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Abstract

This paper proposes a general physics-based probabilistic demand model for the reliability analysis of rein-

forced concrete (RC) beams under blast loading. The formulation of the proposed demand model builds on a

computationally convenient representation of the governing physical laws from structural dynamics and adds

a correction term and a model error. Specifically, the proposed demand model starts with predictions from a

generalized single-degree-of-freedom (SDOF) representation of the RC beam, derived from the conservation

law of energy; the correction term removes the implicit bias and improves the accuracy of the model, and

the model error captures the remaining uncertainty in model predictions. Unknown model parameters are

included in the correction term and the model error. Once formulated, the probabilistic model is calibrated

with data from experimental tests or high-fidelity computational models. The inclusion of the governing

physical laws in the proposed model avoids a strong dependence of the model on the specific data used for

the model calibration. The paper uses Bayesian inference that combines predictions from the generalized

SDOF representation with experimental data and any prior information to estimate the unknown model

parameters. The paper then uses the proposed demand model in a formulation to estimate the reliability

of RC beams under blast loading. Finally, the paper illustrates the novel contributions by estimating the

reliability of an RC beam under blast loading for three damage levels. As part of the reliability analyses,

the paper also identifies the dominant sources of uncertainty in estimating the failure probability.
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1. Introduction1

During their service lives, structures and infrastructure might be subject to blast loading from malicious2

or accidental explosions. The consequences of such extreme events can be catastrophic, ranging from eco-3

nomic losses to fatalities and social disruptions (e.g., Ronan Point (London) 1968 [1], New York 2001 [2],4

London 2005 [3], Beirut 2020 [4].) The performance of structures and infrastructure subject to explosive blast5

loading represents a complex nonlinear behavior due to the high amount of energy imparted to these systems6

over a short time. Governing differential equations can rigorously represent the complex nonlinear dynamics7

of structures and infrastructure under explosive blast loading. However, idealized mathematical representa-8

tions of physical laws in differential equations, numerical errors in solution algorithms, and uncertainties in9

input data (e.g., blast load and materials mechanical characteristics) lead to discrepancies between predic-10

tions and the system’s actual performance. Performance predictions require characterizing and propagating11

these uncertainties through the governing differential equations and quantifying their impact on systems12

responses. However, incorporating uncertainties in complex physical processes, like the behavior structures13

and infrastructure under explosive blast loading, represents a significant computational challenge.14

Experimental tests [5–9] on reinforced concrete (RC) structures under blast loads have been the subject15

of much research and provided insights for developing mathematical models. For example, Zhang et al. [5]16

studied the scaling problem of RC beams under close-in blast loads with an experimental approach. Yao17

et al. [6] analyzed the damages of RC beams under field blast, while Magnusson and Hallgren [7, 8] and18

Magnusson et al. [9] studied several RC beams subject to blast loading in a shock tube. Liao et al. [10]19

presented the performance of high-strength RC beams under the explosion load. In this case, the pressure-20

impulse damage curves of RC beams were established using the maximum tensile reinforcement strain as a21

damage criterion. Multi-hazard approaches have also been developed in [11] considering the blast load after22

a fire and in [12] evaluating seismic design effects on the blast load resistance.23

The performance prediction of structural systems subject to explosive blast loading has also received much24

attention. Among the initial contributions is the generalized single-degree-of-freedom (SDOF) representation25

of structural systems [13–20], a computationally convenient model with a simplified physics. The current26

approaches in blast design guidelines (e.g., [21]) widely use the generalized SDOF approximation. The27

literature also includes more nuanced representations of structural systems based on the beam theory [22],28

multi-degrees-of-freedom (MDOF), and Finite Element (FE) models [23–27]. The increasing computational29

capabilities and advances in numerical techniques have also enabled the seamless integration of blast load30

models, derived from first principles, with high-fidelity computational models of structural dynamics (see31

[28] for a review.)32
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However, the computational cost of high-fidelity models may limit their use in the reliability analysis of33

structural systems with small failure probabilities. Therefore, current approaches for reliability analysis of34

structural systems under blast loading (e.g., [20]) generally rely on simplified models, like the generalized35

SDOF, to facilitate the failure probability estimation. For reliability analysis, these approaches usually36

use sampling methods such as the Monte Carlo (MC) simulation and its several variants. However, these37

approaches can be computationally intensive and often do not capture the effects of all the relevant sources38

of uncertainty, including the compromises introduced in simplified structural models. Also, the developed39

models are problem-specific that cannot generally be used for other, even similar systems. Finally, these40

approaches do not fully exploit limited experimental data, often available at the structural component level41

[27].42

This paper proposes a physics-based probabilistic demand model and formulates the reliability for RC43

beams under blast loading. The proposed model integrates the predicted demand from the governing equa-44

tion of motion with an analytical correction term. The proposed formulation builds on a computationally45

convenient model based on first principles. To this end, we first derive a generalized SDOF system from46

the conservation law of energy, assuming smooth material constitutive laws and bending moment-curvature47

relationship. We then develop an analytical correction term that captures discrepancies between the pre-48

dicted deformation demand from the generalized SDOF system and the measured demand from available49

experiments. The proposed demand model also includes a model error term that captures the remaining50

uncertainty in model predictions. We use Bayesian inference to estimate the unknown model parameters in51

the correction term and model error, combining predictions from the generalized SDOF system with exper-52

imental data and any prior information. Similar formulations have been used to develop demand models53

under other external stressors like impacts due to vehicle collision [29]. While in blast loading, a pressure54

wave hits the structure, impact loading is the result of the collision of two or more bodies, producing a55

loading condition characterized by high strain rates [30–32]. After discussing uncertainty classification, we56

formulate the reliability problem using the developed probabilistic model. The use of smooth material con-57

stitutive laws and bending moment-curvature relationship in the proposed formulation allows us to estimate58

the failure probability using the First-Order Reliability Method (FORM). Compared with sampling methods,59

FORM significantly reduces the computational cost of reliability analysis (i.e., reduces the number of system60

evaluations from ∼ O
(
105)) in MC simulation method to ∼ O (10)) [33, 34]. At no additional cost, FORM61

also provides the importance measures of random variables, which allow us to compare and rank random62

variables based on their influence on the failure probability. To illustrate, we consider the reliability analysis63

of an example RC beam subject to blast loading for three damage levels.64

After this introduction, the rest of the paper is organized into four sections. Section 2 presents the65
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experimental dataset used to calibrate the proposed probabilistic demand model. Section 3 explains the66

proposed physics-based probabilistic demand model for RC beams under blast loading. Section 4 discusses67

the reliability analysis using the proposed probabilistic demand model. Finally, the last section summarizes68

the paper and draws some conclusions.69

2. Experimental Dataset70

The laboratory experiments in [7–9] provide the database required to calibrate the proposed probabilistic71

demand model. The database includes the responses of 21 simply supported RC beams subject to shock72

waves produced by an air blast in a shock tube.73

v (y1, t)

y1

l

q (t)

Figure 1: Boundary and loading conditions of a typical RC beam in the database
74

The explosive charge in the experiments was far enough from the beam to generate a plane wavefront,75

resulting in a uniformly distributed load (see Figure 1). The prismatic RC beams in the database have a76

span length of l = 1.5 m with a cross-section of depth H = 0.16 m and width b = 0.3 m. Table 1 summarizes77

the relevant variables of the blast load and structural properties, and their range of values in the database.78

The proposed probabilistic demand model is accurate for RC beams within the geometrical and mechanical79

ranges summarized in Table 1. Unless the model is updated with new data, predictions outside the range80

in Table 1 should be followed with caution as unseen factors, such as different reinforcements distribution81

or geometrical and mechanical characteristics or geometrical and mechanical characteristics, may alter the82

beam’s global response and failure mode. In the next section, we explain model updating with new data.83

84

3. Proposed Physics-based Probabilistic Demand Model85

This section presents the proposed physics-based probabilistic model. The section first reviews a general86

formulation for developing a probabilistic demand model [35–37], followed by a Bayesian parameter estima-87

Please cite this document as: F. Stochino, A. Tabandeh, P. Gardoni and M. Sassu "Physics-based
Probabilistic Demand Model and Reliability Analysis for Reinforced Concrete Beams under Blast Loads"
Engineering Structures, 248 (2021) 112932 - DOI:10.1016/j.engstruct.2021.112932



Acce
pte

d Manu
scr

ipt
Physics-based Probabilistic Demand Model and Reliability Analysis

for Reinforced Concrete Beams under Blast Loads 5

Table 1: Range of the values of the blast load and structural variables in the database
Variable Symbol Range
Equivalent TNT mass [kg] Q 1.24-4.96
Scaled distance [m/kg1/3] z 6.05-24.19
Reflected peak pressure [kPa] Pr 650-1,957
Positive phase duration [msec] td 16-36
Impulse [kPa-sec] I 3.76-11.54
RC specific weight [kN/m3] ρ 24.3-29.4
Concrete compressive strength [MPa] fcu 43-173
Ultimate concrete strain [%] εcu 0.28 -0.35
Reinforcement yielding strength [MPa] fsy 544-604
Reinforcement ratio [%] ρs 1.21-2.75
Beam yielding midspan displacement [mm] vy 7.1-10.5
Beam ultimate midspan displacement [mm] vu 11.6-16.4

tion [38] and model selection [35]. We then use the general formulation to develop the proposed probabilistic88

deformation demand model for RC beams subject to blast loads.89

3.1. Formulation of the probabilistic model90

Formulating a physics-based probabilistic demand model starts with predicting the demand measure91

from the governing differential equation. For computational efficiency, the governing differential equation92

may represent the simplified physics of a more complex phenomenon. We then introduce a correction term93

to capture the mismatch between the actual demand value and that predicted from the differential equation.94

Mathematically, we write the physics-based probabilistic demand model as [35–37]95

T [D (x,Θ)] = T
[
d̂ (x)

]
+ γ (x,θ) + σε, (1)

where T (·) is a transformation function; D (x,Θ) = ∆ (x,Θ) /l is the non-dimensional demand in this paper,96

in which ∆ (x,Θ) is the predicted deformation demand; d̂ (x) = δ̂ (x) /l, in which δ̂ (x) is the predicted97

deformation demand from the governing differential equation; γ (x,θ) is the correction term; x is the vector98

of state variables, such as material properties, characteristics of external stressors, boundary and initial99

conditions, and geometry; Θ = (θ, σ) is the vector of unknown model parameters that need to be estimated;100

and σε is an additive model error (additivity assumption), in which σ is the standard deviation of the model101

error, assumed not to depend on x (homoskedasticity assumption), and ε is a standard normal random102

variable (normality assumption). Diagnostic plots [39] can guide the selection of an appropriate T (·) to103

(approximately) satisfy the additivity, homoskedasticity, and normality assumptions over the range of the104

data. Furthermore, Box and Cox [40] proposed a parameterized family of transformations that provide the105

possible choices for T (·).106

Following [35], we write the analytical correction term as107

Please cite this document as: F. Stochino, A. Tabandeh, P. Gardoni and M. Sassu "Physics-based
Probabilistic Demand Model and Reliability Analysis for Reinforced Concrete Beams under Blast Loads"
Engineering Structures, 248 (2021) 112932 - DOI:10.1016/j.engstruct.2021.112932



Acce
pte

d Manu
scr

ipt
Physics-based Probabilistic Demand Model and Reliability Analysis

for Reinforced Concrete Beams under Blast Loads 6

γ (x,θ) =
Nh∑
k=1

θkhk (x) , (2)

where θ = (θ1, . . . , θNh
) and hk (x), k = 1, . . . , Nh, are explanatory functions. Mathematically, the explana-108

tory functions form the bases of function space to model the variabilities of T (D) not explained by the109

differential equation. The physical interpretation is that the explanatory functions capture the aspects of110

the governing physical laws that are compromised in the differential equation [37].111

3.2. Bayesian parameter estimation and model selection112

Once the probabilistic model is formulated, we use the database introduced in Section 2 to estimate Θ.113

Using Bayesian inference, we integrate the information from the experimental data with any prior information114

about Θ. To estimate Θ, we use the Bayes theorem [38]115

f (Θ) = κL (Θ) p (Θ) , (3)

where f (Θ) is the posterior distribution that represents the updated information about Θ; L (Θ) is the116

likelihood function that includes the objective information from the experimental data; p (Θ) is the prior117

distribution that represents the information available before collecting the experimental data; and κ =118 [∫
L (Θ) p (Θ) dΘ

]−1 is a normalizing constant.119

To write L (Θ), following [35], we first partition the data into equality data Deq if the measured values120

of deformation demand are the actual values, and lower bound data (or censored data) Dlb, if the measured121

values are less than the actual ones. For example, in a failed or interrupted test, the largest recorded value122

during the test serves as a lower bound of the actual demand value for that test. Otherwise, the recorded123

value would represent the actual demand value. We then write L (Θ) as124

L (Θ) ∝ P

 ⋂
i:Di∈Deq

[ri (θ) = σε]
⋂

i:Di∈Dlb

[ri (θ) < σε]

 , (4)

where ri (θ) = T [Di] − T
[
d̂ (xi)

]
− γ (xi,θ) is the value of the model error (or the residual) for the ith125

datum. For statistically independent residuals, we can write L (Θ) as126

L (Θ) ∝
∏

i:Di∈Deq

1
σ
φ

[
ri (θ)
σ

] ∏
i:Di∈Dlb

Φ
[
−ri (θ)

σ

]
, (5)

where φ (·) and Φ (·) are the standard Normal probability density and distribution functions. The prior127

distribution p (Θ) can incorporate any additional information about Θ available before using the data to128
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construct L (Θ). In the absence of additional information, we may simply use a noninformative prior129

distribution as p (Θ)∝ 1/σ [35].130

The computation of the posterior distribution requires evaluating the normalizing constant κ in Eq.131

(3), which often entails an analytically intractable integral. However, we may sample from the posterior132

distribution by simulating a Markov Chain whose stationary distribution is f (Θ). In this paper, we use133

an adaptive, delayed-rejection algorithm [41] to construct the Markov Chain. To accelerate the Markov134

Chain’s convergence, we construct its transition (or proposal) density based on the Gaussian approximation135

of the posterior distribution. Specifically, we construct the covariance matrix of the transition density as136

− [∇∇ lnL (Θ)]−1, evaluated at the maximum likelihood estimate of Θ [42]. We also use the maximum137

likelihood estimate of Θ as the initial state of the Markov Chain.138

The inclusion of insignificant terms in γ (x,θ) may lead to increased model uncertainty and over-fitting139

the data. To develop a parsimonious (simple yet accurate) form of γ (x,θ), we follow a stepwise deletion140

process developed in [35] for regression analysis with censored data. We begin with the complete form of141

γ (x,θ) and successively eliminate one hk (x) at a time, based on the posterior Coefficients of Variation142

(CoV) of each θ. After each elimination, we re-calibrate the remaining Θ. The stopping criterion of the143

elimination process is based on the balance between the desired level of model accuracy, captured by σ,144

and model simplicity. Furthermore, we may combine strongly correlated parameters θk1 and θk2 (e.g., with145

|ρk1,k2 | & 0.7) in the final form of γ (x,θ) as [35]146

θ̂k1 = µk1 + ρk1,k2σk1

θk2 − µk2

σk2

, (6)

where µk1 and σk1 are the posterior mean and standard deviation of θk1 , and θk1 has the higher CoV of the147

two parameters.148

3.3. Proposed probabilistic demand model for RC beams under blast loads149

We now use the general formulation in Eq. (1) to develop the proposed probabilistic deformation demand150

model. We first formulate δ̂ (x) by deriving the differential equation that governs the dynamics of the RC151

beam (i.e., the generalized SDOF representation of the beam model.) We then design the correction term152

γ (x,θ) and calibrate the probabilistic model with the experimental data introduced in Section 2.153

3.3.1. Deterministic model154

We invoke the conservation law of energy to derive the governing differential equation. The conservation155

of energy requires that the external work W done on the beam being in balance with the sum of kinetic K156

and strain U energies of the beam at any time instant t. i.e.,157
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W (t) = K (t) + U (t) . (7)

The external work done by a general load q is158

W (t) =
∫ t

0

∫ l

0
q (y1, τ) ∂v (y1, τ)

∂τ
dy1dτ, (8)

where y1 is the longitudinal coordinate; and v is the transverse displacement as shown in Figure 1. Following159

Freidlander [43], we write the uniform blast time-history q (y1, t) ≡ q (t) as160

q (t) = bPr (1− t/td) e−2t/td , (9)

where Pr is the reflected pressure peak; and td is the phase duration. Following [44], we obtain Pr from161

Pr = 2Pso
(

7Patm + 4Pso
7Patm + Pso

)
,

Pso = 1.772/z3 − 0.114/z2 + 0.108z,

z = R/W 1/3,

(10)

where Patm = 0.1 MPa is the atmospheric pressure; Pso is the stand-off pressure that is obtained from the162

Mills’ model [45]; z is the scaled distance from the explosive charge; R is the distance between the beam and163

explosive charge; and W is the explosive charge in [kg] of equivalent TNT.164

Assuming a triangular impulse, we then obtain td from165

td = 2Iso/Pso,

Iso = cW 2/3/R,

(11)

where Iso is the incident impulse according to Held’s equation [46]; c is a numerical coefficient equal to166

4.8× 105 in this work, following the information reported in [47, 48].167

Next, we express the kinetic energy as168

K (t) =
∫ l

0

1
2µ
[
∂v (y1, t)

∂t

]2
dy1, (12)

where µ is the mass per unit length. Finally, we express the strain energy as169

U (t) =
∫ l

0

∫ ϕ(y1,t)

0
M (ϕ) dϕdy1, (13)
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whereM (ϕ) is the developed bending moment in the beam, which is a function of curvature ϕ ∈ [0, ϕ (y1, t)];170

and ϕ (y1, t) is the curvature of the beam at location y1 and time t. Following [22] and [14], we use a smooth171

bending moment-curvature relationship (see Figure 2) as172

M (ϕ) = M̄ tanh
(
K̄

M̄
ϕ

)
= −M̄ tanh

(
K̄

M̄

∂2v

∂y2
1

)
, (14)

where M̄ is the equivalent ultimate bending moment (see Figure 2); K̄ = My/ϕy is the slope of the elastic173

regime, in which My and ϕy are the yield moment and curvature; and ϕ = −∂2v/∂y2
1 . Substituting Eq. (14)174

into Eq. (13) then yields175

U (t) =
∫ l

0

M̄2

K̄
ln
[
cosh

(
− K̄
M̄

∂2v

∂y2
1

)]
dy1, (15)

where M̄ is obtained by equating the area under the derived bilinear curve A1 (i.e., its strain energy) with176

that of the hyperbolic curve A2 (see Figure 2). Next, we explain the derivation of the bilinear curve from177

cross-section analysis.178

ϕ

M

ϕy

My

ϕu

Mu

K̄

A1

ϕ

M

ϕu

M̄

K̄

A2

Figure 2: Section bending moment-curvature diagrams
179

The section arrives at its yield state when the strain in the tensile reinforcement ε̄s reaches the yield180

strain ε̄sy. The respective neutral axis depth is cy (see Figure 3). We obtain cy and My from the section181

equilibrium at the yield state as182

b

∫ cy

0
σ̄cdy2 + σ̄ssAss = fsyAs,

b

∫ cy

0
σ̄c (d− y2) dy2 + σ̄ssAss (d− d′) = My,

(16)

where σ̄c = σ̄c (y2) is the developed compressive stress in the concrete at depth y2; σ̄ss is the developed183

stress in the compressive reinforcement; fsy is the yield stress of the tensile reinforcement; As is the total184
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cross-section area of the tensile reinforcements; and Ass is the total cross-section area of the compressive185

reinforcements. Accordingly, we obtain the yield curvature from geometry as ϕy = ε̄sy/ (d− cy) (see Figure186

3), where d is the depth of tensile reinforcements.187

The section arrives at its ultimate state when the strain in the concrete’s extreme compressive fiber188

reaches ε̄cu, and the strain in the tensile reinforcement exceeds ε̄sy. The respective neutral axis depth is cu189

(see Figure 3). We obtain cu and Mu from the section equilibrium at the ultimate state as190

b

∫ cu

0
σ̄cdy2 + σ̄ssAss = fsyAs,

b

∫ cu

0
σ̄c (d− y2) dy2 + σ̄ssAss (d− d′) = Mu,

(17)

and the respective curvature from geometry is ϕu = ε̄cu/cu (see Figure 3). The pairs (My, cy) and (Mu, cu)191

completely characterize the bilinear bending moment-curvature diagram, shown in Figure 2.192

Ass

As ϕy

σ̄ss

σ̄c (y2)

σ̄s = fsy

ε̄ss

ε̄c (y2)

ε̄s = ε̄sy

y2

fcu

σ̄ss

σ̄c (y2)

σ̄s = fsy

ε̄cu

ε̄ss

ε̄c (y2)

ε̄s > ε̄sy

b

dH

d′

cy

cu ϕu

Stress Strain

Yield state

Ultimate state

Figure 3: Stress and strain distributions over the cross-section in yield and ultimate states
193

The calculation of (My, cy) and (Mu, cu) from Eqs. (16) and (17) requires specifying the material con-194

stitutive laws (i.e., stress-strain relationships). Following [48], we represent the stress-strain relationship195

of reinforcing steel, both in tension and compression, by an elastic-plastic model. Also, we express the196

stress-strain relationship of concrete in compression as197

σ̄c = fcc[kε̄c/ε̄cc−(ε̄c/ε̄cc)2]
1+(k−2)ε̄c/ε̄cc

, |ε̄c| < |ε̄cu| , (18)

where fcc(< 0) is the compressive strength of concrete; ε̄cc(< 0) is the respective compressive strain; and k198

is the plasticity number. This model neglects the tension strength of concrete.199
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We further capture the strain rate effects on steel and concrete behavior due to the dynamic blast loading.200

Specifically, following [47], we write the dynamic compressive strength of concrete fcc,dyn as201

fcc,dyn =


fcc
[ ˙̄εc/

(
30× 10−6)]1.026αc

, ˙̄εc ≤ 30,

fccη ˙̄ε1/3
c , ˙̄εc > 30,

(19)

where ˙̄εc [s−1] is the concrete strain rate, with αc = 1/ (5 + 0.75fcc) and η = 106.156αc−0.492. We also capture202

the strain rate effects on ε̄cc and ε̄cu as [47]203

ε̄cc,dyn = ε̄cc
[ ˙̄εc/

(
30× 10−6)]0.02

,

ε̄cu,dyn = ε̄cu
[ ˙̄εc/

(
30× 10−6)]0.02

,

(20)

where ε̄cc,dyn is the dynamic strain of concrete corresponding to fcc,dyn; and ε̄cu,dyn is the dynamic ultimate204

strain of concrete. Finally, we write the dynamic yielding strength of steel fsy,dyn as [47]205

fsy,dyn = fsy

[
1 + 6

fsy
ln
(

min
{ ˙̄εs, 10

}
50× 10−6

)]
, (21)

where ˙̄εs [s−1] is the steel strain rate.206

In summary, we rewrite the conservation law of energy in Eq. (7) in the form of an integro-differential207

equation208

∫ l

0

{
1
2µ
(
∂v

∂t

)2
+ M̄2

K̄
ln
[
cosh

(
− K̄
M̄

∂2v

∂y2
1

)]
−
∫ t

0
q (τ) ∂v

∂τ
dτ
}
dy1 = 0, (22)

supplemented by the materials’ constitutive laws, and subject to the boundary conditions v (y1 = 0, τ) =209

v (y1 = l, τ) = 0, for τ ∈ (0.t], and the initial condition v (y1, τ = 0) = 0, for y1 ∈ (0, l).210

Following [49], we represent the trial functions using the spectral expansion211

v (y1, t) =
∞∑
j=1

Vj (t) sin [(2j − 1)πy1/l] , (23)

where Vj (t)’s are the unknown spectral functions that need to be estimated. The functional form of the trial212

functions readily satisfies the boundary conditions, and the underlying symmetry of the problem.213

To facilitate the computation of v (y1, t), we only retain the first term of the trial functions in Eq. (23) and214

capture the effects of this approximation by the correction term (see Eq. 1). Furthermore, Cox et al. [49] have215

shown that the error incurred in approximating the maximum strain energy by retaining only the first term216

is less than 3% of the approximation with the first two terms. Then, substituting v (y1, t) ∼= V1 (t) sin (πy1/l)217

Please cite this document as: F. Stochino, A. Tabandeh, P. Gardoni and M. Sassu "Physics-based
Probabilistic Demand Model and Reliability Analysis for Reinforced Concrete Beams under Blast Loads"
Engineering Structures, 248 (2021) 112932 - DOI:10.1016/j.engstruct.2021.112932



Acce
pte

d Manu
scr

ipt
Physics-based Probabilistic Demand Model and Reliability Analysis

for Reinforced Concrete Beams under Blast Loads 12

into Eq. (22) yields218

µl

4

(
dV1

dt

)2
+ M̄2

K̄

∫ l

0
ln
{

cosh
[
K̄

M̄

π2

l2
V1 sin

(π
l
y1

)]}
dy1 −

2l
π

∫ t

0
q (τ) dV1

dτ dτ = 0. (24)

We use a second-order central finite-difference scheme to transform the integro-differential equation into219

the following algebraic equation in only unknown V1 (t):220

µl

4

(
V1,nt+1 − V1,nt−1

2∆τ

)2
+ M̄2

K̄

ms+1∑
m=1

ln
{

cosh
[
K̄

M̄

π2

l2
V1,nt sin

(π
l
y1,m

)]}
∆y1

−2l
π

nt∑
n=1

qn
V1,n+1 − V1,n−1

2∆τ ∆τ = 0, (25)

where ∆τ and ∆y1 are the space and time increments; n is the time index, and m is the space index; and221

nt + 1 and ms + 1 are the total number of time and space increments. We solve this equation sequentially222

for each time step. Algorithm 1 summarizes the implementation of Eq. (25).223

Algorithm 1 Second-order central finite-difference scheme to solve for V1 (t)
1: set the time horizon
2: set the space and time increments ∆τ and ∆y1
3: set the total number of space and time increments Nt ← dt/∆τe and Ns ← dl/∆y1e
4: initialize the unknown function V1,0 ← 0
5: for nt from 1 to Nt do
6: compute the unknown V1,nt+1 ← Solve Eq. (25)
7: compute the curvature at midspan ϕ← −∂2v/∂y2

1 = π2/l2V1,nt+1
8: compute the curvature rate ϕ̇ = ∂ϕ/∂t← (V1,nt+1 − V1,nt−1) / (2∆τ)
9: compute the respective bending moment M (ϕ)← M̄ tanh

(
K̄/M̄ϕ

)
10: compute the neutral axis depth c← Solve

[
b
∫ c

0 σ̄c (d− y2) dy2 + σ̄ssAss = M
]

11: compute the strains in extreme concrete fiber ε̄c ← c tan (ϕ)
12: compute the strains in compression and tension steel fibers ε̄ss ← (c− d′) tan (ϕ); ε̄s ← (d− c)
13: adjust the material properties for the strain rate effects using Eqs. (19)-(21)
14: update the mechanical properties of the section cy, My, cu, Mu using Eq. (16) and (17)
15: update K̄ ←My/ϕy and M̄ ← Solve

{
M̄/K̄ ln

[
cosh

(
M̄/K̄ϕu

)]
= 0.5 [Mu (ϕu − ϕy) +Myϕu]

}
16: if ϕ ≥ ϕu then
17: break
18: end if
19: end for
20: Output← V1,1:Nt+1

Finally, we express the deterministic deformation demand as224
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δ̂ (x) = sup
τ∈[0,t]

max
y1∈(0,l)

v (y1, τ)

= sup
τ∈[0,t]

V1 (τ) ,
(26)

where maxy1∈(0,l) v (y1, τ) = V1 (τ) follows from the embedded symmetry in the problem.225

3.3.2. Model correction226

In this section, we design the correction term (see Eq. 2) to capture the physical characteristics not fully227

represented by d̂ (x) = δ̂ (x) /l. As the candidate explanatory functions, we define h1 (x) = 1 to capture a228

potential constant bias in the model d̂ (x); h2 (x) = ϕyH and h3 (x) = ϕuH to consider the beam’s flexural229

characteristics; h4 (x) = ε̄cu, h5 (x) = fsy/fcu, and h6 (x) = ρsfsy/fcu to consider the materials’ mechanical230

characteristics; and, h7 (x) = z/zmax and h8 (x) = Pr/Pr,max to consider the load characteristics, where zmax231

and Pr,max are the maximum values of the scaled distance and reflected pressure peak in the experimental232

dataset. All the explanatory functions are non-dimensional, and their selections are aimed at capturing the233

aspects of beams behavior not fully represented by the deterministic model.234

3.3.3. Parameter estimation and model selection235

In this section, we shorten the list of explanatory functions in γ (x,θ) to obtain a parsimonious model.236

Figure 4 shows the posterior CoV of θk’s (with dots) and the posterior mean of σ (with open squares) at237

each step in the deletion process. We stop the deletion process at Step 7, retaining θ3h3 (x) and θ4h4 (x) in238

the final form of the model.239
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Figure 4: Stepwise deletion process of the deformation demand model

Table 2 summarizes the posterior statistics of Θ = (θ3, θ4, σ). The obtained results indicate that θ3 and240

θ4 are highly correlated; hence, we combine them using Eq. (6), resulting in a correction term with only one241

parameter as242
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γ (x,θ) = θ3ϕuH + (0.1107− 0.6189θ3) ε̄cu. (27)

The negative mean of θ3 indicates that d̂ (x) generally tends to overestimate the contribution of ultimate243

curvature, whereas the positive mean of θ4 indicates that d̂ (x) tends to underestimate the contribution of244

concrete ultimate strain. However, Eq. (27) should not be interpreted in a mechanistic way in explaining245

the role of each explanatory functions; the values of the parameters simply provide a good fit to the data246

[50, 51].247

Table 2: Posterior statistics of parameters in the deformation demand model
Standard Correlation coefficient

Parameter Mean deviation θ3 θ4 σ
θ3 −0.628 0.216 1 -0.994 0.11
θ4 0.499 0.134 -0.994 1 −0.1285
σ 0.342 0.075 0.11 -0.1285 1

Figure 5 shows a comparison between the measured and predicted non-dimensional deformation demands248

(i.e., D = ∆/l) of all the beams in the database. The predictions are according to the deterministic (left plot)249

and probabilistic (right plot) models. For a perfect model, the equality data Deq should line up along the 1:1250

solid line and the lower-bound data Dlb should lie above the 1:1 line. The predictions from the generalized251

SDOF representation (i.e., deterministic model) tend to overestimate the demand. The proposed probabilistic252

model effectively corrects the bias in the generalized SDOF representation. The predicted equality data are253

evenly spread around the 1:1 line, mostly within the dashed lines defined as ±σ away from the 1:1 line. Also,254

almost all the lower-bound data are still above the 1:1 line.255
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Figure 5: Comparison between measured and predicted deformation demand based on deterministic (left) and probabilistic
(right) models

256
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Remark. The number of training data required to estimate the unknown model parameters Θ mainly depends257

on the complexity of the relation between the system demand D and its state variables x(i.e. the number258

of unknow parameters). A database with 21 training data, used in this paper, might generally be small for259

developing a data-driven probabilistic demand model. However, developing physic-based probabilistic models260

(like we do in this paper) requires fewer data. The level of dependence on (experimental) data is reduced261

by incorporating available knowledge in various forms, including existing (deterministic) models based on262

first principles, informative explanatory functions, and informative prior distributions on Θ. Specifically, we263

could develop a relatively simple yet accurate probabilistic demand model with only two parameters (θ3, σ)264

by incorporating first principles and informative explanatory functions. In addition, as more data become265

available in the future, the model can be updated using Bayesian inference (see Eq. 3).266

4. Reliability Analysis using the Proposed Physics-based Probabilistic Model267

Reliability analysis aims to estimate the probability that a system fails to satisfy its intended design268

purposes. The evaluation of failure probability requires characterizing the sources of uncertainty and quan-269

tifying their effects on the system’s responses. This section first explains the sources of uncertainty in the270

proposed physics-based probabilistic demand model, followed by the formulation of the reliability problem,271

and the treatment of different uncertainties in the reliability analysis. Finally, we conduct the reliability272

analysis of an example RC beam subject to blast loading.273

4.1. Uncertainty classification274

The proposed physics-based probabilistic demand model involves various sources of uncertainty that need275

to be characterized and properly treated in the reliability analysis. Following [35], we categorize these sources276

of uncertainty into four groups. First, there is inherent uncertainty in state variables x. We capture the277

uncertainty in x by a parameterized probability density function f (x,θf ), where θf is a vector of distribution278

parameters. The choice of the model for f (x,θf ) is itself a source of uncertainty that mainly affects the279

reliability analysis of systems with small failure probability. As a particular case, this uncertainty might be280

limited to the uncertainty in the distribution parameters [52]. Second, the model error σε is another source281

of uncertainty (i.e., model uncertainty) that captures the collective effects of missing variables, the selected282

mathematical form of the probabilistic demand model, and numerical error of the finite-difference solution.283

Third, there is statistical uncertainty in the estimation of the unknown parameters using the experimental284

data. The unknown parameters can include both the model parameters Θ and the distribution parameters285

θf . In general, the posterior distribution from the Bayesian inference is intended to capture the statistical286

uncertainty in Θ and θf . In the rest of this section we treat θf as a deterministic parameter; though, its287
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treatment in the reliability analysis is similar to that of Θ. Finally, the model parameters are estimated288

from the experimental data that may include measurement errors from measurement devices or procedures289

inaccuracy. The treatment of this uncertainty in the development of probabilistic models can be found in290

[35, 53].291

4.2. Reliability analysis using the proposed physics-based probabilistic model292

Mathematically, we represent the failure event by defining a limit-state function g (x,Θ) as [33, 34]293

g (x,Θ) = C −D (x,Θ) , (28)

where C is the capacity estimate. We obtain the non-dimensional capacity C = vmax/l from its geometrical294

relationship with the beam’s end rotation angle through C ∼= tanα
2 , where vmax is the midspan maximum295

deformation and α is the respective beam’s end rotation angle. Table 3 shows the thresholds of α associated296

with different damage levels [54]. We note that the capacity and demand models of a system generally share297

the same input random variables that represent system characteristics. However, their levels of uncertainty298

may not necessarily be comparable. The reason is that the model error is often the dominant source of299

uncertainty that can significantly differ between the capacity and demand models (we will explain this point300

later in the numerical example.) With comparable levels of model refinement, the demand model is usually301

more uncertain than the corresponding capacity model due to the uncertainty in the intensity measures of302

external stressors that go into the demand model. Thus, as the first step, we focused on the demand model303

herein and developing the capacity model remains a subject for future research.304

Table 3: Capacity thresholds associated with different damage levels
Damage level Rotation α [deg]
Moderate ≤ 2
Heavy ≤ 5
Blowout ≤ 10

For a given Θ, the failure probability PF (Θ) and reliability index β (Θ) are obtained from305

PF (Θ) =
∫

ΩF (Θ)
f (x)φ (ε) dxdε,

β (Θ) = Φ−1 [1− PF (Θ)] ,
(29)

where ΩF (Θ) is the failure event, defined as ΩF (Θ) = {(x, ε) : g (x,Θ) ≤ 0}. The estimation of the failure306

probability accounts for the uncertainty in the state variables and model uncertainty. As discussed in [35],307

one can also include the uncertainty from measurement errors in the computation of the failure probability.308
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In reliability theory, it is common to compute PF by first evaluating the conditional failure probability309

(i.e., fragility) as a function of the intensity measures of external stressors (i.e., the scaled distance z herein)310

[35, 55]. Mathematically, we express the fragility function as311

F (z,Θ) =
∫

ΩF (z,Θ)
f (r, z)φ (ε) drdε, (30)

where x is partitioned as x = (r, z), in which r contains the characteristics of the system (e.g., material312

properties and geometry); and ΩF (z,Θ) is the failure event for a given value of z. We then obtain the313

fragility function (i.e., evaluate Eq. 30) from reliability analyses for different values of z [33]. To capture the314

effects of statistical uncertainty in Θ, we compute the predictive estimate of the fragility function as [35]315

F̃ (z) = EΘ [F (z,Θ)]

=
∫
F (z,Θ) f (Θ) dΘ,

(31)

where EΘ [F (z,Θ)] is the expected value of F (z,Θ) with respect to Θ, and f (Θ) is the posterior distribution316

of Θ from Bayesian inference. The confidence interval of F̃ (z) is then317

[
Φ
(
−β̃ (z)− σβ (z)

)
,Φ
(
−β̃ (z) + σβ (z)

)]
, (32)

where β̃ (z) = Φ−1 [1− F̃ (z)
]
is the generalized reliability index, and318

σβ (z) ∼= ∇Θβ (z) ΣΘΘ∇ᵀ
Θβ (z) , (33)

is the variance of the reliability index, obtained from the first-order Taylor expansion around the posterior319

mean of Θ. The confidence interval is approximately the interval between 0.15 and 0.85 quantiles, see [35].320

To systematically identify the critical sources of uncertainty, we compute the importance measures of321

random variables y = (x, ε,Θ) as [56]322

γ = αJu∗,y∗Ď∥∥∥αJu∗,y∗Ď
∥∥∥ , (34)

where γ is the vector of importance measures in the original probability space; α = −∇G (u∗) / ‖∇G (u∗)‖323

is the vector of importance measures in the standard Normal probability space; ‖·‖ is the Euclidean norm;324

u∗ is the most likely failure point in the standard Normal probability space, called the design point; y∗325

is the counterpart of u∗ in the original probability space; G (u∗) = g [T (y∗)], in which T : y → u is an326

injective mapping from the original to standard Normal probability space; Ju∗,y∗ = ∇y∗T is the Jacobian327
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matrix of T evaluated at y∗; and Ď is the diagonal matrix of the standard deviations of y̌, defined as328

y̌ = y∗ + (u− u∗) J−1
u∗,y∗ . The positive sign of the importance measure implies that the random variable329

is a load variable, and the negative sign implies that the random variable is a resistance variable. Also,330

the magnitude of the importance measure represents the random variable’s contribution to the limit-state331

function variance.332

4.3. Reliability analysis of an example RC beam under blast loading333

In this section, we develop fragility functions for an example RC beam subject to blast loading. Table 4334

summarizes the beam’s geometry and material properties and, when appropriate, their statistical informa-335

tion. The distance between the beam and the trinitrotoluene (TNT) explosive charge is 10 m; this distance336

allows us to satisfy the planar blast wave hypothesis. The scaled distance z varies from 0.6 to 2.4 m/kg1/3
337

by changing the quantity of the explosive TNT charge.338

In general, the mechanical properties of materials is much more challenging to quantify than geometrical339

sizes, which can be easily determined with high accuracy and are usually considered as deterministic variables.340

In addition, geometrical imperfection proved to have a negligible influence on the reliability analysis as shown341

in [15, 35, 57].342

Table 4: Summary of design variables for the example beam
Variable Value/Mean CoV Distribution
l [m] 1.5 - -
H [m] 0.16 - -
b [m] 0.3 - -
µ [kg/m] 120 - -
fcc [MPa] 40 0.15 Lognormal
fsy [MPa] 450 0.05 Lognormal
Es [GPa] 210 - -
ρs = As/ (bH) 0.209 - -
As/Ass 0.1563 - -

343

Figure 6 shows the computed fragility functions for the three damage levels in Table 3. The solid curves344

in the figure represent the predictive estimate of the fragility function F̃ (z). The shaded area around345

the predictive estimate represents the [0.15, 0, 85] confidence band due to the statistical uncertainty in the346

estimate of Θ. The computed fragility functions can be useful to design an optimal stand-off distance for347

given design requirements. For example, to design a beam with the characteristics described in Section 2348

for a given explosive charge mass (i.e., 50 kg) and the probability of exceeding the limit-state threshold (i.e.,349

99%), the necessary stand-off distances to reach the three damage levels are blowout 2.56 m, heavy damage350
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4.05 m, and moderate damage 5.16 m. This information can also help to design protective fences around351

structures that can guarantee a specific stand-off distance.352
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Figure 6: Fragility functions for the three damage levels

Figure 7 shows the computed importance measures of random variables fsy, fcc, and ε for the three353

damage levels. For each damage level, the importance measures are computed for different values of the354

scaled distance z, ranging from 0.6 to 2.4 m/kg1/3. In this way, it is possible to identify the influence of the355

selected random variables on the beam’s failure probability for different loading levels. The most important356

variable to the failure event is the model error. This result explains that uncertainty in material properties357

has negligible effects on the failure probability estimate. Thus, future work may focus on the improvement358

of the probabilistic model.359
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Figure 7: Importance measures of fsy (a), fcc (b), and ε (c) to the failure event
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5. Conclusions360

The paper proposed a novel probabilistic demand model for reinforced concrete (RC) beams under blast361

loading that is computationally convenient for reliability analysis while capturing the governing physical laws.362

The proposed model combines the prediction from a simplified physics with an analytical correction term.363

Specifically, the dynamics of an RC beam has been captured by an equivalent generalized single-degree-of-364

freedom (SDOF) system, derived from the conservation law of energy using smooth material constitutive365

laws and bending moment-curvature relationship. The correction term is then developed to capture the366

compromises in the simplified physics (i.e., the generalized SDOF representation.) The paper presented367

Bayesian inference to estimate the unknown model parameters in the correction term and the model error368

from experimental data and any prior information. Integrating the predictions from the generalized SDOF369

system into the proposed model enables the best use of limited experimental data to develop a general370

probabilistic demand model. The conditional failure probability (i.e., fragility function) are then obtained371

from rigorous reliability analyses using the proposed probabilistic demand model. The fragility function was372

conditioned on the scaled distance from the explosive discharge as the hazard intensity measure. Imple-373

menting the smooth material constitutive laws and bending moment-curvature relationship enabled using374

the First Order Reliability Method (FORM) to estimate the fragility function, which is several orders of375

magnitude faster than sampling methods; it also provides the importance measures of random variables376

with no additional calculations. Fragility functions can help us to design the stand-off distance such that the377

blast-induced damage does not exceed a given level with the desired confidence. As an illustration, the paper378

estimated the fragility functions of an example RC beam for three damage levels. The calculated importance379

measures indicate that the primary source of uncertainty in reliability analyses is the model error. Thus,380

future work should improve the simplified physics and develop a more informative correction term using381

additional data.382
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