
Article Type: SI: NASCA18

Section/Category: 65Fxx (Numerical linear algebra)

Keywords: Tikhonov regularization, discrepancy principle, modified discrepancy principle

Corresponding Author: Dr. Alessandro Buccini,

Corresponding Author's Institution: Kent State University

First Author: Alessandro Buccini

Order of Authors: Alessandro Buccini; Yonggi Park; Lothar Reichel

Abstract: In Proposition 1 in the above paper $\mu_3 \leq \mu_2$ should be replaced by $\mu_3 \geq \mu_2$.

Alessandro Buccinia, Yonggi Parka, Lothar Reichela

aDepartment of Mathematical Sciences, Kent State University, Kent, OH 44242, USA.

Abstract

In Proposition 1 in the above paper $\mu_3 \leq \mu_2$ should be replaced by $\mu_3 \geq \mu_2$.

Correct formulation of Proposition 1 in [1]:

Proposition 1. Let μ_j be the unique solution of $\phi_j(\mu) = \eta^2 \varepsilon^2$ for $j \in \{2, 3\}$. Then $\mu_3 \geq \mu_2$. Generally, the inequality is strict.

Proof. The function

$$p \rightarrow \frac{\tilde{b}_j^2}{(\sigma_j^2/\mu + 1)^p}$$

is decreasing. Therefore, for fixed $\mu > 0$, $\phi_3(\mu) \leq \phi_2(\mu)$. The inequality is strict if $\tilde{b}_j \sigma_j \neq 0$. The function

$$\mu \rightarrow \frac{\tilde{b}_j^2}{(\sigma_j^2/\mu + 1)^p}$$

is increasing. In order for $\phi_2(\mu_2) = \phi_3(\mu_3)$, we must have $\mu_3 \geq \mu_2$. The inequality is strict if $\tilde{b}_j \sigma_j \neq 0$ for at least one index $1 \leq j \leq n$. \hfill \Box

\textit{Email addresses:} abuccini@kent.edu (Alessandro Buccini), ypark7@kent.edu (Yonggi Park), reichel@math.kent.edu (Lothar Reichel)

Preprint submitted to Elsevier May 22, 2019
References