eurographics Association, 2016. 88, 90

[SFP12] Mathieu Sanchez, Oleg Fryazinov, and Alexander Pasko. Efficient
evaluation of continuous signed distance to a polygonal mesh. In
Proceedings of the 28th Spring Conference on Computer Graphics,
SCCG ’12, page 101–108, New York, NY, USA, 2012. Association for
Computing Machinery. 7

[SJP06] Richard Swinbank and R James Purser. Fibonacci grids: A novel
approach to global modelling. Quarterly Journal of the Royal Meteo-
rological Society, 132(619):1769–1793, 2006. 96

Stefano Nuvoli Composing quadrilateral meshes for animation

128 Bibliography

[Sor06] Olga Sorkine. Differential representations for mesh processing. Com-
puter Graphics Forum, 25(4):789–807, 2006. 101

[SPS04] Benjamin Schmitt, Alexander Pasko, and Christophe Schlick. Con-
structive sculpting of heterogeneous volumetric objects using trivariate
b-splines. The Visual Computer, 20:130–148, 05 2004. 7

[SS10] Ryan Schmidt and Karan Singh. Meshmixer: An interface for rapid
mesh composition. In ACM SIGGRAPH 2010 Talks, SIGGRAPH
’10, pages 6:1–6:1, New York, NY, USA, 2010. ACM. 5

[SWZ04] Scott Schaefer, Joe D. Warren, and Denis Zorin. Lofting curve net-
works using subdivision surfaces. In Second Eurographics Symposium
on Geometry Processing, Nice, France, July 8-10, 2004, pages 103–114,
2004. 6

[SY07] S. Schaefer and C. Yuksel. Example-based skeleton extraction. In
Proceedings of the Fifth Eurographics Symposium on Geometry Pro-
cessing, SGP ’07, page 153–162, Goslar, DEU, 2007. Eurographics
Association. 8

[Tan14] Tran Duc Tang. Algorithms for collision detection and avoidance for
five-axis nc machining: A state of the art review. Computer-Aided
Design, 51:1–17, 2014. 88

[TAOZ12] Andrea Tagliasacchi, Ibraheem Alhashim, Matt Olson, and Hao Zhang.
Mean curvature skeletons. Comput. Graph. Forum, 31(5):1735–1744,
August 2012. 8

[Tau95] G. Taubin. Curve and surface smoothing without shrinkage. In
Proceedings of the Fifth International Conference on Computer Vision,
ICCV ’95, page 852, USA, 1995. IEEE Computer Society. 93

[TF18] Yizhi Tang and Jieqing Feng. Multi-scale surface reconstruction based
on a curvature-adaptive signed distance field. Computers & Graphics,
70:28 – 38, 2018. CAD/Graphics 2017. 7

[TIN+11] Julien Tierny, Joel Daniels II, Luis Gustavo Nonato, Valerio Pascucci,
and Cláudio T. Silva. Inspired quadrangulation. Computer-Aided
Design, 43(11):1516–1526, 2011. 6

[TPC+10] Marco Tarini, Nico Pietroni, Paolo Cignoni, Daniele Panozzo, and
Enrico Puppo. Practical quad mesh simplification. Comput. Graph.
Forum, 29(2):407–418, 2010. 12

Stefano Nuvoli Composing quadrilateral meshes for animation

Bibliography 129

[TPP+11] Marco Tarini, Enrico Puppo, Daniele Panozzo, Nico Pietroni,
and Paolo Cignoni. Simple quad domains for field aligned mesh
parametrization. ACM Trans. Graph., 30(6):142:1–142:12, 2011. 5,
17

[TPS14] Kenshi Takayama, Daniele Panozzo, and Olga Sorkine-Hornung.
Pattern-based quadrangulation for N -sided patches. Comput. Graph.
Forum, 33(5):177–184, 2014. 4, 6, 15, 19, 23, 24, 28

[TPSS13] Kenshi Takayama, Daniele Panozzo, Alexander Sorkine-Hornung, and
Olga Sorkine-Hornung. Sketch-based generation and editing of quad
meshes. ACM Trans. Graph., 32(4):97:1–97:8, 2013. 6

[VCD+17] Amir Vaxman, Marcel Campen, Olga Diamanti, David Bommes,
Klaus Hildebrandt, Mirela Ben-Chen, and Daniele Panozzo. Direc-
tional field synthesis, design, and processing. In SIGGRAPH ’17
Courses, pages 12:1–12:30, 2017. 20

[Vis18] The Foundry Visionmongers. Modo 12.1, 2018. 13, 15

[WGG99] Brian Wyvill, Andrew Guy, and Eric Galin. Extending the csg
tree. warping, blending and boolean operations in an implicit surface
modeling system. Comput. Graph. Forum, 18:149–158, 06 1999. 7

[WL08] Yu-Shuen Wang and Tong-Yee Lee. Curve-skeleton extraction using
iterative least squares optimization. IEEE Transactions on Visual-
ization and Computer Graphics, 14:926–936, 2008. 8

[WP02] Lawson Wade and Richard E. Parent. Automated generation of
control skeletons for use in animation. Vis. Comput., 18(2):97–110,
April 2002. 8

[XB16] Hongyi Xu and Jernej Barbic. 6-dof haptic rendering using continuous
collision detection between points and signed distance fields. IEEE
Transactions on Haptics, PP:1–1, 09 2016. 7

[YNB+13] Zahraa Yasseen, Ahmad H. Nasri, W. Boukaram, Pascal Volino, and
Nadia Magnenat-Thalmann. Sketch-based garment design with quad
meshes. Computer-Aided Design, 45(2):562–567, 2013. 6

[ZCZ+18] Jiaran Zhou, Marcel Campen, Denis Zorin, Changhe Tu, and
Cláudio T. Silva. Quadrangulation of non-rigid objects using de-
formation metrics. Computer Aided Geometric Design, 62:3–15, 2018.
5

Stefano Nuvoli Composing quadrilateral meshes for animation

130 Bibliography

[ZGZJ16] Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. Mesh
arrangements for solid geometry. ACM Trans. Graph., 35(4):39:1–
39:15, 2016. 7, 11, 13, 17, 34, 39, 106

[ZWC+10] Juyong Zhang, Chunlin Wu, Jianfei Cai, Jianmin Zheng, and Xue-
Cheng Tai. Mesh snapping: Robust interactive mesh cutting using
fast geodesic curvature flow. Comput. Graph. Forum, 29(2):517–526,
2010. 5

[ZZX+18] Haisen Zhao, Hao (Richard) Zhang, Shiqing Xin, Yuanmin Deng,
Changhe Tu, Wenping Wang, Daniel Cohen-Or, and Baoquan Chen.
Dscarver: decompose-and-spiral-carve for subtractive manufacturing.
ACM Trans. Graph, 37(4):137:1–137:14, 2018. 91, 97

Stefano Nuvoli Composing quadrilateral meshes for animation

Acknowledgments

This thesis is dedicated to all the ones I loved who cannot be with me anymore. I
wish you were here and I would give everything to be able to share this moment
with you. I miss you.

Thanks to my Ph.D. advisor Riccardo, for his continuous and brilliant support
during my Ph.D. studies. My most sincere gratitude for your patience and immense
knowledge. Thanks for everything you do for your students, I have never seen such
a good teacher in my entire life.

Thanks to my Ph.D. advisor Nico, for his invaluable guidance throughout my
Ph.D. studies. My results would be not possible without your knowledge, your
insightful advice, and your encouragement. Thanks for your exemplary welcome in
Sydney, you and Paola made me feel at home. Thank you, Paola!

Thanks to Paolo, Marco, Fabrizio, Alessandro M. and Alessandro T. for the
contribution in the works presented in this thesis.

The order of the following acknowledgments is completely random. I swear I
applied the shuffle algorithm in the C++ standard library std::shuffle (citation
needed). All of you are extremely important to me, without your support and
your belief in me I would not have had a chance to accomplish this goal. Any
resemblance to real events and/or to real persons, living or dead, is not purely
coincidental at all.

Thanks to Roberto, Isabella, Riccardo, Beatrice, and Leonardo, for being
the cheerful, brilliant, and surprising kids you are. Grown-ups never understand
anything by themselves, and it is tiresome for children to be always and forever
explaining things to them (cit.). You’re the hope for the new generations.

Thanks to Carlotta, for brightening my days more than the sunlight. You just
unexpectedly came into my life, and you already found your way into my heart.
Thanks for constantly pushing me to improve myself and for our insightful and
astonishing conversations about life. Your deep sincerity, your infinite strength,
your thoughtful consideration, your sweet smile, and, especially, your immense
heart, are immeasurably precious to me.

Thanks to Roberta, for showing me what it means to be a pure person who
cares about people. Your goodness to me and to other people has always inspired

me, you proved to me that sensitivity is a value.

Thanks to Massimo, for always reminding me of my talents and my strengths. I
owe you, I am who I am today thanks to you: you showed me how deep a friendship
can be and you taught me how to love and value myself and others. Even if we are
geographically as farthest as we could be, a +10 time-zone is not enough at all to
make me love you less. You still are and you will always be an important point
of reference in my life. Thanks to Sarah, for being a joy in Massimo’s life and for
bringing to life his most beautiful dream Noah.

Thanks to Mom, for her perseverance and all the sacrifices to give us everything
we need or wish. Even if it has been really difficult, you successfully gave me the
opportunities to accomplish my goals. For this, I will always be deeply grateful.
Often, we take everything for granted and I am sorry if sometimes I had.

Thanks to Valentina, for proving to me, without a shadow of a doubt, that a
deep friendship between men and women can exist. In your thesis acknowledgments,
you wrote you and I are like cats and dogs: that’s totally nonsense! On the opposite,
we are like bees and flowers: we are totally different, but I need you, you need me
and we benefit from each other. In case you are wondering, you are the bee and I
am the flower.

Thanks to Bruno, for being an awesome neighbour and a great friend, the
first friend I have ever had. Thank you for all the days spent chilling and playing
videogames. Thank you for your hospitality, always flawless. I think I owe you half
of your electricity bills for the past 15 years!

Thanks to Simona and Giacomo, for being the sister and the brother-in-law
that everyone would like to have. Thanks to Simona, for being such a good sister
and being always present, even if we are far. Thanks to Giacomo for his friendship
and all the time spent together when we were young. If I cultivated my passion for
Computer Science and I accomplished these goals, it is also because of you.

Thanks to Alberto, for being a great flatmate and, especially, a great friend. I
admire you for being able to bear with me during our long cohabitation, even if
several times you tried to kill me in the most ingenious and various ways.

Thanks to Fabio, Alessandro T., Alessandro M., and Martina for welcoming me
to BatCaverna and for all the evenings spent together. I was totally a stranger in
the office, and I’m aware I am not an easy person sometimes. You welcomed me
like a friend, and for this, I will always thankful to you! My time in Cagliari would
not have been the same without you.

Thanks to Giuseppe B. and Anna, for being the best friends I could have in
Cagliari. Thank you for all the fun we had and for all the insightful conversations.
We can talk about politics, travels, relationships, life, etc... and I would always
learn something useful and new. Thank you Anna for your help while writing this
thesis! Thanks to Pierpaolo, for being the coolest dad I have ever met and for all

the delicious dinners!
Thanks to Giuseppe F., for being an awesome flatmate and friend. You’re

always been a friend I could count on. Thanks for all the games in LOL, even if
you should thank me for the boosting.

Thanks to Pietro, for being a great friend. I always admired your generosity
and your goodness to your friends. Thank you for being a friend I could always
count on. By the way, even if you make fun of me for being a nerd, we all know
that you are more nerd than me.

Thanks to my uncles, for giving me the awesome childhood full of love that is
the dream of every kid. Thank you for always satisfying my infinite curiosity when
I was a child. Thanks to you I found my passion and, therefore, I accomplished my
goals.

Thanks to Carlo, for always being there everytime I needed a drink and a chat.
Thanks for being the youngest (inside) among my friends.

Thanks to Elle, for being, sometimes, the only one who is able to understand
and value some parts of myself. By the way,

√
4 = 2 or ±

√
4 = ±2. However,√

4 = ±2 is wrong! I can prove it to you:
Proof. Let x ∈ R be a number such that x ≥ 0 and y ∈ R its square root. Then,
we have that y2 = x. Conventionally, we write y = ±√

x. Then +
√
x and −√

x
are the two square roots of x. Hence, the two square roots of 4 are +

√
4 = +2 (or,

equivalently,
√
4 = 2) and −

√
4 = −2.

Thanks to everyone who cared, even a little bit, about me. Thanks to everyone
who made even a single day of my life special!

Finally, my special thanks go to me myself. For the hard work and for never
giving up, not even in the darkest moments. I know it sounds a bit awkward, but
sometimes it is important to value and be grateful to ourselves.

	Introduction
	Related works
	Quad-meshing and retopology
	Composing surfaces
	Automatic skinning

	QuadMixer: composing watertight pure quadrilateral meshes
	Overview
	Methods
	Optimal Patch Retraction
	Patch Subdivision
	Subdivision Optimization
	On the existence of a valid solution
	Final quadrangulation

	Implementation details
	The detaching tool
	Smoothing the surface nearby the intersection curve

	Results
	Discussion
	Limitations and Future Works

	SkinMixer: composing skinned models for animation
	Overview
	Methods
	Determining the resulting skeleton
	Vertex select values
	Determining the resulting surface
	Boundary stitching
	Quadrangulation
	Skinning weight transfer
	Implementation details

	Results
	Discussion
	Limitations
	Future works

	Conclusions
	Automatic surface segmentation for seamless fabrication using 4-axis milling machines
	Introduction
	Related work
	Height-field surface decomposition
	Volume decomposition

	Automatic fabrication planning
	Prefiltering
	Determining the best overall milling orientation
	Determining the optimal decomposition into height fields
	Detail recovery
	Generating the fabrication sequence

	Implementation and results
	Computational and machining setup
	Performance and quality evaluation
	Limitations
	Illustration of the fabrication process

	Conclusions

	Bibliography
	Bibliography

