
Università degli Studi di Cagliari Xidian University

PHD DEGREE at the University of Cagliari
Electronic and Computer Engineering

PHD DEGREE at Xidian University
Control Theory and Control Engineering

Cycle XXXIV

TITLE OF THE PHD THESIS

Design of supervisors for active diagnosis in discrete event systems

Scientific Disciplinary Sector(s)

ING-INF/04

PhD Student: Yihui Hu

Supervisor UniCa Prof. Alessandro Giua

Supervisor XDU Prof. Zhiwu Li

 Final exam. Academic Year 2020 – 2021

Thesis defence: December 2021 Session

ABSTRACT

ABSTRACT

In recent years, with the development of computer science and electronic information tech-

nology, many large and complex systems have emerged. When a system runs online, it is

inevitable to produce some faults. If a fault in a system cannot be detected and treated in

time, some serious accidents may occur, resulting in economic and human losses. Therefore,

in both academia and industry, fault diagnosis has received considerable attention.

A discrete event system is a discrete-state and event-driven system. In modern society,

discrete event systems have wide practical application backgrounds. Many systems can be

represented by discrete event systems, such as flexible manufacturing systems, smart urban

transportation systems and computer communication networks. In recent years, the problem

of fault diagnosis in discrete event systems has received much attention. The problem of

fault diagnosis in discrete event systems is to determine if some faults have occurred by

observing events generated by a plant. On the other hand, diagnosability is a property of a

plant such that any fault can be detected within finite future steps after its occurrence. In

practice, a plant should necessarily be diagnosable since any fault that has occurred must be

detected and be repaired in time to guarantee its safety and reliability. This thesis considers

two discrete event modeling formalisms and studies a problem of active diagnosis: it consists

in modifying an undiagnosable plant’s behavior by supervisory control, thus ensuring that

the closed-loop system is diagnosable. The main results of this thesis are summarized as

follows.

1. To reduce the complexity of designing an active diagnosis supervisor, we develop a

method for active diagnosis based on the verifier structure of a plant. The existing

methods for active diagnosis in the literature are based on the diagnoser of a plant

whose computation may suffer from the state explosion problem, since the structure

complexity of the diagnoser is exponential with respect to the number of states in the

plant. Verifier is a structure which has been widely used to test the diagnosability of

a plant. Its structure complexity is polynomial with respect to the number of states

in the plant. This thesis proposes an active diagnosis supervisor based on the verifier

of a plant. Compared with the conventional methods in the literature, the developed

approach has the computational advantage.

2. The active diagnosis problem in Petri net model is formulated and studied. Petri net is

a graphical and mathematical modeling tool with a higher modeling power than finite

III

Dissertation of XIDIAN UNIVERSITY

state automata. However, there is no work to deal with the active diagnosis problem

in Petri nets as far as we know. An alternative approach consists in computing the

reachability graph of a plant and using the graph to design a supervisor by means of

the automaton-based algorithms. However, such a method is rather inefficient since

it requires a full enumeration of the reachability space of a net. This thesis uses an

integer linear programming technique and develops a structure called quiescent basis

reachability graph (QBRG) to describe the behavior of a plant without explicitly listing

all reachable markings. Based on the QBRG structure, an algorithm is proposed to

design an active diagnosis supervisor for a give plant net. Moreover, the supervisor

designed guarantees that the closed-loop system is deadlock-free if no fault occurs.

3. The existing fault diagnosis techniques for discrete event systems requires to initialize

and run a diagnoser synchronously with a plant. However, such a condition may not

be easy to meet in some cases. Therefore, a notion called asynchronous diagnosis

is proposed. Asynchronous diagnosis is to detect the occurrence of faults in a plant

under the condition that a diagnostic agent is activated asynchronously with the plant.

On the other hand, asynchronous diagnosability is the property of a plant such that the

occurrence of any fault can be detected after a finite number of observations in the case

of asynchronous activation of the diagnostic agent and the plant. This thesis develops a

supervisor for an asynchronous undiagnosable plant such that the closed-loop system

is asynchronous diagnosable.

Keywords: Discrete event system, Fault diagnosis, Supervisory control theory, Active

diagnosis, Asynchronous diagnosis

IV

List of Figures

List of Figures

2.1 A deterministic finite-state automaton. 7

2.2 A Petri net system. 9

3.1 The active diagnosis scheme. 20

3.2 (a) Plant A for Example 3.1, (b) diagnoser of A, (c) diagnoser of the closed-

loop system (A, S ′)live, and (d) diagnoser of the closed-loop system (A, S ′′)live. 22

3.3 (a) Automaton A for Example 3.2, (b) the closed-loop system (A, S1), and

(c) the closed-loop system (A, S2). 23

3.4 (a) Automaton A for Example 3.3, (b) the diagnoser of A (e′k 6= e′′k), (c) the

diagnoser of A (e′k = e′′k). 24

3.5 Automaton A for Example 3.4. 32

3.6 The verifier of automaton A in Figure 3.5.. 33

3.7 Automaton ASC . 35

3.8 The closed-loop system (A, S) for Example 3.6. 40

3.9 Automaton A for Example 3.7. 40

3.10 The verifier (partly) of automaton A in Figure 3.9. 40

4.1 The active diagnosis scheme. 44

4.2 (a) The LPN used in Example 4.1, and (b) its reachability graph after adding

the quiescent event q. 47

4.3 (a) The LPN for Example 4.2, (b) its diagnostic BRG, (c) the underlying

automaton of the BRG, and (d) the diagnoser of Gl. 50

4.4 (a) The structure Gl for Example 4.3, and (b) the corresponding QBRG Gq. 54

4.5 The Q-diagnoser Ad of the plant in Figure 4.2(a). 55

4.6 (a) The trimmed structure A′d in Example 4.6, (b) the trimmed structure A′′d,

and (c) the diagnosability enforcing supervisor S. 61

5.1 (a) Automaton A for Example 5.1, and (b) its quiescence automaton Aq. . . . 69

5.2 The asynchronous-quiescent diagnoser Ad. 72

5.3 Supervisor S for Example 5.4. 77

V

Dissertation of XIDIAN UNIVERSITY

VI

List of Tables

List of Tables

2.1 The transition function of the DFA in Fig. 2.1. 7

4.1 The markings of the net in Figure 4.2(b). 47

4.2 The basis markings of the BRG in Figure 4.3(b). 51

4.3 The minimal explanation vectors of the BRG in Figure 4.3(b). 51

VII

Dissertation of XIDIAN UNIVERSITY

VIII

List of Symbols

List of Symbols

N The set of non-negative integers

A An automaton A = (X,Σ, δ, x0)

X The set of states of an automaton

E The set of events of an automaton

E∗ The set of all finite sequences defined over E

Eo The set of observable events

Euo The set of unobservable events

Ec The set of controllable events

Euc The set of uncontrollable events

δ The transition function of an automaton

x0 The initial state of an automaton

L(A) The generated language of automaton A

Ad The diagnoser of an automaton

Av The verifier of an automaton

PN A Petri net PN = (P, T, Pre, Post)

P The set of places of a Petri net

T The set of transitions of a Petri net

Pre The pre− incidence matrix of a Petri net

Post The post− incidence matrix of a Petri net

C The incidence matrix of a Petri net

M A marking of a Petri net

M0 The initial marking of a Petri net system

〈PN,M0〉 A Petri net system

R(PN,M0) The reachability set of a Petri net 〈PN,M0〉
L(PN,M0) The set of transition sequences enabled at M0

G A labeled Petri net G = (PN,M0,Σ, l)

Σ The set of labels of a labeled Petri net

l The labeling function of a labeled Petri net

T ∗ The set of all finite sequences defined over T

|σ| The length of sequence σ

IX

Dissertation of XIDIAN UNIVERSITY

TE The set of explicit transitions

TI The set of implicit transitions

RI(Mb) The implicit reach of marking Mb

B The basis reachability graph of a Petri net

Gq The quiescent basis reachability graph of a labeled Petri net

S A supervisor

X

List of Abbreviations

List of Abbreviations

DES Discrete Event System

DFA Deterministic Finite Automaton

PN Petri Net

ILPP Integer Linear Programming Problem

LPN labeled Petri Net

RG Reachability Graph

BRG Basis Reachability Graph

QBRG Quiescent Basis Reachability Graph

BRD Basis Reachability Diagnoser

XI

Dissertation of XIDIAN UNIVERSITY

XII

Content

Content

Á� . I

ABSTRACT . III

List of Figures . V

List of Tables . VII

List of Symbols . IX

List of Abbreviations . XI

Chapter 1 Introduction . 1

1.1 Fault Diagnosis and Diagnosability Verification in DESs 1

1.2 Active Diagnosis Problem . 3

1.3 Organization and Contributions . 4

1.3.1 Organization. 4

1.3.2 Contributions . 5

Chapter 2 Preliminaries . 7

2.1 Automaton . 7

2.2 Petri Net . 9

2.3 Supervisory Control . 12

Chapter 3 Active Diagnosis Problem in the Framework of Automata 15

3.1 Diagnosability Verification in Automata . 15

3.1.1 Diagnoser . 16

3.1.2 Verifier . 18

3.2 Active Diagnosis Formulation . 19

3.2.1 Diagnoser-based Approach for Active Diagnosis in Automata . . . 21

3.2.2 Properties of Supervisor-induced Deadlocks . 23

3.3 Stop-free Control Policy and Properties . 25

3.3.1 Stop-free Event Set . 25

3.3.2 Computing a Feasible Stop-free Event Set . 28

3.3.3 Complexity Analysis . 34

3.4 Online Active Diagnosis Method. 35

3.5 Conclusion . 41

Chapter 4 Active Diagnosis Problem in Labeled Petri Nets . 43

4.1 Active Diagnosis Problem Formulation in Labeled Petri Nets 43

XIII

Dissertation of XIDIAN UNIVERSITY

4.1.1 Diagnosability of LPNs with Deadlocks . 45

4.1.2 Quiescent Behavior and Quiescent Event . 46

4.2 Basis Reachability Graph with Quiescence and Q-diagnosers 47

4.2.1 Diagnosability of Deadlock-free LPNs and Basis Diagnosers 47

4.2.2 Quiescent Basis Reachability Graph and Q-diagnoser 49

4.3 Diagnosability Enforcing Supervisor . 55

4.4 Conclusion . 63

Chapter 5 Asynchronous Diagnosability Enforcement in Discrete Event Systems Based

on Supervisory Control Theory . 65

5.1 Motivation . 65

5.2 Problem Formulation . 66

5.2.1 Asynchronous Diagnosis and Diagnosability . 66

5.2.2 Asynchronous Diagnosability of Nonlive Plants 67

5.2.3 Observable Quiescence . 68

5.3 Asynchronous Diagnosability Verification of Nonlive Plants 70

5.4 Asynchronous Diagnosability Enforcement Supervisor 74

5.5 Conclusion . 78

Chapter 6 Conclusions and Future Works . 79

6.1 Conclusions . 79

6.2 Future Works . 80

References . 81

Acknowledgement . 89

Biography . 91

XIV

Chapter 1 Introduction

Chapter 1 Introduction

A discrete event system (DES) is a dynamic system whose state evolution is driven by

discrete events. Such systems have become prevalent in the past three decades, primarily

due to the proliferation of digital technologies, interconnectivity, and sensor technology.

These developments have led to the emergence of many highly complex systems. Exam-

ples include automated manufacturing systems, communication networks, traffic control

and transportation systems, autonomous vehicles, and others. In practice, almost all large

and complex systems are inevitably subject to some physical faults, which can deviate the

performance of the system or even cause a breakdown. Therefore, fault diagnosis techniques

in discrete event systems have received much attention in recent years.

In discrete event systems, a fault is represented as an unobservable event. The problem

of fault diagnosis is to determine if some fault has occurred by observing the events gener-

ated by a plant. On the other hand, diagnosability is an important property of a plant such

that any fault can be detected within finite future steps. In practice, a plant is expected to

be diagnosable to guarantee its safety and reliability. Therefore, for an undiagnosable plant,

some corrective actions should be done to guarantee its diagnosability, which is the so-called

diagnosability enforcement.

It is well known that there are two common mathematical tools to model discrete event

systems such as automata and Petri nets. In this thesis, for an undiagnosable plant modeled

by an automaton or a Petri net, we design a supervisor for the plant such that the closed-loop

system is diagnosable. This chapter first presents an overview about the fault diagnosis and

diagnosability verification in discrete event systems. Then the motivation of our work is

provided. Finally, the structure of the thesis and the contributions are summarized.

1.1 Fault Diagnosis and Diagnosability Verification in DESs

Fault diagnosis for discrete event systems (DESs) [1] has been extensively studied

in recent years. The problem of fault diagnosis [2–5] is to determine if some faults have

occurred by observing events generated by a plant. In [3], a diagnostic agent called diag-

noser is developed for online diagnosis. Each diagnoser state provides a possible diagnosis

information of the plant and updating this diagnosis information only requires the occurrence

of an observable event. Later, the fault diagnosis technique is also studied in decentralized

1

Dissertation of XIDIAN UNIVERSITY

structure where two or more observation sites (with distinct observation capabilities) monitor

activity that occurs in a given system, and their goals is to perform fault diagnosis by

exchanging information among a coordinator [6–10].

On the other hand, diagnosability [3] is a property of a plant such that any fault can be

detected within finite future steps after its occurrence. In the literature, there are many results

on the verification of diagnosability in the framework of automata. Sampath et al. [3] verify

the diagnosability by using the diagnoser structure and show that a plant is diagnosable if and

only if there does not exist any indeterminate cycle in its diagnoser. Although a diagnoser

can be used to both verify the diagnosability and perform the online fault diagnosis, its

structure complexity is exponential with respect to the number of states of a plant. Therefore,

a structure called verifier [11, 12] is proposed to test diagnosability. The number of states

in a verifier is polynomial with respect to the number of states of the plant. Based on the

verifier structure and its variants, various notions of diagnosability under different settings,

such as decentralized diagnosability [13], robust diagnosability subject to intermittent loss

of observations [14], and transition-based codiagnosability [15], can be verified.

Petri net is a graphical and mathematical tool with a higher modeling power than finite

state automata. In Petri nets, structural analysis and abstraction techniques can be used

to reduce the computation complexity of analysis and control [16–18]. Therefore, many

researchers focus on the diagnosis of Petri nets [19–26]. In [19], the authors develop a basis-

marking-based approach for diagnosis. By means of basis markings and the corresponding

justifications, the enumeration of paths in a reachability graph can be avoided. The authors

in [21–23] extend this approach to the case of labeled Petri nets, i.e., nets where two or

more transitions can share the same label. They develop a basis reachability graph (BRG),

which can be built off-line and provides an efficient method for online diagnosis. The study

in [27] defines a new type of marking with negative elements, called g-marking, and based

on which proposes an online diagnosis algorithm. In [24], an online diagnosis approach

based on integer linear programming technique is proposed. The study in [28] addresses

the issue of fault diagnosis using a partially observed Petri net (POPN), where a POPN is

first converted into a labeled net and then an algorithm is reported based on the reachability

graph.

Moreover, many works have been done on the verification of diagnosability in the

framework of Petri nets [29–36]. Basile et al. [29, 30] present a necessary and sufficient

condition for diagnosability by solving an integer linear programming problem. In [32],

Cabasino et al. introduce modified basis reachability graph and basis reachability diagnoser

2

Chapter 1 Introduction

to verify diagnosability of a net without enumerating all reachable markings. Similarly,

Jiroveanu et al. [33] propose an automaton called ROF-automaton, which provides a com-

pact representation of the state space. Cabasino et al. [31] show that the diagnosability

of an unbounded Petri net can be determined by analyzing the coverability graph of the

so-called verifier net. Recently, Ran et al. [37] also explore diagnosability verification in

decentralized Petri net models. A different model is considered by Ramı́rez-Treviño et al. in

[35, 38], where the diagnosability problem in interpreted Petri nets (IPNs) is studied. In their

framework, the considered plant net has an output function that associates an output vector to

each marking. In [38], the authors introduce a notion called input-output diagnosability and

provide sufficient structural conditions to verify it on the premise that any T-semiflow must

contain all risky transitions. This work is further extended in [35] where a concept called

relative distance is used to present a new characterization providing sufficient conditions for

diagnosability, and polynomial algorithms are proposed to determine the diagnosability.

1.2 Active Diagnosis Problem

In practice, a plant is usually expected to be diagnosable since any fault that has

occurred must be detected and be repaired in time to guarantee its safety and reliability.

If a plant is diagnosable, a diagnostic agent can be designed to perform the online diagnosis.

Otherwise the plant must be particularly treated to guarantee its diagnosability, which is the

diagnosability enforcement.

For an undiagnosable plant, one approach for enforcing diagnosability is to modify its

physical structure or to add sensors to change its observation structure. In the framework of

automata, Cassez et al. [39] present a dynamic strategy for sensor activation to guarantee

diagnosability. Moreover, Wang et al. [40] propose a sensor activation policy to enforce

diagnosability with a minimal cost. This problem is also studied in stochastic automata [41].

In Petri nets, Basile et al. [42] develop an integer linear programming to find a minimal set of

sensors that makes a net system k-diagnosable. Cabasino et al. [43] introduce a new labeling

function making a system diagnosable using verifier net. To circumvent the state explosion

problem that the method in [43] may potentially encounter, Ran et al. [44] develop a new

structure called the unfolded verifier, and determine a new labeling function to enforce the

diagnosability with a minimal cost.

Although the aforementioned methods in the literature can be used to enhance diag-

nosability, they are practically intrusive since new sensors have to be physically deployed,

which may not be possible due to technical and/or financial difficulties. Therefore, many

3

Dissertation of XIDIAN UNIVERSITY

researchers focus on another kind of approach called active diagnosis [45–53]. In an active

diagnosis scheme, a supervisor is designed to forbid all undiagnosable evolutions of a plant,

thus ensuring that the closed-loop system remains diagnosable. In [45] the diagnosability

of a plant is guaranteed by preventing it from cycling in the indeterminate cycles of the

diagnoser. In this method the diagnoser is first computed and then iteratively trimmed such

that any indeterminate cycle can only be consecutively visited finite times. Extended from

[45] several other works are reported. The work in [46] computes an admissible sequence of

actions that refine the diagnosis without radically changing the mission of the plant. In [47]

active diagnosis is formulated as a Büchi game, where a winning strategy yields an active

diagnoser. The authors in [48] study the problem under the assumption that the system can

observe quiescence and formulate the problem as a Büchi game. The work in [54] and [55]

deals with active fault diagnosis in deterministic input/output automata and probabilistic

systems, respectively. In [49], the authors propose a supervisor based on all-enforcement-

structure (AES), an automaton similar to the observer automaton, in which all possible

control decisions are enumerated. The size of the AES is also exponential with respect to

the size of a plant. Although the above contributions can be used to enhance diagnosability,

they are all based on some observer-like structures whose computation suffers from state

explosion. Therefore, it is necessary to propose an active diagnosis approach with lower

structure complexity.

1.3 Organization and Contributions

1.3.1 Organization

The remainder of the thesis is organized as follows.

Chapter 2 recalls some basic notions of automata and Petri nets.

Chapter 3 studies the active diagnosis in the framework of automata. A verifier-based

approach for active diagnosis is presented in this chapter. Note that although the verifier can

be used to efficiently test diagnosability, it is not straightforward in designing a supervisor

such that the closed-loop system is diagnosable. As far as we know, this is the first work

on the active diagnosis whose structural complexity of the control structure is polynomial

with respect to the number of states of the plant. Therefore, the proposed approach has the

computational advantage than the diagnoser-based ones.

Chapter 4 formulates the active diagnosis in labeled Petri nets. As far as we know, it

is the first work in the literature to study the active diagnosis in labeled Petri nets (LPNs).

4

Chapter 1 Introduction

Although the active diagnosis problem in LPNs can be solved by computing the reachability

graph of a plant and using the graph to design a supervisor by means of the automaton-

based algorithms, such a method is rather inefficient since it requires a full enumeration of

the reachability space of a net. This chapter proposes a state abstraction technique to design

an active diagnosis supervisor such that the enumeration of the reachability space is avoided.

Chapter 5 studies the problem of enforcing the asynchronous diagnosability. Asyn-

chronous diagnosability is the property of a plant such that the occurrence of any fault can

be detected after a finite number of observations under the condition that a diagnostic agent

may be asynchronously activated with the plant. As far as we know, the approach presented

in this chapter is the first work to deal with this problem in the literature.

Finally, conclusions and some possible future works are presented in Chapter 6.

1.3.2 Contributions

In this thesis, three contributions are presented in Chapters 3-5. The contributions are

summarized as follows:

In Chapter 3, An active diagnosis supervisor based on the verifier structure of a plant

is developed. The existing methods for active diagnosis in the literature are based on the

diagnoser of a plant whose computation may suffer from the state explosion problem, since

the structure complexity of the diagnoser is exponential with respect to the number of states

in the plant. Verifier is a structure which has been widely used to test the diagnosability of

a plant. Its structure complexity is polynomial with respect to the number of states in the

plant. This chapter proposes an active diagnosis supervisor based on the verifier of a plant.

Compared with the conventional methods in the literature, the developed approach has the

computational advantage.

In Chapter 4, the active diagnosis problem in labeled Petri nets is formulated. Petri net

is a graphical and mathematical modeling tool with a higher modeling power than finite state

automata. However, there is no work to deal with the active diagnosis problem in Petri nets

as far as we know. This chapter uses an integer linear programming technique and develops

a structure called quiescent basis reachability graph (QBRG) to describe the behavior of

a plant without explicitly listing all reachable markings. Based on the QBRG structure, an

algorithm is proposed to design an active diagnosis supervisor for a give plant net. Moreover,

the supervisor designed guarantees that the closed-loop system is deadlock-free if no fault

occurs.

In Chapter 5, the active diagnosis problem under the condition that a diagnostic agent

5

Dissertation of XIDIAN UNIVERSITY

may be asynchronously activated with the plant is studied. The existing fault diagnosis

techniques for discrete event systems require to initialize and run a diagnoser synchronously

with a plant. However, such a condition may not be easy to meet in some cases [56]. There-

fore, a notion called asynchronous diagnosis is proposed. Asynchronous diagnosability is

the property of a plant such that the occurrence of any fault can be detected after a finite

number of observations in the case of asynchronous activation of the diagnostic agent and

the plant. This chapter develops a supervisor for an asynchronous undiagnosable plant such

that the closed-loop system is asynchronous diagnosable.

6

Chapter 2 Preliminaries

Chapter 2 Preliminaries

In this chapter, we recall some basics of automata and Petri nets.

2.1 Automaton

A deterministic finite-state automaton (DFA) is a four-tuple structureA = (X,E, δ, x0),

where:

• X is the set of states;

• E is the set of events;

• δ : X × Σ→ X is the partial state transition function;

• x0 is the initial state.

Example 2.1. Figure 2.1 shows a DFA with X = {0, 1, 2, 3}, alphabet E = {a, b, c}, and

initial state x0 = 0. The transition function is given by Table 2.1. �

0 1 2 3a
b

b

c

c

a

Fig. 2.1 A deterministic finite-state automaton.

Table 2.1 The transition function of the DFA in Fig. 2.1.

δ a b c

0 1 − 3
1 − 2 3
2 − 1 −
3 3 − 0

We use Γ(x) to denote the set of events that are feasible at state x. A state x ∈ X is a

dead state if Γ(x) = ∅. A plant A is live if it does not contain dead states.

The event set E can be partitioned into the set of observable events Eo and the set of

unobservable events Euo, i.e., E = Eo ∪ Euo. The unobservable event set can be further

7

Dissertation of XIDIAN UNIVERSITY

partitioned into the set of regular unobservable events Ereg and the set of fault events Ef ,

i.e., Euo = Ereg ∪ Ef . According to different fault types, we have Ef = {f1, f2, ..., fn}.

LetE∗ (the Kleene closure ofE) denote the set of all finite sequences overE, including

the empty sequence ε. Let σ ∈ E∗ be an event sequence, and we use |σ| to denote the length

of σ. The transition function δ is extended to δ∗ : X × E∗ → X by recursively defining

δ(x, ε) = x and δ(x, σe) = δ(δ(x, σ), e), where σ ∈ E∗ and e ∈ E.

The set of sequences that can be generated by plant A from state x is denoted by

L(A, x) = {σ ∈ E∗ | δ(x, σ)!} where “!” means “is defined”. The generated language

of A is defined as L(A) = L(A, x0) = {σ ∈ E∗ | δ(x0, σ)!}. Given a sequence σ ∈ L(A),

we use L(A)/σ to denote the set of sequences that occurs after σ, i.e., L(A)/σ = {σ′ ∈
E∗ | σσ′ ∈ L(A)}. A sequence σ ∈ L(A) is terminal if L(A)/σ = ∅. The extension closure

of the language L(A), denote by ext(L(A)), is defined as ext(L(A)) = {σ′ ∈ E∗ | ∃σ ∈
L(A), σσ′ ∈ L(A)}.

The prefix closure of a language L ⊆ E∗ is the set L = {σ ∈ E∗ | ∃σ′ ∈ E∗, σσ′ ∈ L}.
A language L ⊆ E∗ is prefix-closed if L = L.

Given a sequence σ ∈ E∗, the observation mask is the natural projection P : E∗ → E∗o ,

which is defined as: 
P(ε) = ε;

P(e) = e, if e ∈ Eo;
P(e) = ε, if e ∈ Euo;
P(σe) = P(σ)P(e), σ ∈ E∗, e ∈ E.

(2-1)

If a sequence σ = e1e2 . . . ek ∈ L(A) is executed in a plant A, through the observation

mask P one observes the word w = P(σ) = P(e1)P(e2) . . .P(ek). We use Lo(A) to denote

the observed language of A, i.e., Lo(A) = {P(σ) | σ ∈ L(A)}. The inverse projection

P−1 : E∗o → 2E
∗ is defined as: P−1(w) = {σ ∈ L(A) | P(σ) = w}, i.e., P−1(w) consists

of all sequences in L(A) whose observations are w.

For an automaton plant A = (X,E, δ, x0), we define the unobservable reach [57, 58]

of a state x ∈ X as UR(x) = {x′ ∈ X | ∃σ ∈ E∗uo, δ(x, σ) = x′}, i.e., UR(x) is the set of

states that are reachable from state x via sequences consisting of unobservable events only.

Given a state x ∈ X and an observable event e ∈ Eo, we define Ue(x) = {σ ∈ E∗uo | eσ ∈
L(A, x)}, i.e., the set of unobservable sequences σ such that eσ is generated from state x.

For an automaton plantA = (X,E, δ, x0), we say that x1
e1−→ x2

e2−→ ...
en−1−−→ xn (where

xi ∈ X and ei ∈ E) is a path if δ(xi, ei) = xi+1 for all i ∈ {1, 2, ..., n− 1}. A cycle is path

with x1 = xn.

8

Chapter 2 Preliminaries

2.2 Petri Net

A Petri net is a four-tuple PN = (P, T, Pre, Post), where P is a set of m places

represented by circles and T is a set of n transitions represented by bars; Pre : P × T → N
and Post : P × T → N are the pre- and post- incidence matrices which specify the arcs

from places to transitions and from transitions to places, respectively. Here, N is the set of

non-negative integers. C = Post − Pre ∈ Nm×n is the incidence matrix of the net. For a

transition t ∈ T , the preset of t is defined as •t = {p ∈ P | Pre(p, t) > 0}, while the postset

of t is defined as t• = {p ∈ P | Post(p, t) > 0}.
A marking of a Petri net is a function M : P → N, which assigns to each place a

non-negative integer number of tokens, represented by black dots. A Petri net with an initial

marking M0 is called a Petri net system and is denoted by 〈PN,M0〉.

p1

p2

p3

p4

p5

p6

p7

t1t1

t2

t3

t4

t5

t6

Fig. 2.2 A Petri net system.

Example 2.2. Fig. 2.2 presents a Petri net system with P = {p1, p2, p3, p4, p5, p6, p7} and

T = {t1, t2, t3, t4, t5, t6}. The initial marking M0 = [1, 0, 0, 0, 0, 0, 0]T . The Post and Pre

incidence matrices of the net are as follows:

Pre =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1


, Post =



0 0 0 0 0 1
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


Accordingly, the incidence matrix can be computed as follows:

C =



−1 0 0 0 0 1
1 −1 0 0 0 0
1 0 −1 0 0 0
0 1 0 −1 0 0
0 0 1 0 −1 0
0 0 0 1 0 −1
0 0 0 0 1 −1


.

9

Dissertation of XIDIAN UNIVERSITY

A transition t is enabled at a marking M if M ≥ Pre(·, t) holds, which is denoted

by M [t〉. At a marking M , an enabled transition t may fire reaching a new marking M ′ =

M + C(·, t), which is denoted by M [t〉M ′. We use t ∈ σ to denote that transition t appears

at least once in a sequence σ ∈ T ∗. We write M [σ〉M ′ with σ = t1 · · · tk to denote that

at marking M transitions t1, · · · , tk can fire sequentially, which eventually yields marking

M ′. We say that marking M ′ is reachable from marking M if there exists a firing sequence

σ ∈ T ∗ such that M [σ〉M ′. We use L(PN,M0) to represent the set of all sequences that are

enabled at the initial marking M0, i.e., L(PN,M0) = {σ ∈ T ∗ |M0[σ〉}.
The set of all markings that are reachable from M0 is the reachability set, denoted by

R(PN,M0). A marked net 〈PN,M0〉 is bounded if there exists a number k ∈ N such that

for all M ∈ R(PN,M0), and all p ∈ P,M(p) ≤ k holds.

A marking M is said to be dead if no transition is enabled at M . A sequence σ ∈
L(PN,M0) is terminal if the firing of σ reaches a dead markingM . A marked net 〈PN,M0〉
is said to be deadlock-free if for all M ∈ R(PN,M0), M is not dead.

For a sequence σ ∈ T ∗, we use σ↑T ′ with T ′ ⊆ T to denote the projection of sequence

σ onto the transition set T ′, and we write yσ to denote the firing vector of σ, i.e., yσ(t) = k

if transition t appears k times in σ.

A Petri net is acyclic if it does not contain any cycle. For an acyclic net, the following

result holds [59, 60].

Proposition 2.1. Given an acyclic Petri net, a marking M is reachable from M0 if and only

if there exists a vector y ∈ Nn satisfying the state equation M = M0 + C · y. �

A labeled Petri net (LPN) is a structure G = (PN,M0,Σ, `), where PN is a Petri net,

M0 is the initial marking, Σ is an alphabet (a set of labels) and ` : T → Σ ∪ {ε} is the

labeling function that assigns to each transition t ∈ T either a symbol from the given event

set Σ or the empty sequence ε. The set of transitions T is partitioned into two disjoint sets

as follows: T = To ∪ Tuo, where To = {t ∈ T | `(t) ∈ Σ} is the observable transition set

and Tuo = {t ∈ T | `(t) = ε} is the unobservable transition set. The labeling function is

also naturally extended to firing sequences ` : T ∗ → Σ∗.

In an LPN, the observation of a sequence σ ∈ T ∗ is denoted as w = `(σ) ∈ Σ∗. The

language of an LPN G is defined as L(G) = {w ∈ Σ∗ | ∃σ ∈ L(PN,M0) : `(σ) = w}.
Given an observation w ∈ E∗, we define `−1(w) = {σ ∈ L(PN,M0) | `(σ) = w} as the

set of firing sequences consistent with w.

Given a net PN = (P, T, Pre, Post) and a subset T ′ ⊆ T of its transitions, we define

the T ′-induced subnet of PN as a new net PN ′ = (P, T ′, P re′, Post′) where Pre′ and

10

Chapter 2 Preliminaries

Post′ are the restrictions of Pre and Post to T ′, i.e., PN ′ is the net obtained from PN by

removing all transitions in T \T ′. In the following, matrices Cu and Co denote the restriction

of the incidence matrix C to Tu and To, respectively.

The study in [21, 61] develops a semi-structural approach called basis reachability

graph to represent the reachability set of a bounded Petri net. Basis reachability graph

approach is a state space abstraction technique in Petri nets. In this method, only a subset

of reachable markings, called basis markings, requires to be enumerated, while all other

reachable markings are abstracted by linear algebraic equations. For a Petri net, the number

of basis markings in the BRG is much smaller than the markings in the reachability graph.

Definition 2.1. [61] Given a Petri net PN = (P, T, Pre, Post), a pair π = (TE, TI) is

called a basis partition1 of T if (1) TI ⊆ T , TE = T \ TI; and (2) the TI-induced subnet is

acyclic. The sets TE and TI are called the set of explicit transitions and the set of implicit

transitions, respectively. �

Definition 2.2. [61] Given a Petri net PN = (P, T, Pre, Post), a basis partition π =

(TE, TI), a marking M , and a transition t ∈ TE , we define:

• Σ(M, t) = {σ ∈ T ∗I | M [σ〉M ′,M ′ ≥ Pre(·, t)} as the set of explanations of

transition t at marking M ;

• Y (M, t) = {yσ ∈ N|T | | σ ∈ Σ(M, t)} as the set of explanation vectors of transition

t at marking M ;

• Ymin(M, t) denotes the set of all minimal elements of Y (M, t), i.e., the minimal

explanation vectors. �

The set of basis markingsM is recursively defined as follows:

• M0 ∈M;

• If M ∈M, then for all t ∈ TE , for all y ∈ Ymin(M, t),

(M ′ = M + CI · y + C(·, t))⇒ (M ′ ∈M).

Given a partition π = (TE, TI), the corresponding basis reachability graph (BRG) is a

deterministic finite state automaton (DFA) defined in [61]. In short, a BRG B is a quadruple

(M, T r,∆,M0), where:
1In general, there may exist multiple valid basis partitions for a given plant net. The selection of explicit and implicit

transitions is not necessarily associated with physical meanings. However, for certain problems some particular basis
partitions are useful.

11

Dissertation of XIDIAN UNIVERSITY

• the state setM is the set of basis markings;

• the event set Tr is the set of pairs (t,y) ∈ TE × N|TI |;

• the transition function ∆ is:

∆ = {(M1, (t,y),M2) | t ∈ TE,y ∈ Ymin(M1, t),

M2 = M1 + CI · y + C(·, t)}

• the initial state is the initial marking M0.

Definition 2.3. [61] Given a net PN = (P, T, Pre, Post), a basis partition π = (TE, TI),

and a basis marking Mb, the implicit reach of Mb is defined as RI(Mb) = {M ∈ Nm |
(∃σ ∈ T ∗I)Mb[σ〉M}. �

Theorem 2.1. [61] Given a Petri net PN = (P, T, Pre, Post), a basis partition π =

(TE, TI), and a marking M ′, the following condition holds:

(∃σ ∈ T ∗)σ↑TE = σE ∧M0[σ〉M ′ ⇔ (∃Mb ∈M)(M0, σE,Mb) ∈ ∆∗ ∧M ′ ∈ RI(Mb)

where (M0, σE,Mb) ∈ ∆∗ denotes that, in the BRG, there exists a path from M0 to Mb

labeled by (t1,y1), · · · , (t2,y2) such that t1 · · · tk = σE . �

2.3 Supervisory Control

Supervisory control theory of DESs was first proposed by Ramadge and Wonham [62–

64] in which they model a plant as an automaton. Given an plantA = (X,E, δ, x0), the event

setE is partitioned into two disjoint subsetsE = Ec∪Euc whereEc is the set of controllable

events and Euc is the set of uncontrollable events. The control objective is defined by a

regular language K ⊆ E∗ called the specification. A supervisor S that dynamically disables

events of a plant such that the closed-loop language of S over A is restricted within K.

A supervisor S runs in parallel with the plant and, when the plant generates a sequence

σ ∈ L(A), the supervisor observes the word w = P(σ) and makes the control policy S(w)

that disables all controllable events not in S(w). Note that the supervisor cannot disable any

uncontrollable euc ∈ Euc.

A language K ⊆ E∗ is controllable (w.r.t. A and Euc) if

(∀σ ∈ K, e ∈ Euc)(σe ∈ L(A))⇒ σe ∈ K.

12

Chapter 2 Preliminaries

We say that K is observable (w.r.t. A and Eo) if for every pair of strings σ, σ′ ∈ E∗ such

that P(σ) = P(σ′), the following statement holds:

(∀e ∈ E)(σe ∈ K, σ′ ∈ K,σ′e ∈ L(A))⇒ σ′e ∈ K.

Theorem 2.2 ([65]). Let K ⊆ L(A) be a prefix-closed nonempty language. There exists a

proper supervisor S such that the closed-loop language of S over A is K if and only if K is

controllable and observable.

In this paper, we use (A, S) to denote the closed-loop system composed by the plant A

under the supervision of S, and we use L(A, S) to denote the language of (A, S).

13

Dissertation of XIDIAN UNIVERSITY

14

Chapter 3 Active Diagnosis Problem in the Framework of Automata

Chapter 3 Active Diagnosis Problem in the Framework of
Automata

In the literature, many works have been done to deal with the active diagnosis problem

in automata [45–49, 52, 54, 55]. Although theses contributions can be used to enforce

diagnosability, they are all based on some observer-like structure whose complexity is ex-

ponential with respect to the number of states in a plant. Therefore, these approaches may

encounter the state explosion problem. Differently from the existing works, in this chapter,

we present an active diagnosis method based on the structural analysis of the verifier. Note

that although the verifier can be used to efficiently test diagnosability, it is not straightfor-

ward in designing a supervisor such that the closed-loop system is diagnosable. As far as

we know, this is the first work on the active diagnosis whose structural complexity of the

control structure is polynomial with respect to the number of states of the plant.

3.1 Diagnosability Verification in Automata

In the section, we first review the notion of diagnosability in the framework of automata

[3, 66]. Here we use “e ∈ σ” to denote that event e appears at least once in sequence σ.

Definition 3.1 (Diagnosability). Given a live plant A = (X,E, δ, x0) with E = Eo ∪ Euo
and Euo = Ereg ∪Ef , a fault type fi ∈ Ef is diagnosable if for all σ′fi ∈ L(A), there exists

kσ′ ∈ N such that for all σ′fiσ′′ ∈ L(A),

|σ′′| ≥ kσ′ ⇒ ∀σ ∈ P−1(P (σ′fiσ
′′)) : fi ∈ σ.

where N is a set of natural numbers. �

The notion of diagnosability can be interpreted as follows. Suppose that fault fi occurs

after a sequence σ′, i.e., sequence σ′fi has occurred. Fault fi is diagnosable if after a

sufficiently long continuation σ′′, all possible sequences that have the same observation as

that of σ′fiσ′′ contain fault fi at least once. This implies that fault fi can be detected within a

finite delay after its occurrence. Note that the number kσ′ depends on the particular sequence

σ′.

PlantA is diagnosable if all fault types ofA are diagnosable. For the sake of simplicity,

in this work we consider a single type of faults, i.e., Σf = {f}. However, we note that the

approach proposed in this chapter can be easily extended to plants with multiple fault types.

15

Dissertation of XIDIAN UNIVERSITY

3.1.1 Diagnoser

Given a plant automaton A, in this section we recall the diagnoser in [3] that is used

both for online diagnosis and diagnosability verification. For a plant A = (X,E, δ, x0), the

corresponding diagnoser is a four-tuple structure:

Ad = (Y,Ed, δd, y0)

where Y ⊆ 2X×{N,F} is the set of diagnostics states, Ed = Eo is the set of events, δd :

Y × Σd → Y is the transition function, and y0 is the initial state. For an observation

w ∈ E∗o , a diagnostic state is in the form of y(w) = {(x1, l1), ..., (xn, ln)} where xi ∈ X and

li ∈ {N,F} that carries the fault information at state xi. Hence, according to the current

diagnostic state y(w), a diagnoser reports that by observing w the plant is in either of the

three cases:

• Normal (no fault has occurred so far) if for all (xi, li) ∈ y(w), li = N , i.e., all pairs

are flagged by N ;

• Faulty (fault f must have occurred at least once) if for all (xi, li) ∈ y(w), li = F , i.e.,

all pairs are flagged by F ;

• Uncertain (fault f may have occurred) if there exist (xi, li), (xj, lj) ∈ y(w), li = N

and lj = F , i.e., some pairs are flagged by N and some are flagged by F ;

Before defining the initial diagnostic state y0 and the transition function δd, in the

following, we first introduce a labeling function ∆ : {N,F} × Σ∗ → {N,F}.

Definition 3.2. Given a sequence σ ∈ E∗ and a label l ∈ {N,F}, the labeling function ∆

is defined as follows:

∆(l, σ) =

{
N, if l = N ∧ f /∈ σ
F, otherwise.

(3-1)

�

The usage of the labeling function can be explained as follows. Suppose that a plant

is currently at a state x at which a label l is attached indicating that fault f has occurred

(l = F) or not (l = N). After the occurrence of a sequence σ, the current state is updated

to a new one x′ that attached a new label l′. If sequence σ does not contain fault f and label

l = N , it is obviously that no fault has occurred at state x′, i.e., l′ = N . Otherwise, fault f

has occurred and the corresponding label l′ = F .

16

Chapter 3 Active Diagnosis Problem in the Framework of Automata

The initial diagnostic state y0 contains the information about the states that the plant

initially may be in and the condition of the plant, which is defined as follows:

y0 = {(x,∆(N, σ)) | σ ∈ L(A) ∩ E∗uo, x ∈ δ(x0, σ)}.

The transition function δd : Y × Eo → Y of Ad is defined as follows:

δd(y, e) = {(x′,∆(l, eσ)) | (x, l) ∈ y, σ ∈ Ue(x), x′ ∈ δ(x, eσ)}.

In [3], an important notion related to diagnosability is indeterminate cycle in diagnoser

Ad. The diagnosability of a plant can be determined by checking the existence of indetermi-

nate cycles in the diagnoser of the plant.

Definition 3.3 (Indeterminate cycle). Given a diagnoser Ad = (Y,Eo, δd, y0) of a plant

A = (X,E, δ, x0) with E = Eo ∪ Euo, a sequence of uncertain diagnostic states y1y2 · · · yn
forms an indeterminate cycle if:

1. the uncertain diagnostic states compose a cycle:

y1
e1−→ y2

e2−→ ...
en−1−−→ yn

en−→ y1,

where ei ∈ Eo, i ∈ {1, 2, . . . n};

2. there exist two cycles of states:

(a) x′1 → x′2 → · · · → x′n → x′1 such that x′i+1 ∈ ∆(x′i, ei) and (x′i, N) ∈ yi;

(b) x′′1 → x′′2 → · · · → x′′n → x′′1 such that x′′i+1 ∈ ∆F (x′′i , ei) and (x′′i , F) ∈ yi;

where ∆(x, e) = {x̄ ∈ X | ∃σ ∈ (E \ {f})∗,P(σ) = e, δ∗(x, σ) = x̄} and

∆F (x, e) = {x̄ ∈ X | ∃σ ∈ E∗,P(σ) = e, δ∗(x, σ) = x̄}. �

An indeterminate cycle in the diagnoser Ad implies that there exist two arbitrary long

sequences σ1 and σ2 such that sequence σ1 contains a fault event while sequence σ2 does

not, and they both have the same observation. The following theorem provides a method to

test the diagnosability of a given system.

Theorem 3.1. For a plant A that does not have any cycle of unobservable events, it is

diagnosable if and only if there does not exist any indeterminate cycle in its diagnoser Ad.�

17

Dissertation of XIDIAN UNIVERSITY

3.1.2 Verifier

Given a plant A = (X,E, δ, x0), the diagnosability of A can be verified by using

the diagnoser Ad, as mentioned in the previous subsection. However, it is obviously that

the structure complexity of Ad is O(22|X|). Therefore, to reduce the complexity, some

researchers [11, 12] develop a structure called verifier whose structure complexity is polyno-

mial with respect to the number of states in the plant. In the following, we give the definition

of verifier.

Definition 3.4 (Verifier). Given a plant A = (X,E, δ, x0) with E = Eo ∪ Euo and Euo =

Ereg∪{f}, its verifier (of fault f) is a nondeterministic finite automatonAv = (V,E, δv, v0),

where (i) a state v ∈ V is a set of pairs {(xi, li), (xj, lj)}, where xi, xj ∈ X and li, lj ∈
{N,F} are flags of the fault: N and F denote “the fault has not occurred” and “the fault

has occurred”, respectively; (ii) the initial verifier state is v0 = {(x0, N), (x0, N)}; (iii) the

transition rule δv is defined as follows:

For e ∈ Euo \ Ef ,

δv({(xi, li), (xj, lj)}, e) =


{(δ(xi, e), li), (xj, lj)}
{(xi, li), (δ(xj, e), lj)}
{(δ(xi, e), li), (δ(xj, e), lj)}.

For e ∈ Ef ,

δv({(xi, li), (xj, lj)}, e) =


{(δ(xi, e), F), (xj, lj)}
{(xi, li), (δ(xj, e), F)}
{(δ(xi, e), F), (δ(xj, e), F)}.

For e ∈ Eo,

δv({(xi, li), (xj, lj)}, e) = {(δ(xi, e), li), (δ(xj, e), lj)}.

�

For simplicity, in the sequel a verifier state {(xi, li), (xj, lj)} is denoted as (xili, xjlj).

A verifier state (xili, xjlj) is called normal if li = lj = N , and faulty if li = lj = F . The

diagnosability of a plant A can be determined by checking the existence of confused cycles

in the verifier.

Definition 3.5 (Confused cycle). Let Av be the verifier of a plant A = (X,E, δ, x0) with

18

Chapter 3 Active Diagnosis Problem in the Framework of Automata

E = Eo ∪ Euo and Euo = Ereg ∪ {f}. A cycle

(x′1l
′
1, x
′′
1l
′′
1)

e1−→ (x′2l
′
2, x
′′
2l
′′
2)

e2−→ · · · en−2−−→ (x′n−1l
′
n−1, x

′′
n−1l

′′
n−1)

en−1−−→ (x′1l
′
1, x
′′
1l
′′
1)

is confused if for all vi = (x′il
′
i, x
′′
i l
′′
i), l′i = N , l′′i = F , i ∈ {1, 2, ..., n− 1}. �

Theorem 3.2. [12] For a plant automaton A that does not have any cycle of unobservable

events, it is diagnosable with respect to observation mask P and fault f if and only if there

does not exist any confused cycle in its verifier Av. �

The idea here is that a fault f is diagnosable if and only if there is no pair of arbitrary

long sequences having the same observation, such that f occurs in the first sequence but

not in the second. A sequence σ in the verifier, i.e., (x0N, x0N)
σ−→ (xiN, xjF), implies

that there exist two sequences in the plant having the same observation where one contains

a fault while another not. Obviously, by checking the existence of confused cycle, one can

determine the diagnosability of the plant.

3.2 Active Diagnosis Formulation

By Defintion 3.1, a fault in an automaton plant A is diagnosable if for any sequence

σf ∈ L(A), after a finite continuation σ′, all possible sequences having the same observation

as σfσ′ contain the fault at least once. However, in some plants it may happen that when a

fault has occurred, by executing σf , there exists an infinite continuation σ′ such that there

always exists some non-faulty sequence that has the same observation as σfσ′. Since by

Theorem 3.2 the existence of confused cycles in the verifier is a sufficient and necessary

condition for undiagnosability, a classical scheme to design a system is the following.

1. Model a physical plant as an automaton A;

2. Test if A is diagnosable (by checking its verifier);

3. If A is not diagnosable, modify A and go to Step 2;

4. Compute a diagnostic agent, and put A and its diagnostic agent online;

The way of modifying A in Step 3 requires to modify the plant structure including

the states, transition relations, and observation masks. Such a modification requires to

redesign the plant and/or to physically deploy new sensors, which may not be possible due

to technical and financial difficulties. On the other hand, people are interested in the active

19

Dissertation of XIDIAN UNIVERSITY

σ

w=P(σ)

S(y)

SUPERVISOR
S

PLANT
A

P

DIAGNOSTIC
AGENT N,F,U

y=y(w)

Fig. 3.1 The active diagnosis scheme.

diagnosis using supervisory control theory. In the active diagnosis scheme, a supervisor

forces the plant to leave the uncertain diagnostic states by disabling some events such that

the ambiguity of fault is clarified in a finite number of steps.

Classical supervisory control methods are usually in the context of languages. In this

thesis, however, we consider a slight different type of supervisor whose control policy is

made according to the current diagnostic state. State-based and language-based control

frameworks are proved to be equivalent [67], but one will shortly see that state-based control

is convenient and sufficient for active diagnosis. The scheme of active diagnosis in this

chapter is illustrated in Figure 3.1. When a plant generates a sequence σ ∈ L(A), the

diagnostic agent observes the word w = P(σ) and obtains a diagnostic state y(w). Based

on y(w) the supervisor allows a subset of controllable events S(y) ⊆ Ec to execute, while

other events in Ec \ S(y) are disabled.

Since diagnosability can be verified in polynomial complexity [11, 12], to focus on the

development of our control policy S for active diagnosis, we assume that a plant is known

to be undiagnosable a priori. Nevertheless, it is worth noting that the proposed approach

can be generalized to design a supervisor for a k-diagnosable plant such that the closed-loop

system is k′-diagnosable with k′ < k. The problem investigated in this chapter is formulated

as follows.

Problem 3.1 (Active Diagnosis). Given a plant DFA A, determine a control policy S for A

such that the closed-loop system (A, S) is diagnosable. �

Moreover, we assume that a plant considered in this chapter satisfies the following

assumptions:

A1 It is live;

A2 There does not exist any cycle of unobservable events in it;

A3 Ec ⊆ Eo ⊆ E.

20

Chapter 3 Active Diagnosis Problem in the Framework of Automata

We note that Assumption 1 is purely technical. In fact, if a plant contains dead states

(at which no event can execute), it can be converted to an equivalent automaton without

dead states by adding a self-loop labeled with the quiescent event at each dead states (e.g.,

see [45]). We also note that if the original plant is live, the supervisor designed in this

chapter guarantees that the closed-loop system is also live. Assumption 2 is a commonly

used assumption in the context of diagnosis, which requires that the plant does not generate

an infinite long sequence that contains only unobservable events. Assumption 3 requires

that only part of observable events should be controllable, while all unobservable events are

uncontrollable. Such an assumption is widely used in the context of supervisory control in

automata with unobservable events. The proposed method can also be generalized to cases

where Assumption 3 is not satisfied by using the All Enforcement structure in [49].

3.2.1 Diagnoser-based Approach for Active Diagnosis in Automata

In the classical setting of diagnosis, a plant is assumed to be live. However, by enforcing

a control policy S, the closed-loop system may get blocked at a state while all executable

events are disabled by the supervisor. In other words, the closed-loop system (A, S) may be

non-live. In [45], the author introduce a particular “stop” event at each dead state such that

the non-live closed-loop system (A, S) is refined to a system (A, S)live that is always live.

Hence both the diagnosability checking and the diagnosis can be done in the refined system

(A, S)live. An iterative algorithm is proposed in [45] to design a supervisor, and here we

briefly recall it by the following example.

Example 3.1. Figures 3.2(a) depicts a plant A in which Ec = Eo = {a, b, c, d, e} and

Ef = {f}. The diagnoser of A, i.e., Ad, is shown in Figure 3.2(b). According to Theorem

3.1, the plant is not diagnosable since diagnostic states y2 and y3 in the diagnoser form an

indeterminate cycle.

To make the system diagnosable by supervisory control, the indeterminate cycle must

be cut1 to prevent the system from staying in such a loop for an infinite long time. Hence,

we apply a control policy S ′ that disables event d at diagnostic state y3. Since by observing

abc the plant may be at state 7 (non-faulty), 4 (faulty), or 10 (faulty), this disablement of d

at y3 makes the plant be blocked in all cases. As a result, at diagnostic state y3 the plant will

generate the event stop due to the disablement of event d.

The diagnoser of the refined closed-loop system (A, S) is shown in Figure 3.2(c), which

1In [45] the control policy S is described by a language Kl that completes any elementary indeterminate cycle at most l
times. Since in practical cases it is more preferable that a fault be detected as early as possible, here we omit this distinction
and consider the case l = 0.

21

Dissertation of XIDIAN UNIVERSITY

0

2 3 4

5 6

1a
f

b
d

c

b
c 7

dg

e

8 9 10c

d
b

f

e

(a)

a b
c

d

y0 y1 y2 y3

y4

e

1N

2F
5N

8F
0N

6N
3F
9F

7N
4F
10F

6N

e
y5 y6

e

c

d

3N 4N 7N

y7
c

d

(b)

Stop
a b c

y0 y1 y2 y3

y4

e

1N

2F
5N

8F
0N

6N
3F
9F

7N
4F
10F

6N

e
y5

c

d

3N 4N

e
y6

7N

y7
c

d

(c)

Stopa b

y0 y1 y2 y3

y4

e

1N

2F
5N

8F
0N

6N
3F
9F

3F
9F

6N

e

Stop

c

d

3N 4N

e
y5 y6

7N

y7
c

d

(d)

Fig. 3.2 (a) Plant A for Example 3.1, (b) diagnoser of A, (c) diagnoser of the closed-loop system
(A,S′)live, and (d) diagnoser of the closed-loop system (A,S′′)live.

is still not diagnosable due to the indeterminate cycle at y3 = {(7, N), (4, F), (10, F)}
labelled with event stop. To eliminate the indeterminate cycle at y3 in the refined diagnoser

in Figure 3.2(c), we enforce a more restrictive control policy S ′′ that disables event c at

diagnostic state y2 which indicates that the plant currently may be at state 3 (faulty), 6

(non-faulty), or 9 (faulty). Since the supervisor cannot differentiate states 3, 6, and 9 at this

moment, to be on the safe side, it has to disable event c regardless the actual current state.

With the disablement of event c at y2, event e is executable if the plant is at state 6, while

no event is executable if the plant is at state 3 or 9. Hence if the fault has occurred, by

observing the event stop we can conclude that the plant is either at state 3F or 9F by which

we know that the fault must have occurred. The diagnoser of the refined closed-loop system

(A, S ′′) is shown in Figure 3.2(d) and does not contain any indeterminate cycle. Therefore,

the automaton in Figure 3.2(d) can be used as a supervisor for active diagnosis. �

Remark 3.1. Since the control decision made by the supervisor is based on diagnostic

states, the trimming procedure can be directly done on the diagnoser structure as shown

in Example 3.1. Another way of trimming the system is to modify the plant structure at

each iteration. For example, if the supervisor disables event d at diagnostic state y3 =

{(7, N), (4, F), (10, F)} in Figure 3.2(b), all three events labelled with d at states 4, 7, 10

are removed and stop events are added to these states. However, this way of trimming re-

quires to completely recompute the diagnoser at each iteration, and the resultant supervisor

22

Chapter 3 Active Diagnosis Problem in the Framework of Automata

0 2

1 3

f

a

a b

c4

5

a a c

c

(a)

0N
1F

ay0 4Ny1

stop
3F stop

c

y2

2N
3F

a

y3

0N
1F

y0 y1

stop
2N
3F

a

(b)

0N
1F

ay0 4Ny1

stop
3F stop

c

y2

2N
3F

a

y3

0N
1F

y0 y1

stop
2N
3F

a

(c)

Fig. 3.3 (a) Automaton A for Example 3.2, (b) the closed-loop system (A,S1), and (c) the closed-loop
system (A,S2).

may be more restrictive: the sequence e(cd)k (k ∈ N) associated to y0 → y5 → y6 → · · · is

not undiagnosable but is no longer executable. �

3.2.2 Properties of Supervisor-induced Deadlocks

Diagnoser-based methods provide a way to enforce diagnosability by supervisory con-

trol. However, they are computationally expensive since the diagnoser structure is expo-

nential with respect to the number of states of a plant. In this subsection we show that the

computation of the diagnoser is unavoidable due to the introduction of “stop” event. Let us

first recall the restrictiveness of control policies.

Definition 3.6. Given a plant A, a control policy S ′′ is more restrictive than another control

policy S ′, denoted by S ′′ ≺ S ′, if for all diagnostic state y of A, S ′′(y) ⊆ S ′(y) holds, and

there exists at least one diagnostic state y in A such that the inclusion is strict. �

If S ′′ is more restrictive than S ′, then S ′ is more permissive than S ′′. In many su-

pervisory control problems, since L(A, S ′′) ⊆ L(A, S ′) holds where S ′′ is more restrictive

than S ′, the fact that one control policy is valid implies that any control policy that is more

restrictive than it is also valid2. However, with the stop event in the plant, the language of the

closed-loop system L(A, S)live is not a sublanguage of L(A), and in general L(A, S ′′)live *
L(A, S ′)live holds, where S ′′ is more restrictive than S ′. This indicates that diagnosability

is not preserved when the permissiveness of a supervisor decreases. In other words, that

the closed-loop system (A, S)live is diagnosable does not imply that (A, S ′′)live is also

diagnosable, as illustrated by the following example.

Example 3.2. Consider the plant in Figure 3.3(a) in which Eo = {a, b, c}, Ec = {a, b},
and Ef = {f}. The initial diagnostic state y0 = {(0, N), (1, F)} is Uncertain. Suppose

that a supervisory control policy S1 satisfies S1(y1) = {a}, i.e., it only allows event a to

2Sometimes the control goal includes to preserve a minimum legal behavior, e.g., in [68]. In such cases, if S′ is valid,
then for any more restrictive S′′ that includes the required minimal legal behavior, S′′ is also valid.

23

Dissertation of XIDIAN UNIVERSITY

1

2

3

4

...

...

f

2k-1e0 e1 e2

e2e1 2k

0

ek-1

ek-1 ek
,

ek
,,

(a)

(2k-1)N

0N 1N
4F2F

e0

y0 y1 y2

...e1 e23N (2k-1)N
2kF

yk
ek-1

ek
,

ek
,,

2kF

yk
,

ek
,

ek
,,

yk
,,

(b)

0N 1N
4F2F

e0

y0 y1 y2

...e1 e23N (2k-1)N
2kF

yk
ek-1 ek

,=ek
,,

(c)

Fig. 3.4 (a) Automaton A for Example 3.3, (b) the diagnoser of A (e′k 6= e′′k), (c) the diagnoser of A
(e′k = e′′k).

execute. The closed-loop behavior of (A, S1) is shown in Figure 3.3(b) and it is clearly

diagnosable. However, for a control policy S2 such that S2(y1) = ∅, it disables both a and

b. The closed-loop behavior of (A, S2) is undiagnosable, as shown in Figure 3.3(c). �

Suppose that the current diagnostic state of a system is y and the execution of event e

yields a new diagnostic state y′. The supervisor must decide if event e should be permitted.

According to Theorem 3.1, event e should be permitted if y′ does not belong to an indeter-

minated cycle. However, the control policy at a diagnostic state y cannot be made only by

the knowledge of y. In other words, the decision S(y) can only be made after computing the

entire closed-loop behavior, i.e., the diagnoser.

Example 3.3. Consider the automaton A shown in Figure 3.4(a) where Eo = Ec = {e0, e1,
e2, ..., ek−1, e

′
k, e
′′
k} and Ef = {f}. The diagnosers for e′k 6= e′′k and e′k = e′′k are shown

in Figure 3.4(b) and (c), respectively. Now let us consider the initial control decision

“whether event e0 should be permitted” at diagnostic state y0. Notice that y0
e0−→ y1 that

is an uncertain diagnostic state, and the most restrictive control policy at y1 that disables

event e1 at y1 makes the closed-loop system undiagnosable (since the plant is blocked at

y1 = {(1, N), (2, F)}). This indicates that e0 should be permitted only if the control decision

at y1 permits event e1. By the same reasoning, at y1 event e1 should be permitted only if the

control decision at y2 permits event e2. This reasoning can be repeatedly applied such that

24

Chapter 3 Active Diagnosis Problem in the Framework of Automata

the decision “whether event e0 should be permitted” can only be made by analyzing all

subsequent diagnostic states from y0, which is in fact to enumerate all diagnostic states in

the diagnoser. �

Since the computation of diagnoser is unavoidable due to the control-induced deadlock,

in the next section we introduce the notion of stop-free control policy whose supervision

does not introduce stop event. A particular property of this class of control policies S ′ and

S ′′ is that the diagnosability of (A, S ′) implies that of (A, S ′′) if S ′′ ≺ S ′. This property will

be further used to establish our active diagnosis algorithm.

3.3 Stop-free Control Policy and Properties

3.3.1 Stop-free Event Set

Since we are interested in finding a control policy S such that the closed-loop system

is diagnosable without creating the silent-blocking, the control policy S must satisfy the

following condition: For any plant state x that belongs to any reachable diagnostic state y,

there exists at least one event e ∈ E that is executable at state x. The stop-free control policy

is defined as follows.

Definition 3.7. Given a plant A, a control policy S is stop-free if for any reachable diag-

nostic state y and any state x ∈ y, (S(y) ∪ Euc) ∩ Γ(x) 6= ∅ holds. �

Unfortunately, there does not exist an efficient method to find all reachable diagnostic

states ofA except by enumerating the entire diagnoser. Hence in the following we introduce

the notion of stop-free event set. A stop-free event set Êc is a subset of the controllable event

set Ec, and for each state x there exists at least one event e ∈ Γ(x) that does not belong to

Êc.

Definition 3.8. Given a plant A = (X,E, δ, x0) with E = Ec ∪Euc, Êc is a stop-free event

set if (Êc ⊆ Ec) ∧ (∀x ∈ X,Γ(x) * Êc). �

The physical meaning of the stop-free event set Êc is presented as follows. Although a

control agent can disable controllable events in Ec, to guarantee the stop-freeness (i.e., the

supervisor does not cause a deadlock) the control agent only controls a subset of controllable

events, while the events in Ec \ Êc are never disabled by the supervisor. We note that

uncontrollable events in E \ Ec are different from the events uncontrolled with respect to

a stop-free event set: an uncontrollable event in E \ Ec cannot be disabled by a supervisor

25

Dissertation of XIDIAN UNIVERSITY

in any case, while an event in Ec \ Êc is controllable, but a supervisor that is designed will

never attempt to disable it.

Proposition 3.1. Given a stop-free event set Êc in a live plant A, the closed-loop system

(A, S) is live if S never disables any event not in Êc.

Proof. Since S never disables any event not in Êc, for any diagnostic sate y, S(y) ⊇ (Ec\Êc)
holds. Then we can obtain that (S(y) ∪ Euc) ⊇ (E \ Êc). By Definition 3.8, for each state

x ∈ y, Γ(x)∩ (E \ Êc) 6= ∅, which indicates that (S(y)∪Euc)∩ Γ(x) 6= ∅, i.e., there exists

at least one executable event at x. Therefore, the closed-loop system (A, S) is live.

It is not difficult to understand that stop-free event set Êc always exists (Êc = ∅ if G is

live) and in general is not unique. However, not all stop-free event sets are feasible to design

a control policy to guarantee diagnosability. The necessary condition of the existence of a

feasible stop-free event set Êc will be discussed in the next subsection, where an algorithm

is also proposed. Given a stop-free event set Êc, we say that a control policy S is stop-free

with respect to Êc if it never disables any event that is not in Êc. In the following, we propose

two properties for stop-free control policy.

Proposition 3.2. Given a plant A = (X,E, δ, x0) with E = Ec ∪ Euc and a stop-free event

set Êc ⊆ Ec, let S ′ and S ′′ be two stop-free control policies with respect to Êc with S ′′ ≺ S ′.

Then L(A, S ′′) ⊆ L(A, S ′).

Proof. Since the two control policies S ′ and S ′′ are stop-free with respect to Êc, the closed-

loop systems (A, S ′) and (A, S ′′) do not contain the stop event. Since the precondition

making L(A, S ′) and L(A, S ′′) incomparable is excluded, for any sequence σ ∈ L(A, S ′′),

we can infer that σ ∈ L(A, S ′).

Note that Proposition 3.2 does not hold for non-stop-free control policies, as dis-

cussed in the previous section: due to the existence of quiescent event stop, L(A, S ′′)live *
L(A, S ′)live.

Proposition 3.3. Given a plant A = (X,E, δ, x0) where E = Ec ∪ Euc and a stop-free

event set Êc ⊆ Ec, let S ′ and S ′′ be two stop-free control policies with respect to Êc with

S ′′ ≺ S ′. Then it holds:

(A, S ′) is diagnosable ⇒ (A, S ′′) is diagnosable.

26

Chapter 3 Active Diagnosis Problem in the Framework of Automata

Proof. Since (A, S ′) is diagnosable, for any faulty sequence σ1f there exists an integer k

such that for all σ1fσ2 ∈ L(A, S ′) with |σ2| ≥ k, any non-faulty sequence σ ∈ L(A, S ′)

satisfies P(σ) 6= P(σ1fσ2). Since both (A, S ′) and (A, S ′′) are stop-free, by Proposition

3.2, L(A, S ′′) ⊆ L(A, S ′) holds. Hence for any faulty sequence σ′1f ∈ L(A, S ′′), there exists

an integer k′ such that for all σ′1fσ
′
2 ∈ L(A, S ′′) with |σ′2| ≥ k′, any non-faulty sequence

σ′ ∈ L(A, S ′′) satisfies P(σ′) 6= P(σ′1fσ
′
2), which concludes the proof.

Proposition 3.3 reveals an important fact: if at diagnostic state y′ we apply a most

restrictive control policy such that all events in Êc are disabled from now on, and if the

plant can still reach some indeterminate cycles and stay for infinite long time, then the

supervisor should disable event e to prevent the system to reach diagnostic state y′. As a

result, the decision of whether an event e should be permitted at y can be determined by

simply looking at the new diagnostic state y′. To characterize this we introduce the notion

of Êc-uncontrollable confused cycles.

Definition 3.9. Given a stop-free event set Êc ⊆ Ec, a sequence σ ∈ E∗ is Êc-uncontrollable

if σ ∈ (E \ Êc)∗; otherwise σ is Êc-controllable. �

Definition 3.10. Given a plant A = (X,E, δ, x0) with E = Ec ∪ Euc and a stop-free event

set Êc ⊆ Ec, a confused cycle C in the verifier Av is a Êc-uncontrollable confused cycle

(with respect to Êc) if EC ∩ Êc = ∅ holds, where EC is the set of events in cycle C. The cycle

is called a Êc-controllable confused cycle (with respect to Êc) if EC ∩ Êc 6= ∅ holds. �

Given a stop-free control policy S with respect to Êc, let σ be a sequence that is allowed

by control policy S. Suppose that in the verifier Av, after the execution of sequence σ, there

exists a continuation of sequence σ′σ′′ such that:

v0
σ−→ (xili, xjlj)

σ′−→ (x′il
′
i, x
′
jl
′
j)

σ′′−→ (x′il
′
i, x
′
jl
′
j)

where σ′ is a Êc-uncontrollable sequence and (x′il
′
i, x
′
jl
′
j)

σ′′−→ (x′il
′
i, x
′
jl
′
j) is a Êc-uncontrollable

confused cycle. This means that from (xili, xjlj) sequence σ′(σ′′)k can be executed with an

arbitrary large integer k and cannot be disabled by S. Hence, the closed-loop system (A, S)

is not diagnosable. To prevent this from happening, in the following we introduce the notion

of undiagnosable verifier state.

Definition 3.11. Given a plant A = (X,E, δ, x0) with E = Ec ∪ Euc and a stop-free event

set Êc ⊆ Ec, let Av = (V,E, δv, v0) be the verifier of A. A verifier state v = (xili, xjlj) ∈ V
is an undiagnosable verifier state (with respect to Êc) if there exists a path in Av from v to v′

27

Dissertation of XIDIAN UNIVERSITY

such that (i) the path has no events in Êc, and (ii) v′ belongs to a Êc-uncontrollable confused

cycle. �

By the discussion above, such a verifier state (xili, xjlj) must be prevented, i.e., a

control policy S must guarantee σ /∈ L(A, S), which is formalized in the following theorem.

Theorem 3.3. Given a plant A = (X,E, δ, x0) with E = Ec ∪ Euc and a stop-free control

policy S with respect to a stop-free event set Êc ⊆ Ec, the closed-loop system (A, S) is not

diagnosable if there exists a reachable diagnostic state y that contains an undiagnosable

verifier state (xili, xjlj).

Proof. Suppose that there exists a reachable diagnostic state that contains an undiagnosable

verifier state v = (xili, xjlj). By Definition 3.11, there exists a Êc-uncontrollable sequence

σ′ from v to v′ = (x′iN, x
′
jF) that belongs to a Êc-uncontrollable confused cycle. Hence,

from the trajectory v0 → v → v′ → v′ we can extract a non-faulty sequence σ′1σ
′
2σ
′
3 and a

faulty sequence σ′′1σ
′′
2σ
′′
3 , where f ∈ σ′′1σ′′2 such thatP(σ′1σ

′
2(σ
′
3)
k) = P(σ′′1σ

′′
2(σ′′3)k) (k ∈ N).

Since σ′2σ
′
3 and σ′′2σ

′′
3 are Êc-uncontrollable, they cannot be disabled by a supervisor. Thus,

σ′1σ
′
2(σ
′
3)
k, σ′′1σ

′′
2(σ′′3)k ∈ L(A, S) holds. This indicates that there exist two infinite long

sequences having the same observation and one contains fault while the other does not.

Therefore, (A, S) is not diagnosable.

Remark 3.2. We note that the flags li and lj of an undiagnosable verifier state v = (xili, xjlj)

are not necessarily different. A verifier state (xiN, xjN) with both flags N may also lead to

undiagnosability since from such a state a sequence of events that are not in Êc including

the fault f (recall that fault f is not in Êc) may be uncontrollably executed to yield a verifier

state (x′iN, x
′
jF) that belongs to a Êc-uncontrollable confused cycle. Such a type of verifier

states, although double-flagged by N , must also be prevented. �

3.3.2 Computing a Feasible Stop-free Event Set

Theorem 3.3 shows that a control policy S must prevent the system from reaching any

diagnostic state that contains undiagnosable verifier states. However, for some Êc it may

happen that the initial diagnostic state y0 contains undiagnosable verifier states. In other

words, for some stop-free event set Êc there does not exist any stop-free control policy with

respect to Êc such that the closed-loop system is diagnosable. The following proposition

characterizes this fact.

28

Chapter 3 Active Diagnosis Problem in the Framework of Automata

Proposition 3.4. Given a plant A = (X,E, δ, x0) with E = Ec ∪ Euc and a stop-free event

set Êc ⊆ Ec, if the initial verifier state v0 is an undiagnosable verifier state, then for any

stop-free control policy S with respect to Êc, the system (A, S) is not diagnosable.

Proof. If the initial verifier state is an undiagnosable verifier state, by Definition 3.11, there

exists a Êc-uncontrollable sequence σ from v0 to v = (x′iN, x
′
jF) that belongs to a Êc-

uncontrollable confused cycle. Hence in (A, S) there exist a non-faulty sequence σ1(σ2)k

(k ∈ N) and a faulty sequence σ′1(σ
′
2)
k where P(σ1(σ2)

k) = P(σ′1(σ
′
2)
k). Sequences

σ1(σ2)
k, σ′1(σ

′
2)
k are Êc-uncontrollable and cannot be disabled by a supervisor. Therefore,

the result holds.

Proposition 3.4 indicates the following fact. Although a stop-free event set always

exists and in general is not unique, for some stop-free event sets it may not be possible to

design a supervisor to guarantee diagnosability. In other words, a smaller Êc may guarantee

stop-freeness, but a too small stop-free event set is insufficient to enhance the diagnosability.

We note that Proposition 3.4 shows also a sufficient condition that will be proved in the next

section, i.e., given a stop-free event set Êc, if the initial diagnostic state does not contain

an undiagnosable verifier state, then we can always find a stop-free control policy S such

that (A, S) is diagnosable. Moreover, from Proposition 3.4 we have the following necessary

conditions for the existence of a diagnosability enhancing control policy.

Corollary 3.1. If the initial verifier state v0 is an undiagnosable verifier state with respect

to Êc = Ec, then there does not exist a control policy such that (A, S) is diagnosable.

Proof. Notice that the initial diagnostic state y necessarily contains the initial verifier state

v0, which cannot be prevented by any control policy. If v0 is an undiagnosable verifier state

with respect to Ec, by Proposition 3.4, (A, S) is undiagnosable for all control policy S.

We say that a stop-free event set Êc is feasible if there exists a control policy with

respect to Êc that ensures diagnosability. By the above discussion, a valid stop-free event

set Êc necessarily satisfies the following two conditions:

• stop-freeness: (Êc ⊆ Ec) ∧ (∀x ∈ X,Γ(x) * Êc);

• feasibility: the initial verifier state with respect to Êc is not an undiagnosable verifier

state.

In the following, we introduce the notion of sub-verifier that can be computed by

Algorithm 1 and can be used to test the feasibility of a given set Êc.

29

Dissertation of XIDIAN UNIVERSITY

Definition 3.12. Given a verifier Av = (V,E, δv, v0) and a sub-alphabet E ′ ⊆ E, the E ′-

induced sub-verifierAv,E′ = (V ′, E ′, δ′v, v0) is the sub-verifier obtained fromAv by removing

all edges labeled with event e ∈ E \ E ′, followed by removing all unreachable states. �

Algorithm 1: Computation of E ′-induced sub-verifier.
Input: Av = (V,E, δv, v0) and a set E ′ ∈ E
Output: Av,E′ = (V ′, E ′, δ′v, v0)

1 Let V ′ = V, δ′v = δv;
2 foreach e ∈ E \ E ′ and v ∈ V ′ such that δ′v(v, e) ∈ δ′v do
3 Delete δ′v(v, e) from δ′v;
4 end
5 Output the accessible part of Av,E′;

A property of the stop-freeness and feasibility is depicted by the following proposition,

which provides a way to establish a heuristic algorithm to find a feasible stop-free event set.

Proposition 3.5. Given two sets Ê1, Ê2 ⊆ Ec and Ê1 ⊆ Ê2:

• the stop-freeness of Ê2 implies the stop-freeness of Ê1;

• the feasibility of Ê1 implies the feasibility of Ê2.

Proof. Suppose that Ê2 meets the condition of stop-freeness. It indicates that for all x ∈ X ,

there exists at least one event e ∈ E such that δ(x, e) is defined and e /∈ Ê2. By Ê1 ⊆ Ê2,

we have e /∈ Ê1. Therefore, Ê1 is stop-free.

Then, we prove the second conclusion. By Ê1 ⊆ Ê2, we have (E \ Ê1) ⊇ (E \ Ê2).

Due to Definition 3.12, Av,E\Êi
only contains the events in E \ Êi. If in Av,E\Ê1

there does

not exist a confused cycle that can be reached from the initial verifier state, it indicates that

in Av,E\Ê2
there must not exist a confused cycle that can be reached from the initial verifier

state. Therefore, the event set Ê2 is feasible.

Given a plant A, the set Êc (both stop-free and feasible) is in general not unique.

In practice a larger stop-free event set is preferable since it provides more flexibility in

designing the control policy. In the following, a heuristic algorithm is proposed to find a

feasible stop-free event set with the maximal cardinality. First, a pre-screening procedure is

executed to reduce the number of event to be tested. Then a heuristic search is applied to

find a minimal set of events to remove from Ec. At each iteration, a minimal set of events

is selected such that a candidate of Êc with a maximal cardinality is tested for stop-freeness

30

Chapter 3 Active Diagnosis Problem in the Framework of Automata

Algorithm 2: Computation of a feasible stop-free event set Êc
Input: Plant A = (X,E, δ, x0) with E = Euc ∪ Ec
Output: A feasible stop-free event set Êc

1 Let q0 = ∅;
2 foreach x ∈ X do
3 if Γ(x) = {e}, where e ∈ Ec then
4 q0 = q0 ∪ {e};
5 end
6 end
7 Let Q = 2Ec\q0;
8 while Q 6= ∅ do
9 Select an event set q ∈ Q with minimal cardinality;

10 Let Êc = Ec \ (q ∪ q0);
11 Compute the (E \ Êc)-induced sub-verifier Av,E\Êc

;
12 if Êc is stop-free then
13 if Êc is feasible then
14 Output Êc, END;
15 else
16 Let Q = Q \ {q′ ∈ Q | q′ ⊇ q};
17 end
18 else
19 Let Q = Q \ {q′ ∈ Q | q′ ⊆ q};
20 end
21 end
22 Output: No solution;

and feasibility. The two properties in Proposition 3.5 are used (in a contrapositive way) to

reduce the searching space.

We explain how Algorithm 2 works step-by-step. Steps 1 to 6 are pre-screening proce-

dures. For a state x ∈ X , if there is only one event e that is defined at state x, i.e., |Γ(x)| = 1,

and e is controllable (i.e., Γ(x) = {e}, where e ∈ Ec), then event e is put into set q0 by Step

4, which means that it is exempted from the future test (since such an event must not belong

to Êc to ensure stop-freeness). In Step 7, the power set Q = 2Ec\q0 is generated as the set of

candidates. Steps 8 to 21 compose the heuristic module. At each iteration a minimal set q

among all untested cases is selected, and the corresponding Êc = Ec \ (q∪q0) with maximal

cardinality is tested for both stop-freeness and feasibility. The stop-freeness is tested by

checking if for each state x ∈ X , at least one event e /∈ Êc is defined at state x, and the

feasibility is tested by checking if there does not exist any confused cycle in Av,E\Êc
. If

the two conditions are satisfied, then Êc is a feasible stop-free event set with the maximal

31

Dissertation of XIDIAN UNIVERSITY

b

f

0 a 1 2 3 4

5 6 7b

c

c

d：

g:

e

8 9
b

b10

d：

d：

c

f

e

Fig. 3.5 Automaton A for Example 3.4.

cardinality which will be used to design a control policy in the next section. On the other

hand, if at least one test fails, q is removed from the candidate set Q, and by Steps 16 and 19

some other candidates may also be removed according to the contraposition of Proposition

3.5.

Theorem 3.4. The event set Êc obtained by Algorithm 2 is stop-free and feasible.

Proof. Steps 12 and 13 in Algorithm 2 ensure that the output set Êc is stop-free and feasible,

respectively. Therefore, the event set Êc obtained by Algorithm 2 is a feasible stop-free event

set.

Example 3.4. Let us consider automaton A depicted in Figure 3.5. The controllable event

set isEc = {d, g} and the uncontrollable event set isEuc = {a, b, c, e, f}. The unobservable

event set is Euo = {e, f} and the fault event is f . The corresponding verifier Av is shown

in Figure 3.6. Plant A is not diagnosable due to the two confused cycles in Av (in dashed

ellipses).

Now let us apply Algorithm 2 to compute a feasible stop-free event set. In this example,

set q0 = ∅ since in the plant there does not exist a state at which only a controllable event

is defined. Then the power set Q = 2Ec = {∅, {d}, {g}, {d, g}} and the verifier Av are

computed. In the first loop, q1 = ∅ is selected from Q such that Êc = Ec. In Step 12,

Êc is tested and it is not stop-free since Γ(3) = {d, g} ⊆ Êc holds. Hence q1 is removed

from Q. In the second loop, q2 = {d} is selected such that Êc = Ec \ q2 = {g}. Such a

set Êc is stop-free. To test the feasibility of Êc in Step 13, the (E \ {g})-induced verifier

Av,E\{g} is computed by removing all edges inAv labelled with event g followed by removing

all unreachable states v4, and v11 − v17. Since in Av,E\{g} there exists a confused cycle,

Êc = {g} is not feasible, and hence q2 is removed from Q. Since, by Proposition 3.5, any

q′ ⊇ q is neither feasible, in Step 16 q4 = {g, d} is also removed from Q. Finally, in the

third loop, for q3 = {g}, we have Êc = {d} that is stop-free. To test feasibility, Av,E\{d} is

32

Chapter 3 Active Diagnosis Problem in the Framework of Automata

0N,0N

2N,2N 5F,5F

3N,3N

1N,1N

a

b f

7F,7F4N,4N

c

g

d

e

9N,9N

b

c

v0

8N,8N

b

e

v1

v2

v3

v4

v8

v9

v10

v12

d

c

f
d

0N,4N

e

e

8N,9N

e

e

v15

v16

f

f

6F,6F

v11 5F,1N

6F,2N

7F,3N

c

b
d

v5

v6

v7

10F,10F b

v17

ff
v13

v14

f
10F,8N

10F,9N

b e

Fig. 3.6 The verifier of automaton A in Figure 3.5.

33

Dissertation of XIDIAN UNIVERSITY

computed by removing all edges in Av labelled with event d (v3 → v1, v7 → v5, v10 → v8,

and v4 → v12) followed by removing all unreachable states v12−v17. Since inGv,E\{d} there

do not exist confused cycles, Êc = {d} is output which is a feasible stop-free event set. �

3.3.3 Complexity Analysis

In this subsection we have the following remarks on the complexity of finding a stop-

free and feasible set Êc with maximal cardinality.

First, let us consider the complexity of Algorithm 2. The computation of set q0 needs

to check all states in the plant, whose complexity is O(|X|). The stop-freeness is tested

by checking if for all states x ∈ X at least one event e /∈ Êc is defined at state x, whose

complexity is O(|X|). On the other hand, the feasibility is tested by checking if there exists

a confused cycle in Av,E\Êc
. The computation of verifier has complexity O(|V | · |E|) (where

V is the set of states in Av), and to check confused cycles in the worst case has complexity

O(|V | · |E|). Therefore, the complexity to test feasibility is O(|V | · |E|) = O(|X|2 · |E|).

Since the outer loop executes at most 2|Ec| times when q equals toEc,3 the global complexity

of Algorithm 2 is O(2|Ec| · |X|2 · |E|).

The complexity of computing Êc by Algorithm 2 is exponential to |Ec|, which naturally

leads to the question that if such a method can be further improved such that the exponen-

tiality can be avoided. Unfortunately this is unlikely possible: we show that the set cover

problem (SCP), whose optimization version is NP-hard [69], can be reduced to the problem

of finding a stop-free event set Êc with the maximal cardinality. As a result, finding stop-

free and feasible Êc with the maximal cardinality is also NP-hard.

Problem 3.2 (Set Cover Problem). For a set S = {a1, . . . , am} and a collection of subsets

of S, i.e., S = {S1, . . . , Sn} such that Si ⊆ S, find a minimal set Smin ⊆ S such that⋃
Si∈Smin

= S.

Proposition 3.6. Problem 3.2 can be reduced to the problem of finding a stop-free event set

Êc with the maximal cardinality in an automaton.

Proof. Given an instance of SCP, we construct an automaton ASC = (X,E, δ, x0) by the

following procedure:

1. let X = {x0, x1, · · · , xm, x′}, E = S ∪ {e};

2. for all xi, 1 ≤ i ≤ m, let δ(x0, e) = xi;
3If only q = Ec meets the condition of stop-freeness, then Êc = ∅, which implies that v0 is an undiagnosable verifier

state. By Proposition 3.4, there is no stop-free control policy for active diagnosis.

34

Chapter 3 Active Diagnosis Problem in the Framework of Automata

x0

x1

x2

xm

x ,

e

e

e .
..

Sj1,Sj2 ...

Fig. 3.7 Automaton ASC .

3. for each Sj ∈ S, for each ai ∈ Sj , let δ(xi, Sj) = x′ and δ(x′, Sj) = xi;

In short words, state x0 can reach to each state xi (1 ≤ i ≤ m) by event e, and there is a

loop between each state xi and x′ labelled with Sj if and only if ai ∈ Sj . Such a construction

is shown in Figure 3.7 and is clearly polynomial. Let Euc = {e} and Ec = E \ Euc = S.

It is not difficult to understand that a set S ′ ⊆ S is a solution to Problem 3.2 if and only if

Êc = Ec \ S ′ is a stop-free set in ASC with the maximal cardinality. Therefore, finding a

stop-free Êc with the maximal cardinality is NP-hard.

Although finding Êc with the maximal cardinality is exponential with respect to |Ec|
(i.e., in the worst case 2|Ec| cases have to be tested), we believe that in general the computa-

tional load of Algorithm 2 is reasonable due to the following reasons: (i) some controllable

events are removed by the pre-screening step, and (ii) in the heuristic procedure, the con-

ditions in Proposition 3.5 are used to iteratively reduce the search space. Moreover, note

that the complexity of a diagnoser is exponential with respect to the number of states in the

plant and in general the number of controllable events is much less than that of states, i.e.,

2|Ec| � 2|X|. Therefore, Algorithm 2 is more efficient than active diagnosis method using

diagnoser [45].

3.4 Online Active Diagnosis Method

In this section we propose an algorithm to synthesize an online control policy for active

diagnosis. For a plant that is undiagnosable, the plant may enter some confused cycles and

stay for an infinite long time. To prevent this from happening, different types of confused

cycles can be treated differently.

1. For Êc-uncontrollable confused cycles (which does not contain any event in Êc due to

Definition 3.10), if the system enters such cycles, there does not exist any stop-free

35

Dissertation of XIDIAN UNIVERSITY

control policy to force the plant to leave. Hence by Theorem 3.3 all undiagnosable

verifier states (Definition 3.11) must not be reachable;

2. For Êc-controllable confused cycles (which contain at least one event in Êc), a super-

visor can disable some events in Êc such that the plant will not stay in such cycles for

an infinite long time.

The former condition can be enforced by a control policy such that the system should

not reach a diagnostic state that contains any undiagnosable verifier state, while the latter

can be enforced by the following method: if the current diagnostic state contains a verifier

state v1 that belongs to a Êc-controllable confused cycle C = v1v2 · · · vkv1 where event e

from v1 to v2 belongs to Êc, then by disabling event e the system is forced to leave cycle C.

Example 3.5. Let us consider again the plant A in Figure 3.5. Its verifier is shown in Figure

3.6, and the feasible stop-free event set is Êc = {d}. Cycle C1 = v13
b−→ v14

e−→ v13 is a

Êc-uncontrollable confused cycle since it only consists of events in E \ Êc. By Theorem 3.3,

all diagnostic states containing v13 and/or v14 must not be reachable, which means that the

supervisor must disable event d at a diagnostic state y such that v4 ⊆ y.

On the other hand, cycle C2 = v5
b−→ v6

c−→ v7
d−→ v5 is a Êc-controllable confused

cycle since it contains event d ∈ Êc. When the system reaches a diagnostic state y such that

v7 ⊆ y, the supervisor should disable event d to force the plant to leave cycle C2 such that

the fault can be eventually detected (if it has occurred). �

Now we present Algorithm 3 to compute the online control policy. Note that control

policy S is a feedback function based on the current diagnostic state y, and the control

decision at diagnostic state y is S(y) ⊆ Ec. Algorithm 3 consists of the offline and online

parts. In the offline part, a feasible stop-free event set Êc is first computed. Then the verifier

Av and the set of undiagnosable verifier states B are obtained by Steps 5 and 6, respectively.

In Steps 7 to 16 the set of disabled edges D is computed. Set D contains the edges of the

verifier such that they must be disabled by the supervisor. The physical meaning of an edge

(vi, e, vj) ∈ D is that the supervisor disables event e if the closed-loop system reaches a

diagnostic state y containing vi. In Steps 7 to 10, each edge (vi, e, vj) is added to D if

e ∈ EC ∩ Êc and vj is an undiagnosable verifier state. In Step 11, all states in B (i.e., the

undiagnosable verifier states) are removed from Av.

In Steps 12 to 16, a Êc-controllable confused cycle C is found, and then one of its edges

(vi, e, vj) with event e ∈ EC ∩ Êc is added to D. Note that in Step 12, determining one

36

Chapter 3 Active Diagnosis Problem in the Framework of Automata

Algorithm 3: Online control policy S
Input: A plant A = (X,E, δ, x0)
Output: Online control policy
Offline Stage:

1 Call Algorithm 2 to compute a feasible stop-free event set Êc;
2 if Algorithm 2 returns no solution then
3 Exit;
4 end
5 Compute the verifier Av = (V,E, δv, v0);
6 Compute the set of undiagnosable verifier state B according to Definition 3.11;
7 Let D = ∅;
8 foreach vi ∈ (V \B), e ∈ Êc such that δv(vi, e) = vj ∈ B do
9 D = D ∪ {(vi, e, vj)};

10 end
11 Remove all v ∈ B from Av;
12 while there exists a confused cycle C in Av such that EC ∩ Êc 6= ∅ do
13 Select an event e ∈ EC ∩ Êc such that δv(vi, e) = vj where vi, vj are two states

in cycle C;
14 Let D = D ∪ {(vi, e, vj)};
15 Remove edge (vi, e, vj) from Av;
16 end

Online Stage:
17 Compute the current diagnostic state y = y(w);
18 Let S(y) = Ec;
19 foreach (vi, e, vj) ∈ D do
20 if vi ⊆ y then
21 let S(y) = S(y) \ {e};
22 end
23 end
24 Wait until an observable event e occurs, update w = we, goto Step 17;

confused cycle C such that EC ∩ Êc 6= ∅ can be done by the following two steps: (i) remove

all normal and faulty verifier states (and their corresponding edges) from Av; (ii) determine

the existence of cycles in Av. If a cycle C is found in Av, then C is necessarily a confused

cycle such that EC ∩ Êc 6= ∅ (otherwise all states in C are undiagnosable verifier states and

have already been removed due to Step 11). Both steps can be done in polynomial time

[69]. Since in each loop of Steps 12 to 16 at least one edge is added to set D, the number of

executions of this loop is bounded by the total number of edges in Av, which is polynomial

with respect to the number of states of the verifier and that of events of the plant.

The online control policy is based on the set of disabled edge D. For each observation

w, the supervisor first updates its current diagnostic state y = y(w). If the diagnostic state

37

Dissertation of XIDIAN UNIVERSITY

y(w) contains a verifier state vi such that there exists an edge (vi, e, vj) ∈ D, event e is

disabled by the supervisor. Then the supervisor enforces its control policy and waits until

the next observable event occurs.

Remark 3.3. Algorithm 3 does not guarantee that the number of disabling actions, i.e., the

size of the set D, is minimal. However, a smaller set D does not necessarily imply that

the closed-loop system has a larger reachable state space. In fact, it may happen that a

small D is obtained with some crucial transitions whose disablement will greatly reduce the

reachable state space or affect the normal functionality of the plant. As a result, additional

information can be embedded into Algorithm 3 to avoid disabling these crucial transitions.

For example, each event is assigned a number according to the cost of disabling it, and a set

of edges with minimal sum of weights can be selected by optimization. To explore this will

be part of our future work. �

Theorem 3.5. Given a plant A = (X,E, δ, x0) that satisfies Assumptions 1–3, the closed-

loop system (A, S) is diagnosable where S is the control policy designed by Algorithm 3.

Proof. By contradiction, suppose that the closed-loop system (A, S) is not diagnosable. It

implies that there exists a cycle of uncertain diagnostic states:

y1
e1−→ y2 · · ·

ek−1−−→ yk
ek−→ y1

such that ei ∈ S(yi). Following the property of verifiers in [12], from the cycle we can

extract a confused cycle of verifier states:

v1
e1−→ v2 · · ·

ek−1−−→ vk
ek−→ v1

where vi = (x′iN, x
′′
iF) such that vi ⊆ yi. If such a cycle is Êc-uncontrollable confused (i.e.,

all events ei ∈ E \ Êc), then all vi’s are undiagnosable verifier states, which cannot happen

due to Steps 7 to 10 in Algorithm 3, guaranteeing that all undiagnosable verifier states are not

reachable. On the other hand, there does not exist an event ei ∈ Êc since otherwise at least

one event ei ∈ Σ̂c is a disabled edge by Steps 12 to 16 in Algorithm 3, which contradicts

ei ∈ S(yi). Therefore we conclude that the uncertain diagnostic states of (A, S) cannot form

a cycle, and hence (A, S) is diagnosable.

Example 3.6. Let us consider again the automaton A in Figure 3.5 and the corresponding

verifier Av in Figure 3.6. By applying Algorithm 2 a feasible stop-free event set Êc = {d}

38

Chapter 3 Active Diagnosis Problem in the Framework of Automata

is obtained. There are two confused cycles in Av. The cycle

v13
b−→ v14

e−→ v13

is Êc-uncontrollable confused (i.e., EC ∩ Êc = ∅). By Step 6 in Algorithm 3, the set of

undiagnosable verifier states is B = {v12, v13, v14, v15, v16}. Since v12 can be reached by

executing event d from v4, by Steps 8 to 10 in Algorithm 3 the edge (v4, d, v12) is added to

set D. On the other hand, the cycle

v5
b−→ v6

c−→ v7
d−→ v5

is Êc-controllable confused since it contains d ∈ Êc. By Steps 12 to 16 in Algorithm 3 the

edge (v7, d, v5) is added to set D. Finally we have D = {(v7, d, v5), (v4, d, v12)}. The online

control policy can be obtained according to set D.

Now let us consider the online control policy. Figure 3.8 depicts the closed-loop system

(A, S) that runs online. The initial diagnostic state is y0 = y(ε) = {(0, N)}. Since v4, v7 6⊆
y0, no event is disabled, i.e., S(y0) = {d, g}. By observing events a and b, the new diagnostic

states are y1 = y(a) = {(1, N), (5, F)} and y2 = y(ab) = {(2, N), (6, F)}, respectively,

and hence S(y1) = S(y2) = {d, g}. By observing event c, the current diagnostic state is

y3 = {(3, N), (7, F)}. Since v7 ⊆ y3 and (v7, d, v5) ∈ D, event d is disabled at y3, i.e.,

S(y3) = Ec \ {d} = {g}.
From diagnostic state y3 if another event c is observed, then we conclude that fault f

must have occurred. On the other hand, if we observe event g, the new diagnostic state is

y4 = y(abcg) = {(4, N), (0, N)} by which the fault does not occur. Since v4 ⊆ y4 and

(v4, d, v12) ∈ D, event d is disabled at y3, i.e., S(y3) = Ec \ {d} = {g}. Finally we observe

another event a such that the new diagnostic state is again y1, and the corresponding control

decision is S(y1) = {d, g}. �

The following example shows the scalability of our method. The automaton in this

example is modified from [64].

Example 3.7. Consider the automaton A in Fig 3.9, where Eo = Ec = {a, b, c, e}, Euo =

{d, f}, and the fault event is f . Let us consider the case n = 5. The diagnoser of A

has 85 states, while its verifier has 36 states only. Since the whole verifier is too large

to be graphically depicted, only confused cycles related to our control design is presented

while other unrelated parts are abstracted as dashed arrows. By Algorithm 2, we have

Êc = {b, c}. All confused cycles of the verifier are Êc-controllable. The disabled edge set

39

Dissertation of XIDIAN UNIVERSITY

0N
1N
5F

a b

y0 y1 y2 y3

d

g2N
6F

c 3N
7F

4N
0N

d

y4

y5

c

7F

a

c

Fig. 3.8 The closed-loop system (A,S) for Example 3.6.

0 n-11 2 n...d a
a

b b

a
b

a
b

n+1 n+2

c c c c

c e

a
b

f

Fig. 3.9 Automaton A for Example 3.7.

D = {(v2, b, v1), (v3, c, v3), (v4, b, v3), (v5, c, v5), (v6, b, v5), (v7, c, v7), (v8, b, v7), (v9, c, v9),

(v10, b, v9), (v11, c, v11), (v12, b, v11)}.
Moreover, if n = 6, 7, 8, the numbers of states of diagnoser are 169, 337, 673, respec-

tively, while the numbers of states of verifier are 45, 55, 66, respectively4. Obviously, our

method has the computational advantage. �

At the end of this section we discuss the computational complexity of Algorithm 3. In

the offline stage, calling Algorithm 2 has the complexity O(2|Ec| · |X|2 · |E|), as discussed

4The results are computed by using the DESUMA software.

0N,0N

6F,4N6N,5N 6F,3N 6F,1N6F,2N

6F,0N

7F,2N7F,3N7F,4N7F,5N7F,0N

a a a a ab b b b b

f

d

c c c c c

7F,1N
a

b

d

v0
v1 v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

Fig. 3.10 The verifier (partly) of automaton A in Figure 3.9.

40

Chapter 3 Active Diagnosis Problem in the Framework of Automata

in Section 3.3. The computation of the set of undiagnosable verifier states B includes:

(1) to check all elementary Êc-uncontrollable confused cycles in Av, whose complexity is

O(|V | · |E|) = O(|X|2 · |E|); (2) to check if from each state in V some undiagnosable cycles

can be reached by executing events not in Êc, whose complexity is O(|V |) = O(|X|2).

Therefore, the computation of setB has complexityO(|X|2 ·|E|). Moreover, the complexity

to compute the set of disabled edges D is O(|V |2 · |E|2) = O(|X|4 · |E|2). Thus, the global

offline computational load is O(2|Ec| · |X|2 · |E| + |X|4 · |E|2). In the online stage, for any

observed event the current diagnostic state is recursively updated, and the control policy is

made by analyzing at set D.

3.5 Conclusion

In this section, we summarize the contributions of this chapter as follows:

• First, we show that a closed-loop system being diagnosable does not necessarily imply

the diagnosability with a more restrictive control policy. As is shown in Section 3.2,

this fact indicates that the control policy at a diagnostic state cannot be correctly made

locally.

• To avoid the possible silent-blocking, we introduce the notion of stop-free event set

such that at any state of a plant at least one event that does not belong to such a set

is active. A stop-free control policy involves only the disabling of the events in a

stop-free event set, and hence it does not cause deadlocks.

• Several properties of stop-freeness are studied. For some stop-free event sets, there

may not exist a stop-free control policy that enhances diagnosability. We propose

a heuristic algorithm to compute a feasible stop-free event set with the maximal

cardinality. Moreover, we also prove that finding such a set is NP-hard with respect

to the number of controllable events.

• Finally, we propose an online control policy such that the closed-loop system is di-

agnosable. The confused cycles in the verifier are classified into Σ̂c-uncontrollable

cycles and Σ̂c-controllable cycles. It is proved that the diagnosability of the closed-

loop system is ensured by (i) preventing a plant from reaching a diagnostic state

containing some verifier states that can reach Σ̂c-uncontrollable cycles by executing

events not in Σ̂c, and (ii) preventing a plant from staying in some Σ̂c-controllable

cycles forever by disabling some events in Σ̂c.

41

Dissertation of XIDIAN UNIVERSITY

42

Chapter 4 Active Diagnosis Problem in Labeled Petri Nets

Chapter 4 Active Diagnosis Problem in Labeled Petri Nets

Petri net is a graphical and mathematical modeling tool with a higher modeling power

than finite state automata. In Petri nets, the structure analysis and abstraction techniques can

be used to reduce the computation complexity of analysis and control [17, 18, 21]. However,

there are few works in the literature to deal with the active diagnosis problem in Petri nets.

Based on a notion called a regulation circuit controller, an approach is presented in [70] to

enforce diagnosability in interpreted Petri nets. Moreover, the nets considered in [70] are

live, binary and event-detectable. Differently from the framework in [70], in this chapter,

we study the active diagnosis problem in labeled Petri nets (LPNs). The active diagnosis

problem in LPNs can be solved by computing the reachability graph of a plant and using the

graph to design a supervisor by means of the automaton-based algorithms, e.g., [45]. How-

ever, such a method is rather inefficient since it requires a full enumeration of the reachability

space of a net. An alternative approach consists in adopting state abstraction techniques such

as the basis reachability graph (BRG) that has been successfully applied to fault diagnosis

[21, 37, 71], prognosis [72], and marking estimation [73, 74]. Since the supervisor designed

for active diagnosis may induce deadlocks in a plant and the corresponding BRG does not

explicitly characterize this phenomenon, the active diagnosis problem in LPNs cannot be

solved by simply applying the automaton based method in [45] to the BRG of a plant net.

In this chapter, we propose a new BRG-based structure that contains the information

required to analyze the presence of deadlocks in a plant. Differently from the method in [45]

where all dead states are enumerated, we do not explicitly enumerate all dead markings of

the plant. Instead, for each basis marking, at most one virtual basis marking is introduced to

represent all dead markings. Moreover, the supervisor designed in this chapter guarantees

that the closed-loop system is deadlock-free when no fault occurs.

4.1 Active Diagnosis Problem Formulation in Labeled Petri Nets

Given an LPN G = (PN,M0,Σ, `), its unobservable transition set Tuo is partitioned

into the set of regular unobservable transitions Treg and the set of fault transitions Tf . The

latter can be further partitioned into different fault classes T if (i = 1, 2, ..., r) that model

different types of faults affecting the plant, i.e., Tf =
r⋃
i=1

T if . For the sake of simplicity,

in this chapter we consider an LPN with a single fault class, i.e., Tf = T 1
f . However, our

43

Dissertation of XIDIAN UNIVERSITY

approach can be extended to the active diagnosis of nets with multiple fault classes with a

slight modification of the methodology proposed in [3] for this purpose. In the sequel we

use ψ(T if) to denote the set of all sequences in L(PN,M0) that ends with a fault transition

in T if , i.e., ψ(T if) = {σtf ∈ L(PN,M0) : tf ∈ T if}.

Definition 4.1. [32] Given an LPN G = (PN,M0,Σ, `) that is deadlock-free, G is diagnos-

able w.r.t. a fault class T if if for all σ′ ∈ ψ(T if), there exists a non-negative integer k ∈ N
such that for all σ′σ′′ ∈ L(PN,M0),

|σ′′| ≥ k ⇒ (∀σ ∈ `−1(`(σ′σ′′)))(∃tf ∈ T if)tf ∈ σ. �

In other words, given a sequence σ′ that ends with a fault transition in T if , let σ′′ be a

continuation of σ′. A labeled Petri net G is diagnosable w.r.t. the fault class T if if when σ′′

is sufficiently long (i.e., |σ′′| ≥ k), all possible sequences that have the same observation as

that of σ′σ′′ contain a fault transition in T if . This implies that the firing of any fault transition

in T if can be detected within a finite number of future observations.

According to its definition, diagnosability is a behavioral property, i.e., it depends

on the language generated by a plant. Assume that we are given an undiagnosable plant

represented by a labeled Petri net. We consider here a problem of active diagnosis: it consists

in modifying the plant’s behavior by supervisory control, thus ensuring that the closed-loop

system is diagnosable.

Supervisor

Labeled Petri
Net G

Labeling
Function

Diagnostic
Agent

N,F,U
= ()w σ

 S(z)

z(w)

Fig. 4.1 The active diagnosis scheme.

The set-up of supervisory control in LPNs is proposed in [75]. Given an LPN G =

(PN,M0,Σ, `), the set of labels Σ is partitioned into the set of controllable events (labels)

Σc and the set of uncontrollable events Σuc, i.e., Σ = Σc ∪ Σuc. In this chapter, we aim to

design a control policy based on the current diagnostic state. The scheme of active diagnosis

is depicted in Figure 4.1. Specifically, when a plant net generates a sequence σ, through the

labeling function, a diagnostic agent observes w = `(σ) and computes the corresponding

diagnostic state z(w) that contains information of both the current set of markings and

44

Chapter 4 Active Diagnosis Problem in Labeled Petri Nets

possible fault occurrences. As discussed in Section 3.1, a diagnostic state is a set of pairs

z(w) = {(M1, l1), (M2, l1), . . . , (Mn, ln)}, where each pair (Mi, li) denotes that the plant

may be currently at marking Mi having previously fired a fault transition (li = F) or not

(li = N). When receiving a current diagnostic state z(w), a supervisor makes a control

decision that specifies a subset of controllable events S(z) ⊆ Σc to execute, while all other

controllable events in Ec\S(z) are disabled. Note that: (i) a supervisor cannot disable any

transitions with uncontrollable labels, and (ii) if a supervisor disables an event e ∈ Σc, all

transitions labeled e are disabled. Here, we use (G,S) to denote the closed-loop system.

The problem investigated in this paper is formulated as follows.

Problem 4.1 (Active diagnosis). Given an undiagnosable plant modeled by an LPN G,

we want to determine a control policy S for G such that the closed-loop system (G,S) is

diagnosable. �

Since in this paper we will apply the BRG approach to represent the reachability space

of a net, the LPN G considered satisfies the following assumptions:

A1) G is bounded;

A2) The Tuo-induced subnet is acyclic.

Assumption A1 guarantees that the BRG of a plant net is always finite. Assumption A2

allows to use the state equation to characterize the implicit reach of a basis marking.

Remark 4.1. Note that in the literature, an ILPP technique [29, 76, 77] is used to charac-

terize the reachability set of a bounded net system, which does not rely on Assumption A2.

However, in this paper the proposed supervisor is computed based on the BRG approach.

Assumption A2 ensures that a BRG contains a correct abstract representation of a net

reachability set. �

4.1.1 Diagnosability of LPNs with Deadlocks

In the literature, it is commonly assumed that a plant net to be diagnosed is deadlock-

free [31–33, 37]. However, the action of a supervisor for active diagnosis may create

deadlocks in the closed-loop system. This happens when the closed-loop system reaches

a marking while receiving a control decision that disables all plant-enabled transitions: this

situation is called a control-induced deadlock. Therefore, to perform active diagnosis, the

notion of diagnosability in LPNs needs to be generalized.

45

Dissertation of XIDIAN UNIVERSITY

Definition 4.2. An LPN G = (PN,M0,Σ, `) is diagnosable with respect to a set of fault

transitions Tf if for all σ′ ∈ ψ(Tf), there exists a non-negative integer k ∈ N such that for

all σ′σ′′ ∈ L(PN,M0), the following two conditions hold:

• if |σ′′| ≤ k and sequence σ′σ′′ is terminal, then:

σ ∈ `−1(`(σ′σ′′)) ∧ (@t ∈ T)σt ∈ L(PN,M0)⇒ (∃tf ∈ Tf)tf ∈ σ;

• if |σ′′| ≥ k, then:

(∀σ ∈ `−1(`(σ′σ′′)))(∃tf ∈ Tf)tf ∈ σ. �

The second condition in Definition 4.2 is the classical notion of diagnosability for

deadlock-free LPNs. On the other hand, the first condition means that if a plant reaches

a dead marking after a fault transition has fired, then all consistent sequences that have the

same observation and yield dead markings contain a fault. By generalizing the definition of

diagnosability, we do not require the assumption that the original net is deadlock-free, i.e.,

our approach can be applied to LPNs containing deadlocks.

4.1.2 Quiescent Behavior and Quiescent Event

When a plant reaches a marking M that is either a dead marking or a control-induced

deadlock, the system halts and no observation is produced in the future. Since in many

practical cases the time needed to fire a transition has an upper bound that can be assumed

to be known, if the plant does not produce any observation for a sufficiently long time, one

can infer that the plant must be deadlocked at some marking1. To this end, deadlocks can be

indirectly “observed”. Such a time-out behavior is called the quiescent behavior, which can

be encoded into the model by the following mechanism:

• Once the plant is deadlocked, it will repetitively generate a particular event q called

the quiescent event. Event q is observable and uncontrollable;

• Event q is generated only when the plant is deadlocked, i.e., the plant does not generate

event q if any transition is enabled.

Note that event q is not an event associated to a sensor signal: it is a logical event that

represents the condition that a plant does not produce any observation for a sufficient long
1Note that a divergent plant [78] may similarly renounce to engage in any further communication with the environment

even if not deadlocked. However, the models that we consider satisfy Assumptions A1 and A2, and thus they are necessarily
divergence-free.

46

Chapter 4 Active Diagnosis Problem in Labeled Petri Nets

p1 p2t1(a) t2p0

p3

p5

t4

t3(b)

p4

t6

M0=p0 M1=p1 M3=p2

M4=p3

M2=p5

t1 t2

t6
t3

t4

q

M0=p0 M1=p1
a

b

M2=p5

εf

M2,d
q q

M1,d
q q

M0=p0 M1=p1
a

b
M2=p5

εf

M0,N
a

b

qM1,N
M2,F

M1,d,N
M2,d,F

z0 z1 z2

q

M5=p4 q

q

t5

t5

(a)

p1 p2t1(a) t2p0

p3

p5

t4

t3(b)

p4

t6

M0 M1 M3

M4

M2

t1 t2

t6
t3

t4

q

M0=p0 M1=p1
a

b

M2=p5

εf

M2,d
q q

M1,d
q q

M0=p0 M1=p1
a

b
M2=p5

εf

M0,N
a

b

qM1,N
M2,F

M1,d,N
M2,d,F

z0 z1 z2

q

M5 q

q

t5

t5

(b)

Fig. 4.2 (a) The LPN used in Example 4.1, and (b) its reachability graph after adding the quiescent event
q.

Table 4.1 The markings of the net in Figure 4.2(b).
M0 [1 0 0 0 0 0]T

M1 [0 1 0 0 0 0]T

M2 [0 0 0 0 0 1]T

M3 [0 0 1 0 0 0]T

M4 [0 0 0 1 0 0]T

M5 [0 0 0 0 1 0]T

time. We use the following example to illustrate this.

Example 4.1. Consider the LPN in Figure 4.2(a) in which the set of observable transitions

is To = {t1, t3}. By firing sequence σ1 = t1t2t4, the plant reaches a dead marking M4 at

which the plant generates the quiescent event q. Besides, the plant may also reach dead

markings M2, M5 and then generate event q. This mechanism can be illustrated by adding a

self-loop labeled by q at dead markings in the reachability graph shown in Figure 4.2(b). �

4.2 Basis Reachability Graph with Quiescence and Q-diagnosers

4.2.1 Diagnosability of Deadlock-free LPNs and Basis Diagnosers

Given a bounded LPN, one can construct its reachability graph (RG) and use the

automata approaches presented in [45] for active diagnosis. Nevertheless, the construction

of the RG needs to explicitly enumerate all reachable markings of a net. In this paper, we

use the notion of basis reachability graph that is a compact representation of the reachability

space of a net.

In [32], the authors use a basis reachability graph (BRG) with respect to a particular

partition to study the diagnosability verification problem in LPNs. Such a BRG is called a

diagnostic BRG.

Definition 4.3. A diagnostic BRG is a basis reachability graph with respect to a partition

where TE = Tuo ∪ Tf and TI = T \ TE . �

47

Dissertation of XIDIAN UNIVERSITY

In a diagnostic BRG, each state is a basis marking and each arc is labeled with a pair

(t,y), where t ∈ To ∪ Tf and y is a minimal explanation vector to enable t. Based on the

diagnostic BRG, an automaton called a basis reachability diagnoser (BRD) [32] is computed

and used to verify the diagnosability of the net. To compute a BRD, a series of ILPPs need

to be solved to flag the occurrence of faults. In this thesis, we will also use the diagnostic

BRG structure and will develop a simplified BRD structure to verify the diagnosability of

an LPN. In our case, no ILPP has to be solved and the simplified diagnoser structure will be

later used to design a supervisor.

Definition 4.4. Given an LPN G = (PN,M0,Σ, `) and its diagnostic BRG B = (M, T r,

∆,M0), the underlying automaton of B is a nondeterministic finite state automaton Gl =

(M,Σ ∪ {εf},∆l,M0), where:

• M is the set of states;

• Σ ∪ {εf} is the event set, where εf denotes a fault event that is unobservable.

• ∆l ⊆ M × (Σ ∪ {εf}) ×M is the transition relation defined as follows: for any

M1,M2 ∈M and (t,y) ∈ Tr,
(M1, (t,y),M2) ∈ ∆ ∧ `(t) ∈ Σ⇒ (M1, `(t),M2) ∈ ∆l,

(M1, (t,y),M2) ∈ ∆ ∧ t ∈ Tf ⇒ (M1, εf ,M2) ∈ ∆l;

• M0 is the initial state. �

In other words, the underlying automaton of a diagnostic BRG B, denoted byGl, can be

obtained by changing the label of each arc in B from (t,y) to `(t) (if t ∈ To) or εf (if t ∈ Tf).

Now we show that the diagnosability of a deadlock-free LPN implies the diagnosability of

the corresponding automaton Gl, and vice versa.

Theorem 4.1. Given a deadlock-free LPN G = (PN,M0,Σ, `), let Gl = (M,Σ ∪ {εf}, δl,
M0) be the underlying automaton of its diagnostic BRG B. The net G is diagnosable if and

only if Gl is diagnosable with respect to fault εf .

Proof. (If) Assume that Gl is diagnosable with respect to fault εf . For any sequence σ1εf ∈
L(Gl), there exists k ∈ N such that by observing subsequent k events, the occurrence of the

fault can be detected. According to Theorem 2.1, in net G for any sequence σ′1 ∈ ψ(Tf),

and all sequences σ′1σ
′
2 ∈ L(PN,M0) such that |`(σ′2)| ≥ k, all sequences in `−1(`(σ′1σ

′
2))

contain a fault in Tf . Since the unobservable subnet is acyclic, the length of σ′2 is bounded,

which indicates that G is diagnosable.

48

Chapter 4 Active Diagnosis Problem in Labeled Petri Nets

(Only If) If net G is not diagnosable, there exists two arbitrary long sequence σ1, σ2 ∈
L(PN,M0), such that `(σ1) = `(σ2) and σ1 contains a fault while σ2 does not. By Theorem

2.1 and the definition of Gl, it is obvious that there exist two arbitrary long sequence

σ′1, σ
′
2 ∈ L(Gl) such that P(σ′1) = P(σ′2) and one contains fault εf while the other does

not. Therefore, Gl is not diagnosable.

In [3], a structure called diagnoser are used to verify the diagnosability of an automaton.

The diagnoser of an automaton can be constructed by a standard procedure [1, 3]. An

important notion related to diagnosability is the indeterminate cycle [3]. An indeterminate

cycle in a diagnoser is a cycle composed exclusively of uncertain diagnostic states for which

there exist: (i) a corresponding cycle in the plant automaton involving only states tagged “N”

in the cycle of diagnoser; and (ii) a corresponding cycle in the plant automaton involving

only states tagged “F ” in the cycle of diagnoser. Sampath et. al [3] show that a plant

automaton is diagnosable if and only if its diagnoser does not contain any indeterminate

cycle. Therefore, by Theorem 4.1, we immediately have the following corollary.

Corollary 4.1. Given an LPN G that is deadlock-free, let Gl be the underlying automaton

of its diagnostic BRG B. The net G is diagnosable if and only if the diagnoser of Gl does

not contain any indeterminate cycle. �

Example 4.2. Consider the LPN in Figure 4.3(a), where To = {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10},
Tuo = {t11, t12, t13, t14, t15}, and Tf = {t14, t15}. The labeling function is defined as

follows: `(t1) = a, `(t2) = `(t3) = `(t8) = b, `(t4) = `(t5) = `(t10) = c, and

`(t6) = `(t7) = `(t9) = d. The diagnostic BRG of this net is shown in Figure 4.3(b).

The basis markings are listed in Table 4.3. The corresponding underlying automaton Gl of

the diagnostic BRG is shown in Figure 4.3(c) and its diagnoser is shown in Figure 4.3(d).

There exist two indeterminate cycles in the diagnoser, i.e., z3
c−→ z3 and z6

d−→ z6. According

to Corollary 4.1, the plant net is not diagnosable. In fact, the plant can generate a normal

sequence σ1 = t11t1t3t9(t13t10)
∗ and a faulty sequence σ2 = t11t1t3t14t9(t13t10)

∗ having the

same observation, which means that it is not diagnosable. �

4.2.2 Quiescent Basis Reachability Graph and Q-diagnoser

As mentioned in the previous section, a diagnostic BRG can be used to characterize

the behavior of a deadlock-free LPN and to verify its diagnosability without explicitly

computing the reachability graph. Since a diagnostic BRG is an abstract model of the plant

49

Dissertation of XIDIAN UNIVERSITY

p0

p1

p2 p3

p4

p5

p6

p7
p8

p9

p10t1(a)

t2(b)
t5(c)

t3(b)

t6(d)

t7(d)

t10(c)

t4(c)

t8(b)

t9(d)

t11
t14

t15

t12

t13

2

2

(a)

M0 M1 M2

M7 M8

M9

M3

M4

M5

M6

(t1,y1)

(t2,0)
(t5,0)

(t6,y2)

(t15,0)

(t6,0)

(t7,0)

(t8,0)

(t3,0)

(t4,0)

(t9,0)
(t9,0)

(t9,0)

(t10,y3)

(t14,0)

(t10,y3)

(t14,0)

(t10,y3)

(b)

M0 M1 M2

M7 M8

M9

M3

M4

M5

M6

a

b c

d

εf

d

d

b

b

c

d

d

d

c

εf

εf

c

c

(c)

M0,N M1,N M2,N
M4,F

a

b

b

c

M7,N
M9,F

c

M8,N
M9,F

d d

M9,F

b

b

M3,N
M6,F

M5,N

d

c

c

d

M9,F b

b

z0 z1 z2 z3

z4z5 z6

z7 z8

(d)

Fig. 4.3 (a) The LPN for Example 4.2, (b) its diagnostic BRG, (c) the underlying automaton of the BRG,
and (d) the diagnoser of Gl.

50

Chapter 4 Active Diagnosis Problem in Labeled Petri Nets

Table 4.2 The basis markings of the BRG in Figure 4.3(b).
M0 [1 0 0 0 0 0 0 0 0 1 0]T

M1 [0 0 1 0 0 0 0 0 0 1 0]T

M2 [0 0 0 2 0 0 0 0 0 1 0]T

M3 [0 0 0 1 0 0 0 1 0 1 0]T

M4 [0 0 0 1 0 0 0 0 0 0 1]T

M5 [0 0 0 0 0 0 0 2 0 1 0]T

M6 [0 0 0 0 0 0 0 1 0 0 1]T

M7 [0 0 0 0 1 0 0 0 0 1 0]T

M8 [0 0 0 0 0 1 0 0 0 1 0]T

M9 [0 0 0 0 0 0 1 0 0 1 0]T

Table 4.3 The minimal explanation vectors of the BRG in Figure 4.3(b).
y1 [1 0 0]T

y2 [0 1 0]T

y3 [0 0 1]T

LPN and does not preserve the information needed to characterize deadlocks, the automaton-

based approach [45] for active diagnosis cannot be directly applied to a diagnostic BRG. In

fact, a basis marking that has an outgoing arc in a diagnostic BRG does not necessarily imply

that all markings reachable from it by firing regular unobservable transitions are not dead.

Therefore, for the purpose of active diagnosis in LPNs with deadlocks, the structure of con-

ventional diagnostic BRGs needs to be augmented to encode the information of deadlocks.

The following proposition shows that the set of dead markings can be described by a set of

linear equalities that characterize the enabling conditions of transitions.

Proposition 4.1. Given a Petri net PN = (P, T, Pre, Post), a marking M ∈ R(PN,M0)

is dead if and only if the following constraint set, denoted by ρ(M), is feasible:

ρ(M) :
∧
t∈T

(
∨
p∈•t

M(p) ≤ Pre(p, t)− 1) (4-1)

Proof. (Only If) Since M is dead, for each transition t ∈ T , there exists at least one place

p ∈ •t such that M(p) ≤ Pre(p, t)− 1 holds. Therefore ρ(M) is feasible.

(If) If for each transition t ∈ T there exists at least one place p ∈ •t such that M(p) ≤
Pre(p, t) − 1 holds, transition t is not enabled at marking M , which indicates that M is a

dead marking.

The logical OR condition in the constraint set ρ(M) in Eq. (4-1) can be converted to

its equivalent conjunctive normal form by the method in [79]. Proposition 4.1 provides

us a way to verify if the regular unobservable reach of a (basis) marking contains dead

markings, which is stated by the following proposition. Here we denote Rreg(M) = {M ′ |
M [σreg〉M ′, σreg ∈ T ∗reg}.

51

Dissertation of XIDIAN UNIVERSITY

Proposition 4.2. Given an LPN G = (PN,M0,Σ, `) and a marking M , there exists at least

one dead marking in Rreg(M) if and only if the following linear integer constraint D(M) is

feasible:

D(M) =


Md = M + Cuo · y ≥ 0,

y ∈ N|Tuo|,∑
tf∈Tf

y(tf) = 0

ρ(Md).

(4-2)

Proof. (Only If) Suppose that there exists a dead marking Md ∈ Rreg(M), i.e., there exists

a firing vector y ∈ N|Tuo| such that M + Cuo · y = Md ≥ 0 and y(tf) = 0 for all tf ∈ Tf .

By Proposition 4.1, marking Md satisfies ρ(Md). Therefore, ILPP (4-2) is feasible.

(If) Suppose that ILPP (4-2) is feasible. By Assumption 2, the Tuo-induced subnet is

acyclic. If there exists a firing vector y ∈ N|Tuo| such that M + Cuo · y = Md ≥ 0 and

y(tf) = 0 for all tf ∈ Tf , then there necessarily exists a firing sequence σ ∈ T ∗reg such that

M [σ〉Md whose firing vector is y. Since Md satisfies ρ(Md), by Proposition 4.1, Md is a

dead marking.

Note that the dead markings in Rreg(Mi) may not be unique. However, we will shortly

see that for the purpose of active diagnosis, it is sufficient to use a single virtual markingMi,d

to denote the existence of some dead markings in Rreg(Mi) without explicitly enumerating

them. In the following, we introduce a structure called a quiescent-BRG (QBRG) that is an

augmented basis reachability graph in which the information of the quiescent behavior of a

plant net is encoded.

Definition 4.5. Given an LPN G = (PN,M0,Σ, `), let Gl = (M,Σ ∪ {εf},∆l,M0) be

the underlying automaton of its diagnostic BRG. The quiescent-BRG (QBRG) of G is a

nondeterministic finite state automaton Gq = (Mq,Σq,∆q,M0), where:

• the state setMq =M∪ {Mi,d |Mi ∈M, D(Mi) is feasible};

• Σq = Σ ∪ {εf , q} is the event set;

• the transition relation ∆q is defined as follows:

∆q = ∆l ∪ {(Mi, q,Mi,d) |Mi ∈M, D(Mi) is feasible}

∪ {(Mi,d, q,Mi,d) |Mi,d ∈Mq \M}

• M0 is the initial state. �

52

Chapter 4 Active Diagnosis Problem in Labeled Petri Nets

Given an LPN, Algorithm 4 can be used to compute its QBRG. The difference between

the QBRG and the diagnostic BRG of an LPN can be explained as follows. For each basis

marking Mi in a diagnostic BRG, if constraint D(Mi) is feasible, then virtual basis marking

Mi,d is added with arcs Mi
q−→ Mi,d and Mi,d

q−→ Mi,d. Again, we note that Mi,d is not a

real marking of a Petri net: it is just a modeling primitive to denote the existence of some

dead markings in Rreg(Mi). However, for simplicity, we also call Mi,d a “basis marking”

by omitting the term “virtual”, since there will be no confusion. If an LPN is deadlock-free,

then its QBRG is identical to the underlying automaton of its diagnostic BRG.

Algorithm 4: Computation of QBRG Gq.
Input: An LPN G = (PN,M0,Σ, `)
Output: Gq = (Mq,Σ ∪ {εf , q},∆q,M0)

1 compute the diagnostic BRG B of the LPN G;
2 compute the underlying automaton Gl = (M,Σ ∪ {εf},∆l,M0) of B;
3 letMq =M, ∆q = ∆l;
4 for each basis marking Mi ∈M do
5 if D(Mi) is feasible then
6 letMq =Mq ∪ {Mi,d};
7 let ∆q = ∆q ∪ {(Mi, q,Mi,d)} ∪ {(Mi,d, q,Mi,d)};
8 end
9 end

10 output Gq = (Mq,Σ ∪ {εf , q},∆q,M0);

In the following, we introduce a new projection function P ′ : T ∗ → (Σ ∪ {εf})∗,
defined as follows: 

P ′(t) = e if t ∈ To, `(t) = e;

P ′(t) = ε if t ∈ Treg;
P ′(t) = εf if t ∈ Tf ;
P ′(σt) = P ′(σ)P ′(t) if σ ∈ T ∗, t ∈ T.

(4-3)

Theorem 4.2. Consider an LPNG = (PN,M0,Σ, `) and its QBRGGq = (Mq,Σq,∆q,M0).

There exists a sequence σ ∈ L(PN,M0) satisfying P ′(σ) = w and M0[σ〉M where M is a

dead marking if and only if in the QBRG Gq there exists a path: M0
w−→ Mi

q−→ Mi,d such

that M ∈ Rreg(Mi).

Proof. (Only If) Assume that there exists a sequence σ ∈ L(PN,M0) reaching to a dead

marking M . Let Gl be the underlying automaton of the diagnostic BRG. By Theorem 2.1,

in Gl there exists a path labeled by w = P ′(σ) leading to a basis marking Mi and M ∈
Rreg(Mi). By the definition of Gq, there exists a path M0

w−→ Mi
q−→ Mi,d in Gq such that

53

Dissertation of XIDIAN UNIVERSITY

M ∈ Rreg(Mi).

(If) Assume that there exits a path M0
w−→ Mi

q−→ Mi,d in Gq. We can infer that in Gl

there exists a path M0
w−→ Mi and D(Mi) is feasible, which implies that there exists a dead

marking M ∈ Rreg(Mi). By Theorem 2.1, there exists a sequence σ ∈ L(PN,M0) such

that M0[σ〉M and P ′(σ) = w.

Example 4.3. Consider the LPN in Figure 4.2(a), where To = {t1, t3} and Tf = {t6}.
The underlying automaton Gl of its diagnostic BRG is shown in Figure 4.4(a). By applying

Algorithm 4, its QBRG is depicted in Figure 4.4(b).

p1 p2t1(a) t2p0

p3

p5

t4 t5

t3(b)

M0=p0 M1=p1
a

b
M1,d

q

q

p4

t6

M0=p0 M1=p1 M3=p2

M4=p3

M2=p5

M5=p4
t1 t2

t6
t3

t4
t5 q

q

M0=p0 M1=p1
a

b

M2=p5

εf

M2,d
q q

M1,d
q q

M0=p0 M1=p1
a

b
M2=p5

εf

M0,N
a

b

qM1,N
M2,F

M1,d,N
M2,d,F

z0 z1 z2

q

(a)

p1 p2t1(a) t2p0

p3

p5

t4 t5

t3(b)

M0=p0 M1=p1
a

b
M1,d

q

q

p4

t6

M0=p0 M1=p1 M3=p2

M4=p3

M2=p5

M5=p4
t1 t2

t6
t3

t4
t5 q

q

M0=p0 M1=p1
a

b

M2=p5

εf

M2,d
q q

M1,d
q q

M0=p0 M1=p1
a

b
M2=p5

εf

M0,N
a

b

qM1,N
M2,F

M1,d,N
M2,d,F

z0 z1 z2

q

(b)

Fig. 4.4 (a) The structure Gl for Example 4.3, and (b) the corresponding QBRG Gq.

Since there exists a path M0
aq−→ M1,d in Gq, By Theorem 4.2, the plant can reach to

a dead marking M ∈ Rreg(M1). In fact, there are two dead markings, i.e., [0, 0, 0, 1, 0, 0]T

and [0, 0, 0, 0, 1, 0]T , in the regular unobservable reach of basis marking M1. �

Given a QBRG Gq, let Ad = (Z,Σ ∪ {q}, δd, z0) be the diagnoser of Gq. Ad is called

a Q-diagnoser that can be computed by the standard diagnoser construction [1, 3]. The

following theorem provides us a way to verify the diagnosability of an LPN that contains

deadlocks by using its Q-diagnoser Ad.

Theorem 4.3. Given an LPN G = (PN,M0,Σ, `) and its Q-diagnoser Ad = (Z,Σ ∪
{q}, δd, z0), G is diagnosable if and only if Ad does not contain any indeterminate cycle.

Proof. By Corollary 4.1, there does not exist an undiagnosable non-terminal sequence if and

only if in the Q-diagnoser Ad there does not exist an indeterminate cycle labeled by w ∈ E∗.
Now we prove that there does not exist an undiagnosable terminal sequence if and only if in

the Q-diagnoser Ad there does not exist an indeterminate cycle labeled by event q.

(Only If) Let σ be a faulty sequence in L(PN,M0) that leads to a dead marking M .

If σ does not meet the first condition in Definition 4.2, then there exists another non-faulty

sequence σ′ that yields a dead marking M ′ such that `(σ) = `(σ′) = w. This indicates

that by observing wq the corresponding diagnostic state z = δ∗d(z0, wq) necessarily contains

two pairs (M ′
d, N) and (Md, F). Since by the construction of the Q-diagnoser, δd(z, q) = z

holds, there exists an indeterminate cycle at diagnostic state z labeled by q, i.e., z
q−→ z.

54

Chapter 4 Active Diagnosis Problem in Labeled Petri Nets

(If) Suppose that the Q-diagnoser contains an indeterminate cycle z
q−→ z such that z

contains two pairs (Md, F) and (M ′
d, N). It means that there necessarily exist two dead

markings M and M ′ that can be reached form the initial marking M0 by firing a faulty

sequence σ and a non-faulty sequence σ′, respectively. Since sequences σ and σ′ have

the same observation, the first condition in Definition 4.2 is not satisfied. Therefore, the

statement holds.

p1 p2t1(a) t2p0

p3

p5

t4 t5

t3(b)

M0=p0 M1=p1
a

b
M1,d

q

q

p4

t6

M0=p0 M1=p1 M3=p2

M4=p3

M2=p5

M5=p4
t1 t2

t6
t3

t4
t5 q

q

M0=p0 M1=p1
a

b

M2=p5

εf

M2,d
q q

M1,d
q q

M0=p0 M1=p1
a

b
M2=p5

εf

M0,N
a

b

M1,N q
M2,F

M1,d,N
M2,d,F

z0 z1 z2

q

Fig. 4.5 The Q-diagnoser Ad of the plant in Figure 4.2(a).

Example 4.4. Consider the net in Figure 4.2(a), where To = {t1, t3} and Tf = {t6}. Its

QBRG Gq is visualized in Figure 4.4(b). Thanks to Gq, its Q-diagnoser Ad is shown in

Figure 4.5. Since in Ad there exists an indeterminate cycle z2
q−→ z2, by Theorem 4.3, the

plant is not diagnosable. In fact, the plant can fire normal sequence σ1 = t1t2t4 and faulty

sequence σ2 = t1t2t6 that are both dead and have the same observation, which violates the

first condition in Definition 4.2. �

4.3 Diagnosability Enforcing Supervisor

In this section, we develop a method to design a supervisor for the active diagnosis of a

plant LPN. By Theorem 4.3, a plant LPN is undiagnosable if and only if its Q-diagnoser con-

tains indeterminate cycles. Therefore, to enforce diagnosability, a supervisor must forbid all

behaviors of the plant that may evolve along those indeterminate cycles in the Q-diagnoser.

Given a Q-diagnoser, indeterminate cycles are classified into two types by the controllability

of events in them:

• for an indeterminate cycle that contains controllable events, at least one of these

controllable events has to be disabled to prevent the plant circulating in this cycle

for infinite times;

• for an indeterminate cycle that does not contain any controllable event, all diagnostic

states in it (and all diagnostic states that may uncontrollably reach it) must be forbid-

den.

55

Dissertation of XIDIAN UNIVERSITY

As mentioned in Section 4.1, the supervisor makes control decisions from the knowl-

edge of the consistent diagnostic state obtained by the Q-diagnoser. More precisely, for an

observation w ∈ (Σ ∪ {q})∗ whose consistent diagnostic state is zi, the control decision

at state zi is S(zi) = Σc \ Σd,i where Σd,i is the set of disabled events at diagnostic state

zi. Given a set Σd,i, we use Td,i to denote the corresponding set of disabled transitions, i.e.,

Td,i = {t ∈ T | `(t) ∈ Σd,i}.

In automata, the two control specifications mentioned above can be easily enforced by

inspecting the plant automaton [45]. However, a Q-diagnoser is an abstract model of the

plant LPN, in which the firing of implicit transitions is omitted. Hence, a control decision

at a diagnostic state z may result in deadlocks that are not explicitly represented in the Q-

diagnoser. Therefore, the method to trim a diagnoser in automata in [45] cannot be applied

to trim a Q-diagnoser. To detect if there exists a control-induced deadlock at a diagnostic

state z, we rewrite Eqs. (4-1) and (4-2) as the following Eqs. (4-4) and (4-5), respectively.

ρ′(M) :
∧

t∈T\Td,i

(
∨
p∈•t

M(p) ≤ Pre(p, t)− 1) (4-4)

D′(M) =


Md = M + Cuo · y ≥ 0,

y ∈ N|Tuo|,∑
tf∈Tf

y(tf) = 0,

ρ′(Md).

(4-5)

Comparing with Eq. 4-1, in Eq. 4-4 the token-disabling constraints for control-disabled

transitions (i.e., transition in Td,i) are removed. On the other hand, Eq. (4-5) is analogous to

Eq. (4-2) while the constraint ρ from Eq. (4-1) is replaced by ρ′ from Eq. (4-4). Hence, if Eq.

(4-5) is feasible for a marking M , by firing regular unobservable transitions, some marking

Md is reached from M such that all transitions are either control-disabled or lack of tokens

to fire, and vice versa.

Proposition 4.3. Given an LPNG = (PN,M0,Σ, `) with Σ = Σc∪Σuc and its Q-diagnoser

Ad = (Z,Σ∪ {q}, δd, z0), suppose that the control decision at diagnostic state zi is S(zi) =

Σc \ Σd,i. For a basis marking M such that (M, l) ∈ zi, there exists at least one marking

Md ∈ Rreg(M) at which no transition can fire if and only if constraint D′(M) in Eq. (4-5)

is feasible.

Proof. (Only If) Suppose that after disablement of transitions in Td,i, there exists a dead

marking Md ∈ Rreg(M), i.e., there exists a firing vector y ∈ N|Tuo| such that M +Cuo ·y =

56

Chapter 4 Active Diagnosis Problem in Labeled Petri Nets

Md ≥ 0 and y(tf) = 0 for all tf ∈ Tf . Moreover, marking Md satisfies ρ′(Md). Therefore,

ILPP 4-5 is feasible.

(If) Suppose that ILPP 4-5 is feasible. By Assumption 2, the Tuo-induced subnet is

acyclic. If there exists a firing vector y ∈ N|Tuo| such that M + Cuo · y = Md ≥ 0 and

y(tf) = 0 for all tf ∈ Tf , then there exists a firing sequence σ ∈ T ∗ref such that M [σ〉Md

whose firing vector is y. Since Md satisfies ρ′(Md), at marking Md all transitions are either

control-induced or lack of tokens to fire. Therefore, Md is a dead marking.

Example 4.5. Consider the plant in Figure 4.3(a), where Σc = {c, d}. Its Q-diagnoser

is shown in Figure 4.3(c). Suppose that a supervisor disables event c at diagnostic state

z3, i.e., the disabled transition set Td,3 = {t4, t5, t10}. Since there are two pairs (M3, N)

and (M6, F) in state z3, according to Proposition 4.3 markings M3 and M6 need to be

considered. For marking M3, constraint D′(M3) is not feasible, which means that if the

plant is at a marking in the regular unobservable reach of M3, by disabling event c, there

is no control-induced deadlock. On the other hand, constraint D′(M6) is feasible, which

means that if the plant is at a marking in the regular unobservable reach of M6, by disabling

event c, the plant can reach some dead marking in Rreg(M6). �

In reality, a plant is expected to be deadlock-free, since an unexpected deadlock may

greatly reduce the rate of productivity (e.g., long down-time and low use of some critical

and expensive resources) or even cause severe consequence [80–82]. On the other hand,

if a fault has occurred, then a deadlock, i.e., a “planned shutdown”, is usually harmless

and acceptable, since the operator of a plant may examine the plant when it is offline and

initiate a recovering process to repair the fault. Therefore, in this section we aim to design a

supervisor for active diagnosis which meets the two criteria:

1. the closed-loop system is diagnosable, i.e., the firing of fault transitions can be detect-

ed in finite future steps;

2. the closed-loop system is not deadlocked when no fault transition has fired.

To prevent the plant from reaching unfaulty deadlocks, in the following we introduce a

notion called a q-normal cycle.

Definition 4.6. Let Ad = (Z,Σ ∪ {q}, δd, z0) be the Q-diagnoser of an LPN G. A cycle C:

z
q−→ z in Ad is called a q-normal cycle if for all (Mi, li) ∈ z, li = N holds. �

In other words, a cycle C : z
q−→ z is q-normal if at diagnostic state z no fault transition

has fired. As we have discussed at the beginning of this section, to guarantee diagnosability

57

Dissertation of XIDIAN UNIVERSITY

a supervisor should prevent the plant from circulating in any indeterminate cycle. Besides,

to guarantee that the plant is not deadlocked when no fault transition has fired, a supervisor

should also prevent the closed-loop system reaching any q-normal cycle.

In the following, we propose Algorithm 5 to design a supervisor for a given labeled Petri

net plant such that the closed-loop system is diagnosable and cannot reach deadlock if no

fault occurs. Algorithm 5 recursively trims the Q-diagnoser by eliminating all indeterminate

cycles and q-normal cycles in it. In Algorithm 5, we use EC to denote the set of events in a

cycle C in Ad and use set Zdis to denote the set of diagnostic states at which the supervisor

makes disablement actions.

We explain how Algorithm 5 works step-by-step. Steps 1 and 2 compute the QBRG and

the Q-diagnoserAd, respectively. If there exists an indeterminate cycle or a q-normal cycle C
that contains only uncontrollable events and can be reached from the initial diagnostic state

z0 by executing a sequence of uncontrollable events, then there does not exist a supervisor

that meets the two criteria. In such a case, the algorithm terminates.

The main body of Algorithm 5 consists of two parts. In the first part (Steps 4 to 16)

an indeterminate cycle or a q-normal cycle C is found and treated. If C contains at least one

arc labeled by a controllable event e ∈ Σc, by Steps 7 to 10 one of such arcs, denoted by

(zi, e), is put into set D, meaning that event e is disabled at diagnostic state zi. On the other

hand, if C contains no controllable events, then in Steps 12 to 14 all controllable arcs leading

to some states that may uncontrollably reach C are put in D. Steps 15 and 16 remove the

unreachable states and the corresponding arcs in D which are no longer necessary.

Once the control policy is updated, the second part of the algorithm (Steps 17 to 26)

updates the information of control-induced deadlock accordingly. For each diagnostic state

zi ∈ Zdis, Steps 18 and 19 compute the disabled event set Σd,i and the disabled transitions

set Td,i at state zi, respectively. By Step 20, for each pair (Mj, lj) ∈ zi, ILPP 4-5 is solved to

test if the disablement of transitions in Td,i will block the plant at some marking inRreg(Mj).

In Steps 22 to 26 a new diagnostic state is added to Z that contains all (Mj,d, lj) from all

(Mj, lj) in zi such that ILPP 4-5 is feasible. The above procedures (Steps 4 to 27) are

iteratively done until all indeterminate cycles and q-normal cycles have been removed. In

Algorithm 5, we separate the function that updates the Q-diagnoser (Steps 17 to 26, which

adds q-cycles) and the function that trims the Q-diagnoser (Steps 7 to 14). The reason for

this is to modularize the algorithm and improve its readability.

Finally, we discuss the complexity of the proposed approach. Consider an LPN G =

(PN,M0,Σ, `) whose diagnostic BRG is B = (M, T r,∆,M0) with the QBRG Gq. Since

58

Chapter 4 Active Diagnosis Problem in Labeled Petri Nets

Algorithm 5: Computation of an active diagnosis supervisor
Input: A labeled Petri net G = (PN,M0,Σ, `), where Σ = Σc ∪ Σuc

Output: Diagnosability enforcing supervisor S.
1 compute the QBRG Gq using Algorithm 4;
2 compute the Q-diagnoser Ad = (Z,Σ ∪ {q}, δd, z0) that is the diagnoser of Gq;
3 let D = ∅, Zdis = ∅;
4 while there exists an indeterminate cycle or a q-normal cycle C in Ad do
5 if ΣC ∩ Σc = ∅ ∧ (∃σ ∈ Σ∗uc)δd(z0, σ) = z′ ∈ C then
6 output: No solution, END;
7 end
8 if ΣC ∩ Σc 6= ∅ then
9 select e ∈ ΣC ∩ Σc such that δd(zi, e) = z′, zi, z

′ ∈ C;
10 let D = D ∪ {(zi, e)}, Zdis = {zi};
11 remove δd(zi, e) from δd;
12 else
13 for each zi ∈ Z, e ∈ Σc, such that δd(zi, e) = z′ and ∃σ ∈ Σ∗uc such that

δd(z
′, σ) = z′′ ∈ C do

14 let D = D ∪ {(zi, e)}, Zdis = Zdis ∪ {zi};
15 remove δd(zi, e) from δd;
16 end
17 end
18 remove all unreachable states from Z;
19 remove (z, e) from D if z /∈ Z ;
20 for each zi ∈ Zdis do
21 let Σd,i = {e | ∃(zi, e) ∈ D};
22 compute the disabled transitions set Td,i;
23 for each (Mj, lj) ∈ zi do
24 if D′(Mj) is feasible then
25 if ∃z ∈ Z, such that δd(zi, q) = z then
26 let z = z ∪ {(Mj,d, lj)}
27 else
28 let z = {(Mj,d, lj)}, Z = Z ∪ {z};
29 let δd(zi, q) = z, δd(z, q) = z;
30 end
31 end
32 end
33 end
34 let Zdis = ∅
35 end
36 output S = (Z,Σ ∪ {q}, δd, z0).

59

Dissertation of XIDIAN UNIVERSITY

in QBRG Gq each basis marking is associated with at most one virtual basis marking, there

are at most 2|M| states in Gq, i.e., the structural complexity of Gq is O(2|M|). On the other

hand, both Q-diagnoser Ad and active diagnosis supervisor S contain two types of nodes:

(1) basis marking nodes, i.e., z = {(M1, l1), (M2, l2), . . . , (Mn, ln)}, where Mi ∈ M; and

(2) virtual basis marking nodes, i.e., z′ = {(M1,d, l1), (M2,d, l2), . . . , (Mn,d, ln)}. Since the

number of each type of nodes is at most 22|M|, both Ad and S contain at most 2 · 22|M|

states, i.e., their structural complexity is O(22|M|). Such exponential complexity of |M|
seems unavoidable due to the construction of the diagnoser of QBRG. However, it has been

acknowledged that in practice the number of basis markings is usually much smaller than the

markings in the reachability graph [32, 61]. Thus, our method is practically more efficient

than automaton-based methods (such as [45]).

Remark 4.2. Note that in general there exist multiple ways to break an indeterminate cycle

with controllable events in a Q-diagnoser. It may happen that the control action prunes

some crucial arcs such that the state space is greatly reduced or the normal functionality is

greatly affected. As a result, some additional information can be embedded into Algorithm

5 to avoid removing these crucial arcs. To explore this will be part of our future work. �

Example 4.6. Consider again the LPN in Figure 4.3(a) where To = {t1, t2, t3, t4, t5, t6, t7,
t8, t9, t10} and Tf = {t14, t15}. The controllable event set Σc = {c, d}. Its Q-diagnoser is

shown in Figure 4.3(d). In the Q-diagnoser there exist two indeterminate cycles: z3
c−→ z3

and z6
d−→ z6.

In the first iteration, indeterminate cycle z3
c−→ z3 is picked. Since event c is control-

lable, by Step 9 event c is disabled at state z3, i.e., D = {(z3, c)} and Zdis = {z3}. For

diagnostic state z3, the disabled event set Σd,3 = {c} and the disabled transition set is

Td,3 = {t4, t5, t10}. There are two pairs (M3, N) and (M6, F) in state z3. For marking M6,

constraintD′(M6) is feasible, and according to Step 25, a new state z9 = (M6,d, F) is added

to the state set. By Step 26, an arc labeled event q from state z3 to z9 and a self-loop labeled

event q at state z9 are also added.

In the second iteration, indeterminate cycle z6
d−→ z6 is picked. Since event d is

controllable, we have D = {(z3, c), (z6, d)} and Zdis = {z6}. By Steps 17 to 26, diagnostic

state z6 = {(M4, N), (M5, F)} is examined to update the quiescent behavior after disabling

event d at it. The trimmed Q-diagnoser A′d is shown in Figure 4.6(a).

Since the structureA′d contains a new q-normal cycle, i.e., z10
q−→ z10, it is then trimmed

in the third iteration. Since event q is uncontrollable, according to steps 12 to 14, arc

(z5, d) is added to set D, implying that the supervisor should disable event d at state z5, i.e.,

60

Chapter 4 Active Diagnosis Problem in Labeled Petri Nets

M0,N M1,N
M2,N
M4,F

a

b

b

c

M7,N
M9,F

c

M8,N
M9,F

d

M9,F

b

b

M3,N
M6,F

M5,N

d

c

d

M6,d,F
q

q

M9,F b

M8,d,N
q

b q

z0 z1 z2 z3

z4z6z5

z7 z8

z9

z10

(a)

M0,N M1,N
M2,N
M4,F

a

b

b

c

M7,N
M9,F

c

M7,d,N

M9,F

b

b

M3,N
M6,F

M5,N

d

c

d

M6,d,F
q

q
z0 z1 z2 z3

z4z11z5

z7

z9

qq

(b)

M0,N M1,N
M2,N
M4,F

a

b

b

c

M3,N
M6,F

M5,N

d

c

d

M6,d,F
q

q
z0 z1 z2 z3

z4

z9

(c)

Fig. 4.6 (a) The trimmed structure A′
d in Example 4.6, (b) the trimmed structure A′′

d , and (c) the
diagnosability enforcing supervisor S.

61

Dissertation of XIDIAN UNIVERSITY

D = {(z3, c), (z6, d), (z5, d)}. Step 15 removes the unreachable states z6, z8, z10 and Step

16 removes arc (z6, d) from set D which is no longer necessary. Steps 17 to 26 update the

quiescent behavior at state z5. For a marking M7 in z5, the constraint D′(M7) is feasible.

In Step 25, a new state z11 = {(M7,d, N)} is added to state set and a self-loop labeled event

q is added at state z11, which is a new q-normal cycle, i.e., z11
q−→ z11. The current structure

A′′d is shown in Figure 4.6(b).

Finally, in the fourth iteration, to eliminate the q-normal cycle z11
q−→ z11, the event c

at state z1 is disabled and arc (z1, c) is added to the set D. After updating the quiescent

behavior at state z1, the final result is shown in Figure 4.6(c). Since there does not exist any

indeterminate cycle and q-normal cycle in the current structure, Algorithm 2 terminates and

outputs the finial structure in Figure 4.6(c). �

Once S = (Z,Σ ∪ {q}, δs, z0) is obtained, the corresponding control policy is given

as follows. Given an observation w whose consistent diagnostic state in diagnosability

enforcing supervisor is z, the control decision S(z) is to permit all controllable events that

are defined at z, i.e.,

S(z) = {e ∈ Σc | δs(z, e) is defined}. (4-6)

For example, for the net in Example 4.2, for an observation w = abd whose consistent

diagnostic state is z3, according to the diagnosability enforcing supervisor in Figure 4.6(c),

the control decision is S(z3) = {d}, i.e., event c is disabled.

Remark 4.3. It is worth noting that the observable quiescence q provides us extra informa-

tion about the current marking and the fault status of the system. Consider, for instance, the

Q-diagnoser in Figure 4.6(a) in which the supervisor disables event d at diagnostic state z6.

When observing event sequence acd, one can infer that the plant may be at some marking

either in the regular unobservable reach of M8 while no fault transition has fired, or in the

regular unobservable reach of M9 while a fault transition has fired. However, by further

observing quiescent event q and inspecting the new consistent diagnostic state z10, one can

infer that the system must be blocked at some marking in the regular unobservable reach

of M8 while no fault transition has fired, i.e., the possibility of firing a fault transition is

excluded. In such a case, the supervisor may re-enable event d, which may lead to a more

permissive control result. However, to re-enable events, all subsequent diagnostic states

from z10 and the control decisions at those states need to be further explored, since the

subsequence diagnostic states may not be already in Ad and may contain new indeterminate

cycles. To keep this paper focused, we do not address this issue and simply disable the

62

Chapter 4 Active Diagnosis Problem in Labeled Petri Nets

precursor event that leads to unfaulty deadlocks. �

Theorem 4.4. Given an LPN G = (PN,M0,Σ, `) with Σ = Σc ∪ Σuc and a set of fault

transitions Tf , the closed-loop system (G,S) is diagnosable and free of unfaulty deadlocks,

where S is the control policy designed by Algorithm 5 and Eq. 4-6.

Proof. Algorithm 5 ensures that the diagnosability enforcing supervisor does not contain

any indeterminate cycle and q-normal cycle. Since the diagnosability enforcing supervisor

represents the behavior of the closed-loop system, the closed-loop system is diagnosable and

does not have unfaulty deadlocks.

4.4 Conclusion

In this section, we summarize the contributions of this chapter as follows:

• First, we generalize the notion of diagnosability to LPNs that are not necessarily

deadlock-free. This is necessary because control actions enforcing active diagnosis

may induce deadlocks even if an original net is deadlock-free. Moreover, we assume

that a deadlock occurring in a plant can be indirectly “observed” by a modeling

primitive called quiescence in [45] (and time-out in [83]). In plain words, if no firing

of transitions is observed for a sufficient long time, then one can infer that a plant is

blocked (due to either a deadlock or a control-induced deadlock). This inference can

be modeled by a particular quiescent event in a logical framework.

• The conventional BRG developed in [21] does not contain sufficient information to

characterize deadlocks and quiescent behavior of a plant. Thus, we develop a new

BRG-like structure called the quiescent basis reachability graph (QBRG), in which

the quiescent behavior is encoded. Analogously to a BRG, a QBRG models the quies-

cent behavior of an LPN without explicitly listing all reachable markings. To compute

a QBRG, an integer linear programming technique is proposed to characterize the

quiescent behavior of a plant net. Then a structure called a Q-diagnoser is developed

based on a QBRG to verify the diagnosability of a plant.

• Finally, based on the notion of Q-diagnoser, we propose an algorithm to design a

diagnosability enforcing supervisor for a given plant. The supervisor is obtained by

recursively removing all indeterminate cycles in the Q-diagnoser, which circumvents

the need of a complete marking enumeration. Moreover, the supervisor designed

63

Dissertation of XIDIAN UNIVERSITY

by our approach guarantees that the closed-loop system is deadlock-free if no fault

occurs.

64

Chapter 5 Asynchronous Diagnosability Enforcement in Discrete Event Systems Based on
Supervisory Control Theory

Chapter 5 Asynchronous Diagnosability Enforcement in Discrete
Event Systems Based on Supervisory Control Theory

5.1 Motivation

As mentioned in previous sections, the aim of diagnosis [2, 3, 5, 10, 20, 23, 25, 27, 84–

86] in discrete event systems is to infer the occurrence of faults in a plant by observing

the events generated by the plant. A diagnostic agent called diagnoser that runs parallel

with a plant can be used for online diagnosis. However, it is required to initialize and run

the diagnoser synchronously with the plant. Such a condition may not be easy to meet in

practice [56]. Therefore, the work in [56, 87] extends the original notion of diagnosis and

proposes a notion called asynchronous diagnosis that is to detect the occurrence of faults in a

plant under the condition that a diagnostic agent is activated asynchronously with the plant.

In [56], a structure called asynchronous diagnoser is proposed for asynchronous diagnosis.

The developed asynchronous diagnoser is able to detect the occurrence of faults in a plant

without the past information of the plant before activating the diagnoser. This allows that

the asynchronous diagnoser can be activated at any time instance, even after the occurrence

of faults. Therefore, compared with the traditional diagnoser, the asynchronous diagnoser

structure has a wider range of applications.

Moreover, in the case of asynchronous diagnosis, the notion corresponding to the tradi-

tional diagnosability is the asynchronous diagnosability [56]. In other words, asynchronous

diagnosability is the property of a plant such that the occurrence of any fault can be detected

after a finite number of observations under the condition that a diagnostic agent may be

asynchronously activated with the plant. A necessary and sufficient condition is proposed

in [56] to verify the asynchronous diagnosability of a plant. In practice, a plant should also

be asynchronous diagnosable. However, given an asynchronous undiagnosable plant, there

is no work to enforce the asynchronous diagnosability as far as we know. Therefore, in

this chapter we address the asynchronous diagnosability enforcement problem based on the

supervisor control theory.

65

Dissertation of XIDIAN UNIVERSITY

5.2 Problem Formulation

5.2.1 Asynchronous Diagnosis and Diagnosability

Given an automaton plant A = (X,E, δ, x0), as mentioned in Section 3, the event

set E can be partitioned into the set of observable events Eo and the set of unobservable

events Euo, i.e., E = Eo ∪ Euo. The unobservable event set Euo is further partitioned into

the set of regular unobservable events Ereg and the the set of fault event Ef = {f}, i.e.,

Euo = Ereg ∪ Ef .

Assume that plant A has been running for a while and has generated a sequence σ. Not

knowing the information about the past behavior of the plant, i.e., the generated sequence

σ and its observation P(σ), one starts the diagnosis process at this time and determines if

fault f has occurred by observing the events generated by the plant. This is the so-called

asynchronous diagnosis problem [56]. The work in [56] develops a diagnoser structure

for asynchronous diagnosis such that it is not required to synchronously initialize and run

the diagnoser with the plant. In other words, the diagnoser can be activated at any time,

even after the occurrence of a fault. In [56], an important notion called asynchronous

diagnosability is introduced for live plants.

Definition 5.1. [56] Given a live plant A = (X,E, δ, x0), where E = Eo ∪ Euo and fault

event f ∈ Euo, A is asynchronous diagnosable if for all σ ∈ L(A), f ∈ σ, there exists k ∈ N
such that for all σ′ ∈ L(A)/σ with |σ′| ≥ k, the following condition holds:

σ̂σ̂′ ∈ L(A) ∧ σ̂′ ∈ P−1ext(L(A))(P(σ′))⇒ f ∈ σ̂σ̂′. �

In other words, given a faulty sequence σ, let σ′ be a continuation of σ. The word P(σ′)

represents the observations after beginning the diagnosis process. A plantA is asynchronous

diagnosable w.r.t. the fault f if when σ′ is sufficiently long (|σ′| ≥ k), all sequences σ̂σ̂′ ∈
L(A) contain at least one fault event where sequence σ̂′ belongs to the extension closure of

L(A) (σ̂′ ∈ ext(L(A)) and has the same observations as σ′ (P(σ̂′) = P(σ′)). If we cannot

determine whether the fault occurred or not by observing a finite number of observations

after beginning the diagnosis process, then the plant is asynchronous undiagnosable.

According to Definition 5.1, asynchronous diagnosability of a plant is a behavior prop-

erty that is determined by the language generated by the plant. In practice, an asynchronous

undiagnosable plant should necessarily be refined to be diagnosable before being put online.

Therefore, in this chapter we study the asynchronous diagnosability enforcement problem,

i.e., to design a supervisor for an asynchronous undiagnosable plant to restrict the behavior

66

Chapter 5 Asynchronous Diagnosability Enforcement in Discrete Event Systems Based on
Supervisory Control Theory

of the plant such that the closed-loop system is asynchronous diagnosable.

In the classical supervisor control theory, a control policy is made based on the se-

quences observed by the supervisor. However, in this chapter, we develop a state-based

supervisor. Specifically, given a plant A, let σ ∈ ext(L(G)) be a sequence that occurs after

starting the diagnosis process. A diagnostic agent observes the word w = P(σ) and deduces

a diagnostic state y(w) that contains the information of both the consistent states and the

status of the fault. A diagnostic state is a set of pairs y = {(x1, l1), (x2, l2), ..., (xn, ln)},
where each state xi ∈ X represents that the plant currently may be at xi and li ∈ {N,F}
represents that at state xi, a fault has occurred (li = F) or not (li = N). Based on a diagnostic

state y(w), a supervisor makes a control decision S(y) ⊆ Ec such that the controllable

events not in S(y) are disabled by the supervisor. Note that a supervisor cannot disable any

uncontrollable event. The problem studied in this chapter is formulated as follows.

Problem 5.1. Given an automaton plant A that is asynchronous undiagnosable, determine

a supervisor S for A such that the closed-loop system (A, S) is asynchronous diagnosable.

�

Moreover, the plant A considered in this paper satisfies the following assumptions:

A1 The plant A does not contain any cycle composed by unobservable events only;

A2 Ec ⊆ Eo ⊆ E.

Assumption A1 guarantees that the plant does not generate an infinite long sequence

that contains only unobservable events, which is a common assumption in the field of

fault diagnosis. Assumption A2 requires that all controllable events are also observable.

This assumption is widely used in the context of supervisory control for partially observed

discrete event systems. The developed approach can also be generalized to cases where

Assumption A2 is relaxed based on the basis of the BTS structure developed in [49, 88, 89].

Note that in many practical situations the ability to disable an event is usually coupled with

the ability to detect the occurrence of it: Assumption A2 is satisfied in such systems.

5.2.2 Asynchronous Diagnosability of Nonlive Plants

The concept of asynchronous diagnosability proposed in [56] requires that the consid-

ered plant is live. However, in practice, a plant may not necessarily live, i.e., a workflow

system may halt after finishing all its task. Moreover, event if an original plant is live,

the control actions of a supervisor may introduce deadlocks. Therefore, to enforce the

67

Dissertation of XIDIAN UNIVERSITY

asynchronous diagnosability using supervisory control theory, we first need to generalize

the notion of asynchronous diagnosability to nonlive plants.

Definition 5.2. Given a plant A = (X,E, δ, x0), where E = Eo ∪ Euo and fault event

f ∈ Euo, A is asynchronous diagnosable if for all σ ∈ L(A), f ∈ σ, there exists k ∈ N such

that for all σ′ ∈ L(A)/σ the following conditions hold:

• if |σ′| ≤ k and L(A)/σσ′ = ∅, then:

σ̂σ̂′ ∈ L(A) ∧ σ̂′ ∈ P−1ext(L(A))(P(σ′)) ∧ L(A)/σ̂σ̂′ = ∅ ⇒ f ∈ σ̂σ̂′;

• if |σ′| ≥ k, then:

σ̂σ̂′ ∈ L(A) ∧ σ̂′ ∈ P−1ext(L(A))(P(σ′))⇒ f ∈ σ̂σ̂′. �

The second condition in Definition 5.2 is the conventional asynchronous diagnosability

notion for live plants as in Definition 5.1. The first condition considers the case that sequence

σσ′ is terminal (L(A)/σσ′ = ∅). In such a case, it requires that all terminal sequences σ̂σ̂′ ∈
L(A) contain at least one fault where sequence σ̂′ belongs to the extension closure of L(A)

(σ̂′ ∈ ext(L(A)) and has the same observations as σ′ (P(σ̂′) = P(σ′)). By generalizing the

concept of asynchronous diagnosability, in this paper we remove the liveness assumption

considered in [56].

5.2.3 Observable Quiescence

Given a nonlive plant, if it reaches a dead state, then the plant will stay at the dead state

and does not produce any observation in the future. From the perspective of an external

agent, the plant does not produce any observation forever. Since in many practice cases,

the time to execute an event has an upper bound that is usually pre-known. In other words,

the sojourn time of each non-dead state in a plant is bounded. Therefore, if a time exceeds

the upper bound while no event is observed, one can infer that the plant must be blocked

at some state. Hence, the deadlock and control-induced deadlock can be “observed” in an

indirect way. Such an time-out mechanism is called quiescence that has been investigated by

many researchers [90, 91] and has been used to solve the problem of diagnosis [45, 48] and

supervisory control [83, 92] in DESs. We introduce a particular event q called the quiescent

event to model that a plant does not produce any observation for a sufficient long time. The

quiescence mechanism can be formulated as follows:

68

Chapter 5 Asynchronous Diagnosability Enforcement in Discrete Event Systems Based on
Supervisory Control Theory

0 1

5

2

6

3b c

a

b

b

a

f

b

q

4b b

y0

2,N
3,F

0,N
1,N
4,F
6,N

3,F
5,N
7,N

0,N
4,F

1,N
4,F

7,N

4,F
6,N

4,F 3,F

4,F

c

a

c

a

q

b b
q

b
a

b

c

b a

b

a

b

b

y1 y2

y3
y4 y5 y6

y7 y8 y9

y10

b

q

y0

2,N
3,F

0,N
1,N
4,F
6,N

3,F
5,N
7,N

0,N
4,F

1,N
4,F

7,N

4,F
6,N

4,F 3,F

4,F

c

a

c

a

q

b

a

b
q

b
a

b

c

b a

b

a

b

b

y1 y2

y3
y4 y5 y6

y7 y8 y9

y10

a

7

u

0 1

5

2

6

3b c

a

b

a

f
4b b

a

7

u

q

b

b

b

4,F

y11
q

q

(a)

0 1

5

2

6

3b c

a

b

b

a

f

b

q

4b b

y0

2,N
3,F

0,N
1,N
4,F
6,N

3,F
5,N
7,N

0,N
4,F

1,N
4,F

7,N

4,F
6,N

4,F 3,F

4,F

c

a

c

a

q

b b
q

b
a

b

c

b a

b

a

b

b

y1 y2

y3
y4 y5 y6

y7 y8 y9

y10

b

q

y0

2,N
3,F

0,N
1,N
4,F
6,N

3,F
5,N
7,N

0,N
4,F

1,N
4,F

7,N

4,F
6,N

4,F 3,F

4,F

c

a

c

a

q

b

a

b
q

b
a

b

c

b a

b

a

b

b

y1 y2

y3
y4 y5 y6

y7 y8 y9

y10

a

7

u

0 1

5

2

6

3b c

a

b

a

f
4b b

a

7

u

q

b

b

b

4,F

y11
q

q

(b)

Fig. 5.1 (a) Automaton A for Example 5.1, and (b) its quiescence automaton Aq.

• Once the plant is deadlocked (either by itself or by a control action), it will repetitively

generate an observable and uncontrollable event q;

• Event q is only generated when the plant is at a dead state, i.e., the plant does not

generate event q if it can execute any other event.

In other words, the occurrence of event q means that the plant is deadlocked at some

state. In the following, we define a new structure called quiescence automaton in which the

quiescence information of a plant is encoded.

Definition 5.3. Given a plant A = (X,E, δ, x0), a quiescence automaton of A is Aq =

(X,Eq, δq, x0), where Eq = E ∪ {q} is the set of events, and the transition function δq is

defined as follows:

δq(x, e) = δ(x, e) ∀x ∈ X \Xd,∀e ∈ E

δq(x, q) =

{
x, if x ∈ Xd

undefined if x /∈ Xd.
(5-1)

where Xd ⊆ X is the set of dead states. �

Given a plant A, the quiescence automaton of A can be easily computed according to

Definition 5.3. Here, we use the following example to illustrate this.

Example 5.1. Consider the plantA in Figure 5.1(a) whereEo = {a, b, c} andEc = {a}. By

Definition 5.3, the quiescence automaton Aq of A is computed and shown in Figure 5.1(b).

When the system is at the dead state 7, it will repetitively generate the quiescent event q

without changing its state anymore, as depicted in Aq. �

69

Dissertation of XIDIAN UNIVERSITY

5.3 Asynchronous Diagnosability Verification of Nonlive Plants

Given a plant A, in this section we develop a structure called asynchronous-quiescent

diagnoser that is used both for online asynchronous diagnosis and asynchronous diagnos-

ability verification. The developed asynchronous-quiescent diagnoser is a four-tuple struc-

ture:

Ad = (Y,Ed, δd, y0)

where Y ⊆ 2X×{N,F} is the set of diagnostics states, Ed = Eo ∪ {q} is the set of events,

δd : Y × Ed → Y is the transition function, and y0 is the initial state. As mentioned in

previous section, a diagnostic state is in the form of y = {(x1, l1), ..., (xn, ln)}where xi ∈ X
and li ∈ {N,F} that carries the fault information at state xi. Based on a diagnostic state

y, one can infer the current plant states and the occurrence of fault f in the plant. Before

defining the initial diagnostic state y0 and the transition function δd, in the following, we first

introduce a labeling function ∆ : {N,F} × Σ∗ → {N,F}.

Definition 5.4. Given a sequence σ ∈ E∗ and a label l ∈ {N,F}, the labeling function ∆

is defined as follows:

∆(l, σ) =

{
N, if l = N ∧ f /∈ σ
F, otherwise.

(5-2)

�

Moreover, since this chapter considers the problem of asynchronous diagnosis, the

proposed asynchronous-quiescent diagnoser can begin the diagnosis process at any time

instance. When the diagnoser is activated, the diagnoser does not have the information about

the plant’s past behavior and hence does not know the exact current state and the condition

of the plant. In such a case, the initial diagnostic state y0 should contain all possible plant

states and the information about the occurred fault. To this end, the initial diagnostic state

y0 is defined as follows:

y0 = {(x,∆(N, σ)) | σ ∈ L(A), x ∈ δq(x0, σ)}.

Initially, the asynchronous-quiescent diagnoser is at the initial diagnostic state y0. After

the diagnoser is activated, it will improve the estimation of the plant states and the informa-

tion about the occurred fault by using the observed events generated by the plant. The

transition function δd : Y × Ed → Y of Ad is defined as follows:

δd(y, e) = {(x′,∆(l, eσ)) | (x, l) ∈ y, σ ∈ Ue(x), x′ ∈ δ(x, eσ)}.

70

Chapter 5 Asynchronous Diagnosability Enforcement in Discrete Event Systems Based on
Supervisory Control Theory

Based on the analysis above, we then propose Algorithm 6 to compute the asynchronous-

quiescent diagnoser of a plant. Compared with the diagnoser structure in [56], the proposed

diagnoser Ad contains the quiescence information of the plant that can be used to improve

the estimation of the plant states and the condition of the plant. We note that if a plant is

live, then the asynchronous-quiescent diagnoser Ad is the same as the diagnoser structure in

[56].

Algorithm 6: Computation of the asynchronous-quiescent diagnoser Ad.
Input: A plant A = (X,E, δ, x0) with E = Eo ∪ Euo, and Euo = Ereg ∪ {f}
Output: Ad = (Y,Ed, δd, y0)

1 compute the quiescence automaton Aq = (X,E ∪ {q}, δq, x0) of A by Definition
5.3;

2 let y0 = {(x,∆(N, σ)) | σ ∈ L(A), x ∈ δq(x0, σ)};
3 let Y = {y0}, Ytemp = {y0};
4 while Ytemp 6= ∅ do
5 select a state y ∈ Ytemp;
6 foreach e ∈ Eo ∪ {q} do
7 compute y′ = {(x′,∆(l, eσ)) | (x, l) ∈ y, σ ∈ Ue(x), x′ ∈ δq(x, eσ)};
8 if y′ /∈ Y then
9 let Y = Y ∪ {y′}, Ytemp = Ytemp ∪ {y′};

10 end
11 let δd(y, e) = y′;
12 end
13 let Ytemp = Ytemp \ {y};
14 end
15 output Ad = (Y,Eo ∪ {q}, δd, y0);

We briefly explain how Algorithm 6 works. In Step 1, the quiescence automaton Aq is

computed by Definition 5.3. Step 2 computes the initial diagnostic state y0. Step 3 puts state

y0 to sets Y and Ytemp. Steps 4 to 11 iteratively check the states in Ytemp. In the iteration

cycle, if Ytemp is not empty, then a state y ∈ Ytemp is selected in Step 5. By observing an

observable event e ∈ Eo ∪ {q}, a new diagnostic state y′ can be reached from y. If y′ is

a new state (i.e., y′ /∈ Y), then it is put to sets Y and Ytemp. Step 10 defines the transition

function δd(y, e) = y′. Step 11 removes state y from set Ytemp to denote that y has been

checked. Steps 4 to 11 run iteratively until there is no unchecked state in Ytemp. Finally, Step

12 outputs the final structure Ad.

Example 5.2. Consider the plant G in Figure 5.1(a), where Eo = {a, b, c} and Ef =

{f}. We can compute the initial diagnostic state y0 = {(0, N),(1, N),(2, N),(3, F), (4, F),

(5, N),(6, N),(7, N)}. By applying Algorithm 6, the asynchronous-quiescent diagnoser Ad

71

Dissertation of XIDIAN UNIVERSITY

0 1

5

2

6

3b c

a

b

b

a

f

b

q

4b b

y0

2,N
3,F

0,N
1,N
4,F
6,N

3,F
5,N
7,N

0,N
4,F

1,N
4,F

7,N

4,F
6,N

4,F 3,F

4,F

c

a

c

a

q

b b
q

b
a

b

c

b a

b

a

b

b

y1 y2

y3
y4 y5 y6

y7 y8 y9

y10

b

q

y0

2,N
3,F

0,N
1,N
4,F
6,N

3,F
5,N
7,N

0,N
4,F

1,N
4,F

7,N

4,F
6,N

4,F 3,F

4,F

c

a

c

a

q

b

a

b
b

b
a

b

c

b a

b

a

b

b

y1 y2

y3
y4 y5 y6

y7 y8 y9

y10

a

7

u

0 1

5

2

6

3b c

a

b

a

f
4b b

a

7

u

q

b

b

b

4,F

y11
q

q

q
q

Fig. 5.2 The asynchronous-quiescent diagnoser Ad.

can be constructed, as shown in Figure 5.2.

Suppose that the plant A has generated a sequence bcfb, i.e., it is at state 4. Then

the diagnoser is activated for asynchronous diagnosis. Initially, the diagnoser is at the

initial diagnostic state y0. If an observable event a is generated, according to Figure 5.2

the diagnoser updates its state to y7 = {(3, F), (5, N), (7, N)}. If the plant then generates

an observable event b, the diagnoser updates the diagnostic state to y8 = {(4, F), (6, N)}.
If the plant generates again an observable event b, the corresponding diagnostic state is

updated to y5 = {(4, F)}, which implies that fault f has occurred. �

Remark 5.1. We note that the quiescence information can be used to improve the estimation

of plant states and the information about the occurred fault. For example, consider the

plant A in Figure 5.1(a) whose asynchronous-quiescent diagnoser is shown in Figure 5.2.

If after the activation of the diagnoser, the plant generates an observable word w = ba, the

diagnoser updates the diagnostic state to y7 = {(3, F), (5, N), (7, N)}. However, if then the

quiescence is observed, i.e., the plant does not produce any observation for a long time, one

knows that the plant must be at state 7 where no fault has occurred, since from states 3 and

5 the observable event b can occur. In other words, the corresponding diagnostic states of

observation w = baq is y9 = {(7, N)}. �

As mentioned at the beginning of this section, the proposed asynchronous-quiescent

diagnoser can also be used to verify the asynchronous diagnosability of a plant. To this

aim, we first recall the notion of indeterminate cycle in Definition 3.3. In simple words,

an indeterminate cycle in Ad is a cycle formed by uncertain diagnostic states for which

72

Chapter 5 Asynchronous Diagnosability Enforcement in Discrete Event Systems Based on
Supervisory Control Theory

there exist: (i) a corresponding cycle in Aq involving only states labeled “N” in the cycle

of diagnoser; and (ii) a corresponding cycle in Aq involving only states labeled “F ” in the

cycle of diagnoser. The following theorem provides a necessary and sufficient condition for

asynchronous diagnosability of a plant based on the asynchronous-quiescent diagnoser.

Theorem 5.1. Given a plant A = (X,E, δ, x0) with E = Eo ∪Euo, and Euo = Ereg ∪ {f},
let Ad be the asynchronous-quiescent diagnoser of A. Plant A is asynchronous diagnosable

if and only if there does not exist any indeterminate cycle in Ad.

Proof. (Only If) By contradiction, suppose that there exists an indeterminate cycle in Ad,

i.e., y1
e1−→ y2...

en−1−−→ yn
en−→ yn According to Definition 3.3, in quiescence automaton Aq

there exist a cycle x1
σ1−→ x2

σ2−→ · · · σn−1−−−→ xn
σn−→ x1 and a cycle x′1

σ′1−→ x′2
σ′2−→ · · ·

σ′n−1−−−→
x′n

σ′n−→ x′1 such that (xi, N), (x′i, F) ∈ yi. Moreover, sequences σ̂ = σ1σ2 · · ·σn and

σ̂′ = σ′1σ
′
2 · · ·σ′n have the same observation, i.e., P(σ̂) = P(σ̂′). Since diagnostic state yi is

reachable from initial diagnostic state y0, we can conclude that there exist a normal sequence

σ and a faulty σ′ such that δ(x0, σ) = xi and δ(x0, σ′) = x′i. There exist two cases:

Case 1: The events in the indeterminate cycle belong to Eo, i.e., ei ∈ Eo. In such a

case, in plant A there exists two arbitrary long sequences σ(σ̂)n and σ′(σ̂′)n where f ∈ σ′,
f /∈ σ(σ̂)n and P(σ̂) = P(σ̂′). This violates the second condition in Definition 5.2.

Case 2: The indeterminate cycle is a q-indeterminate cycle yi
q−→ yi. In such a case,

states xi and x′i are dead. We can conclude that there exist two terminal sequences σ, σ′ ∈
L(A) where f /∈ σ and f ∈ σ′. Therefore, the first condition in Definition 5.2 is not satisfied.

In both of the above two cases, one of the conditions in Definition 5.2 is not satisfied.

Therefore, plant A is asynchronous undiagnosable.

(If) We prove the statement by showing thatA is asynchronous undiagnosable implying

the existence of indeterminate cycles in Ad. Let σ ∈ L(A) be a faulty sequence and σ′ be a

continuation of σ such that sequence σσ′ violates the condition in Definition 5.2 causing the

plant asynchronous undiagnosable. There are two cases:

Case 1: Sequence σσ′ is a terminal sequence leading to a dead state x′, i.e., the

first condition in Definition 5.2 is not satisfied. Therefore, there exists another non-faulty

sequence σ̂σ̂′ ∈ L(A) leading to a dead state x such that P(σ̂′) = P(σ′). This implies

that in Ad there exists a diagnostic state y containing two pairs (x,N) and (x′, F). By the

construction of Ad, there exists an indeterminate cycle in Ad, i.e., y
q−→ y.

Case 2: Sequence σσ′ is an arbitrary long sequence and violates the second condition

in Definition 5.2. This implies that there exists another arbitrary long non-faulty sequence

73

Dissertation of XIDIAN UNIVERSITY

σ̂σ̂′ ∈ L(A) such that P(σ̂′) = P(σ′). Since the states in A is bounded, sequences σ′ and σ̂′

corresponding to two cycles in plant A that have the same observation. By the construction

of Ad, we conclude that there necessarily exists an indeterminate cycle in Ad.

According to Theorem 5.1, the asynchronous diagnosability of a plant A can be veri-

fied by checking the existence of indeterminate cycles in the corresponding asynchronous-

quiescent diagnoser Ad. To this aim, we first check if there exists a cycle composed by

only uncertain diagnostic states; then we verify if the cycle is indeterminate or not by using

Definition 3.3.

Example 5.3. Consider the plant A in Figure 5.1(a) whose asynchronous-quiescent diag-

noser Ad is shown in Figure 5.2. There are two cycles in Ad composed by only uncertain

diagnostic states, i.e., y1
b−→ y2

b−→ y4
c−→ y1 and y7

b−→ y8
a−→ y7. For the first cycle

y1
b−→ y2

b−→ y4
c−→ y1, there does not exist a corresponding cycle in Aq involving only

plant states labeled “F”. Therefore, it is not an indeterminate cycle. For the second cycle

y7
b−→ y8

a−→ y7, we can find two cycles in Aq, i.e., 3
b−→ 4

a−→ 3 and 5
b−→ 6

a−→ 5. By Definition

3.3, cycle y7
b−→ y8

a−→ y7 is an indeterminate cycle. Therefore, according to Theorem 5.1,

the original plant is asynchronous undiagnosable. �

5.4 Asynchronous Diagnosability Enforcement Supervisor

In this section, we propose an approach to compute a supervisor for an asynchronous

undiagnosable plant such that the closed-loop system is asynchronous diagnosable. Accord-

ing to Theorem 5.1, a plant is asynchronous undiagnosable if and only if its asynchronous-

quiescent diagnoser contains indeterminate cycles. Therefore, to enforce the asynchronous

diagnosability of the plant, a supervisor should forbid all behaviors of the plant that corre-

spond to the indeterminate cycles. Moreover, there are two types of indeterminate cycles

in an asynchronous-quiescent diagnoser: (i) an indeterminate cycle containing controllable

events, and (ii) an indeterminate cycle containing uncontrollable events only. For the first

type of indeterminate cycles, to prevent the plant circulating in such a cycle for an infinite

long time, some controllable event in the cycle should be disabled. On the other hand, for

an indeterminate cycle belongs to the second type, all diagnostic states in the cycle (and all

diagnostic diagnostic states that can uncontrollable reach to the cycle) should be forbidden.

As mentioned in Section 5.2, the developed supervisor makes control decisions based

on the current diagnostic states computed by the asynchronous-quiescent diagnoser. In

other words, for an observation w whose consistent diagnostic state is yi, the corresponding

74

Chapter 5 Asynchronous Diagnosability Enforcement in Discrete Event Systems Based on
Supervisory Control Theory

control decision is S(yi) = Ec \ Ed,i where Ed,i is the set of controllable events disabled at

state yi.

In the following, we propose Algorithm 7 to compute an asynchronous diagnosability

enforcement supervisor. Given a plant A and its asynchronous-quiescent diagnoser Ad,

Algorithm 7 recursively removes the indeterminate cycles inAd until a fixed point is reached.

In Algorithm 7, we useEC and Ydis to represent the set of events in indeterminate cycle C and

the set of diagnostic states at which the supervisor makes disablement actions, respectively.

We briefly explain how Algorithm 7 works. Step 1 calls Algorithm 6 to compute the

asynchronous-quiescent diagnoser of plant A. In the first part of the algorithm, i.e., Steps 4

to 13, an indeterminate cycle C is selected and treated. If indeterminate cycle C contains

uncontrollable events only and can be reached from y0 by executing an uncontrollable

sequence, then there does not exist an asynchronous diagnosability enforcement supervisor.

Algorithm 7 terminates in such a case. If cycle C contains at least one arc labeled by a

controllable event e ∈ Ec, by Steps 7 to 9, one of such arc (y, e) is put in set D, which

implies that event e should be disabled at state y. On the other hand, if the cycle contains

no arcs labeled by controllable events, then by Steps 11 to 13 all controllable arcs leading to

some states that may uncontrollably reach cycle C are put in D to be disabled. Steps 14 to

15 remove the unreachable states and the unnecessary arcs in D.

The second part of the algorithm, i.e., Steps 16 to 24 update the control-induced qui-

escence information at a state yi ∈ Ydis. Step 17 computes the disabled event set Ed,i

at yi. Since the control decision has changed at yi, we first remove the quiescent state

corresponding to state yi in Steps 18 to 19 and then update the quiescent behavior at state yi.

In Step 20, a new state y′ is computed containing all (x, l) ∈ yi such that the disablement

of events in Ed,i at yi will block the plant at state x (Γ(x) ⊆ Ed,i). If state y′ 6= ∅, the

quiescence information is encoded into the structure by Steps 22 to 24. The above procedure

runs iteratively until a fixed structure is reached.

Remark 5.2. The number of states in the proposed supervisor S, in the worst case, is

22|X|. Therefore, the structural complexity of S is O(22|X|). Note that such an exponential

complexity of |X| seems unavoidable due to the diagnoser construction for a partially

observed automaton. �

Example 5.4. Consider again the plantA in Figure 5.1(a) where the set of observable events

Eo = {a, b, c} and the set of controllable events Ec = {a}. The asynchronous-quiescent

diagnoser Ad of A is shown in Figure 5.2. Plant A is asynchronous undiagnosable, since

75

Dissertation of XIDIAN UNIVERSITY

Algorithm 7: Computation of an asynchronous diagnosability enforcement supervi-
sor

Input: A plant A = (X,E, δ, x0) with E = Eo ∪ Euo and E = Ec ∪ Euc
Output: Asynchronous diagnosability enforcement supervisor S.

1 call Algorithm 6 to compute the asynchronous-quiescent diagnoser
Ad = (Y,Ed, δd, y0) of A;

2 let Ydis = ∅, D = ∅;
3 while there exists an indeterminate cycle C in Ad do
4 if EC ∩ Ec = ∅ ∧ (∃σ ∈ E∗uc)δd(y0, σ) = y′ ∈ C then
5 output: No solution, END;
6 end
7 if EC ∩ Ec 6= ∅ then
8 select e ∈ EC ∩ Ec such that δd(y, e) = y′, y, y′ ∈ C;
9 let D = D ∪ {(y, e)}, Ydis = {y};

10 remove δd(y, e) from δd;
11 else
12 foreach y ∈ Y , e ∈ Ec, such that δd(y, e) = y′ and ∃σ ∈ E∗uc such that

δd(y
′, σ) = y′′ ∈ C do

13 let D = D ∪ {(y, e)}, Ydis = Ydis ∪ {y};
14 remove δd(y, e) from δd;
15 end
16 end
17 remove all unreachable states from Y ;
18 remove (y, e) from D if y /∈ Y ;
19 foreach yi ∈ Ydis do
20 let Ed,i = {e | ∃(yi, e) ∈ D};
21 if ∃y ∈ Y , such that δd(yi, q) = y then
22 remove δd(yi, q) from δd;
23 end
24 let y′ = {(x, l) ∈ yi | Γ(x) ⊆ Ed,i};
25 if y′ 6= ∅ then
26 if y′ /∈ Y then
27 let Y = Y ∪ {y′};
28 end
29 let δd(yi, q) = y′, δd(y′, q) = y′;
30 end
31 end
32 let Ydis = ∅
33 end
34 output S = (Y,Eo ∪ {q}, δd, y0).

76

Chapter 5 Asynchronous Diagnosability Enforcement in Discrete Event Systems Based on
Supervisory Control Theory

0 1

5

2

6

3b c

a

b

b

a

f

b

q

4b b

y0

2,N
3,F

0,N
1,N
4,F
6,N

3,F
5,N
7,N

0,N
4,F

1,N
4,F

7,N

4,F
6,N

4,F 3,F

4,F

c

a

c

a

q

b b b

b
a

b

c

b a

b

a

b

b

y1 y2

y3
y4 y5 y6

y7 y8 y9

y10

b

q

y0

2,N
3,F

0,N
1,N
4,F
6,N

3,F
5,N
7,N

0,N
4,F

1,N
4,F

7,N

4,F
6,N

4,F 3,F

4,F

c

a

c

a

q

b

a

b
q

b
a

b

c

b a

b

a

b

b

y1 y2

y3
y4 y5 y6

y7 y8 y9

y10

a

7

u

0 1

5

2

6

3b c

a

b

a

f
4b b

a

7

u

q

b

b

b

6,N

y11
q

q

q
q

Fig. 5.3 Supervisor S for Example 5.4.

there exists an indeterminate cycle in Ad, i.e., y7
b−→ y8

a−→ y7.

Now we compute an asynchronous diagnosability enforcing supervisor for A by Algo-

rithm 7. Since the indeterminate cycle contains a controllable event, i.e., event a, by Step 8

event a is disabled at state y8, i.e.,D = {(y8, a)} and Ydis = {y8}. Step 9 removes transition

function δd(y8, a) from δd. Step 17 computes the disabled event set at y8, i.e., Ed,8 = {a}.
There exist two pairs (4, F) and (6, N) in state y8. For state 6, the condition Γ(6) ⊆ Ed,8

holds. By Step 20, a new diagnostic state y11 = {(6, N)} is computed. In Step 24, an arc

labeled event q from y8 to y11 and a self-loop labeled event q at y11 are added. The result

is shown in Figure 5.3. Since there is no any indeterminate cycle in the current structure,

Algorithm 7 terminates and outputs the final supervisor shown in Figure 5.3. �

Once a supervisor S = (Y,Ed, δs, y0) is computed by Algorithm 2, the corresponding

control policy can be easily obtained based on S. Let w be an observation after starting the

diagnosis process whose corresponding diagnostic state in S is y. The control decision S(y)

is to permit all controllable events defined at state y, i.e.,

S(y) = {e ∈ Ec | δs(y, e)!}.

For example, consider the plant in Figure 5.1 whose asynchronous diagnosability enforcing

supervisor is shown in Figure 5.3. For an observation w = ab generated after beginning the

diagnosis process, the corresponding diagnostic state is y8. By checking supervisor S, the

control decision S(y8) = ∅, i.e., event a is disabled.

Theorem 5.2. Given a plant A = (X,E, δ, x0) with E = Eo ∪ Euo and E = Ec ∪ Euc, let

77

Dissertation of XIDIAN UNIVERSITY

S be the asynchronous diagnosability enforcing supervisor computed by Algorithm 7. The

closed-loop system (A, S) is asynchronous diagnosable.

Proof. By Theorem 5.1, a system is asynchronous diagnosable if and only if there does not

exist any indeterminate cycle in its asynchronous-quiescent diagnoser. Since Algorithm 7

ensures that there is no any indeterminate cycle in the supervisor, the closed-loop system

(A, S) is asynchronous diagnosable.

Remark 5.3. Notice that the supervisor S designed by Algorithm 7 is not necessarily max-

imally permissive. The reason is that set D may contain some arcs such that the prune of

these arcs will greatly reduce the reachable state space or affect the normal functionality.

To deal with this, some additional information can be embedded into Algorithm 7 to avoid

removing these crucial arcs. To address this issue will be part of our future work. �

5.5 Conclusion

In this section, we summarize the main contributions of this chapter as follows:

• Since the control actions of a supervisor may introduce deadlocks even if the original

plant is live, we first extend the classical notion of asynchronous diagnosability to

plants that may contain deadlocks. Moreover, we assume that deadlocks of a plan can

be indirectly “observed” when it occurs, which is the so-called quiescence in [48, 90,

91] (or time-out in [83, 92]). A logical event called quiescent event is introduced to

model such a behavior.

• We develop a structure called asynchronous-quiescent diagnoser that is used both for

online asynchronous diagnosis and asynchronous diagnosability verification of a given

plant.

• Finally, for an asynchronous undiagnosable plant, we compute a supervisor based

on the asynchronous-quiescent diagnoser such that the closed-loop system is asyn-

chronous diagnosable.

78

Chapter 6 Conclusions and Future Works

Chapter 6 Conclusions and Future Works

6.1 Conclusions

This dissertation studies the active diagnosis problem in discrete event systems by using

the model of automaton and Petri net, respectively. The main contributions of the thesis are

summarized as follows.

(1) Active diagnosis problem in automata

In this part we present an active diagnosis method to enforce diagnosability of a plant

modeled by a finite state automaton. Some properties of active diagnosis are studied. To

avoid the deadlock, the notion of stop-free event set that is a subset of controllable event

set is proposed, and a stop-free control policy that does not introduce the stop event is

formulated. We develop a heuristic method based on the verifier of the plant to compute

a feasible stop-free event set that guarantees the existence of a valid control policy. With

the stop-free event set, the set of disabled edges is computed, and an online control policy

that is based on the current diagnostic state is computed which guarantees that the closed-

loop system is diagnosable. The structural complexity of the proposed control structure is

polynomial with respect to the number of states of the plant.

(2) Active diagnosis problem in labeled Petri nets

In this part, we formulate and deal with the active diagnosis problem in labeled Petri

nets by developing a supervisor for a plant such that the closed-loop system is diagnosable.

Since control actions may introduce deadlocks even if an original plant is deadlock-free, we

first generalize the classical notion of diagnosability in labeled Petri nets to the nets that

may contain potential deadlocks. To avoid enumerating all reachable markings of a plant,

we develop a structure called quiescent basis reachability graph to characterize the behavior

of a net containing deadlocks. Accordingly, a structure named Q-diagnoser is proposed to

verify the diagnosability of a net. An integer linear programming technique is developed to

characterize the deadlocks. We prove that a plant is diagnosable if and only if there does

not exist any indeterminate cycle in its Q-diagnoser. Finally, for an undiagnosable plant, we

introduce a diagnosability enforcing supervisor to enforce the diagnosability by trimming a

Q-diagnoser. Moreover, our approach guarantees that the closed-loop system cannot reach

a dead marking unless a fault transition has fired.

(3) Asynchronous diagnosability enforcement problem in DESs

79

Dissertation of XIDIAN UNIVERSITY

The asynchronous fault diagnosis is to detect the occurrence of faults in a plant under

the condition that a diagnostic agent, i.e., a diagnoser, is activated asynchronously with the

plant. Moreover, asynchronous diagnosability is a property of a plant such that any fault can

be detected within finite future steps after its occurrence in the case of asynchronous activa-

tion of the diagnoser and the plant. In this thesis, we studies the asynchronous diagnosability

enforcement problem in discrete event systems by using supervisory control theory, i.e., to

design a supervisor for a plant such that the closed-loop system is asynchronous diagnosable.

We first generalize the notion of asynchronous diagnosability to nonlive systems since the

control actions may introduce deadlocks of a plant even if it is originally live. Then a struc-

ture called asynchronous-quiescent diagnoser is developed which is used both for online

asynchronous diagnosis and asynchronous diagnosability verification. Finally, for a plant

that is asynchronous undiagnosable, we propose a supervisor to enforce the asynchronous

diagnosability based on its asynchronous-quiescent diagnoser.

6.2 Future Works

Based on the work proposed in this dissertation, there are some possible research

directions, which are summarized as follows.

• Firstly, in the framework of automaton, we will study the active diagnosis problem in

the distributed [93–96] and probabilistic [97–100] settings. As far as we know, there

is no work to deal with active diagnosis problem in the framework of distributed or

probabilistic systems.

• Secondly, as mentioned in Section 4.1, the observable quiescence q provides extra

information about the current state estimation. In the future, we want to study a

more general control problem (i.e., nonblocking control) by using the quiescence

information. Once the observable quiescence is observed, the current state estimation

can be updated. Accordingly, the control policy can be updated and some disabled

events are re-enabled. As a result, the supervisor computed with quiescence can be

more permissive than the traditional ones [101–104].

80

References

References

[1] CASSANDRAS C G, LAFORTUNE S. Introduction to discrete event systems[M]. [S.l.] : Springer

Science & Business Media, 2009.

[2] ZAYTOON J, LAFORTUNE S. Overview of fault diagnosis methods for discrete event systems[J].

Annual Reviews in Control, 2013, 37(2) : 308 – 320.

[3] SAMPATH M, SENGUPTA R, LAFORTUNE S, et al. Diagnosability of Discrete-Event

System[J]. IEEE Transactions on Automatic Control, 1995, 40(9) : 1555 – 1575.

[4] ZAD S H, KWONG R H, WONHAM W M. Fault diagnosis in discrete-event systems: framework

and model reduction[J]. IEEE Transactions on Automatic Control, 2003, 48(7) : 1199 – 1212.

[5] WU Y, HADJICOSTIS C N. Algebraic approaches for fault identification in discrete-event

systems[J]. IEEE Transactions on Automatic Control, 2005, 50(12) : 2048 – 2055.

[6] DEBOUK R, LAFORTUNE S, TENEKETZIS D. Coordinated decentralized protocols for failure

diagnosis of discrete-event systems[J]. Mathematics and Statistics: Discrete Event Dynamic

Systems, 2000, 10(1-2) : 33 – 86.

[7] QIU W, KUMAR R. Decentralized failure diagnosis of discrete event systems[J]. IEEE

Transactions on Systems, Man, and Cybernetics, Part A: Syetems and Humans, 2006, 36(2) : 384 –

395.

[8] WANG Y, YOO T S, LAFORTUNE S. Diagnosis of discrete event systems using decentralized

architectures[J]. Discrete Event Dynamic Systems, 2007, 17(2) : 233 – 263.

[9] KEROGLOU C, HADJICOSTIS C N. Distributed Fault Diagnosis in Discrete Event Systems via

Set Intersection Refinements[J]. IEEE Transactions on Automatic Control, 2018, 63(10) : 3601 –

3607.

[10] CONG X, FANTI M P, MANGINI A M, et al. Decentralized Diagnosis by Petri Nets and Integer

Linear Programming[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018,

48(10) : 1689 – 1700.

[11] JIANG S, HUANG Z, CHANDRA V, et al. A Polynomial Algorithm for Testing Diagnosability of

Discrete-Event Systems[J]. IEEE Transactions on Automatic Control, 2001, 46(8) : 1318 – 1321.

[12] YOO T-S, LAFORTUNE S. Polynomial-Time Verification of Diagnosability of Partially Observed

Discrete-Event Systems[J]. IEEE Transactions on Automatic Control, 2002, 47(9) : 1491 – 1495.

[13] MOREIRA M V, JESUS T C, BASILIO J C. Polynomial time verification of decentralized

diagnosability of discrete event systems[J]. IEEE Transactions on Automatic Control, 2011, 56(7) :

1679 – 1684.

81

Dissertation of XIDIAN UNIVERSITY

[14] CARVALHO L K, BASILIO J C, MOREIRA M V. Robust diagnosis of discrete event systems

against intermittent loss of observations[J]. Automatica, 2012, 48(9) : 2068 – 2078.

[15] YIN X, LAFORTUNE S. Codiagnosability and coobservability under dynamic observations:

Transformation and verification[J]. Automatica, 2015, 61 : 241 – 252.

[16] CABASINO M P, GIUA A, SEATZU C. Diagnosability of bounded Petri nets[C] // In Proceedings

of the 48th IEEE Conf. on Decision and Control. 2009 : 1254 – 1260.

[17] RU Y, CABASINO M P, GIUA A, et al. Supervisor synthesis for discrete event systems with

arbitrary forbidden state specifications[C] // Proc. 47th IEEE Conference on Decision and Control.

2008 : 1048 – 1053.

[18] RU Y, CABASINO M P, GIUA A, et al. Supervisor synthesis for discrete event systems

under partial observation and arbitrary forbidden state specifications[J]. Discrete Event Dynamic

Systems, 2014, 24(3) : 275 – 307.

[19] GIUA A, SEATZU C. Fault detection for discrete event systems using Petri nets with unobservable

transitions[C] // In Proceedings of the 44th Int. Conf. on Decision and Control and European

Control Conference. 2005 : 6323 – 6328.

[20] LEFEBVRE D, DELHERM C. Diagnosis of DES with Petri net models[J]. IEEE Transactions on

Automation Science and Engineering, 2007, 4(1) : 114 – 118.

[21] CABASINO M P, GIUA A, SEATZU C. Fault detection for discrete event systems using Petri nets

with unobservable transitions[J]. Automatica, 2010, 46(9) : 1531 – 1539.

[22] CABASINO M P, GIUA A, POCCI M, et al. Discrete event diagnosis using labeled Petri nets: an

application to manufacturing systems[J]. Control Engineering Practice, 2011, 19(9) : 989 – 1001.

[23] CABASINO M P, GIUA A, SEATZU C. Diagnosis Using Labeled Petri Nets With Silent

or Undistinguishable Fault Events[J]. IEEE Transactions on Systems, Man, and Cybernetics:

Systems, 2013, 43(2) : 345 – 355.

[24] DOTOLI M, FANTI M P, MANGINI A M, et al. On-line fault detection of discrete event systems

by Petri nets and integer linear programming[J]. Automatica, 2009, 45(11) : 2665 – 2672.

[25] ZHU G, FENG L, LI Z, et al. An Efficient Fault Diagnosis Approach Based on Integer Linear

Programming for Labeled Petri Nets[J]. IEEE Transactions on Automatic Control, 2020, 66(5) :

2393 – 2398.

[26] CABASINO M P, GIUA A, HADJICOSTIS C N, et al. Fault model identification and synthesis in

Petri nets[J]. Discrete Event Dynamic Systems, 2015, 25(13) : 419 – 440.

[27] BASILE F, CHIACCHIO P, De Tommasi G. An efficient approach for online diagnosis of discrete

event systems[J]. IEEE Transactions on Automatic Control, 2009, 54(4) : 748 – 759.

[28] RU Y, HADJICOSTIS C N. Fault diagnosis in discrete event systems modeled by partially

82

References

observed Petri nets[J]. Discrete Event Dynamic Systems, 2009, 19(4) : 551 – 575.

[29] BASILE F, CHIACCHIO P, TOMMASI G D. On K-diagnosability of Petri nets via integer linear

programming[J]. Automatica, 2012, 48(9) : 2047 – 2058.

[30] BASILE F, CHIACCHIO P, TOMMASI G D. Sufficient conditions for diagnosability of Petri

nets[C] // In Proceedings of the 9th International Workshop on Discrete Event Systems. 2008 :

370 – 375.

[31] CABASINO M P, GIUA A, LAFORTUNE S, et al. A New Approach for Diagnosability Analysis

of Petri Nets Using Verifier Nets[J]. IEEE Transactions on Automatic Control, 2012, 57(12) :

3104 – 3117.

[32] CABASINO M P, GIUA A, SEATZU C. Diagnosability of discrete-event systems using labeled

Petri nets[J]. IEEE Transactions on Automation Science and Engineering, 2014, 11(1) : 144 – 153.

[33] JIROVEANU G, BOEL R K. The Diagnosability of Petri Net Models Using Minimal

Explanations[J]. IEEE Transactions on Automatic Control, 2010, 55(7) : 1663 – 1668.

[34] RAMIREZ-TREVINO A, RUIZ-BELTRAN E, RIVERA-RANGEL I, et al. Online Fault

Diagnosis of Discrete Event Systems: A Petri Net-Based Approach[J]. IEEE Transactions on

Automation Science and Engineering, 2007, 4(1) : 31 – 39.

[35] RAMÍREZ-TREVIÑO A, RUIZ-BELTRáN E, ARáMBURO-LIZáRRAGA J, et al. Structural

Diagnosability of DES and Design of Reduced Petri Net Diagnosers[J]. IEEE Transactions on

Systems, Man, and Cybernetics, Part A: Syetems and Humans, 2012, 42(2) : 416 – 429.

[36] YIN X, LAFORTUNE S. On the Decidebility and Complexity of Diagnosability for Labeled Petri

Nets[J]. IEEE Transactions on Automatic Control, 2017, 62(11) : 5931 – 5938.

[37] RAN N, SU H, GIUA A, et al. Codiagnosability Analysis of Bounded Petri Nets[J]. IEEE

Transactions on Automatic Control, 2018, 63(4) : 1192 – 1199.

[38] RAMÍREZ-TREVIÑO A, RUIZ-BELTRáN E, RIVERA-RANGEL I, et al. Online Fault Diagnosis

of Discrete Event Systems. A Petri Net-Based Approach[J]. IEEE Transactions on Automation

Science and Engineering, 2007, 4(1) : 31 – 39.

[39] CASSEZ F, TRIPAKIS S. Fault diagnosis with static and dynamic observers[J]. Fundamenta

Informaticae, 2008, 88(4) : 497 – 540.

[40] WANG W, LAFORTUNE S, GIRARD A R, et al. Optimal sensor activation for diagnosing discrete

event systems[J]. Automatica, 2010, 46(7) : 1165 – 1175.

[41] THORSLEY D, TENEKETZIS D. Active acquisition of information for diagnosis and supervisory

control of discrete event systems[J]. Discrete Event Dynamic Systems, 2007, 17(4) : 531 – 583.

[42] BASILE F, TOMMASI G D, STERLE C. Sensors selection for K-diagnosability of Petri nets

via Integer Linear Programming[C] // Proc. 23rd Mediterranean Conference on Control and

83

Dissertation of XIDIAN UNIVERSITY

Automation (MED). 2015 : 168 – 175.

[43] CABASINO M P, LAFORTUNE S, SEATZU C. Optimal sensor selection for ensuring

diagnosability in labeled Petri nets[J]. Automatica, 2013, 49(8) : 2373 – 2383.

[44] RAN N, GIUA A, SEATZU C. Enforcement of diagnosability in labeled Petri nets via optimal

sensor selection[J]. IEEE Transactions on Automatic Control, 2019, 64(7) : 2997 – 3004.

[45] SAMPATH M, LAFORTUNE S, TENEKETZIS D. Active diagnosis of discrete-event systems[J].

IEEE Transactions on Automatic Control, 1998, 43(7) : 908 – 929.

[46] CHANTHERY E, PENCOLÉ Y. Monitoring and active diagnosis for discrete-event systems[C]

// Proc. 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes.

2009 : 1545 – 1550.

[47] HAAR S, HADDAD S, MELLITI T, et al. Optimal constructions for active diagnosis[C] // Proc.

IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer

Science. 2013 : 527 – 539.

[48] BÖHM S, HAAR S, HADDAD S, et al. Active diagnosis with observable quiescence[C] // Proc.

54th IEEE Conference on Decision and Control (CDC). 2015 : 1663 – 1668.

[49] YIN X, LAFORTUNE S. A Uniform Approach for Synthesizing Property-Enforcing Supervisors

for Partially-Observed Discrete-Event Systems[J]. IEEE Transactions on Automatic Control, 2016,

61(8) : 2140 – 2154.

[50] CHEN Z, LIN F, WANG C, et al. Active Diagnosability of Discrete Event Systems and its

Application to Battery Fault Diagnosis[J]. IEEE Transactions on Control Syetems Technology,

2014, 22(5) : 1892 – 1898.

[51] HU Y, MA Z, LI Z. Active Diagnosis of Petri Nets Using Q-Diagnoser[C] // Proc. 15th IEEE

Conference on Automation Science and Engineering. 2019 : 203 – 208.

[52] HU Y, MA Z, LI Z. Design of Supervisors for Active Diagnosis in Discrete Event Systems[J].

IEEE Transactions on Automatic Control, 2020, 65(12) : 5159 – 5172.

[53] HU Y, MA Z, LI Z, et al. Diagnosability enforcement in labeled Petri nets using supervisory

control[J]. Automatica, 2021, DOI: https://doi.org/10.1016/j.automatica.2021.109776.

[54] SCHMIDT M, LUNZE J. Active diagnosis of deterministic I/O automata[C] // Proc. 4th IFAC

Workshop on Dependable Control of Discrete Systems. 2013 : 79 – 84.

[55] BERTRAND N, FABRE É, HAAR S, et al. Active diagnosis for probabilistic systems[C] // Proc.

International Conference on Foundations of Software Science and Computation Structures. 2014 :

29 – 42.

[56] WHITE A, KARIMODDINI A, SU R. Fault Diagnosis of Discrete Event Systems Under Unknown

Initial Conditions[J]. IEEE Transactions on Automatic Control, 2019, 64(12) : 5246 – 5252.

84

References

[57] TONG Y, LI Z W, SEATZU C, et al. Verification of initial-state opacity in DES[C] // In

Proceedings of the 54th IEEE Conf. on Decision and Control. 2015 : 344 – 349.

[58] LAN H, TONG Y, GUO J, et al. Verification of C-detectability Using Petri nets[J]. Information

Sciences, 2020, 528 : 294 – 310.

[59] MURATA G T. Petri nets: properties, analysis and applications[J]. Proceedings of the IEEE, 1989,

77(4) : 541 – 580.

[60] CORONA D, GIUA A, SEATZU C. Marking estimation of Petri nets with silent transitions[J].

IEEE Transactions on Automatic Control, 2007, 52(9) : 1695 – 1699.

[61] MA Z, TONG Y, LI Z, et al. Basis Marking Representation of Petri Net Reachability Spaces and

Its Application to the Reachability Problem[J]. IEEE Transactions on Automatic Control, 2017,

62(3) : 1078 – 1093.

[62] WONHAM W M, RAMADGE P J. On the supremal controllable sublanguage of a given

language[J]. SIAM Journal on Control and Optimization, 1987, 25(3) : 637 – 659.

[63] RAMADGE P J G, WONHAM W M. The control of discrete event systems[J]. Proceedings of

IEEE, 1989, 77(1) : 81 – 98.

[64] WONHAM W M. Supervisory Control of Discrete-Event Systems. (2014)[M]. [S.l.] : Dept.

Elect. Comput. Eng., University of Toronto, Toronto, ON, Canada [Online]. Available at

http://www.control.utoronto.ca/DES, 2015.

[65] LIN F, WONHAM W M. On observability of discrete-event systems[J]. Information Science,

1988, 44(3) : 173 – 198.

[66] HASHTRUDI S, KWONG R H, WONHAM W M. Fault diagnosis in discrete-event systems:

framework and model reduction[J]. IEEE Transactions on Automatic Control, 2003, 48(7) : 1199 –

1212.

[67] TAKAI S, KODAMA S. M-controllable subpredicates arising in state feed back control of discrete

event systems[J]. International Jonrnal of Control, 1997, 67(4) : 553 – 566.

[68] YIN X, LAFORTUNE S. Synthesis of maximally-permissive supervisors for the range control

problem[J]. IEEE Transactions on Automatic Control, 2017, 62(8) : 3914 – 3929.

[69] CORMEN T H, LEISERSON C E, RIVEST R L, et al. Introduction to Algorithms[M]. [S.l.] : MIT

Press, 2009.

[70] HERNÁNDEZ-RUEDA K, MEDA-CAMPAÑA M E, ARÁMBURO-LIZÁRRAGA J. Enforcing

Diagnosability in Interpreted Petri Nets[J]. IFAC-PapersOnline, 2015, 48(7) : 56 – 63.

[71] MA Z, YIN X, LI Z. Marking Diagnosability Verification in Labeled Petri Nets[J]. Automatica,

2021, in press.

[72] MA Z, YIN X, LI Z. Marking Predictability and Prediction in Labeled Petri Nets[J]. IEEE

85

Dissertation of XIDIAN UNIVERSITY

Transactions on Automatic Control, 2020, DOI: 10.1109/TAC.2020.3024270.

[73] MA Z, ZHU G, LI Z. Marking Estimation in Petri Nets Using Hierarchical Basis Reachability

Graphs[J]. IEEE Transactions on Automatic Control, 2020, 66(2) : 810 – 817.

[74] TONG Y, LI Z W, SEATZU C, et al. Verification of State-Based Opacity Using Petri Nets[J]. IEEE

Transactions on Automatic Control, 2017, 62(6) : 2823 – 2837.

[75] GIUA A. Supervisory control of Petri nets with language specifications[G] // SEATZU C, SILVA

M, van SCHUPPEN J. Control of Discrete-Event Systems : Vol 433. London, U.K. : Springer,

2013 : 235 – 255.

[76] BASILE F, TOMMASI G D, STERLE C. Non-Interference Enforcement in Bounded Petri Nets[C]

// Proc. 2018 IEEE Conference on Decision and Control. 2018 : 4827 – 4832.

[77] BASILE F, TOMMASI G D, STERLE C. Non-interference enforcement via supervisory

control in bounded Petri Nets[J]. IEEE Transactions on Automatic Control, 2020, DOI:

10.1109/TAC.2020.3024274.

[78] GIUA A, LAFORTUNE S, SEATZU C. Divergence properties of labeled Petri nets and their

relevance for diagnosability analysis[J]. IEEE Transactions on Automatic Control, 2020, 65(7) :

3092 – 3097.

[79] CABASINO M P, GIUA A, SEATZU C. Identification of Petri nets from knowledge of their

language[J]. Discrete Event Dynamic Systems, 2007, 17(4) : 447 – 474.

[80] LI Z, ZHOU M, WU N. A Survey and Comparison of Petri Net-Based Deadlock Prevention

Policies for Flexible Manufacturing Systems[J]. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), 2008, 38(2) : 173 – 188.

[81] LI Z W, ZHOU M C. Deadlock Resolution in Automated Manufacturing Systems: A Novel Petri

Net Approach[M]. London : Springer, 2009.

[82] LI Z W, WU N Q, ZHOU M C. Deadlock control of automated manufacturing systems based on

Petri nets – A literature review[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C,

2012, 42(4) : 437 – 462.

[83] GIUA A, SEATZU C, BASILE F. Observer-based state-feedback control of timed Petri nets with

deadlock recovery[J]. IEEE Transactions on Automatic Control, 2004, 49(1) : 17 – 29.

[84] ZHU G, LI Z, WU N. Model-based fault identification of discrete event systems using partially

observed Petri nets[J]. Automatica, 2018, 96 : 201 – 212.

[85] WANG Y, YOO T-S, LAFORTUNE S. Diagnosis of discrete event systems using decentralized

architectures[J]. Discrete Event Dynamic Systems, 2007, 17(2) : 233 – 263.

[86] KEROGLOU C, HADJICOSTIS C N. Distributed Fault Diagnosis in Discrete Event Systems via

Set Intersection Refinements[J]. IEEE Transactions on Automatic Control, 2018, 63(10) : 3601 –

86

References

3607.

[87] WHITE A, KARIMODDINI A. Asynchronous fault diagnosis of discrete event systems[C] // Proc.

2017 American Control Conference (ACC). 2017 : 3224 – 3229.

[88] YIN X, LAFORTUNE S. Synthesis of maximally permissive supervisors for partially observed

discrete event systems[J]. IEEE Transactions on Automatic Control, 2016, 61(5) : 1239 – 1254.

[89] YIN X, LAFORTUNE S. On maximal permissiveness in partially observed discrete event systems:

Verification and synthesis[C] // Proc. 13th International Workshop on Discrete Event Systems.

2016 : 1 – 7.

[90] TRETMANS J. Model based testing with labelled transition systems[G] // HIERONS R M,

BOWEN J P, HARMAN M. Formal Methods and Testing : Vol 4949. Berlin, Heidelberg :

Springer, 2008 : 1 – 38.

[91] TRETMANS J. Test Generation with Inputs, Outputs and Repetitive Quiescence[J]. Software

Concepts and Tools, 1996, 17(3) : 103 – 120.

[92] GIUA A, SEATZU C, BASILE F. Petri net control using event observers and timing

information[C] // Proc. 41st IEEE Conference on Decision and Control. 2002 : 787 – 792.

[93] SU R, WONHAM W M. Global and local consistencies in distributed fault diagnosis for discrete-

event systems[J]. IEEE Transactions on Automatic Control, 2005, 50(12) : 1923 – 1935.

[94] QIU W, KUMAR R. Distributed diagnosis under bounded-delay communication of immediately

forwarded local observations[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A:

Syetems and Humans, 2008, 38(3) : 628 – 643.

[95] KEROGLOU C, HADJICOSTIS C N. Distributed diagnosis using predetermined synchronization

strategies[C] // Proc. 53rd IEEE Conf. Decis. Control Eur. Control Conf.. 2014 : 5955 – 5960.

[96] KEROGLOU C, HADJICOSTIS C N. Distributed diagnosis using predetermined synchronization

strategies in the presence of communication constraints[C] // Proc. IEEE International Conference

on Automation Science and Engineering. 2015 : 831 – 836.

[97] ATHANASOPOULOU E, LI L, HADJICOSTIS C N. Maximum likelihood failure diagnosis in

finite state machines under unreliable observations[J]. IEEE Transactions on Automatic Control,

2010, 55(3) : 579 – 593.

[98] BAZILLE H, FABRE E, GENES B. Diagnosability degree of stochastic discrete event systems[C]

// Proc. 56th IEEE Conference on Decision and Control (CDC). 2017 : 5726 – 5731.

[99] CHEN J, KUMAR R. Failure Detection Framework for Stochastic Discrete Event Systems With

Guaranteed Error Bounds[J]. IEEE Transactions on Automatic Control, 2015, 60(6) : 1542 – 1553.

[100] KEROGLOU C, HADJICOSTIS C N. Detectability in stochastic discrete event systems[J].

Systems Control Letters, 2015, 84 : 21 – 26.

87

Dissertation of XIDIAN UNIVERSITY

[101] LIN F, WONHAM W M. On observability of discrete-event systems[J]. Information Sciences,

1988, 44(3) : 173 – 198.

[102] TAKAI S, USHIO T. Effective computation of an Lm(G)-closed, controllable, and observable

sublanguage arising in supervisory control[J]. Systems Control Letters, 2003, 49(3) : 191 – 200.

[103] CIESLAK R, DESCLAUX C, FAWAZ A, et al. Supervisory control of discrete-event processes

with partial observations[J]. IEEE Transactions on Automatic Control, 1988, 33(3) : 249 – 260.

[104] CAI K, ZHANG R, WONHAM W M. Relative observability of discrete-event systems and its

supremal sublanguages[J]. IEEE Transactions on Automatic Control, 2015, 60(3) : 659 – 670.

88

Acknowledgement

Acknowledgement

I would like to express my sincere gratitude to all those people who gave me support

during my PhD period.

Firstly, I would like to express my appreciation to my supervisors Prof. Zhiwu Li and

Prof. Alessandro Giua for their thoughtful support and guidance. Prof. Li has gave me

instructive advise in doing research and writing papers. He provided me precious oppor-

tunities of following and working with the remarkable professors in the field of Discrete

Event Systems. Without his recommendation, I would not have the opportunity to study

in Italy. Prof. Giua taught me how to think creatively and critically. His broad theoretical

foundation and knowledge in Discrete Event Systems inspired me a lot. I appreciate him for

his professional guidance on my research work and help on my life in Italy. I felt so lucky

to work with them during my PhD period.

Secondly, I would like to show my sincere gratitude to Dr. Ziyue Ma for his insightful

suggestions and great help on my research. All my research work in this thesis is completed

with his kindly guidance. I benefited a lot, more than academically, from the experience of

working with him.

I am also grateful to all members of the System Control & Automation Group in Xidian

University. It is my pleasure to work with them for five years. Particular among them are

Dr. Ding Liu, Dr. Yufeng Chen, Dr. Anrong Wang, Dr. Gaiyun Liu, Dr. Jiafeng Zhang, Dr.

Xubin Ping, Dr. Lan Yang, Dr. Wang Xi, Mr. JunjunYang, Mr. Qinrui Chen, Mr. Wei Duan,

Mr. Peng Nie, Mr. Cong Wang, Mr. Yanjun Zhou, Mr. Tailong Jing, Mr. Dajiang Sun, Ms. Ye

Liang, Mr. Jun Li, Mr. Jiazhong Zhou, Mr. Xiaoyan Li, Mr. Xiaoyu Han, Mr. Ziliang Zhang,

Mr. Shaopeng Hu, Ms. Yao Lu, Ms. Menghuan Hu, Mr. Kuangze Wang, Mr. Tenglong Kang,

Mr. Tianyu Liu, Ms. Wenjie Zhao, Ms. Yulin Zhao, Mr. Kun Peng, Ms. Dan Zhao, Ms.

Yanan Zhang, Ms. Yuling Zhang. Thanks for their encouragement and the leisure time we

spent together in Xidian University.

In particular, I would like to thank Mr. Nan Du, Mr. Hao Lan, Mr. Chao Gu, Ms. Chao

Gao and Ms. Tong Yin for their help and support when I studied in the University of Cagliari.

With them I have never felt lonely during my life in Italy.

Last but not the least, I will give the deepest gratitude to my parents, Shuangbo Hu

and Lifang Fan, for their constant love and support through my life. Finally, I would like to

thank my beloved girlfriend Ms. Chenyang Meng. When I felt frustrated, she always gave

89

Dissertation of XIDIAN UNIVERSITY

me the strongest encouragement and support.

Yihui Hu

August 2021

90

Biography

Biography

1. Basic Information

Yihui Hu (male) was born in Hancheng, Shaanxi Province, China, in July 1994. He

received Bachelor Degree in Electrical Engineering and Automation from Xi’an University

of Architecture and Technology, Xi’an, China, in 2016. From September 2016 to July 2017

he was a master student of School of Electro-Mechanical Engineering of Xidian University

majored in Control Theory and Control Engineering. Since September 2017 he has been

a Ph.D student of School of Electro-Mechanical Engineering of Xidian University majored

in Control Theory and Control Engineering. During September 2019 to the present, he

has been in the program of joint Ph.D degree between Xidian University and University of

Cagliari, Italy.

2. Educational Background

2012.09* 2016.07, Xi’an University of Architecture and Technology, China, B.A. in

Electrical Engineering and Automation

2016.09 * 2017.07, Xidian University, China, M.A. student in Control Theory and

Control Engineering (Master-doctor postgraduate student program)

2017.09 * present, Xidian University, China, Ph.D student in Control Theory and

Control Engineering (Master-doctor postgraduate student program)

2019.09* present, University of Cagliari, Italy, Ph.D student in Electronic and Com-

puter Engineering

3. Academic Publications

Journal Publications

[1] Y. Hu, Z. Ma, and Z. Li, “Design of Supervisors for Active Diagnosis in Discrete

Event Systems,” IEEE Transactions on Automatic Control, vol. 65, no. 12, pp.

5159–5172, 2020. (SCI Journal, JCR Q1)

[2] Y. Hu, Z. Ma, Z. Li, and A. Giua, “Diagnosability Enforcement in Labeled Petri

Nets Using Supervisory Control,” Automatica, vol. 131, 2021. Early access

available online. DOI: https://doi.org/10.1016/j.automatica.2021.109776. (SCI

91

Dissertation of XIDIAN UNIVERSITY

Journal, JCR Q1)

Conference Publications

[1] Y. Hu, Z. Ma, and Z. Li, “Active Diagnosis of Petri Nets Using Q-diagnoser,” In

proceedings of the 15th IEEE International Conference on Automation Science

and Engineering, 2019:203–208. (EI: 20194107517745)

4. Participation in Academic Programs

[1] National Natural Science Foundation of China under Grant No. 61873342 and

entitled “Deadlock control and analysis of labeled Petri nets”, 2018.1-2021.12.

[2] National Natural Science Foundation of China under Grant No. 61703321 and

entitled “Design of state and behavioral supervisors in Petri nets”, 2018.1-2020.12.

92

	ÕªÒª
	ABSTRACT
	List of Figures
	List of Tables
	List of Symbols
	List of Abbreviations
	Chapter 1 Introduction
	1.1Fault Diagnosis and Diagnosability Verification in DESs
	1.2Active Diagnosis Problem
	1.3Organization and Contributions
	1.3.1Organization
	1.3.2Contributions

	Chapter 2 Preliminaries
	2.1Automaton
	2.2Petri Net
	2.3Supervisory Control

	Chapter 3 Active Diagnosis Problem in the Framework of Automata
	3.1Diagnosability Verification in Automata
	3.1.1Diagnoser
	3.1.2Verifier

	3.2Active Diagnosis Formulation
	3.2.1Diagnoser-based Approach for Active Diagnosis in Automata
	3.2.2Properties of Supervisor-induced Deadlocks

	3.3Stop-free Control Policy and Properties
	3.3.1Stop-free Event Set
	3.3.2Computing a Feasible Stop-free Event Set
	3.3.3Complexity Analysis

	3.4Online Active Diagnosis Method
	3.5Conclusion

	Chapter 4 Active Diagnosis Problem in Labeled Petri Nets
	4.1Active Diagnosis Problem Formulation in Labeled Petri Nets
	4.1.1Diagnosability of LPNs with Deadlocks
	4.1.2Quiescent Behavior and Quiescent Event

	4.2Basis Reachability Graph with Quiescence and Q-diagnosers
	4.2.1Diagnosability of Deadlock-free LPNs and Basis Diagnosers
	4.2.2Quiescent Basis Reachability Graph and Q-diagnoser

	4.3Diagnosability Enforcing Supervisor
	4.4Conclusion

	Chapter 5 Asynchronous Diagnosability Enforcement in Discrete Event Systems Based on Supervisory Control Theory
	5.1Motivation
	5.2Problem Formulation
	5.2.1Asynchronous Diagnosis and Diagnosability
	5.2.2Asynchronous Diagnosability of Nonlive Plants
	5.2.3Observable Quiescence

	5.3Asynchronous Diagnosability Verification of Nonlive Plants
	5.4Asynchronous Diagnosability Enforcement Supervisor
	5.5Conclusion

	Chapter 6 Conclusions and Future Works
	6.1Conclusions
	6.2Future Works

	References
	Acknowledgement
	Biography

