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ABSTRACT

Early predictors of student success are becoming a key tool
in flipped and online courses to ensure that no student is left
behind along course activities. However, with an increased
interest in this area, it has become hard to keep track of what
the state of the art in early success prediction is. Moreover,
prior work on early success prediction based on clickstreams
has mostly focused on implementing features and models for
a specific online course (e.g., a MOOC). It remains there-
fore under-explored how different features and models enable
early predictions, based on the domain, structure, and edu-
cational setting of a given course. In this paper, we report
the results of a systematic analysis of early success predic-
tors for both flipped and online courses. In the first part, we
focus on a specific flipped course. Specifically, we investigate
eight feature sets, presented at top-level educational venues
over the last few years, and a novel feature set proposed in
this paper and tailored to this setting. We benchmark the
performance of these feature sets using a RF classifier, and
we provide and discuss an ensemble feature set optimized for
the target flipped course. In the second part, we extend our
analysis to courses with different educational settings (i.e.,
MOOCs), domains, and structure. Our results show that
(i) the ensemble of optimal features varies depending on the
course setting and structure, and (ii) the predictive perfor-
mance of the optimal ensemble feature set highly depends
on the course activities.
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1. INTRODUCTION

An increasing number of universities are now running blended
courses that combine traditional lectures with online instruc-
tion, providing educational models tailored to the needs of
our society |20]. A popular instructional strategy to enable
blended learning is represented by flipped classrooms, where
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students complete pre-class activities before attending face-
to-face lessons [18]. Recent studies have shown the positive
impact and dependency of this strategy on student-centered
variables such as self-efficacy and self-regulation |22} |17} |6}
19]. Pre-class activities usually consist in watching videos
and completing quizzes part of Massive Open Online Courses
(MOOCs) used as supplementary material [27]. Each week,
students are asked to perform these pre-class activities and
to then complete exercises and have discussion in class. Pre-
class activities are fundamental for the success of flipped
courses |12} 21, 28]. However, students often lack skills,
time, and motivation to regulate their pre-class activity; as
a consequence, they may experience difficulties in class and
end up failing the course |10} |14]. To ensure that no learner
is left behind, Early Success Predictors (ESPs) are becom-
ing crucial to support instructors in identifying and timely
acting upon risk factors of failing a course.

So far, there are few studies on analyzing student success in
flipped courses based on pre-class activities. For instance,
Jovanovic et al. |9, |8] clustered interaction sequences in
pre-class clickstreams to identify learning strategies, showing
how strategy-based student profiles differ in course grades.
Beatty et al. [2] found that frequency counts of video us-
age are often correlated with course grades in flipped class-
rooms. In blended, but not flipped settings, Akpinar et
al. [1] showed that student’s strategy counts, with strate-
gies modelled as clickstream event n-grams, are indicative
of course homework grades. Wan et al. |25 26| trained gra-
dient boosting classifiers on an extensive set of clickstream-
based features to identify at-risk students in a small private
online course delivered in hybrid mode. They also analyzed
the importance of the features, finding that the time spent
in online activities and the stability of time distribution dur-
ing weeks have the highest importance in that course. To
the best of our knowledge, no prior work on flipped courses
specifically focused on ESPs.

Conversely, there is a large body of research on success pre-
diction for fully online courses (e.g., MOOCs). A multitude
of feature sets have been extracted from clickstreams for
this purpose. Recent work proposed video-counting (e.g.,
number of videos viewed per week, rewinds, fastforwards,
pauses, and plays, and the fractional and total amount of
time played and paused for videos) and session-based (e.g.,
number of sessions, mean and standard deviation of the time
for all sessions and between sessions) features [4} |13]. These
features were fed into different commonly used classifiers



(e.g., Logistic Regression, Naive Bayes, Decision Tree, RF,
and Neural Networks) to predict success in weekly assign-
ments or in the entire specific MOOC. In [3], several fea-
tures that measure intra-course, intra-week and intra-day
regularity in video watching were proposed, and their corre-
lation with the course grade was shown. Other researchers
leveraged attendance rates, usage rates, and watching ra-
tios |7}, [15]. Specifically, they explored how the difference
in these indicators affects academic performance, showing
that students whose indicators are high are more likely to
graduate on schedule. More fine-grained features on video
usage (e.g., total video views, mean and standard deviation
of the proportion of videos watched, re-watched, and inter-
rupted per week, and the frequency and total number of all
video actions and of each type of video action) were pro-
posed in [11]. The authors clustered students according to
their watching behavior and found that such a behavior is
representative of course performance. Similarly, Mubarak
et al. [16] extracted implicit features from video-clickstream
data, and investigated the extent to which neural networks
fed with those features can predict weekly students’ perfor-
mance. For an extensive discussion on success prediction in
MOOCs, we recommend this survey [5].

The above features and classifiers, however, are designed
for fully-online learning contexts, such as MOOCs. Despite
clear connections, there are essential aspects which distin-
guish flipped courses from MOOCs. First of all, flipped
course data includes relatively few students. A large part of
the learning activity happens offline and cannot be tracked,
leading to data only on course segments. Flipped courses
generally have also an intense instructor guidance and per-
formance on them has direct impact on the academic port-
folio. As a motivating example, we consider a flipped course
on Linear Algebra later described in this paper and the reg-
ularity features proposed for MOOCs in [3]. They quan-
tify students’ time regularity by considering their activi-
ties over the course (e.g., studying at the same days of
the week). Boroujeni’s study revealed that the final grade
in the MOOC is correlated with two intra-week regularity
measures and the periodicity of day hour and week hour
(146 < ¢ < .7, p < 0.001). Conversely, the same features
resulted to have no correlation with the final grade in the
above flipped course (.0 < ¢ < .1, p < 0.001). Therefore,
it remains unexplored whether existing features and classi-
fiers for MOOCs generalize to different educational settings
(e.g., flipped classrooms), and to what extent the feature
importance varies according to the topic, structure, and ed-
ucational setting of the course.

The contribution of this paper is two-fold: we tackle the
problem of ESPs in flipped classroom settingﬂ and we pro-
vide an extensive analysis and benchmark of classifiers and
features for early success prediction across different types of
courses, namely MOOCs and flipped courses. A schematic
overview of our analysis in this paper is shown in Figure

In a first step, we propose a novel feature set for early suc-
cess prediction in flipped courses. Our feature set mea-
sures students’ alignment, anticipation, and strength in quiz
and video usage. We benchmark our new feature set using
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a Random Forest (RF) classifier against eight feature sets
presented in previous work on success prediction in online
courses. We retrieved these feature sets by systematically
scanning the recent papers published at major educational
venues (e.g., EDM, AIED, etc.) and reproducing the fea-
tures based on the relevant papers. Our results on data
of 214 students enrolled in a linear algebra flipped course
show that the novel feature set outperforms all previously
suggested feature sets. We also show that predictive per-
formance can be increased by selecting the optimal features
from the ensemble of all feature sets.

In a second step, we extend our analysis to further courses
along three dimensions: domain, structure, and educational
setting. We compute the early predictive performance again
using a RF classifier for three additional courses: a flipped
course on functional programming (where pre-class activities
include videos only), a MOOC on linear algebra (including
video and quiz activities), and a MOOC on functional pro-
gramming (including video activities only). For each course,
we select the optimal features from the ensemble of feature
sets (eight feature sets from prior work and one novel feature
set from this paper) as input features for the RF classifier.
Our results show that the structure of the course signifi-
cantly influences performance. Predictive performance for
courses including quizzes is much higher than for courses in-
cluding only videos. Furthermore, we also show that while
there is some overlap between the optimal features across
courses, the importance of the features highly depends on
the setting and structure of the course.

2. EARLY PREDICTION FORMULATION

The problem addressed in this paper can be framed into a
time series classification task that relies on clickstreams to
predict student success in a course. For clarity and repro-
ducibility, we present and formalize the addressed problem.

Course. Early success predictions are provided in the con-
text of a course (e.g., a MOOC or a course run in a flipped
classroom setting). In what follows, we hence mathemati-
cally define fundamental concepts, such as the course sched-
ule, the learning objects, and their properties. Specifically,
we consider a set of students U who are enrolled in a course
c part of the online educational offering C. Each course
¢ € C has a pre-defined schedule S, consisting of N = S|
online activities, such that Sc = {s1,...,sny}. We assume
that each online activity s; included in the course schedule
is represented by a tuple (o0;,t;), consisting of learning ob-
ject 0; € O and its corresponding completion deadline for
students t; € R™, modelled as a timestamp. Each learn-
ing object o € O is characterized by descriptive properties
denoted with an M-dimensional vector fo = (fi,...,fm)
over a set of features F = {Fl, .. ,IFM} that vary according
to the type of the learning object (e.g., the duration for a
video or the maximum grade for a quiz). Specifically, each
feature F; € F can be envisioned as a set of discrete or con-
tinuous values describing an attribute of a learning object
0, fo; € Fj for j =1,..., M. Our study in this paper as-
sumes that learning objects can be either videos or quizzes,
but the notation can be easily extended to other types (e.g.,
forum posts or readings). The type of a learning object
o € O is returned by a function type : @ — {video, quiz}.


https://github.com/d-vet-ml4ed/flipped-classroom

Course - Feature Extraction

Clickstream Logs ]

Observations &
Recommendations

Model Classification &
Feature Importance

Feature Aggregation
& Success Definition

Flipped MooC 8 Existing Feature Sets

Student 1 — Week 1

weow {0 10T ME@E -

+Quiz(Q) 1 FLIP 1 Novel Feature Set

[TTTTT]

Feature Ensembles

1
FP- | Student 1 — Week N
'
1

[v][a]fe] -

Video
Only (V)

Random Forest
Student 1 at Week N . | Course-dependent |
Week 1 Week N < ? 5
OO0 - I . . | Data-dependent |
I 'S
Weekly Feature Averaging Pas .
N | Workflow-dependent |
Success Label
Success Feature | Evaluation-dependent |
[m} Prediction Importance

Figure 1: Our Framework. We first analyze a flipped course with videos and quizzes, then investigate differences between courses
in flipped and MOOC settings and with videos only and videos plus quizzes. Eight state-of-the-art feature sets, a novel feature
set, and feature ensembles are computed for each student and each week of the course. Weekly features are averaged and a
success label is attached, according to the course type. Classification is performed using a Random Forest. Observations and
recommendations on the predictive power of features are provided for each course setting, highlighting open challenges.

Based on common log data collected by educational plat-
forms, we assume that learning objects of type video, de-
noted as 0"%° = {0 € O |type(o) = video}, are described
by properties associated to the video duration in seconds as
Fv4e — (duration € R"). Learning objects of type quiz, de-
noted as 07 = {0 € Q| type(o) = quiz}, are characterized
by descriptive properties that model the maximum grade
students can achieve in that quiz as F9“* = (maxgrade €
R*). For convenience, we use superscripts to denote a de-
scriptive property of a learning object. For instance, the
duration of a video o € Q" can be referred to as 0% ",
The same notation applies to other descriptive properties.

Interaction. Students enrolled in an online course interact
with the learning objects included in the course schedule,
generating a time-wise clickstream. We denote a clickstream
in a course ¢ € C for a student v € U as a time series I, such
that I, = {i1,...,ix }, with K € N (e.g., a sequence of video
plays and pauses, quiz submissions, and so on). We leave
these definitions very general on purpose, in particular allow-
ing the length of each time series to differ, since our models
are inherently capable of handling this. Likewise, we neither
enforce nor expect all time series to be synchronized, i.e.
being sampled at the same time, but rather we are fully ag-
nostic to non-synchronized observations. This configuration
is common in educational time series. We assume that each
interaction i; is represented as a tuple (¢;, a;, 05, d;), consist-
ing of a timestamp t; € R™, the action a; € A performed by
the student (e.g., play or pause), the learning object o; € QO
involved in the action a; (e.g., a certain video or quiz),
and an L-dimensional descriptive vector d; = (di,...,dr)
over a set of features D = {D,...,Dr}. These descrip-
tive vectors are used to append relevant information to an
action a; performed at time ¢;, such as the current video
time when the action occurred or the grade received by
the student on a quiz. Based on the type of the learning
object o € O, the student can perform different actions
A. We assume that video interactions, denoted by {i; =
(tj,aj,05,d;) € L, | type(o;) = video}, are limited to actions
a; € Avidee — {Load, Play, Pause, Stop, SpeedChange, Seek}.
These actions are derived from those commonly allowed to
students in online educational platforms. Conversely, quiz
interactions, denoted by {i; = (¢, a;,0;,d;) € L, | type(o;) =
quiz}, include actions a € A" = {Submit}.

In online educational platforms, clickstream interactions in-
clude a payload with additional information beyond the times-

tamp, the action, and the involved learning object. For in-
stance, if a student submits a quiz, the resulting interaction
includes also the grade assigned by the system to the stu-
dent’s quiz. Our notation models each dimension D; € D
of a clickstream interaction as a set of discrete or contin-
uous values describing the interaction i; € I, d;; € Dy
for I = 1,..., L. Specifically, we assume that interactions
involving base video actions {i; = (¢;,a;,0;5,d;) € L, |a; €
{Load, Play, Pause, Stop}} include descriptive properties as-
sociated to the current video time the interaction occurred,
i.e. D¢ = (current-time € RT). Interactions involving a
speed change in a video, denoted as {i; = (t;,a;,0;,d;) €
I, |a; € {SpeedChange}}, are characterized by descriptive
properties associated to both the old and the new speed
the video has been and will be watched, i.e. D%PecdChange —
(oldspeed € R™ newspeed € RT). Interactions generated
by students while seeking the video backward or forward,
denoted as {i; = (t;,a;,05,d;) € L,|a; € {Seek}}, are
modelled by descriptive properties related to the previous
and current video time the student moved on, i.e. D% =
(oldtime € R™ newtime € RT). Finally, submit interactions
generated in quiz activities, denoted as {i; = (t;,a;,0;,d;) €
I,|a; € {Submit}}, include descriptive properties on the
grade assigned to the quiz answer and the progressive num-
ber of the attempt made on that quiz, i.e. D™ = (grade €
Rt subnum € R"), with grade € [0, 1].

For convenience, we denote as I?, the clickstream including
interactions i; € I,,, such that t; < t Vt; € I¥,, namely those
occurred before time t. Similarly, since online activities in
MOOCs and flipped courses are organized on a weekly basis,
tw identifies the time ¢ where the course week w ends. For
instance, the clickstream of user u generated till the end of
the second week can be denoted as I'2.

Success Label. Once interactions are modelled, we need to
associate a success label according to the final grade the cor-
responding student has received for that course. We consider
a dataset G to consist of tuples, i.e. G = {(Iu;,Yu;)}, where
I,,; denotes the interactions of student u; and y.; € {0,1}
the pass-fail label or the above-below average grade label.

Feature Extraction. Machine-learning models rarely receive
raw interaction sequences, as so we abstract such interac-
tions through a feature extraction step. Given the interac-
tions I» C I, € I, generated by student u till the course
week w € N, we produce fixed-length representations in



H c R“*H where H € N is the dimensionality of the fea-
ture set. Therefore, we assume that H-dimensional vectors
are extracted for each week. For instance, if the feature set
includes "number of sessions” and "number of clicks”, feature
vectors of size H = 2 are extracted each week. Formally, the
extraction process is denoted as H : I — H, from interac-
tions to features.

Model. Given the dataset G with interactions - success label
pairs, an early success predictor £ aims to predict the success
label y.; associated to the interactions I,;. Formally, this
operation can be abstracted as a function 7., = £(I;|0),
where ¢, denotes the predicted label, 6 denotes the model
parameters, and £ denotes the predictive function that maps
interactions I, ; to the predicted label g, ; according to 6.

Objective Function. Hence, training an early success predic-
tor £ with interactions - success label pairs till course week w
becomes an optimization problem, aimed to find model pa-
rameters 6 that maximize the expectation on the following
objective function (i.e., predicting the correct success label,
given the interactions) on a dataset G:

yu = E(H(I) | 0) (1)

6= argmax E
0 (Iu,yu)€G

In this paper, we focus on feature extraction, which formally
results in the operationalization of the function H.

3. REPRESENTATIVE FEATURE SETS

To make sure that our work is not only based on individual
examples of published research, we systematically scanned
the proceedings of conferences and journals for relevant pa-
pers in a manual process. In our analysis, we considered
papers that appeared in the last years in the top educa-
tional technology conferences (e.g., LAK, EC-TEL, AIED,
and EDM) and journals (e.g., IEEE TLT, Springer EIT,
Journal of Learning Analytics). We considered a paper to
be relevant if it (a) proposed a novel feature set for course
success analysis, and (b) focused on the context of online
courses or courses with online activities. Papers on other
tasks, e.g., prediction of affective state or conceptual un-
derstanding, or other educational contexts, e.g., interactive
simulations or games, were not considered. Moreover, pa-
pers with highly overlapping feature sets were filtered, and
the paper with the most extensive set was used as represen-
tative. Finally, eight papers were included in our study.

In a next step, we reproduced the feature sets described
in the above papers. Our approach was to rely as much
as possible on the artifacts provided by the authors them-
selves, i.e., their source code and the descriptions included
into the papers. In theory, it should be possible to repro-
duce published results using only the technical descriptions
in the papers. In reality, there are many tiny implemen-
tation details with an impact on experiments. Overall, we
could reproduce with reasonable assumptions all eight fea-
ture sets based on the relevant papers. In what follows, we
give a description of each feature set included in our study.

AkpinarEtAl. This feature set consists of consecutive sub-
sequences of n clicks extracted from the session clickstreams
of a blended course [1]. In addition to sub-sequences, the

authors considered four features related to the number of
clicks, the number of session clickstreams, and attendance
information. Note that in comparison to the original pa-
per, we extract sequences from a different set a raw events,
namely only videos and quizzes (e.g., no events on forums).
Hence, in our case the feature set has a size of |A"**°UA 7"
features per student. Since we expect short patterns to be
un-interpretable and particularly long patterns to be rare,
we choose n = 3 for our analyses.

BoroujeniEtAl. This feature set was originally used to mea-
sure to what extent MOOC students are regular in their
study patterns [3]. Specifically, it is considered whether stu-
dents study on certain hours of the day, day(s) of the week or
similar weekdays. Other features monitor whether students
have the same distribution of study time among weekdays
over weeks, particular amount of study time on each week-
day, and finally to what extent a student follows the sched-
ule of the course. This set includes 9 features per student.
Other papers proposed similar regularity features (23| [24} |8|
9, [2]. We limit our analysis to the feature set listed in |3,
as in our first experiments it exhibited the best predictive
power (among papers focusing on regularity features).

ChenCui. The feature set presented in this paper |4] includes
click countings from a mandatory undergraduate course run
through Moodle. Features include the number of total clicks
and of clicks on campus, the ratio of on-campus to off-
campus clicks, the number of online sessions (with average
and standard deviation), standard deviation of time between
online sessions, number of clicks during weekdays or week-
ends, ratio of weekend to weekday clicks, and the number of
clicks for each type of module (e.g., assignment, forum, and
quiz). To accomodate the scenario presented in Section
our study does not cover the features not easily generaliz-
able to different types of online courses: the number of clicks
on campus, the ratio of on-campus to off-campus clicks, the
number of clicks for modules file, forum, report system. We
therefore obtain a feature set of size 13 for each student.

LalleConati. This paper [11] focuses again on MOOCs. The
presented feature set is composed by video interaction fea-
tures at two levels of granularity. Features on video views
include the total number of videos views (both watches and
rewatches), in addition to the average and standard devi-
ation of the proportion of videos watched, re-watched, and
interrupted per week. On the other hand, features on actions
performed within the videos include the frequency and total
number of all performed video actions, frequency of video
actions for each type of video action, and the average and
standard deviation duration of video pauses, seek lengths,
and so on. This feature set has a size of 22 per student.

LemayDoleck. The next paper [13] is also focused on MOOCs.
Presented features include the number of videos watched
per week, the average time fraction paused, played or spent
watching, the average and standard deviation of the play-
back rate, and the total number of rewinds, pauses, and
fast-forwards. Note that this feature set includes only video-
related measures, resulting in vectors of size 10 per student.

MbouzaoEtAl. In this MOOC paper [15], the authors in-
troduce three novel features, namely attendance rate, uti-



lization rate, and watching ratio. The attendance rate of a
student on a given week is the number of videos the stu-
dent played over to the total number of videos in that week.
The utilization rate is the proportion of video play time ac-
tivity of the student over the sum of video lengths for all
videos on that week. Finally, the watching ratio is defined
as the product between the two former features. This 3-
sized feature set has been tested in MOOCs, extending an
already-existing feature set |7].

MubarakEtAl. This paper [16] is primarily focused on im-
plicit features about video-usage behavior in MOOCs. Com-
posed by 13 features, this set covers fine-grained characteris-
tics, such as the percentage of the video the learner watched
not counting repeated segments, the amount of real time the
learner spent watching the video (i.e. when playing or paus-
ing) compared to the video duration, and the sum of times
a learner viewed a video in its entirety.

WanEtAl. This set was designed for a small private online
course [26]. Features measure the online learning time, the
strength of the learner’s engagement in forums and weekly
assignments, the extent to which students attempt to do
the homework soon, as examples. Table 1 and 2 in the
cited paper provide further details. Given that we do not
cover forum interactions, our study does not consider forum
features. Finally, this set includes 14 features per student.

4. EARLY PREDICTORS IN FLIPPED
COURSE SETTINGS

In this section, we first present a novel feature set for flipped
courses, based on alignment, anticipation, and strength in
content usage. We then describe the experimental setup
and results aimed to assess to what extent the feature sets
(including ours) are predictive of student success.

4.1 Our Feature Set

The feature sets presented so far mainly tackle video-related
features and/or consider only low-level features, with only a
few of them including features related to quizzes or assign-
ments. Considering that predicting the success of a student
based on clickstream data only is a challenging task per sé,
we believe that limiting features to those extracted from
videos may result in inferior predictive performance. We
therefore suggest a number of additional features assessing
students’ knowledge and alignment with the course schedule.

Competency Strength is defined as the average of the in-
verse number of submissions for a quiz, weighted by the
highest grade achieved by the student on that quiz. Given
the inverse term, the value of this feature decreases when
the student attempts the quiz multiple times and if the
grade achieved by the student on the last attempt is not
the highest-possible one. Hence, good-performing students
may use few attempts and reach the maximum quiz grade
fast (value close to 1). Students struggling with the material
may attempt the quiz many times and not reach the max-
imum grade (value close to 0). Given a student u and the
week w of the course, this feature is computed as:

1 1
N > @Z7ndeZ) (2)
qEQy

where:

o Qu ={ojli; = (t,a5,05,d;) € I N type(o;) = quiz N
t; < tw} are the quizzes taken by student u till week w.

o Qf = [{iglij = (tj,05,05,d;) € lu N 0j = qNt; < twl
is the number of attempts a student had on quiz q.

o GY = {d™“li; = (t;,a5,05,d;) €L N 0; =qNt; <
tw} is the set of grades a student got on quiz q.

Competency Alignment is defined as the number of quizzes
the student received the maximum grade until week w, di-
vided by the total number of quizzes scheduled for the period
of consideration. Good-performing students may receive the
maximum grade in all quizzes for the period of consideration
(value close to 1); low-performing students may be behind
the schedule and pass fewer quizzes than those proposed
(value close to 0). Given a student v and the week w of the
course, this feature is computed as:

|Q5ass n Sleq(tw)‘ (3)
| Stealtw)|

where:

* QU = {ojli; = (t5,a;,05,d;) € L N type(o;) =
quiz N dfrade = o?“axgrade} is the set of quizzes the
student u received the maximum grade until week w.

o Stedltw) — Lo, € O|(0j,t;) € Se N type(o;) = quiz N
t; < tw} is the set of quizzes to complete by week w.

Competency Anticipation is defined as the number of quizzes
attempted by the student among those in subsequent weeks
of the current week of study. This feature can be seen as a
proxy of the learning propensity of a student. For instance,
if a quiz is scheduled to be solved in subsequent weeks, we
expect that good-performing students try them earlier, an-
ticipating the deadline stated in the platform (value close to
1). Low-performing students may delay the consumption of
quizzes across weeks or even towards the end of the course
(value close to 0). Given a student u and the week w of the
course, this feature is computed as:

IQu N Sgt(tw)|
|Sgt(tw)] (4)

where Q,, is the set of quizzes taken by student u until week
w as defined in Eq. 2] and:

o 59tw) = Lo, € O|(0y,t;) € Se Ntype(o;) = quiz N t; >
tw} is the set of quizzes to complete after week w.

Content Alignment is defined as the number of videos watched
by the student until week w, divided by the total number
of videos scheduled for the period of consideration. Good-
performing students are expected to complete all videos for
the period of consideration (value close to 1), while low-
performing students may complete less videos than those
proposed (value close to 0). Given a student u and the week
w of the course, this feature is computed as:

|V N SleaCt)] )
‘SZCCI(tw) |

where:

o Vy = {Oj‘ij = (tj7 a,7,0.77d.j) €l. N type(oj) = Uid@O}
is the set of videos watched by student u until week w.



o Stedltw) — f5. € O|(0j,t;) € Se N type(oj) = video N
t; <t} is the set of videos to watch by week w.

Content Anticipation is defined as the number of videos com-
pleted by the student among those in subsequent weeks of
the current week of study. For instance, if a video is due
the next week, we expect that good-performing students
might watch them earlier, anticipating the deadline stated
in the platform (value close to 1). On the other hand, low-
performing students may tend to delay the completion of
videos (value close to 0). Given a student u and the week w
of the course, this feature is computed as:

|Vu n Sgt(tw)|

W ©)
where V,, is the set of videos watched by student u until
week w as defined in Eq. [ and:

o 59w) — Lo, € O|(0j,t;) € Se N type(o;) = video N
tj >t} is the set of videos to watch after week w.

Student Shape is defined as the student’s tendency of re-
ceiving the maximum grade in a quiz at the first attempt
in a row. Good-performing students are expected to con-
secutively receive the maximum grade in quizzes at the first
attempt (value close to 1); students experiencing difficulties
may require multiple attempts on each quiz, before getting
the maximum grade (value close to 0). Given a student u
and the week w of the course, this feature is computed as:

1 pi -l
(7)

> (pistiyep Pi (Pils)EP Hpil(ps, i) €P N i =1} + €

where P = {(po,l0),.-.,(pn,ln)} represents a series count-
ing how many quizzes the student consecutively receives the
maximum grade (I; = 1) or failed (I; = 0) at the first at-
tempt in a row. For instance, if a student gets the maximum
grade for the first five quizzes at the first attempt in a row,
then is wrong in two quizzes at the first attempt, and then
receives the maximum grade for ten quizzes at the first at-
tempt in a row, P would be equal to {(5, 1), (2,0), (10,1)}.

Student Speed is defined as the average time passed between
two consecutive attempts for the same quiz, among those
taken by the student. This feature captures intrinsic behav-
ior of students who take the quiz, spending less time or more
time to attempt it, on average. Given a student uw and the
week w of the course, this feature is computed as:

ltql | 4 i—1
1 |ti — ¢
o 3 3 e ®
qEQy =1

where Q,, is the set of quizzes taken by student u until week

w as defined in Eq. [} and:
o tq = [t;|(t,a5,05,d;) € Lu N 0j =q N t; >1t;-1)] are

timings between trials for u on g, chronologically.

In the rest of the paper, we will refer to our set by Ours.

4.2 Experimental Evaluation

In this section, we benchmark our new feature set against
the eight feature sets presented in prior work (see Section
3), on early success prediction in flipped courses. For con-
venience, we will use author-based labels to identify feature
sets throughout the paper, but we will be more interested in
contrasting the impact of features in those papers based on
what they implicitly measure (not based on the authors).

4.2.1 Experimental Setup

Protocol. For each dataset, we applied a train-test eval-
uation, i.e. parameters were fit on the training data set
and the performance of the models was evaluated on the
test data set. We performed all experiments using Random
Forest (RF) classifiers, known to achieve a good trade-off
between prediction accuracy and interpretability. Perfor-
mance of all models was computed using a nested student-
stratified (i.e. dividing the folds by students) 10-fold cross
validation. The same folds were used for all experiments,
across feature sets. We optimized the hyper-parameters
of RFs via Grid Search in Scikit-Learn. Specifically, we
tuned the following hyper-parameters: number of estimators
(25,50, 100, 200, 300, 500), the maximum number of features
(sqrt, None,log2), and the splitting criterion (gini, entropy).
More extensive grids were run, but they did not show any
substantial improvement. To be precise, we determined
the set of optimal hyper-parameters as follows: within each
iteration, we ran an inner student-stratified 10-fold cross-
validation on the training set in that iteration, and selected
the combination of hyper-parameter values yielding the high-
est accuracy on the inner cross-validation. Note that we
trained RFs by weeks: the RF for week w of a given course
was trained on data collected up to week w. To obtain the
input features for RF for week w, we computed the weekly
features for the selected feature set and averaged them.

Data Set: LA-Flip. We consider a Linear Algebra course
for undergraduate students taught in a flipped format for
10 weeks at EPFL. Typical pre-class work included a list
of video lectures and online quizzes from a Linear Algebra
MOOC. The final exam grade, lying between 0 and 6, with 4
as passing threshold, is considered as a measure for students’
performance. The repeating students were filtered out, given
that their repeated exposure to the material might add a
bias to our findings. The final dataset consists of clickstream
data from 214 students, with 41% of them failing the course.
The study was approved by the university’s ethics committee
(HREC No. 058-2020/10.09.2020).

4.2.2 Observations

We evaluated the predictive accuracy of RF classifiers trained
on the different feature sets extracted from LA-Flip under a
binary classification that aims to identify passing and fail-
ing students early, as described in Section We further
also trained RF classifiers only on the most important fea-
tures selected from all features (denoted as EnsembleAll)
and from all features except ours (denoted as EnsembleB-
utOurs). Figure 2 reports the balanced accuracy, the area
under the ROC curve (AUC), and the individual percentage
of passing and failing students correctly identified (recall)
for each feature set over all weeks and folds.

The lowest-performing feature sets appear those monitoring
students’ regularity (orange) and attendance and utilization
rates (blue). Hence, a first conclusion we can draw is:

Highlight #1. Regularity and attendance/utilization fea-
tures, powerful in MOOCs, do not allow to distinguish pass-
ing from failing students in the considered flipped course.

The feature sets mostly related to video-clicking behavior,
such as those from Lemay & Doleck, do not lead to substan-
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Figure 2: [LA-Flip]. Effectiveness of a RF classifier trained on
separate feature sets and on ensembles. Our feature set is es-
sential to increase the effectiveness of the classifier, especially
in terms of Non-Succeed (failing students) Recall.

AkpinarEtAl —— LalleConati Ours
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—— EnsembleButOurs EnsembleAll
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Week

Figure 3: [LA-Flip]. AUC for the best six feature sets. The
ensemble of all features (grey) leads to an increase in effec-
tiveness, with respect to considering feature sets separately.

tial differences from each other and all achieved a balanced
accuracy between 55% and 59% (similarly for AUC). This
finding might reveal an intrinsic limit for video features in
predicting student success from pre-class activities. Our re-
sults also raise the question on how and why a certain type
of video features should be preferred compared to others.

Highlight #2. In this flipped course, there are minimal
differences in performance among video-usage features; an
intrinsic predictive limit for video-usage features exists.

This motivates investigation on the impact of features tar-
geting quiz usage. In this direction, the features proposed
by Wan et al. cover a range of raw counting and timing mea-
sures that target quizzes. Figure [2] shows that this feature
set is even worse that just using video features. Conversely,
by measuring more complex patterns in quiz consumption,
our feature set led to a balanced accuracy of 67% (simi-
larly for AUC). To identify the aspect our features make the
difference at, we considered the percentage of passing and
failing students correctly classified, as shown in the two bot-
tom plots in Figure[2l While there are no substantial differ-
ences among our feature set and the other ones in identifying
passing students (Succeed Recall), a clear improvement is
obtained in the detection of failing students (Non-Succeed
Recall), fundamental to ensure fewer students are left be-
hind. The impact of our features can be also appreciated
across weeks in Figure[8] Our features allowed the ensemble
to be effective in the first weeks, while both ours and other
features jointly led to an improvement in the second part of
the course. Given our results and the characteristics of our
features, we can observe that:

Highlight #3. FEaxtracting fine-grained features that model
alignment, anticipation and strength of video/quiz usage
results in higher predictive power on failing students.

Though considering the feature sets separately allowed us
to perform a fine-grained assessment and have an estima-
tion of their predictive power, it remains unclear how the
effectiveness of early predictors can be improved by training
models with an ensemble of all features and to what extent
the importance of the considered features varies. Hence, on
the right side of the plots in Figure[2] we present the results
achieved by a RF classifier only with the most important
features selected from all features and from all features ex-
cept ours. It can be observed that the optimal ensemble
of features without ours results in lower performance, com-
pared to the optimal ensemble that uses also our features.
The optimal ensemble of all feature has an AUC score con-
sistently higher than 0.70. To inspect what drives success
prediction, we computed the feature importance over weeks
and folds, and reported in Figure [4] the importance of fea-
tures (short description in Table [I)) selected by RF. Looking
at importance scores in Figure [4)(a), we observe that:

Highlight #4. The extent to which students anticipate con-
tent consumption, the tendency of learning during week-
ends, the proportion of watched videos, and the strength of
their performance in quizzes, had the highest importance.

Figure [4(b) shows that the difference in importance across
features is more evident in the first weeks. This finding
emphasizes the fact that selecting appropriate features is
more crucial when interested in very early predictions.

S. EARLY PREDICTORS OVER COURSES

Our exploratory analysis revealed interesting patterns on
the predictive power and importance of a range of features.
However, it remains under-explored the extent to which the
patterns identified in that flipped course hold also in courses
with other structures and educational settings. To this end,
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Figure 4: [LA-Flip]. Importance of the best nineteen features selected by a RF classifier from the ensemble of all feature sets.
Four features of our set have been selected as important. Table [1|lists the Feature IDs and the short description of each feature.

Table 1: [LA-Flip]. Description of the most important nineteen features selected by a RF classifier from the ensemble of all
feature sets, showed in decreasing order of importance. Four features of our set have been selected among the top eleven.

ID | Set Name Short Description

fo | Ours

f1 | LalleConati
f2 | ChenCui

f3 | Ours

fa | Ours

f5 | BoroujeniEtAl
fe | LalleConati

CompetencyAnticipation
WeeklyPropWatched-Avg
RatioClicksWeekendDay
ContentAnticipation
CompetencyStrength
RegWeeklySim-M2
WeeklyPropInter-Std

f7 | WanEtAl NumSubmissionCor

fs | WanEtAl NumSubmissions-Avg

fo9 | LalleConati WeeklyProplnter-Avg
fio | Ours StudentShape

fi11 | WanEtAl

f12 | LalleConati
fi13 | LalleConati
fia | AkpinarEtAl
fi5 | AkpinarEtAl
f16 | BoroujeniEtAl
fi7 | BoroujeniEtAl
fis | AkpinarEtAl

NumSubmissionPerCorrect
WeeklyPropReplayed-Avg
FrequencyEvent-VideoPlay
QCheck-QCheck-VLoad
VPlay-VPause-VLoad
RegPeriodicity-M3
RegWeeklySim-M1
VStop-PCheck-VLoad

The extent to which the student approaches soon a quiz provided in subsequent weeks.

The proportion of videos the student watched, counting repeating segments.

The ratio between clicks happened during weekend and weekdays.

The extent to which the student approaches soon a video provided in subsequent weeks.

The extent to which a student passes a quiz getting the maximum grade with a low number of trials.
The extent to which the student has a similar distribution of workload among weekdays across weeks.
The standard deviation of the time the student spent while interrupting a video, across videos.

The average number of quizzes attempted and correct.

The number of submissions required to pass a quiz, on average.

The average time the student spent while interrupting a video, across videos.

The extent to which the student receives the maximum grade in quizzes at the first attempt in a row.
Percentage of the correct quiz submissions with respect to the total submissions.

The proportion of videos the student re-watched, not counting repeating segments.

The frequency of the video play action in the students’ online sessions.

The amount of times the student checks twice a given quiz and then go to load a video.

The amount of times the student plays a video, pause and then load the next one.

The extent to which the daily study pattern is repeating over weeks (e.g., same days of the week).
The extent to which the student works on the same weekdays.

The amount of times the student stops a video, attempts a quiz and then load the next video.

we extended our analysis to a flipped course in a different do-
main (Functional Programming, only video data in pre-class
activities), a MOOC in the same domain (Linear Algebra,
both videos and quizzes), and a MOOC from a different do-
main (Functional Programming, only video interactions).

5.1 Experimental Setup

Protocol. In this experiment, we followed the steps described
in Section with few exceptions. Specifically, for each
data set, we considered only classifiers trained with the opti-
mal ensemble of all features proposed in prior work plus the
ones proposed in this paper. To obtain the input features
for the RF classifier on week w, we computed the weekly
features for all feature sets; then averaged features of the
same week, and finally averaged across weeks till week w.
For each course, we computed the most important features
from the ensemble (eight existing sets and ours) based on the
average importance of the features across folds and weeks.
The study was approved by the university’s ethics commit-
tee (HREC No. 096-2020/09.04.2020).

Data Set: FP-Flip. We consider one stream of a Functional
Programming course taught to EPFL Master’s students in a
flipped manner for 10 weeks. The preparatory work included

a list of videos from a Functional Programming MOOC. Re-
peating students were filtered out. Being a Master’s course
with a failing percentage of only 5%, we considered whether
a student’s final course grade (lying between 0 and 6) was
above the average grade over all students as a success label.
The dataset consists of clickstreams from 218 students, with
38% of them being below average.

Data Set: LA-MOOC. The content used in pre-class activi-
ties within LA-Flip was also provided by EPFL instructors
on an external MOOC platform in form of three separate
MOOCs, with the first MOOC being equivalent to the first
4 weeks of the flipped course, the second MOOC equivalent
to week 5 to week 8, and the third MOOC equivalent to
the last 3 weeks. Given that the first 4 weeks of LA-Flip
were delivered in a traditional manner, we excluded the first
MOOC from our study. We also excluded the third MOOC,
given that the number of enrolled students was barely small.
To sum up, our study in this paper considers only the sec-
ond MOOC that covers the second part (weeks 5 to 8) of the
flipped course. To pass the course, it is mostly necessary to
obtain at least 60% of the total points for each assignment.
Hence, we used this rule as a way to measure success in our
study. The final data set consists of clickstream data from
170 students, with 33% of them failing the course.



Table 2: Features selected as important by RF classifiers for the ensemble of features for each course.

Set Name Short Description LA-Flip FP-Flip | LA-MOOC FP-MOOC
QCheck-QCheck-QCheck The amount of times the student checks three times the same quiz. 4
QCheck-QCheck-VLoad The amount of times the student checks twice the quiz and then go to load a video. v
VPla) VPlay-VPlay The amount of times the student clicks for three consecutive times on play for three different videos. v
AkpinarEtAl The amount of times the student plays a video, pause and then load another one. v
. l he amount of times the student plays a video, then (.hCCk; twice a quiz. v
] ime: another one. v
The amount of tim and re-plays it. v
The amount of tim E ent s 3 it and seck to a g pa v
VStop-VCheck- VLoad The amount of times the student stops a video, (huks a quiz and then load another video.
DelayLecture The average delay in viewing video lectures, as soon as they are released. 4 v v
RegWeeklySim-M1 The extent to which the student works on the same weekdays across weeks. v v
RegWeeklySim-M2 The extent to which a student has a similar distribution of workload among weekdays across weeks. v v v
BoroujeniEtAl RegWeeklySim-M3 The extent to which the time spent on each day of the week is similar for different weeks of the course. v
RegPeriodicity-M1 The extent to which the hourly pattern of student’s activities is repeating over days. v
RegPeriodicity-M3 If the daily study pattern is repeating over weeks (e.g. is active on Monday and Tuesday in every week). v v
RegPeakTime-M1 The extent to which students’ activities are centered around a particular hour of the day. v
RegPeakTime-M2 The extent to which students’ activities are centered around a particular day of the week. v
RatioClicksWeekendWeekdays — The ratio between clicks in weekdays and weekends. v v v v
TimeSession-Avg The average amount of time spent from a login to the end of the session. v
ChenCui TimeSession-Std The standard deviation of time spent from a login to the end of the session. v
TimeBetweenSessions The average amount of time passed between two sessions for a student. v
TotalClicks-Weekdays The number of clicks performed by a student over weekdays. v
PauseDuration-Avg The average amount of time spent in pause while interacting with a video. v
SeekLength-Std The extent to which the seek length varies ss videos. v
P(Lus( Duration-Std The extent to which the pause duration v oss videos. v
neSpeedingUp-Avg The rage amount of time spent with h han 1x speed while playing a nd( 0. v
TimeSpeedingUp-Std The extent to which the t ent speeding up higher than 1x the vi v
LalleConati WeeklyPropWatched-Avg The proportion of videos the student watched, counting repeating segme v
WeeklyPropInter-Avg The average time the student spent in interrupting a video. v
WeeklyProplInter-Std The deviation of the time the student spent in interrupting a video. v
WeeklyPropReplayed-Avg The proportion of videos the student re-watched, counting repeating segments. v
WeeklyPropReplayed-Std The deviation of the proportion of videos the student re-watched, counting repeating segments. v
FrequencyEvent-VideoPlay The frequency of the play event in the students’ sessions. v 4
MubarakEtAl gpeedPlayBack mean The average speed the student used to play back a video. v v
NumSubmissionsCor The number of quizzes attempted and correct. v
WanEtAl NumSubm -Avg The number of submissions performed for a quiz, on average. v v
o NumSubmis: nPerCorrect The percentage of the correct quiz submissions with respect to the total submissions. v v
NumSubmissionDistinct The total number of distinct problems attempted by the student. v
CompetencyAnticipation The extent to which the student approaches soon a quiz provided in subsequent weeks. v
ContentAnticipation The extent to which the student approaches soon a video provided in subsequent weeks. v
Ours CompetencyStrength The extent to which a student passes a quiz getting the maximum grade with a low number of trials. v v
StudentShape The extent to which the student receives the maximum grade in quizzes at the first attempt in a row. v v
Student Speed The average amount of time passed between two submissions for the attempted quizzes. v
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Figure 5: AUC scores per week for RF classifiers trained on
feature ensembles. Flipped courses (*-Flip) last 10 weeks;
LA-MOOC (FP-MOOC) last 4 (6) weeks.

Data Set: FP-MOOC. The content delivered in pre-class
activities in FP-Flip was also provided by EPFL instruc-
tors on an external MOOC platform in form of two sepa-
rate MOOCs, with the first MOOC being equivalent to the
first 6 weeks of the flipped course and the second MOOC to
the subsequent weeks. No data was available on the second
MOOC, so we limited our study to only the first MOOC
(week 1 to 6 of the flipped period of FP-Flip). To pass this
MOOC, 80% of the total points for each of the five graded
assignments are mostly needed. Hence, we used this rule to
measure success in our study. The dataset consists of click-
streams from 3,565 students, with 52% failing the course.

5.2 Observations

We evaluated the predictive performance of a RF classifier
across weeks for each course for the best ensemble feature
set for that course. Figure [f] illustrates the predictive per-
formance across weeks for all four courses. Considering the
same course across different settings (flipped or MOOC), it
can be observed that RFs trained on flipped course data

achieved higher AUC scores than their MOOC counterpart.
This difference can be due to multiple reasons, for exam-
ple the different educational setting or the way the passing
rule for the course is set up. Considering courses in the same
setting (LA-Flip VS FP-Flip or LA-MOOC VS FP-MOOC),
the results show that including quizzes in the LA-Flip course
allows to increase the predictive power of the considered clas-
sifiers, compared to FP-Flip, that has no quizzes. This can
be associated to the fact that quizzes are a good source of in-
formation for grasping the students’ performance. The same
observation is, however, less strong on the MOOC counter-
part of the same two courses, highlighting again the high
dependency from the educational setting.

In a second part of this experiment, we analyzed the av-
erage importance across weeks of the features selected by
RFs across courses. Table Bl shows for each feature set and
course, whether a given feature has been selected by the cor-
responding RF classifier. It should be noted that this table
includes only features picked at least by a RF classifier across
courses. In general, we show that while there is some overlap
between the optimal features across courses, the importance
of the features highly depends on the setting and structure of
the course. The ratio of clicks between weekends and week-
days (ChenCui - RatioClicksWeekend Weekdays) is selected
by all classifiers in all settings. Other features with a good
level of generalizability are represented by those measuring
regularity (BoroujeniEtAl). The other features were picked
according to the setting or the structure of the course. In
particular, RFs trained on LA-Flip and LA-MOOC assigned
a higher importance to features that measure behavior in
quizzes (e.g., Ours or WanEtAl). Hence, we can conclude
that when available, features on quizzes are frequently se-
lected, regardless of the setting. For courses with no quizzes,
namely FP-Flip and FP-MOOC, the predictive power of RFs



is mainly based on regularity and fine-grained video usage
(e.g., features on time spent in a video, e.g., LalleConati).

Highlight #5. When quizzes are included in the schedule,
quiz-related features are frequently selected as important.
This is stronger in flipped than MOOC settings. When only
videos are available, the predictive power mainly derives
from regularity and fine-grained video-related features.

For the same course in different settings, namely LA-Flip VS
LA-MOOC and FP-Flip VS FP-MOOC, the optimal feature
set heavily changed. In LA courses, quiz-related features
were more important in the flipped context, while session-
based features were more important in MOOCs (e.g., those
from ChenCui). The latter finding holds for FP courses as
well. Specifically, RFs trained on the MOOC version con-
sistently selected features related to the students’ session.
Another observation for FP is that in the flipped version,
tri-grams (ApkinarEtAl) and fine-grained video usage fea-
tures (LalleConati) were picked; in the MOOC, regularity
and session-based features were more important. To sum
up, according to Table

Highlight #6. Predictors in flipped settings often rely on
features based on tri-grams and fine-grained video consump-
tion. Conversely, predictors in MOOCs consider regularity
and session-based features as important. Quiz-related fea-
ture are picked in both settings, when quizzes are available.

6. DISCUSSION

In this section, we connect the main findings coming from
the individual experiments and present the implications and
limitations of our study in the early success prediction task.

Course-Related Observations. A challenge, as our work shows,
lies on the generalizability of feature predictive power across
courses. The variability of the results when repeating the
exact same experiment with data from different courses (or
slightly different settings) is very high. It is therefore chal-
lenging to understand when, why, and how a feature tested
on a given course could be re-used for other courses.

Highlight #7. The predictive power of features does not of-
ten generalize across courses with different structures and
educational settings. This observation is stronger with re-
spect to the courses structure than between flipped and
MOOC settings.

This observation affects the scalability of early predictors.
Being so course-dependent, identifying and enabling fea-
tures predictive of student success for a given course can
take hours or days, given that the intellectual and experi-
mental work needs to be replicated on courses, case by case.

Highlight #8. The lack of feature predictive power gener-
alizability questions the extent to which a feature can be
scaled across courses with the same structure/setting.

Our experiments also showed that including quizzes in pre-
class activities leads to substantial improvements in effec-
tiveness. Hence, success prediction is driven by complex re-
lationships between students’ characteristics and the course
domain, structure, and educational setting.

Data-Related Observations. Research in the area of early
success prediction is often conducted on data extracted from

online activities only. Even in our case study (for LA-flip),
we could not rely on data collected in class, missing an im-
portant segment of learning. Moreover, clickstreams in this
study do not cover other relevant interactions such as those
in forums. In flipped courses, most (non-digitalized) dis-
cussions happen in class, and the forum is mainly used by
teachers for announcements.

Highlight #9. Farly success prediction in flipped courses
would benefit from including data coming from offline ac-
tivities (e.g., in class).

Workflow-Related Observations. To establish reproducibil-
ity, the description of the proposed features should go be-
yond plain-text only. Our formulation in this paper can be
re-used to define features as formulas, making it easier to
replicate them, especially when no source code is provided.

Highlight #10. Feature descriptions can be accompanied
by their mathematical formulation to ease reproducibility.
When possible, sharing the code can facilitate their re-use.

Though we validated the current features on RF's, other
classifiers were not presented. However, RF's often provide
the best trade-off between effectiveness and interpretability
(the latter was fundamental for our study) and our frame-
work makes it easy to run this analysis on other classifiers.
Given that other classifiers (e.g., Support Vector Machines)
gave worse (or comparable) results in the preliminary exper-
iments we ran, our results depict a valid picture of feature
predictive power.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we analyzed recent features for early success
prediction in flipped and online courses. First, we inves-
tigated the predictive power of eight existing feature sets
and a novel feature set proposed in this paper on a flipped
course. We benchmarked the predictive power of features
using a RF classifier, and discussed the ensemble feature set
optimal for that course. We then extended our analysis to
courses with other settings (MOOCSs), domains, and struc-
tures, showing that the optimal ensemble and its predictive
power vary. Our work calls for generalizable early predictors
across courses with different characteristics. To promote re-
search in this field, we also publicly release the source code
developed during our study (see the footnote in Section 1).

In future work, we plan to extend our analysis to other fea-
tures (e.g., based on in-class data), and types of student
success tasks (e.g., grade prediction). We also plan to ana-
lyze more advanced classifiers and to devise robust classifiers
across courses before testing them in the real world.
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