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1.1. Abstract 

White Matter (WM) is a pivotal component of the Central Nervous System (CNS), and its 

main role is the transmission of the neural impulses within the CNS and between CNS and 

Peripheral Nervous System (PNS). It is note from literature that changes in the WM affects the 

function of the CNS with effects on the higher neurological function [Walhovd et al., 2014], 

included cognition [Filley et al., 2016]. Further, it has been theorized in the last decades that 

ageing-associated decline in higher neurological functions, in particular in the neurocognitive 

sphere, could be at least partly explained by the “disconnection” of the cortical areas of the brain 

due to the WM degeneration [O’Sullivan et al., 2001; Salat, 2011; Bennett et al., 2014; Filley et 

al., 2016]. 

Although standard “in-vivo” imaging biomarkers of WM integrity have not been validated 

yet for clinical purposes, several researches have demonstrated the correlation between different 

potential imaging biomarkers and WM integrity [Wardlaw et al, 2015].  

The aim of the PhD project is to explore and better understanding the effects of WM status on 

the brain structure, networking and cognition. In particular, we designed three distinct explorative 

and cross-sectional studies; more specifically, we analyzed the effects of two Magnetic 

Resonance Imaging (MRI) markers of WM degeneration (the global Fractional Anisotropy (gFA) 

and the white matter hyperintensities burden (WMHb), respectively) on the brain activity 

measured with the Resting-State Functional Magnetic Resonance Imaging (rs-fMRI) technique. 

The project was conducted by analyzing a human population of healthy subjects extracted from 

the public available dataset “Leipzig Study for Mind-Body-Emotion Interactions” (LEMON) 

[Babayan et al., 2019]. The results of these studies have been published during the PhD course 

on three distinct international scientific papers [Porcu et al., 2020a, 2021a and 2021b]. 
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1.2. Organization of central nervous system: grey and white matter 

 The central nervous system (CNS) is a complex structure that controls most functions of both 

the body and mind, including cognition, mood, memory, sensory perception and movement [Thau et 

al., 2021]. It consists of a specialized tissue, the nervous tissue (NT), able to generate, receive, 

integrate and transmit impulses within the CNS and to the peripheral nervous system (PNS) [Thau et 

al., 2021]. From an anatomical point of view, the NT has been traditionally divided into grey matter 

(GM) and white matter (WM) [Garman, 2011; Thau et al., 2021]. The GM consists mainly of neuronal 

cell bodies and neuropils, astrocytes and it is located mainly on the surface of the cerebrum and 

cerebellum (cerebral and cerebellar cortices, respectively) and in “nuclei” located deeply in the brain 

and in the spinal cord [Garman, 2011; Mercadante et al., 2020]. The WM consists mainly of axons 

covered by myelin sheath provided by oligodendrocytes, and it is organized in fiber bundles that link 

the different GM regions [Garman, 2011; Mercadante et al., 2020]. The different histological 

composition of GM and WM reflect the different specialization of these two components; in 

particular, the GM is responsible for the reception, integration and generation of the neural impulses, 

whereas the WM, which is heavily myelinated, is responsible for the transmission of the impulses 

within the CNS and between CNS and PNS [Thau et al., 2021, Mercadante et al., 2020]. 
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1.3. Resting-state functional connectivity: an MRI tool for the study of neural 

activity and brain networking  

Functional MRI was firstly described in literature by Biswal et al. in 1995, that observed how it 

was possible to reveal the activity of the sensorimotor cortex during a finger tapping task by 

registering the fluctuations of signal intensity on MRI with the so-called Blood Oxygen Level-

Dependent (BOLD) contrast imaging approach [Biswal et al., 1995; Lv et al., 2018]. Although several 

aspects of this phenomenon are still a matter of research, it is known that the physiological 

phenomenon underlying the signal fluctuations registered with the BOLD approach is the so called 

“hemodynamic response” [Nasrallah et al., 2015; Lv et al., 2018]. This phenomenon is due to the 

increased regional cerebral blood flow in order to satisfy the metabolic demands the active areas of 

the brain [Nasrallah et al., 2015; Lv et al., 2018]. The local changes of the relative levels of 

oxyhemoglobin and deoxyhemoglobin, generate a signal detectable on MRI with the BOLD approach 

on the basis of the different magnetic susceptibility of hemoglobin status detected with T2*-weighted 

sequences, like for example the Echo-Planar Imaging (EPI) sequences [Kwong et al., 1992; Nasrallah 

et al., 2015; Lv et al., 2018].  

During rs-fMRI is a functional MRI, the low-frequency fluctuations of the BOLD signal are 

acquired on resting state, i.e. in absence of a stimulus or a task; this technique is suitable for research 

purposes in order to analyze brain activity in various pathological and physiological conditions [Lv 

et al., 2018].  

For better understanding how the rs-fMRI data can be analyzed, we can compare the brain to a 

map [Dance, 2015; Lv et al., 2018]. If we look at a map, we can focus our attention on the cities or 

on the highways that connect one city to each other, and similarly in rs-fMRI we can extract 

information relative to the activity and function of a specific cerebral region, or the functional 

connectivity between cerebral regions [Dance, 2015; Lv et al., 2018]. Following what above 

mentioned, the analytic methods for rs-fMRI data can be categorized in two big groups, the functional 

segregation and the functional integration methods [Tononi et al., 1994; Lv et al., 2018]. 
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The functional segregation approach allows to analyze the local function of specific brain regions 

with no information about their interconnections [Lv et al., 2018]. The main analysis methods that 

belong to this category are the Regional Homogeneity (ReHo) [Zang et al., 2004], the Amplitude of 

Low Frequency Fluctuation (ALFF) [Zang et al., 2007] and the derived fractional ALFF (fALFF) 

[Zou et al., 2008]. All these approaches are voxel-based and they are usually calculated within a low-

frequency range (0.01 - 0.1 Hz) [Lv et al., 2018]. The ReHo technique measures the synchronicity of 

adjacent brain regions by calculating the Kendall coefficient of concordance of the BOLD time-series 

between a given voxel and its nearest neighbors [Zang et al., 2004; Lv et al., 2018]. The ALFF 

technique measures the total power of the BOLD signal, and the ALFF signal results proportional to 

regional neural activity [Zang et al., 2007; Lv et al., 2018]; the derived fALFF technique measures 

the power of the BOLD signal within the low-frequency range divided by the total power of the 

BOLD signal in the entire detectable frequency range, and the fALFF signal represents the relative 

contribution of the low-frequency oscillations in the whole spectrum of BOLD frequency oscillations, 

and it has been reported to be more specific for the analysis of the activity of GM when compared to 

ALFF [Zou et al., 2008; Lv et al., 2018]. The advantages of the functional segregation approach rely 

on their relative simplicity and long-term test-retest reliability (about six months) [Zuo et al., 2014, 

Lv et al., 2018], but they cannot provide information about the brain networking. 

The functional integration approach allows to analyze the interaction between different cerebral 

regions directly or indirectly anatomically connected between them by measuring the degree of 

synchronicity of the BOLD signal time-series fluctuations [Lv et al., 2018]. The analysis techniques 

that belongs to this category are the Functional Connectivity Density (FCD), the Region of Interest 

(ROI) based functional connectivity analysis, the Independent Component Analysis (ICA), and the 

graph analysis [Lv et al., 2018].  

FCD identifies the highly connected functional hubs by calculating the correlation of the BOLD 

signal time-series fluctuations between each voxel and all the other voxels [Tomasi et al., 2010; Lv 
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et al., 2018]. FCD is straightforward but the data obtained with this approach must be interpreted with 

caution due to the low test-retest reliability [Zuo et al., 2014, Lv et al., 2018]. 

The ROI-based functional connectivity approach is able to find the regions whose activity is 

correlated with the activity of other cerebral regions by computing the cross-correlations between the 

BOLD signal time-series fluctuations of a ROI (also called seed) and the other cerebral regions [Lv 

et al., 2018]. Several metrics can be used to analyze these correlations, included cross-correlation 

coefficient, synchronization likelihood, partial correlations and multiple regressions, and the overall 

results can be visualized using a connectivity matrix [Lv et al., 2018]. In this case the ROI must be a 

priori defined on the basis of literature evidences, like for example by using brain atlases like the 

Harvard-Oxford [Desikan et al., 2006] and the Automated Anatomical Labelling (AAL) [Tzourio-

Mazoyer et al., 2002], or on the basis prior results such as those derived from ALFF or ReHo analyses 

[Lv et al., 2018]. The advantages of this technique relies on the simplicity of computation and 

interpretation of the results, but the disadvantage is its intrinsic dependence on the selection of the a-

priori selection of the seed, that makes it vulnerable to bias [Lv et al., 2018]. 

The ICA approach exploits multivariate decomposition in order to identify and to separate the 

BOLD signal into several independent temporally correlated functional networks in form of spatial 

maps of the z-scores derived from the correlation of the BOLD time-series of each voxel and the 

mean time series of the given brain network [Kiviniemi et al., 2003; Lv et al., 2018]. With this 

approach it has been possible to identify and to characterize several fundamental brain networks 

[Uddin et al., 2019], such as for example the Default Mode Network (DMN) [Raichle et al., 2001; 

Raichle, 2015]. 

The advantage of this approach is that it is data-driven and that it can be performed without any 

a-priori assumption, with high short (< 45 minutes) and long-term (5-16 months) test-retest reliability 

[Zuo et al., 2010; Lv et al., 2018]. However, the interpretation of the data can be difficult because the 

underlying cause of perceived synchronicity within a functional network may be of non-neural origin 
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and because this technique only presents brain networks one by one and do not allow to analyze the 

interactions between different brain networks [Bertolero et al., 2015; Lv et al., 2018]. 

The graph analysis exploits the graph theory [Barabási et al., 2011; Bullmore et al., 2009; Bassett 

et al, 2017; Liao et al., 2017; Bassett et al., 2018] for the study of the cerebral networking. According 

to the graph theory, a network can be represented as a graph (G) consists of nodes (N), that represent 

the constituents unit of the system, and edges (E) that connect one node to the other ones as reflection 

of the interconnections between them [Liao et al., 2017], and the properties of the graph can be 

analyzed as a function of the nodes and edges according to the following formula [Achard et al., 

2007; Lv et al., 2018]: 

𝐺	 = 𝑓(𝑁, 𝐸) 

In the case of brain networks analyzed with the rsfMRI technique, the nodes can be the single 

voxels or the ROI, defined according to anatomical landmarks, functional significance, connectivity 

profiles and/or multi-modal and random parcellation, whereas the edges are defined as the 

interregional statistical coherence between the BOLD signal time-series fluctuations of the nodes, 

expressed in terms of cross-correlation coefficient, synchronization likelihood, partial correlations or 

multiple regressions [Liao et al., 2017; Lv et al., 2018]. This result in the creation of an adjacency 

matrix on which we can assess the topological properties of the graph by applying the metrics 

developed in the graph theory [Bullmore et al., 2009; Bassett et al, 2017; Liao et al., 2017; Lv et al., 

2018; Bassett et al., 2018]. Among these properties, that can be calculated both for the network and 

for its single nodes, it is noteworthy to mention the following [Barabási et al., 2011; Bullmore et al., 

2009; Bassett et al, 2017; Liao et al., 2017; Lv et al., 2018; Bassett et al., 2018]:  

• Average path length: the average number of connections that link one node to the others, 

as an expression of the tendency to which the neighboring nodes of a node are 

interconnected. 

• Clustering coefficient: the ratio of the number of existing connections between its nearest 

neighbors and the maximum number of potential connections.  
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• Degree: the number of connections that connect a node to the others 

• Cost (also known as “connection density”): the actual number of links of the network as 

a proportion of the total number of possible connections. 

• Betweenness centrality: the measure of node centrality within a graph.  

• Local efficiency: the ability of a node to transfer information between nodes at the local 

level. 

• Global efficiency: the ability of a node to transfer information between nodes at the global 

level. 

A fundamental concept to underline in the graph analysis of cerebral circuits is the fact that in 

physiological conditions brain networks, as well as many other biological, social and technical 

networks, are organized according to a “small-world” architecture [Watts et al., 1998]. The small-

world architecture is characterized by an optimal balance between information segregation and 

integration, and it presumably developed in this way following natural selection under the pressure 

of a cost-efficiency balance [Watts et al., 1998; Liao et al., 2017]. In fact, this network model 

characterized by a combination of high-clustering coefficient and short characteristic path length, so 

that most nodes result to be not connected one to each other, but they can be reached from every other 

node through few connections [Watts et al., 1998; Liao et al., 2017; Lv et al., 2018]. These features 

make it possible to efficiently transmit local information because of the high clustering coefficient, 

and to efficiently deliver global information due to the short characteristic path length with low wiring 

costs [Watts et al., 1998; Liao et al., 2017; Lv et al., 2018]. It has been demonstrated in several 

researches that the disruption of the small-world architecture of brain networks is a characteristic of 

several pathological conditions such as for example schizophrenia [Liu et al., 2008] or leukoaraiosis 

[Zhu et al., 2020], and physiological aging as well [Sun et al., 2012].  

The main advantage of the graph analysis relies on the ability to analyze brain networking without 

any a priori assumptions, but the results can vary a lot on the basis of the node definition and can be 

not intuitive [Liao et al., 2017; Lv et al., 2018]. 
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Finally, it is important to underline that although rs-fMRI is extensively used for research 

purposes, its applicability in clinical scenarios is still not feasible due to various factors, including 

acquisition protocol (MR scanner, scan timing, sequence parameters) and analysis methods [Cole et 

al., 2010]. For example, in a recent research by Botvnik-Nezer et al. [Botvinik-Nezer et al., 2020], the 

authors asked to 70 independent teams to analyze the same dataset testing the same 9 ex-ante 

hypotheses, and no two teams chose the identical workflows to analyze the data, resulting in sizable 

variation in the results of hypothesis tests. For this reason, the research community advocates for 

further technical implementation and experimental refinement in order to overcome of these 

limitations [Cole et al., 2010]. 
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1.4. Brain activity and networking in fMRI: the cognitive circuits  

The complexity of the cerebral system do not allow an easy comprehension of its functioning due 

to the presence of uncountable variables that must be taken into account during the analysis of a 

specific phenomenon, like for example the comprehension of the mechanisms underlying the 

cognitive sphere. This field represents an extensive matter of research in neuroscience, both at 

microscopic to macroscopic level.  

Regarding the macroscopic level, it is known that the cortical areas and subcortical structures 

plays a specialized role according to their topological localization, and this has been possible basing 

on the analysis of the neurological effects of a localized anatomical brain damage, as happened for 

example for the definition of the function of the Broca’s area [Mohr et al., 1978]. In the last years, 

fMRI allowed us to better understand the functioning mechanisms of the brain, by describing both 

the activity of the single brain structures and the relationships between them; in particular, several 

researches pointed out that the brain works as a single network, that can be further divided into 

different subnetworks that interact one to each other, even if there is no unique consensus on the 

general organization due to the heterogeneity and ongoing introduction of new and updated analysis 

methods for research [Damoiseaux et al., 2006; De Luca et al., 2006; Uddin et al., 2019]. 

One of the most recent brain networking organization model have been developed and purposed 

by Uddin et al. in 2019 in order to harmonize the current knowledges about this topic [Uddin et al., 

2019]. This models provides six major cognitive networks, and it has been generated on the bases of 

observations from resting state functional connectivity, functional task-based and cross-modal 

convergence MRI studies [Uddin et al., 2019]. These six networks are the following [Uddin et al., 

2019]: 1) Occipital Network (ON), also referred as “visual network”; 2) Pericentral Network (PN), 

also referred as “somatomotor network”; 3) Dorsal Fronto-Parietal Network (D-FPN), also referred 

as “attention network”; 4) Lateral Fronto-Parietal Network (L-FPN), also referred as “control 

network”; 5) MiCingulCingulo-Insular Network (M-CIN), also referred as “salience network”; 6) 

Medial Fronto-Parietal Network (M-FPN), also referred as “default network”.  
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The ON is involved in visual processing, and can be further divided into two distinct subsystem, 

one located more medially associated with the primary visual cortex, and one more laterally, involved 

in the visual processing [Haxby et al., 1994; Uddin et al., 2019]. The PN is involved in motor process 

and somatosensory processing [Uddin et al., 2019]. The D-FPN, also referred in literature as dorsal 

frontoparietal network” [Corbetta et al., 2002], “dorsal attention system” [Fox et al., 2006] and 

“dorsal attention network” [Yeo et al., 2011], is involved in visuospatial attention, included the 

voluntary deployment and maintenance of visuospatial attention [Uddin et al., 2019]. The L-FPN is 

responsible for the control of information flow in the brain, and its functions include the executive 

functions, the working memory, inhibition and task switching [Uddin et al., 2019]. The M-CIN, also 

referred in literature as “ventral attention network” [Corbetta et al., 2002], “ventral attention system” 

[Fox et al., 2006],“ventral attention network” [Yeo et al., 2011]”, and “empathy network” [Kennedy 

et al., 2012], is responsible for the identification of important, or “salient” information, and it is 

involved in detecting behavioral relevant environmental stimuli and internally generated information 

[Uddin et al., 2019]. Regarding the function of the M-FPN, also referred in literature as DMN 

[Raichle et al., 2001; Raichle, 2015], comprised also the so-called “limbic network” [Yeo et al., 2011; 

Uddin et al., 2019]; there is not unique consensus in literature: it is probable that this network is 

involved in the development, temporal binding and dynamic reconfiguration of associative 

representations based on current goal-states, as well as in the detection of the associative relevance 

of internal and external stimuli, semantic association, and environmental monitoring [Uddin et al., 

2019]. A resume table of this brain networking model is shown in Table 2. 

 

Cognitive Networks 
Anatomical 

name 
Cognitive 
domain Core regions Main functions 

Occipital Visual 
network 

• Occipital cortex (striate and extrastriate 
cortex included)  

• Lateral geniculate nucleus of thalamus* 
• Visual processing 

Pericentral Somatomotor 
network 

• Somatomotor coritces (anterior and 
posterior to the central sulcus) 

• Juxtapositional lobe 
• Auditory cortex* 
• Superior temporal gyrus* 

• Motor processes  
• Somatosensory processing 
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Dosal 
Fronto-
Parietal 

Attention 
network 

• Superior parietal lobule extending into the 
the intraparietal sulcus 

• Middle temporal complex 
• Right-lateralized dorsolateral prefrontal 

cortex* 
• Superior colliculus* 

• Visuospatial attention 

Lateral 
Fronto-
Parietal 

Control 
network 

• Prefrontal cortex along the middle frontal 
gyrus 

• Anterior-inferior parietal lobule into the 
intraparietal sulcus 

• Midcingulate gyrus 
• Dorsal precuneus* 
• Posterior inferior temporal lobe* 
• Dorsomedial thalamus* 
• Head of the caudate* 

• Executive functions 
• Working-memory 
• Inhibition and task-switching 

MidCIngulo-
Insular 

Salience 
network 

• Bilateral anterior insula 
• Anterior cingulate cortex 
• Inferior parietal cortex* 
• Right temporal parietal junction* 
• Several subcortical strucutres* 

• Identification of behavioral relevant 
environmental stimuli and internally 
generated information 

Medial 
Fronto-
Parietal 

Default 
network 

• Medial prefrontal cortex 
• Posterior cingulate cortex  
• Posterior extent of the inferoparietal lobule 
• Areas located dorsally and ventrally to the 

posterior cingulate, the precuneus and the 
retrosplenial cortex* 

• Hippocampus* 
• Superior and middle frontal gyrus* 
• Ventral frontal cortex and anterior temporal 

lobees* 
• Temporoparietal junction* 

• Formation, temporal binding and dynamic 
reconfiguration of associative representations 
based on current goal-states 

• Detection of the associative relevance of 
internal and external stimuli 

• Semantic association and enviromental 
monitoring. 

*less well characterized 

Table 1: Cognitive network taxonomy according to Uddin et al. [Uddin et al., 2019]. 

 

Besides these circuits, it is important to recall also the cerebro-cerebellar circuits, that 

bidirectionally connects the neocortex and the cerebellum, important not only for the motor function, 

but also in the regulation of nonmotor cortical areas (including prefrontal, associative, sensory and 

limbic areas) and of hypothalamus [Banagiano et al., 2018]. 

  



 19 

1.5. The white matter: from microscopic to macroscopic organization 

As we have already seen in the previous section, from an histological point of view the WM 

consists mainly of axons that originate from neurons located in the GM [Garman, 2011; Mercadante 

et al., 2020]. The main role of WM is to conduct electric pulses generated from the GM through the 

axons thanks to a rapid saltatory conduction system sustained by voltage-dependent sodium channels 

located in the nodes of Ranvier and guaranteed by the presence of myelin sheaths provided by support 

cells known as oligodendrocytes [Standelman et al., 2019]. Other cell types contribute to the 

organization of WM in particular other glial cells such as astrocytes, microglia and oligodendrocytes 

progenitor cells (OPC), and the metabolic supply is guaranteed by a local cerebral microvascular 

network [Walhovd et al., 2014; Yang et al., 2017]. It is known that the main structural feature of the 

cerebrovascular network is the so called blood-brain barrier, thanks to the presence of tight junctions 

between the endothelial cells [Abbott et al., 2010; Yang et al., 2017]. This system avoids that harmful 

molecules could directly enter in the nervous tissue acting as an active in & out filter, it participates 

in removing neurotoxic molecules such as amyloid-b from the interstitial fluid, and it promotes or 

prevents thrombosis under special circumstances [Abbott et al., 2010; Hainsworth et al., 2015; Yang 

et al., 2017]. Further, it plays a major role in regulating the cerebral blood flow (CBF) [Yang et al., 

2017]. The CBF is regulated by three distinct mechanisms: a) metabolic, according to the fluctuations 

of the pressure of arterial carbon dioxide; b) cerebral autoregulation in response to blood pressure 

fluctuations; and c) autonomic regulation under the stimulation of sympathetic and parasympathetic 

fibers [Yang et al., 2017].  

In the last decades the knowledges about the structure and the organization of WM sensibly 

increased: it has been demonstrated in particular the existence of complex interactions between the 

axons and the oligodendrocytes, in which the oligodendrocytes not only provide the myelin sheaths 

to the axons, but they also provide metabolic support to the neurons [Standelman et al., 2019]. It is 

note for example that oligodendrocytes, which are mostly located intrafascicularly, are able to 

generate up to 80 different types of myelin sheaths to the axons [Standelman et al., 2019; Williamson 
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et al., 2018], and that there is a huge variability among myelin thickness and internodal length (i.e. 

the distance between) two nodes of Ranvier, both between axons and along an individual axon 

[Walhovd et al., 2014]. Microglia are the resident immune cells within WM and they are responsible 

for the maintenance of WM homeostasis [Rawji et al., 2013; Liu et al., 2017], whereas astrocytes are 

able to promote myelination and myelin maintenance by removing extracellular ions and by 

producing and releasing pro-myelination factors [Lundgaard et al., 2014; Liu et al., 2017]. 

Regarding the WM development, it is note that the production of myelin sheaths begins in mid-

to-late gestation period (starting at approximately 20 weeks), and this process advances rapidly 

throughout the early childhood in the first 5 years of life according to a specific pattern in a caudo-

cranial and posterior-to-anterior direction [Lebel et al., 2018]. There is a growing body of evidence 

that suggests that the microstructural development and the myelin organization not only change with 

development and ageing, but also that its metabolic activity tends to change in order to regulate 

phenomena such as experience and learning [Zatorre et al., 2012; Lebel et al., 2018; Williamson et 

al., 2018], with mechanisms partly mediated by neuronal activity [Lundgaard, 2013; Walhovd et al., 

2014].  

From a macroscopic point of view, the WM is organized in a complex architecture that consists 

of bundles of fibers crossed with each other [Mandonnet et al., 2018]. Several organizational model 

of the WM have been purposed in the past centuries and this topic is still a matter of research 

[Mandonnet et al., 2018]. One of the simplest model is the one purposed by Meynert in the 19th 

century, that divided WM bundles into three distinct groups: a) projection fibers, that connect a 

cortical region to a subcortical GM nucleus (brainstem, deep nuclei, cerebellum and spinal cord), b), 

commissural fibers, that connects interhemispheric cortical regions and c) association fibers, that 

connects intrahemispheric cortical regions, that can be further divided into short association fibers 

(that connect area within the same lobe) and long association fibers [Meynert T, 1888; Wycoco et al., 

2013; Mandonnet et al., 2018]. There are also other fibers that cannot be included in the categories 

above mentioned, i.e. the limbic system fibers, the temporal stem and the brainstem fibers [Wycoco 
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et al., 2013]. A resume table of the main WM fibers and of their respective known function is reported 

in Table 1 [Wycoco et al., 2013]. 

White matter fibers 

Fibers groups Tracts Connections Primary known functions 

Projection 
fibers 

Corticospinal tracts Tracts that connect the motor area to the 
spinal cord Motor 

Corticobulbar tracts Tracts that connect the motor area to 
cranial nerve nuclei in the brainstem Motor 

Corticopontine tracts Tracts that connect the precentral and 
postcentral gyri to the pontine nuclei Coordination of planned motor functions 

Internal capsule Main conduit for projection fibers Motor 

Thalamic radiations 

Reciprocal interconnections between 
thalamus and cortex - from lateral 
thalamic nuclei to cortex passing 

through internal capsule 

Transmission and integration of sensory and 
motor data to precentral and postcentral 

fibers 

Geniculocalcarine tract 
(optic radiation) 

Lateral geniculate body to the primary 
visual cortex Vision 

Commissural 
fibers 

Corpus callosum 
Connections of homologous areas of the 

both hemispheres, although there is a 
significant proportion of asymmetry 

Interhemispheric sensorimotor and auditory 
connectivity 

Anterior commissure 

Connections between the temporal lobes 
(included amygdala, inferior temporal, 

parahippocampal, and fusiform gyri) and 
inferior occipital cortex. 

Smell and data integration 

Association 
fibers 

U-fibers Adjacent gyri Integration of the data 

Superior longitudinal 
fasciculus 

Bidirectional connections between 
frontal lobe and parietal, temporal and 

occipital lobes 
Integration of auditory and speech nuclei 

Middle inferior fasciculus From the angular gyrus to the superior 
temporal gyrus 

Language (dominant hemisphere) and 
attention (non-dominant hemisphere) 

Inferior longitudinal 
fasciculus 

Connections between temporal and 
occipital lobes Visual emotion and memory 

Superior occipitofrontal 
fasciculus 

Connections between frontal and parietal 
lobes Spatial awareness and symmetric processing 

Inferior occipitofrontal 
fasciculus 

Connections between frontal lobe and 
both temporal and parietal lobes 

(posterior part) 

Integration of data of both auditory and 
visual association cortex with prefrontal 

cortex 

Uncinate fasciculus Connections between frontal and 
temporal lobes Auditory-verbal memory 

Limbic system 
fibers 

Cingulum From the cingulate gyrus to the 
enthorinal cortex 

Affective control, visceromotor control, 
skeletomotor control, visuospatial processing 

and memory access 

Fornix 

From the hippocampus, the septal area, 
the hypothalamus and the mamillary 

body to the dorsal regions of the 
hippocampi 

Cognition and episodic memory recall 

Stria terminalis Interconnections between amygdala, 
septal area and hypothalamus 

Integration of limbic data; emotional and 
behavioral responses to stress 

Temporal 
stem - From the amygdala to the lateral 

geniculate body Learning, spatial, visual and verbal function 

Brainstem 
fibers 

Superior cerebellar 
peduncles 

From the dentate nucleus to the 
thalamus, red nucleus, vestibular nuclei 

and reticular formation 
Motor coordination and balance network 

Middle cerebellar 
peduncles 

Cerebellum to the contralateral pontine 
nuclei of the cerebellum Motor coordination and balance network 

Inferior cerebellar 
peduncles 

Interconnections between cerebellum 
and medulla 

Integration of proprioceptive sensory inputs 
with vestibular function. 

Medial lemniscus Ascending sensory fibers to the thalamic 
ventroposterolateral nucleus Sensitivity 

Table 2: Resume of the main white matter fibers, their connections and the relative function [Wycoco et al., 2013].  
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1.6. Aging and white matter degeneration 

It is known that ageing, in terms of changes observed across the course of the life of an otherwise 

healthy person, affects brain as all the other parts of the body [Liu et al., 2017]. Cerebral ageing is 

usually and variably associated with some decline in cognitive functions, in particular quantitative 

reasoning and perceptual speed [Caserta et al., 2009; Liu et al., 2017]. 

It has been also demonstrated that several degenerative changes occur also in the WM, at a micro 

and macroscopical level, in a complex pathophysiological scenario [Liu et al., 2017; Hase et al., 

2018].  

From a microscopic point of view, for example, it has been observed that axons of aged mice, 

when compared to the axons of younger mice, tend to have a bigger caliber and thicker myelin 

sheaths, and contains longer and thicker mitochondria with altered levels of mitochondrial shaping 

proteins that are associated with impaired production of adenosin triphosphate and increased 

generation of nitric oxide, protein nitration and lipid peroxidation [Stahon et al., 2016]. Other studies 

evidenced also that ageing is associated with splitting of myelin sheath, balloon formation, and a 

reduction of the integrity of the paranode (i.e. the structure anchors the myelin to the axolemma) 

[Sugiyama et al., 2002; Liu et al., 2017]. Other microscopic changes observed are impairments in 

OPC recruitment and differentiation [Kohama et al, 2012; Liu et al., 2017] and in microglia [Clemente 

et al., 2013; Liu et al., 2017] and astrocytes activation [Diniz et al., 2010; Liu et al., 2017]. 

Another actor that plays a pivotal role in brain aging is the cerebrovascular system [Yang et al., 

2017]. In fact, it is note that the cerebrovascular system undergoes to complex vascular phenotypic 

changes, due to a series of multiple pathophysiological processes [Yang et al., 2017]. The first 

mechanism is the age-related arterial stiffness, that contributes to increase systolic pressure and to 

decrease diastolic pressure, leading to vascular remodeling and pro-atherogenic changes in the 

vascular wall [Ungvari et al., 2010; Yang et al., 2017]. The atherosclerotic process, due to the 

development of plaque in the vessel wall of the large vessels, and the arteriosclerosis process in small 

vessels due to the accumulation of toxic proteins within the walls of the small vessels lead to the 
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luminal narrowing of the cerebrovascular network and impairments in brain perfusion [Yang et al., 

2017; Wang et al., 2019]. Another factor to be taken into account is the endothelial replicative 

senescence due to the arrest of the proliferation of mitotically active cells (in order to prevent cancer 

development), with the accumulation of damaged endothelial cells [Campisi, 2003; Yang et al., 

2017], and the consequent microvascular rarefaction, observed in particular in the hippocampus in 

some rodents studies [Csizar et al., 2007; Yang et al., 2017]. Lastly, the oxidative stress induced by 

the age-related increase in reactive oxygen species can lead to mitochondrial dysfunction and can 

alter the physiological production of nitric oxide, a molecule that confers protective effects on the 

endothelium, including inhibition of platelet aggregation and of endothelial apoptosis [Ungvari et al., 

2010; Springo et al., 2015; Yang et al., 2017]. 

The combination of all the complex above mentioned microscopical mechanisms can lead are at 

the base of the macroscopic aging-related changes of WM, that can be observed in vivo with several 

imaging modalities (in particular MRI). Firstly, it is known that WM volume gradually increases in 

the first 40 years, and tend to rapidly decrease from 60 years of age onwards [Liu et al., 2016; Liu et 

al., 2017]. The second important macroscopic feature observable on MRI is represented by the so 

called “white matter hyperintensities of presumed vascular origin” (WMH), also known as White 

Matter Lesions (WML) [Wardlaw et al., 2015]. These lesions can be easily detected on MRI, and 

they appear as small focal areas of the WM that appear hyperintense on T2-weighted (T2-W) 

sequences, in particular on FLuid Attenuated Inversion Recovery (FLAIR) sequence, and 

hypointense on T1-weighted (T1-W) sequences [Wardlaw et al., 2015]. Although the exact nature of 

these MRI lesions has not been clarified because of the few pathological studies conducted to 

determine their nature, it has been hypothesized their microvascular ischemic etiology due to the wide 

spectrum of pathological findings reported, including myelin rarefaction, tissue infarction, reactive 

gliosis, and axonal loss [Fazekas et al., 1993; Brown et al., 2002; Moran et al., 2012; Wardlaw et al., 

2015]; further, a study by Young et al. [Young et al., 2008], revealed a loss of the integrity of the 

small vessel endothelium inside of these lesions, suggesting the vascular origin of these lesions. 
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According also to the above evidences, WMH are considered a part of the spectrum of the cerebral 

small vessel disease (CSVD), a condition associated with cognitive impairment commonly found in 

elderly population, characterized by the presence of lacunar ischemic lesions, microbleeds and brain 

atrophy [Wardlaw et al., 2013]. 

These lesions are typically located in the periventricular and deep WM, whereas the juxtacortical 

localization is less typical [Wardlaw et al., 2015]. Further, it is also known that the WMH tend to 

evolve: often they can increase in size, occasionally shrink, and they lead to atrophy of WM and 

overlying cortex [Gow et al., 2012; Wardlaw et al., 2015]. 

Lastly, it is known the fact that the presence of vascular risk factors such as hypertension, diabetes 

and smoking is associated with increasing in WMH number and load, whereas it has been evidenced 

an inverse correlation between physical activity is and WMH load [Wardlaw et al., 2015].  
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1.7. The analysis of white matter status on MRI 

MRI is one of the main “in vivo” imaging modality used in clinical practice and in the 

neuroscience field for the study of both CNS and PNS. Regarding the study of WM status, this can 

be performed by using several techniques.  

As we have seen above, the T1-W and T2-W are morphological sequences optimal for identifying 

the WMH [Wardlaw et al., 2015]. In particular, T1 weighted sequences are optimal for distinguishing 

Wm from GM structures (cortical GM and subcortical structures included basal ganglia, thalamus 

and subtentorial nuclei) [Riphagen et al., 2018]. In the last decades, the development of isotropic (3D) 

T1 and T2-sequences allowed to better identify and define the WM lesions thanks to their intrinsic 

higher spatial resolution when compared to the traditional anisotropic two dimensional (2D) 

sequences [Mascalchi et al., 2016; Wardlaw et al., 2015]. WM lesions in particular can be detected 

and quantified manually or by using semi-automated and fully automated software [Caligiuri et al., 

2015]. 

The Diffusion Tensor Imaging (DTI) is another technique used for the analysis of WM anatomy 

and properties [O’Donnell et al., 2011; Jeurissen et al., 2019]. This technique derives from the 

Diffusion Weighted Imaging (DWI) technique, that allows to study the diffusion of water molecules 

by quantifying the diffusion coefficient of water molecules, expressed in mm2/s [O’Donnell et al., 

2011; Jeurissen et al., 2019]. The water molecules inside the WM fibers cannot freely move in all 

directions as it happens in a glass of pure water (isotropic diffusion), but their diffusion is limited by 

the presence of the cellular membranes and myelin sheaths (anisotropic diffusion) [O’Donnell et al., 

2011; Jeurissen et al., 2019]. The DTI technique is based on the application of the magnetic field 

gradients in order to register the anisotropic diffusion signal of water molecules inside the WM fibers 

in various directions of the space (at least six), and by simultaneously canceling out the isotropic 

signal of stationary water [O’Donnell et al., 2011; Jeurissen et al., 2019]. Simplifying, the registered 

signal is proportional to the anisotropic diffusion of water molecules in a particular direction 

[O’Donnell et al., 2011].  
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The DTI technique assumes that each voxel of the matrix is characterized by a single predominant 

fiber orientation, and the WM fibers are reconstructed by elaborating the apparent diffusion 

coefficient (ADC) registered at different directions in the three dimensional space of every voxel on 

a predefined 3 x 3 matrix by using a Gaussian model [O’Donnell et al., 2011; Jeurissen et al., 2019]. 

This results in the extrapolation of three eigenvalues (l1, l2, l3), and of a single eigenvector for every 

voxel [O’Donnell et al., 2011; Jeurissen et al., 2019].  

A Red-Green-Blue (RGB) color map is usually applied to eigenvectors to visually delineate the 

course of the fibers (conventionally, reddish for fibers that run along the latero-lateral direction, 

blueish along the cranio-caudal direction, and green along the antero-posterior direction) [O’Donnell 

et al., 2011; Jeurissen et al., 2019].  

For what concerns eigenvalues, several quantitative parameters can be extrapolated from them, 

and among the most studied in research it is noteworthy to mention the Fractional Anisotropy (FA), 

the Mean Diffusivity (MD), the Axial Diffusivity (AD) and the Radial Diffusivity (RD) [Soares et 

al., 2013]. These values can be calculated for every single voxel, on a predefined region of interest 

(as for example along a specific WM tract) or at a global level [O’Donnell et al., 2011]. 

FA is the normalized standard deviation of the diffusivities, with values ranging from 0 (absolute 

isotropic diffusion) to 1 (absolute anisotropic diffusion in a single direction) [Basser et al., 1996; 

Assaf et al., 2008]. In 2017 Chang et al. [Chang et al., 2017] made an interest study that compared 

the results of ex-vivo high-resolution DTI sequences with two-photon laser microscopy of intact 

mice, demonstrating that FA values correlate with myelination degree of the WM fibers, with higher 

FA values indicating a better myelination status. Other animal studies indicated also that FA values 

are influenced by axon density [Zhang, 2010]. RD is calculated as the magnitude of water diffusion 

perpendicular to the eigenvector, and it has been demonstrated that this value strongly correlates with 

electrophysiological markers of demyelination [Winklewski et al., 2018], as demonstrated for 

example by Song et al. [Song et al., 2005], that evidenced a correlation between increasing RD values 

and degree of demyelination in corpus callosum of mouse brain affected by cuprizone treatment. MD 
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value is calculated by the mean of the three eigenvalues, and it corresponds to the molecular diffusion 

rate in each direction, and it is typically in damaged tissues as a result of increased isotropic diffusion 

[Soares et al., 2013; Winklewski et al., 2018]. AD evaluates the mean diffusion coefficient of water 

molecules that diffuse parallel to the eigenvector within the voxel of interest [Winklewski et al., 

2018], and it tends to decrease in case of axonal injury [Mac Donald et al., 2007]. 
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1.8. The correlation between MRI markers of white matter degeneration and the 

cognitive sphere 

Two of the most studied MRI markers of WM status that have been found to be correlated with 

decline of cognitive function in physiological aging are the WMH and the FA, as evidenced in several 

studies [Grieve et al., 2007; Chutinet et al., 2014; Kloppenberg et al., 2014; Alber et al., 2019; 

Maillard et al., 2019; Gullet et al., 2020; Xing et al, 2021; Chen et al., 2021]. 

Regarding the WMH, it is known for example that they tend to increase with age [Zhuang et 

al., 2018], especially in midlife [d’Arbeloff et al., 2019]. Further, it is known that their prevalence 

tend to increase when cardiovascular risk factors are present, included hypertension, diabetes and 

smoking [Dufoil et al., 2001; Gons et al., 2011; Tamura et al., 2015; Wardlaw et al., 2015]. It is also 

known that the prevalence of WMH is associated with impairments in several higher neurological 

functions [Debette et al., 2010; Wardlaw et al., 2015; Salvadó et al., 2019]. For example, it is note 

that higher levels of WMH burden are associated with lower motor performances, and that physical 

activity can attenuate the effect of WMH on the motor function in healthy older adults [Fleischman 

et al., 2015]. Further, it is known an association between WMH and the risk of late onset depression 

[Hermann et al., 2008]. It has been also demonstrated that the effects of WMH on brain functions 

vary according to their localization [Debette et al., 2010]. 

Looking more specifically at the cognitive sphere, many studies have evidenced a correlation 

between WMH load and the development of dementia [Wardlaw et al., 2015; Chen et al., 2021]. For 

example, in a meta-analysis conducted by Debette et al. [Debette et al., 2010], that analyzed 22 

studies, it has been confirmed that WMH load is associated with progressive cognitive decline and 

increased risk of dementia (2-fold) and stroke (3-fold) onset. Further, the Leukoaraiosis And 

DISability (LADIS) study confirmed that the progression of WMH, more than the baseline levels, is 

significantly correlated with neurocognitive impairment [The LADIS study group, 2011; Schmidt et 

al., 2015], and more recently it has been also demonstrated that a bigger WMH load is associated 

with impairments of specific regional cognitive performances deficit, in particular decreased 
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information processing speed and executive function [Sivakumar et al., 2017; Alber et al., 2019; Chen 

et al., 2021].  

The location of WMH is another factor to be taken into account when approaching this topic 

[Chen et al., 2021]. In fact, it has been evidenced that cognitive impairment tends to be more 

pronounced in relation to the periventricular WMH load than to non-periventricualar WMH load 

[Tubi et al., 2020]. A study by Marquine et al. [Marquiine et al., 2010] demonstrated that WMH 

located in posterior areas are associated with reduced visual-constructional functions and those 

located in the frontal area areas are associated with reduction in processing speed, and more recently 

Boutzoukas et al. [Boutzoukas et al., 2021] demonstrated that the WMH located in the frontal WM is 

associated with impairments in executive functioning.  

It is also known that periventricular (pvWMH), deep (dWMH) and juxtacortical WMH (jcWMH) 

have different functional and clinical correlates: pvWMH are associated with impaired cognitive 

function, especially in processing speed and executive function [Griffanti et al., 2018; Debette et al., 

2010], dWMH are associated with impairments in basic activities of daily living [Kee Hyung Park et 

al., 2011], whereas the jcWMH are associated to multiform clinical symptoms, including headache, 

depression, anxiety, and insomnia [Shan et al., 2017]. 

Interestingly, it has been also found a correlation between WMH load and longitudinal 

hippocampal volume loss in cognitively normal adults [Fiford et al., 2017]. It is note that 

hippocampus is a fundamental structure of the human brain that plays a critical role in different tasks, 

including memory formation and spatial orientation [Bird et al., 2008]. Even if the exact mechanisms 

underlying hippocampal shrinkage have still not been clarified, it has been proposed that the axonal 

damage of the fibers within the WMH could eventually lead to hippocampal shrinkage as final result 

in Wallerian degeneration [von Bohlen und Halbach et al., 2002].  

Regarding the WM microstructural properties, several studies confirmed a relationship between 

alterations in quantitative markers measurable with the DTI technique and cognitive impairment. . 

For example, in 2011, Fjell et al. [Fjell et al., 2011], in a study in which 270 participants performed 
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a speeded continuous performance task (Eriksen flanker task [Eriksen et al., 1974]) with two 

conditions (congruent, incongruent), demonstrated an inverse correlation between intraindividual 

standard deviation of the reaction time and FA, and a positive correlation with AD, MD and RD, 

independently from median reaction time, age and sex, suggesting that reduced white matter is related 

with cognitive instability. Another population-based study by Vernooij et al. [Vernooij et al., 2009] 

analyzed 860 people older than 60 years, and the authors found that the microstructural integrity of 

both WMH and of Normal Appearing WM (NAWM) measured with FA, AD, RD and MD, were 

associated with better cognitive performances, with a direct correlation between FA anisotropy values 

and information processing speed and motor speed. Further, the studies by Bennett et al. [Bennett et 

al., 2014] and by Wassenaar et al. [Wassenaar et al., 2019] confirmed that lower FA values reflects 

a loss of WM structural integrity because of lower WM directionality. 

Going more deeply in the analysis of regional WM microstructure, a research by Grieve et al. 

[Grieve et al., 2007] analyzed the relationships between regional FA and a range of cognitive 

measures, finding that frontal, temporal and parietal FA values were inversely correlated to cognitive 

performances in executive maze and in attention-switching tasks. Finally, a more recent longitudinal 

study by Coelho et al. [Coelho et al., 2021] demonstrated that aging is associated with both 

microstructural changes of WM analyzed with the DTI technique and decline in neurocognitive 

performances.  
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1.9. Aging-related cognitive decline - the disconnection hypothesis 

Although more studies are needed in order to confirmed the results of the above mentioned 

studies, it is reasonable to affirm that WMH and quantitative parameters of WM integrity measured 

with the DTI technique (FA in particular) can be considered potential interesting biomarker of WM 

degeneration in clinical practice, and their study can help researchers to better understand the 

mechanisms underlying the aging-related cognitive decline observed in healthy population. 

 In the last two decades, several authors purposed the so called “disconnection hypothesis” in 

the aging brain as at least a partial explanation of the cognitive decline observed in physiological 

aging [O’Sullivan et al., 2001; Ferreira et al., 2013; Antonenko et al., 2014; Bennett et al., 2014; Fjell 

et al., 2017; Madden et al., 2017; Coelho et al., 2021]. This theory is based on the concept that the 

aging-associated cognitive decline can be due to the degeneration of WM that lead to the disruption 

of the normal intercommunications between the cortical and subcortical cerebral regions [Coelho et 

al., 2021]. 

Evidences from some rs-fMRI studies focused on the analysis of WMH and FA suggest the 

validity of this theory.  

For what concern WMH, it has been evidenced that the WMH, both in terms of global and local 

volume, interfere in brain networking by decreasing tract-specific functional connectivity, both 

directly and indirectly [Langen et al., 2017]. The study by Reijmer et al. [Reijmer et al., 2015] 

analyzed the impact of WMH load on the connectivity of M-FPN on a population of 125 clinically 

normal older adults (age between 65 and 87), finding a decoupling between structural and functional 

connectivity of the DMN and a correlation between this decoupling and worse executive functioning 

and memory performances. A more recent study by Keřkovský, M. et al. [Keřkovský, M. et al., 2019] 

analyzed a population of 60 young healthy subjects finding that both the number and the load of 

WMH were correlated with changes of functional connectivity between several brain regions, in 

particular of the cerebellum. It has been also evidenced that brain can activate compensatory 

mechanisms in order to try to overcome the connectivity impairments induced by WMH. For 
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example, the study by De Marco et al. [De Marco et al., 2017], performed with the ICA technique, 

found a positive association between WMH load and increased connectivity of the anterior M-FPN 

and the M-CIN, interpreting these results as a compensatory response to WMH development. This 

theory was confirmed by another publication by Benson et al. [Benson et al., 2018] that evidenced 

how higher global functional connectivity in the D-FPN and higher local functional connectivity 

between M-CIN and medial frontal cortex are able to mitigate the impact of WMH on executive in 

subjects with larger WMH volume. 

Regarding the impact of FA on cerebral activity, an interesting example is the study performed 

by Yang et al. [Yang et al., 2016]. In this study the authors analyzed a population of 140 young and 

109 older healthy subjects with the FCD technique, demonstrating that the older subjects showed 

widespread reductions in white matter integrity measured with FA and reduced FCD in the ON and 

PN, and increased FCD in M-FPN when compared to the young subjects, supporting the idea that the 

aging-associated WM degeneration leads to cognitive impairments but at the same time is associated 

with compensatory mechanisms in order to overcome them [Yang et al., 2016]. 

Despite there are some proofs in support of the “disconnected hypothesis”, still many aspects 

need still to be verified. However, at the same time, these evidences push us to improve our 

knowledges in the field for a better comprehension of the role of WM status on brain activity.  
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2. The PhD research project  
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2.1. Background and general design 

According to the above evidences reported in the previous section, in particular to the so-called 

“disconnection hypothesis” [O’Sullivan et al., 2001; Ferreira et al., 2013; Antonenko et al., 2014; 

Bennett et al., 2014], our team designed a research project in order to analyze the effects of imaging 

markers of WM degeneration on rs-fMRI in a population of healthy subjects. We focused on two 

markers, the WMH load and the global FA (gFA). Three distinct studies were designed and 

conducted, two of them focused on the effects of WMH burden (WMHb) and one on the effects of 

gFA. Of the two studies focused on the analysis of WMHb, one analyzed the effects of total WMHb 

on the brain activity measured with the fALFF technique [Porcu et al. 2021a], and the other one on 

the effects of the regional WMHb on brain connectivity (measured with the ROI-based functional 

connectivity approach) and hippocampal volume [Porcu et al., 2020a]. The study focused on the gFA 

analyzed the effect of this marker on brain activity by exploiting the fALFF, and the effects on brain 

networking by exploiting ROI-based functional connectivity approach [Porcu et al. 2021a]. 

The ethical approval was not required because the study was performed exploiting the public 

dataset “Leipzig Study for Mind-Body-Emotion Interactions” (LEMON) [Babayan et al., 2019], and 

the research project did not receive any specific grant from funding agencies in the public, 

commercial, or non-profit sectors. 

These three studies recognized three common methodological features. 

The first one regards the population studies, that were extracted from the same dataset, the 

“Leipzig Study for Mind-Body-Emotion Interactions” (LEMON) dataset [Babayan et al., 2019]. This 

dataset is a freely public available dataset released in 2019 by the University of Leipzig, originally 

designed for the study of mind-body-emotion interactions [Babayan et al., 2019]. However, it is 

important to underline that the three studies of the PhD project differ one to each other in terms of 

population study composition because of the different exclusion criteria applied in the population 

selection procedure according to the information reported in the dataset and to the goal of the single 

study.  
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The second common aspect is the extrapolation of the markers of white matter degeneration 

through the analysis of MRI structural and DWI data, performed in the same modalities for all the 

subjects analyzed. 

The third common feature is represented by the preprocessing and processing methods adopted 

for the analysis of the rs-fMRI data. 

Before talking about the details of every single study (discussion included), these three common 

aspects will be analyzed in the following sections.  
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2.2. The LEMON dataset 

The dataset consists of 227 subjects recruited on a voluntary based in the period between 

September 2013 and September 2015 [Babayan et al., 2019]. Two different subgroups can be 

identified in this population of 227 subjects: the young age group (20-35 years old) that consisted of 

153 subjects (108 males and 45 females; median age = 24 years; mean age = 25.1 years; standard 

deviation = 3.1), and the older age group (59-77 years old) that consisted of 74 subjects (37 males 

and 37 females; median age = 67 years; mean age = 67.6 years; standard deviation = 4.7) [Babayan 

et al., 2019]. The age of the subjects included in the dataset was reported as a 5 years age range; for 

this reason, we grouped the age of the subjects in 16 progressive categories (category 1 = 0-5 years, 

category 2 = 5-10 years, category 3 = 10-15 years, and so on).  

Every subject underwent on a series of medical investigation and neuropsychological tests. 

Regarding the medical investigations, all the subjects performed an anthropometry examination, 

blood and urine examination, hair sample examination, double blood pressure measure, 

electroencephalographic and MRI examination. The MRI scan was acquired on the same scanner, a 

3 Tesla MAGNETOM Verio (Siemens Healthcare GmbH, Erlangen, Germany) with a 32-channel 

head coil [Babayan et al., 2019]. The MRI protocol was the same form all the subjects included in 

the dataset, and it included: 1) a T1-W Magnetization Prepared 2 Rapid Acquisition Gradient Echoes 

(T1-W MP2RAGE) sequence; 2) a T2-W isotropic sequence; 3) a functional T2*-W gradient echo 

EPI (T2*-W GRE-EPI), acquired on resting state, for the functional imaging [Babayan et al., 2019]. 

Further, for the first 112 subjects it was performed a 60 diffusion-encoding gradient directions DWI 

sequence and an anisotropic 2D-FLAIR sequence, whereas for the other 115 patients it was performed 

an updated 60 diffusion-encoding gradient directions DWI sequence with the same parameters of the 

precious version but with a faster calibration procedure, and an isotropic 3D SPACE sequence with 

FLAIR preparation (3D-FLAIR) [Babayan et al., 2019]. The details of the sequences are reported in 

Table 3. 
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MRI sequences parameters of the LEMON dataset  

Sequence Parameters 
Structural T1-weighted isotropic 
Magnetization Prepared 2 Rapid 

Acquisition Gradient Echoes 
sequence (T1-W MP2RAGE)  

Acquisition orientation = sagittal; slices = 176; TR = 5000 ms; TE = 2.92 ms; TI 1 = 700 
ms; TI 2 = 2500 ms; FA 1 = 4°; FA 2 = 5°; pre-scan normalization; echo spacing = 6.9 ms; 
bandwidth = 240 Hz/pixel; FOV=256 mm; voxel size = 1 mm; isotropic; slice order = 
interleaved; duration = 8 min 22 s. 

T2-W isotropic sequence 
Acquisition orientation = sagittal; slices = 176; TR = 3200 ms; TE = 409 ms; FA = variable; 
pre-scan normalization; echo spacing = 3.42 ms; bandwidth = 751 Hz/pixel; FOV = 256 
mm; voxel size = 1 mm isotropic; duration = 4 min 43 s. 

Resting-state functional T2*-W 
gradient echo EPI sequence (T2*-

W GRE-EPI) 

Acquisition orientation = axial; phase encoding = A ≫ P; voxel size = 2.3 mm, isotropic; 
FOV = 202 mm; imaging matrix = 88 × 88; 64 slices with 2.3 mm thickness; TR = 1400 
ms; TE = 30 ms; flip angle = 69°; echo spacing = 0.67 ms; bandwidth=1776 Hz/pixel; 
partial fourier 7/8; no pre-scan normalization; multiband acceleration factor = 4; 657 
volumes; slice order = interleaved; duration = 15 min 30 s. 

60 diffusion-encoding gradient 
directions DWI sequence (first 112 

participants) 

88 axial slices; voxel size = 1.7 mm isotropic; 60 diffusion-encoding gradient directions, b-
value of 1000 s/mm2; 7 non-diffusion-weighted b0 distributed in the sequence; TR = 7000 
ms; TE = 80 ms; FA = 90°; bandwidth = 1502 Hz/ pixel; echo spacing = 0.78 ms, FOV = 
220 mm, voxel dimension = 1.7 mm isotropic, imaging matrix = 128 × 128, 60 diffusion- 
encoding gradient directions, b-value = 1000 s/mm2; 7 b0 images, multiband acceleration 
factor 2, phase encoding A ≫ P, duration = 9 min 27 s. 

Updated 60 diffusion-encoding 
gradient directions DWI sequence 

(last 115 subjects) 

88 axial slices; voxel size = 1.7 mm isotropic; 60 diffusion-encoding gradient directions, b-
value of 1000 s/mm2; 7 non-diffusion-weighted b0 distributed in the sequence; TR = 7000 
ms; TE = 80 ms; FA = 90°; bandwidth = 1502 Hz/ pixel; echo spacing = 0.78 ms, FOV = 
220 mm, voxel dimension = 1.7 mm isotropic, imaging matrix = 128 × 128, 60 diffusion- 
encoding gradient directions, b-value = 1000 s/mm2; 7 b0 images, multiband acceleration 
factor 2, phase encoding A ≫ P, duration = 8 min 38 s. 

2D FLAIR (first 112 participants) 

Acquisition orientation = axial; one 2D volume with 28 slices; TR = 10000 ms; TE = 90 
ms; TI = 2500 ms; FA = 180°; pre-scan normalization; echo spacing = 9.98 ms; bandwidth 
= 199 Hz/pixel; FOV = 220 mm; voxel size = 0.9 × 0.9 × 4.0 mm3; slice order = interleaved, 
duration = 4 min 42 s. 

3D SPACE sequence with FLAIR 
preparation (3D-FLAIR) (last 115 

subjects) 

Acquisition orientation = sagittal; one 3D volume with 192 slices; TR = 5000 ms; TE = 395 
ms; TI =1800 ms; FA = variable; pre-scan normalization; echo spacing = 3.36 ms; 
bandwidth = 781 Hz/pixel; FOV = 250 mm; voxel size = 1 mm; isotropic; duration = 7 min 
2 s. 

Table 3: Sequences included in the MRI protocol [Babayan et al., 2019]. 

 

All the patients performed also a battery of neuropsychological and neurocognitive tests for the 

evaluation of different aspects of mood and cognition. Among the neurocognitive tests, the subjects 

performed the Trail Making Test subtest A (TMT-A) and B (TMT-B) [Reitan et al., 1988; Reitan, 

1992]. These tests evaluate several cognitive domains, including processing speed, cognitive 

sequencing, cognitive flexibility, and visual-motor skills [Corrigan et al, 1987; Reitan et al., 1988; 

Reitan, 1992; Bowie et al, 2006; Vazzana et al., 2010]; in particular, TMT-A is used for estimating 

the visuomotor speed, and TMT-B for the executive function. For both TMT-A and TMT-B were 

reported the time it took to connect numbers (TMT-A time) and numbers and letters (TMT-B time), 

and the performance scores of brain functions (PSBF) for both TMT-A (PSBF TMT-A) and TMT-B 

(PSBF TMT-B) [Reitan, 1992]: a) grade 1: perfectly normal (0-26 seconds for TMT-A; 0-65 seconds 
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for TMT-B); b) grade 2: normal (27-39 seconds for TMT-A; 66-85 seconds for TMT-B); c) grade 3: 

mild/moderately impaired (40-51 seconds for TMT-A; 86-120 seconds for TMT-B); d) grade 4: 

moderately/severely impaired (> 51 seconds for TMT-A; > 120 seconds for TMT-B). Further, for 

every subject, we calculated the difference between TMT-B time and TMT-A time (TMT-B minus 

A), considered as a measure of cognitive flexibility relatively independent from manual dexterity 

[Corrigan et al., 1987; Vazzana et al., 2010]. 

Up to now the main details of the LEMON dataset have been reported because they are 

indispensable for understanding the three studies conducted in the PhD project; for more details about 

the LEMON dataset, the reader is invited to consult the LEMON dataset publication [Babayan et al., 

2019]. 
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2.3. The extrapolation of the markers of white matter degeneration through the analysis 

of MRI structural and DWI data 

The extrapolation of the white matter markers of degeneration (WMHb and gFA respectively) 

was conducted through the use of specific software. 

The calculation of WMHb was performed by using the lesionBrain online tool [Coupé et al, 

2018], in analogy to other studies [Porcu et al., 2020b; Porcu et al., 2020c]. This automated software, 

whose architecture is based on shallow neural networks, adopts a three-stage strategy that includes: 

multimodal patch-based segmentation, regularization of probability map and error correction [Coupé 

et al, 2018]. The pipeline consists of three main phases [Coupé et al, 2018]: 

• Preprocessing for the normalization of the image intensity and for registration of the 

images into the Montreal Neurological Institute (MNI) space [Collins et al., 1994]; 

• Structural and WMH segmentation; 

• WMH classification according to their localization. 

For each subject, the T1-W MP2RAGE and 2D FLAIR (for the first 112 subjects) or the 3D 

FLAIR (for the other 115 subjects) sequences were processed using the default pipeline to obtain the 

total WM absolute volume (tWMv) and the total WMH absolute volume (tWMHv), both expressed 

in cm3. For every subject was extracted the tWMHb according to the formula: 

𝑡𝑊𝑀𝐻𝑏 =
𝑡𝑊𝑀𝐻𝑣
𝑡𝑊𝑀𝑣  

and the results were expressed in percentage (%). By using the same approach, it was calculated 

the regional WMHb according to the localization of the WMH [Coupé et al, 2018; Porcu et al., 2020b; 

Porcu et al., 2020c]. In particular, it was extracted: 

• The burden of the pvWMH (pvWMHb) for those WMH detected within three voxels (i.e., 

3 mm in the MNI space) from the lateral ventricles, by dividing the absolute volume of 

pvWMH (pvWMHv) to the tWMv; 
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• The burden of the jcWMH (jcWMHb) for those WMH detected within three voxels from 

the grey matter, by dividing the absolute volume of jcWMH (jcWMHv) to the tWMv; 

• The burden of the infratentorial WMH (itWMHb) for those WMH detected below the 

junction of brain stem and cerebellum, by dividing the absolute volume of itWMH 

(itWMHv) to the tWMv; 

• The burden of the remaining WMH, classified as dWMH dWMH, by dividing the absolute 

volume of dWMH (dWMHv) to the tWMv. 

Also in this case, the results were expressed in percentage (%). An example of WMH 

identification and quantification is reported in Figure 1. 

 

 

Figure 1: Example of WMH segmentation with lesionBrain [Coupé et al, 2018]. A) Original image; B) Segmented image: red areas 
= pvWMHs; green area: dWMH; blue area = jcWMH. [Porcu et al., 2020a]. 

 

We also extrapolated the hippocampal volumetric data from structural T1-W MP2RAGE and T2-

W isotropic sequences by using the HIPS online tool [Romero et al., 2017]. HIPS is a patch-based 

segmentation automated tool that exploits the sole T1-weighted images (monospectral modality) or 

both the T1-W and T2-weighted images (multispectral modality) for the segmentation of the 
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hippocampus and of its subfields [Romero et al., 2017]. The pipeline consists of [Romero et al., 

2017]:  

• Preprocessing for the normalization of the intensity of the images and for their registration 

into the MNI space [Collins et al., 1994]; 

• Hippocampus segmentation associated with a systematic error corrector method based on 

a patch-ensemble of neural networks.  

Starting from the T1-W MP2RAGE and T2-W isotropic sequences we exploited the multispectral 

modality of HIPS with the Kulaga-Yoskovitz protocol [Kulaga-Yoskovitz et al., 2015] for 

extrapolating the total hippocampal relative volume (tHRV), i.e. the sum of the absolute volumes of 

right and left hippocampus divided by the absolute intracranial volume, expressed in percentage (%). 

An example of hippocampal volume quantification is reported in Figure 2. 

 

Figure 2: Example of hippocampus segmentation by HIPS (multispectral modality, Kulaga-Yoskovitz method) [Romer oet al., 2017; 
Kulaga-Yoskovitz et al., 2015]. Red area = cornus ammonis parts 1-3; Blue area = cornus ammonis part 4 – dentate gyrus; Green 
area = Subiculum. [Porcu et al., 2020a]. 

 

The accuracy of the above mentioned volumetric analyses was blindly verified by two expert 

Neuroradiologists (Luca Saba and Michele Porcu, 14 and 9 years of experience in the use of MRI for 

clinical research respectively), and the subjects whose analyses were judged inadequate by at least 

one of the Neuroradiologists were excluded from the studies. 
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Regarding the analysis of DWI sequences, it was performed using DSI Studio (version 2020_012, 

http://dsi-studio.labsolver.org/). The b-table was checked by an automatic quality control routine to 

ensure its accuracy [Schilling et al., 2019]. Subjects were excluded from the study if there was: a) 

incomplete or low quality/defective scans (DWI count < 67; image dimension ≠ 128 x 128 x 88; 

image resolution ≠ 1.71875 x 1.71875 x 1.7 mm; max b-value ≠ 1005); b) presence of ≥ 1 bad slice 

because of signal dropout; c) sequences with neighboring DWI correlation value < 0.80.  

The DWI sequences were reconstructed by exploiting the DTI model-based method in order 

to obtain the gFA value within the individual space for every participant. The diffusion tensor was 

calculated, and a deterministic fiber tracking algorithm [Yeh et al., 2013] was used with augmented 

tracking strategies [Yeh, 2020] to improve reproducibility. The seeding region comprised the whole 

brain. The anisotropy threshold was randomly selected, and the change threshold was 20% [Wade et 

al., 2021]. The angular threshold was randomly selected from 15° to 90°. The step size was randomly 

selected from 0.5 voxels to 1.5 voxels. Tracks with lengths shorter than 25.7812 or longer than 

257.812 mm were discarded, and a total of 100000 seeds were placed [Bergamino et al., 2020]. An 

example of DTI elaboration for calculation of gFA is reported in Figure 3. 

 

Figure 3: Example of DTI elaboration for gFA calculation with DSI studio (version 2020_012, http://dsi-studio.labsolver.org/). 
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2.4. Preprocessing and processing of the rs-fMRI data 

As above reported, the three studies derived of the PhD project share a common rs-fMRI data 

preprocessing and processing, and it was made through the Matlab platform vR2020b (Mathworks, 

Inc., California, USA) by using the CONN-fMRI fc toolbox v20b [Whitfield-Gabrieli et al., 2012], 

based on the SPM 12 software package (Wellcome Department of Imaging Neuroscience, London, 

UK; http://www.fil.ion.ucl.ac.uk/spm/). 

Similarly to previous studies [Porcu et al., 2019a; Porcu et al., 2019b; Porcu et al., 2020b], 

structural T1-W MP2RAGE and functional T2*-W GRE-EPI sequences were pre-processed adopting 

CONN’s default pipeline for volume-based analysis following these steps:  

• Functional realignment and unwarping; 

• Functional slice-timing correction; 

• Functional outlier detection adopting liberal settings (97th percentile in the normative 

sample in functional outlier detection system: global-signal z-value threshold = 5; subject-

motion threshold = 0.9 mm); 

• Functional and structural direct segmentation of GM, WM and cerebrospinal fluid, 

followed by the normalization to Montreal Neurological Institute (MNI) [Collins et al., 

1994] by using the default tissue probability maps (target resolution = 2 mm); 

• Functional smoothing, using 8 mm full width half maximum Gaussian kernel filter.  

The first 10 volumes of the SE-EPI sequence were discarded from analysis to reduce the 

fluctuation of the MRI signal in the initial stage of scanning [Porcu et al., 2019a]. Subjects with at 

least one of these features identified in the quality control following the preprocessing phase were 

excluded from the analysis: a) a number of invalid scans > 10% of the total amount; b) maximum 

global-signal z-value change > 9 std; c) maximum subject motion > 2 mm. 

In order to minimize the residual non-neural variability of functional data, we applied the default 

principal component analysis (PCA) based denoising pipeline, called “aCompCor” [Nieto-Castanon, 

2020], consisting of linear regression of potential confounding effects, including BOLD signals 
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registered in CSF and WM [Porcu et al., 2019a, 2020b], estimated subject-motion parameters and 

identified outlier scans as per the “scrubbing” procedure [Power et al, 2014; Nieto-Castanon, 2020]. 

Further, we applied a temporal band-pass filtering (0.008 to 0.09 Hz) to reduce noise effects and low-

frequency drift [Porcu et al., 2019a; Porcu et al., 2020b; Nieto-Castanon, 2020].  

The CONN’s default atlas was used for the mapping of the cerebral regions of interest (ROI): the 

Harvard-Oxford atlas [Desikan et al., 2006] for cortical and subcortical regions, and the Automated 

Anatomical Labelling (AAL) atlas [Tzourio-Mazoyer et al., 2002] for cerebellar regions. 
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2.5. Study 1 - The association between white matter hyperintensities, cognition and 

regional neural activity in healthy subjects 

This study was published in 2021 on “European Journal of Neuroscience” [Porcu et al. 

2021a]. The other authors of this paper were Luigi Cocco (Università di Cagliari - Italy), Josep Puig 

(Unveristy Hospital of Girona - Spain), Lorenzo Mannelli (SDN Napoli – Italy), Qi Yang (University 

Hospital of Xwanhu – China), Jasjt S Suri (AtheropointTM, Roseville, CA - USA) Giovanni Defazio 

and Luca Saba (Università di Cagliari - Italy). 

According to the hypothesis that WMH alter the cognitive functions by inducing a reduction 

of regional neural activity, we conducted a cross-sectional study analysing the association between 

tWMHb and cognitive impairment measured with the TMT-A and TMT-B. Secondly, we analysed 

the impact of tWMHb on brain activity with the fALFF [Zou et al., 2008; Lv et al., 2018; Porcu et 

al., 2020d]. This approach was chosen because of its simplicity and high temporal stability [Küblböck 

et al., 2014; Lv et al., 2018], and because this type of analysis is more specific to grey matter activity 

when compared to the ALFF approach, thanks to its relative independence from non-specific signal 

components of the cerebrospinal fluid (CSF) [Zou et al., 2008]. 

 

2.5.1. Study population 

We applied the following exclusion criteria to the LEMON dataset in order to make the study 

population as much homogeneous as possible: a) subjects who underwent 2D FLAIR sequence; b) 

left-handed and/or ambidextrous subjects; c) subjects with urine test positive for the presence of 

psychoactive substances; d) subjects with a diagnosis of past or current psychiatric disease; e) subjects 

whose volumetric analysis of WMHs burden was judged not correct by at least one of the 

Neuroradiologists. Once applied these exclusion criteria the final study population consisted of 75 

subjects, that consisted of 58 males and 17 females; (median age category value = 6; minimum age 

category = 5; maximum age category = 15) (Table 4).  
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 Exclusion criteria Number of subjects 

Total dataset population - 227 

Subjects excluded according 
to the demographic data* 

Subjects that performed a 2D FLAIR sequence 113 

Left-handed and ambidextrous subjects 25 

Subjects with urine test positive for the presence of drugs 12 
Subjects with psychiatric disease diagnosed in the anamnestic 

phase. 40 

Subjects excluded in the 
volumetric analysis 

Subjects whose volumetric analysis of WMHs burden was judged 
not correct by at least one of the Neuroradiologists 0 

Final study population - 75 

*One or more exclusion criteria can be present at the same time in one subject. 
Table 4: Final study population following the application of the exclusion criteria. 

 

2.5.2. Statistical analysis: relationship between demographic, cognitive and 

volumetric data 

Kolmogorov-Smirnov normality test (with Lilliefors correction) was performed for evaluating the 

normal/not normal distribution of the following variables (data were considered normally distributed 

for p-value > 0.05): age of the subjects (grouped in 16 progressive categories as above mentioned), 

tWMHb, TMT-A time, PSBF TMT-A, TMT-B time, PSBF TMT-B, and TMT-B minus A. 

These tests revealed that only one variable was normally distributed (see below), so we performed 

one-tailed Spearman’s correlation tests for analyzing the relationships between the seven above 

mentioned variables. The correlation’s coefficient (r) was calculated choosing a Bonferroni corrected 

p-value for multiple comparisons = 0.008 as statistical threshold for identifying statistically 

significant correlations. The statistical analyses were made by using the SPSS 24.0 statistical package 

(SPSS Inc., Chicago, IL). 

 

2.5.3. Statistical analysis: rs-fMRI 

We analysed the processed rs-fMRI data (see above) with the fALFF mehod by computing 

for each voxel the relative amplitude (root mean square ratio) of BOLD signal fluctuations in the 

frequency band of interest (previously chosen in the denoising process - 0.008 to 0.09 Hz) compared 

with the entire detectable frequency range [Zou et al, 2008]. 
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Three mass univariate second-level regression analyses (Subanalysis 1, 2, and 3), generated 

on the bases of the rs-fMRI processed data, were used to measure the effect of tWMHb on fALFF, 

including in the model age and sex as confounding factors due to the fact that WMHb tend to increase 

with physiological aging [Habes et al., 2016; Zhuang et al., 2018; d’Arbeloff et al., 2019], and it is 

higher in females than in males [Sachdev et al., 2009]. The three subanalyses differed one to each 

other because of the different statistical method applied for cluster-level inferences: 

• Subanalysis 1: parametric statistics based on Gaussian Random Field theory (GRFT), 

adopting a cluster level uncorrected p-value (p-unc) < 0.001 for height threshold and a p-

value corrected for False Discovery Rate (p-FDR) < 0.05 [Worsley et al., 1996; Nieto-

Castanon, 2020]. 

• Subanalysis 2: nonparametric statistics based on randomization/permutation, performing 

1000 permutation iterations of the original data, and adopting a p-unc < 0.001 for height 

threshold and p-FDR < 0.05 for cluster level threshold [Bullmore et al., 1999; Nieto-

Castanon, 2020;]. 

• Subanalysis 3: nonparametric statistics based on Threshold Free Cluster Enhancement 

(TFCE), using 1000 permutation iterations of the original data and adopting a peak family 

wise corrected p-value (p-FWE) < 0.05 for voxel threshold [Smith et al., 2009; Nieto-

Castanon, 2020]. 

 

2.5.4. Results: neuropsychological evaluation and volumetric analysis 

The mean tWMHb value, derived from the volumetric analysis, was 0.121% (minimum value 

= 0%; maximum value = 1.590%). Regarding the distribution of WMH, the mean jcWMHb was 

0.004% (minimum value = 0%; maximum value = 0.115%), the mean dWMHb value was 0.006% 

(minimum value = 0%; maximum value = 0.103%), and the mean pvWMHb value was 0.101% 

(minimum value = 0%; maximum value = 1.526%). No itWMH were detected. 
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Regarding the TMT-A and TMT-B tests, the mean TMT-A time was 31.26 s (minimum value 

= 12.97 s; maximum value = 71.81 s), and the mean TMT-B time was 66.95 s (minimum value = 

30.72 s; maximum value = 154 s). According to the PSBF TMT-A, 34 people resulted perfectly 

normal, 25 people were classified as normal, 11 people showed mild/moderately impaired 

performances, and 5 people showed moderately/severe impaired results. For what concern the PSBF 

TMT-B, 45 people resulted perfectly normal, 14 people were classified as normal, 13 people showed 

mild/moderately impaired performances, and 3 people showed moderately/severe impaired results. 

TMT-B minus A mean value was 35.69 s (minimum value = -0.78 s; maximum value = 100 s).  

The resume of the demographic data, the results of TMT-A and TMT-B tests, and the WMHb 

volumetric data are reported in Table 5. 

Gender 
compositio

n 

Age (subjects 
per grade) 

Mean 
TMT-
A time 

(s) 

Subjects per 
PSBF TMT-A  

Mean 
TMT-B 
time (s) 

Subjects per 
PSBF TMT-B 

Mean 
TMT-B 
minus 
A (s)  

Mean 
tWMH
b (%)  

Mean 
jcWM

Hb (%) 

Mean 
dWMH
b (%) 

Mean 
pvW
MHb 
(%) 

58 males 
17 females 

Category 5 (20-25): 24 
Category 6 (25-30): 26 
Category 7 (30-35): 3 
Category 12 (55-60): 2 
Category 13 (60-65): 7 
Category 14 (65-70): 8 
Category 15 (70-75): 6  

31.26 
(Minimu
m value 
= 12.97; 
Maximu
m value 
= 71.81) 

Grade 1 (perfectly 
normal – 0-26 s): 34 
Grade 2 (normal – 27-
39 s): 25 
Grade 3 
(mild/moderately 
impaired – 40-51 s): 
11 
Grade 4 
(moderately/severely 
impaired - > 51 s): 5 

66.95 
(Minimum 

value = 30.72; 
Maximum 

value = 154) 

Grade 1 (perfectly 
normal – 0-65 s): 45 
Grade 2 (normal – 66-
85 s): 14 
Grade 3 
(mild/moderately 
impaired – 86-120 s): 
13 
Grade 4 
(moderately/severely 
impaired - >120 s): 3 

35.69 
(Minimum 
value = -

0.78 ; 
Maximum 

value = 
100) 

0.121 
 

(Minimum 
value = 0; 
Maximum 

value = 
1.590) 

0.004 
 

(Minimum 
value = 0; 
Maximum 

value = 
0.115) 

0.006 
 

(Minimum 
value = 0; 
Maximum 

value = 
0.103) 

0.101 
 

(Minimu
m value 

= 0; 
Maximu
m value 
= 1.526) 

Table 5: Resume of demographic, cognitive and WMHb volumetric data. TMT-A time = time it took to connect numbers, expressed in 
seconds; PSBF-TMT-A = performance scores of brain functions of TMT-A. TMT-B time = time it took to connect numbers and letters, 
expressed in seconds; PSBF-TMT-B = performance scores of brain functions of TMT-B; TMT-B minus A = TMT-B time minus TMT-
A time; tWMHb = total white matter hyperintensities burden, expressed in percentage; jcWMHb: juxtacortical white matter 
hyperintensities burden, expressed in percentage; dWMHb = deep white matter hyperintensities burden, expressed in percentage; 
pvWMHb = periventricular white matter hyperintensities burden, expressed in percentage. 

 

The Kolmogorov-Smirnov normality test (with Lilliefors correction) revealed that only TMT-

B minus A was normally distributed (Table 6). 

Kolmogorov-Smirnov (with Lilliefors correction) 
 Statistic df p-value 

Age 0.362 75 < 0.001 

tWMHb 0.356 75 < 0.001 

TMT-A time 0.160 75 < 0.001 

PSBF TMT-A 0.269 75 < 0.001 

TMT-B time 0.143 75 0.001 

PSBF TMT-B 0.364 75 < 0.001 
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TMT-B minus A 0.089 75 0.200* 

*Normally distribuited data 
Table 6: Results of the Kolmogorov-Smirnov test of normality (with Lilliefors correction). df = degree of freedom; tWMHb = total 
white matter hyperintensities burden. TMT-A time = time it took to connect numbers; PSBF TMT-A = performance scores of brain 
functions of TMT-A; TMT-B time = time it took to connect numbers and letters; PSBF TMT-B = performance scores of brain 
functions of TMT-B; TMT-B minus A = TMT-B time minus TMT-A time. 

 

All the Spearman’s correlation tests identified statistically significant positive correlation 

between all the other variables: in particular, tWMHs resulted to be positively correlated with age (r 

= 0.555; p-value < 0.0001), TMT-A time (r = 0.413; p-value < 0.0001), PSBF TMT-A (r = 0.388; 

p-value < 0.0001), TMT-B time (r = 0.472; p-value < 0.0001); PSBF TMT-B (r = 0.476; p-value < 

0.0001) and TMT-B minus A (r = 0.435; p-value < 0.0001). All the results are reported in Table 7. 

 

Spearman’s correlation analyses 

 Age TMT-A time PSBF TMT-A TMT-B time PSBF TMT-B TMT-B minus A  

tWMHb r 0.555 0.413 0.388 0.472 0.476 0.435 

Sig. (1-tailed) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

N 75 75 75 75 75 75 

Age r - 0.531 0.514 0.545 0.649 0.484 

Sig. (1-tailed) - <0.001 <0.001 <0.001 <0.001 <0.001 

N - 75 75 75 75 75 

TMT-A 

time 

r - - 0.931 0.636 0.682 0.319 

Sig. (1-tailed) - - <0.001 <0.001 <0.001 <0.001 

N - - 75 75 75 75 

PSBF 

TMT-A 

r - - - 0.623 0.711 0.359 

Sig. (1-tailed) - - - <0.001 <0.001 0.001 

N - - - 75 75 75 

TMT-B 

time 

r - - - - 0.879 0.912 

Sig. (1-tailed) - - - - <0.001 <0.001 

N - - - - 75 75 

PSBF 

TMT-B 

r - - - - - 0.796 

Sig. (1-tailed) - - - - - <0.001 

N - - - - - 75 
Table 7: Spearman’s correlation analyses that evaluated the relationships between the tWMHb, the age of the patients (according to 
the category it belongs to), and the results of the TMT-A and TMT-B subtests. r = correlation’s coefficient; N = number of samples; 
tWMHb = total white matter hyperintensities burden; TMT-A time = time it took to connect numbers; PSBF TMT-A = performance 
scores of brain functions of TMT-A; TMT-B time = time it took to connect numbers and letters; PSBF TMT-B = performance scores 
of brain functions of TMT-B; TMT-B minus A = TMT-B time minus TMT-A time. 
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2.5.5. Results: rs.fMRI analyses 

The fALFF analysis identified several areas of decreased regional neural activity related to 

tWMHb, whereas no areas of increased regional neural activity were found. Results were slightly 

different according to the statistical method used. Subanalysis 1, based on GRFT, identified 4894 

voxels organized in 14 distinct clusters that showed reduced fALFF (Table 8).  

Subanalysis 1 – GRFT cluster-level inferences 

Cluster 
number 

Cluster (x,y,z 
according to MNI 

space) 

Size 
(Number 
of voxels) 

Size p-
FWE  Size p-FDR  Size p-unc  Peak p-FWE  Peak p-unc 

1 -04 -72 +58     964 <0.000001 <0.000001 <0.000001 0.06846 0.000001 
2 +54 +34 +06     911 <0.000001 <0.000001 <0.000001 0.000073 <0.000001 
3 -42 -60 -52     577 <0.000001 <0.000001 <0.000001 0.10381 0.000001 
4 +28 -76 -36     570 <0.000001 <0.000001 <0.000001 0.346363 0.000004 
5 +06 +48 +14     503 <0.000001 <0.000001 <0.000001 0.157774 0.000001 
6 -52 +34 -08     345 0.000007 0.000004 <0.000001 0.110508 0.000001 
7 -24 +42 +44     208 0.00056 0.000266 0.000016 0.358623 0.000004 
8 -62 -36 +46     140 0.007209 0.002785 0.000209 0.023211 <0.000001 
9 +04 +32 +38     139 0.007505 0.002785 0.000218 0.248823 0.000003 
10 -54 -66 +06     129 0.01128 0.003775 0.000328 0.120071 0.000001 
11 -20 -70 -52     108 0.027411 0.008408 0.000804 0.271996 0.000003 
12 +34 -80 +30     90 0.060892 0.017421 0.001818 0.330537 0.000004 
13 +36 -50 -30     83 0.083805 0.021828 0.002533 0.625475 0.000011 
14 +16 +50 +36     82 0.08775 0.021828 0.002657 0.247981 0.000003 

Voxels that showed statistically significant reduced fALFF (10 biggest ROI)* 

• 798 voxels covering 10% of atlas.FP r (Frontal Pole Right) 
• 509 voxels covering 11% of atlas.sLOC r (Lateral Occipital Cortex, superior division Right) 
• 423 voxels covering 20% of atlas.Cereb2 r (Cerebelum Crus2 Right) 
• 401 voxels covering 6% of atlas.FP l (Frontal Pole Left) 
• 374 voxels covering 19% of atlas.Cereb2 l (Cerebelum Crus2 Left) 
• 370 voxels covering 7% of atlas.Precuneous (Precuneous Cortex) 
• 210 voxels covering 38% of atlas.IFG tri r (Inferior Frontal Gyrus, pars triangularis Right) 
• 181 voxels covering 13% of atlas.PaCiG r (Paracingulate Gyrus Right) 
• 146 voxels covering 6% of atlas.Cereb1 r (Cerebelum Crus1 Right) 
• 140 voxels covering 5% of atlas.MidFG r (Middle Frontal Gyrus Right) 

*Total suprathreshold voxels = 4849 
Table 8: Results of subnalysis 1 based on Gaussian random field theory - clusters of reduced fALFF. GRFT = Gaussian random field 
theory; MNI = Montreal neurological institute; p-FWE = p-value corrected for Family Wise Error; p-unc = uncorrected p-value; ROI 
= Region of interest. 

 

Subanalysis 2, based on permutation/randomization, identified 18020 voxels with reduced 

fALFF organized in 6 distinct clusters (Table 9).  
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Subanalysis 2 – permutation/randomization analysis 

Cluster 
number 

Cluster (x,y,z 
according to 
MNI space) 

Size 
(Number 
of voxels) 

size p-
FWE 

size p-
FDR size p-unc mass mass p-

FWE 
mass p-

FDR 
mass p-

unc 

1 +54 +34 +06 8547 0.004000 0.004267 0.000025 95032.99 0.003000 0.003763 0.000022 

2 -04 -72 +58 3983 0.009000 0.005205 0.000061 43792.84 0.009000 0.004529 0.000058 

3 +28 -76 -36 2068 0.021000 0.005890 0.000134 23607.51 0.014000 0.004529 0.000096 

4 -42 -60 -52 2044 0.021000 0.005890 0.000137 23045.24 0.016000 0.004529 0.000105 

5 -54 -66 +06 886 0.088000 0.025205 0.000733 9184.60 0.085000 0.024118 0.000701 

6 -62 -36 +46 492 0.185000 0.056309 0.001964 5679.92 0.146000 0.041186 0.001437 

Voxels that showed statistically significant reduced fALFF (10 biggest ROI)* 

• 2181 voxels covering 27% of atlas.FP r (Frontal Pole Right) 
• 1442 voxels covering 21% of atlas.FP l (Frontal Pole Left) 
• 1358 voxels covering 28% of atlas.sLOC r (Lateral Occipital Cortex, superior division Right) 
• 1062 voxels covering 19% of atlas.Precuneous (Precuneus Cortex) 
• 905 voxels covering 47% of atlas.Cereb2 l (Cerebelum Crus2 Left) 
• 838 voxels covering 39% of atlas.Cereb2 r (Cerebelum Crus2 Right) 
• 614 voxels covering 24% of atlas.Cereb1 r (Cerebelum Crus1 Right) 
• 594 voxels covering 22% of atlas.MidFG r (Middle Frontal Gyrus Right) 
• 570 voxels covering 42% of atlas.PaCiG r (Paracingulate Gyrus Right) 
• 563 voxels covering 11% of atlas.sLOC l (Lateral Occipital Cortex, superior division Left) 

*Total suprathreshold voxels = 18020 
Table 9: Results of subnalysis 2 based on permutation/randomization - clusters of reduced fALFF.; MNI = Montreal neurological 
institute; mass = the sum of the T-squared across all voxels within each cluster; p-FWE = p-value corrected for Family Wise Error; 
p-FDR = p-value corrected for false discovery rate; p-unc = uncorrected p-value; ROI = Region of interest. 

 

Subanalysis 3, based on TFCE, identified 23752 voxels with reduced fALFF organized in 21 

distinct clusters (Table 10).  

Subanalysis 3 – TFCE 

Cluster 
number 

Cluster (x,y,z 
according to MNI 

space) 

Size (Number 
of voxels) Peaks TFCE Peak p-FWE Peak p-FDR Peak p-

unc 

1 +56 +34 +06 12184 377 2422.58 <0.000001 <0.000001 <0.000001 
2 -02 -74 +56 4785 121 1637.71 0.003000 0.009779 0.000113 
3 -44 -66 -46 2202 61 1530.87 0.006000 0.009779 0.000236 
4 +28 -76 -38 2009 61 1441.41 0.007000 0.009779 0.000383 
5 -62 -44 +40 536 11 1314.41 0.011000 0.010660 0.000742 
6 -54 -66 +02 945 33 1249.69 0.017000 0.011069 0.001005 
7 +58 -60 -12 122 1 1033.30 0.028000 0.011560 0.002078 
8 +10 +14 -06 209 5 1023.02 0.032000 0.011560 0.002140 
9 -08 -60 +10 95 1 1010.01 0.033000 0.011621 0.002236 
10 +56 -54 +20 147 5 991.62 0.039000 0.011861 0.002384 
11 -30 -88 +14 91 1 980.61 0.040000 0.011929 0.002464 
12 +38 -36 -32 56 3 974.10 0.042000 0.012072 0.002525 
13 +02 +04 -36 30 1 973.67 0.042000 0.012072 0.002532 
14 -64 -18 -08 57 7 973.50 0.043000 0.012072 0.002532 
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15 +64 +04 +24 81 5 968.94 0.044000 0.012132 0.002585 
16 +64 -42 -06 42 1 964.51 0.045000 0.012132 0.002629 
17 +64 -18 +34 49 1 954.91 0.050000 0.012293 0.002727 
18 -36 -48 -34 18 1 953.46 0.050000 0.012345 0.002747 
19 -10 +08 +00 30 1 953.44 0.050000 0.012345 0.002747 
20 -52 -70 -20 56 1 952.91 0.050000 0.012345 0.002754 
21 -42 -28 +48 8 1 952.75 0.050000 0.012345 0.002754 

Voxels that showed statistically significant reduced fALFF (10 biggest ROI)* 
• 2760 voxels covering 34% of atlas.FP r (Frontal Pole Right) 
• 1906 voxels covering 28% of atlas.FP l (Frontal Pole Left) 
• 1608 voxels covering 33% of atlas.sLOC r (Lateral Occipital Cortex, superior division Right) 
• 1323 voxels covering 24% of atlas.Precuneous (Precuneus Cortex) 
• 957 voxels covering 50% of atlas.Cereb2 l (Cerebelum Crus2 Left) 
• 837 voxels covering 39% of atlas.Cereb2 r (Cerebelum Crus2 Right) 
• 813 voxels covering 30% of atlas.MidFG r (Middle Frontal Gyrus Right) 
• 736 voxels covering 15% of atlas.sLOC l (Lateral Occipital Cortex, superior division Left) 
• 698 voxels covering 51% of atlas.PaCiG r (Paracingulate Gyrus Right) 
• 614 voxels covering 24% of atlas.Cereb1 r (Cerebelum Crus1 Right) 

*Total suprathreshold voxels = 23752 
Table 10: Results of subnalysis 3 based on threshold free cluster enhancement - clusters of reduced fALFF. TFCE = threshold free 
cluster enhancement; MNI = Montreal neurological institute; p-FWE = p-value corrected for Family Wise Error; p-FDR = p-value 
corrected for false discovery rate; p-unc = uncorrected p-value; ROI = Region of interest. 

 

In particular, all the three subanalyses shared similar results regarding the decreasing activity 

of the precuneus, prefrontal cortex (PFC) and cerebellar Crus I/II. The results of the analysis are 

shown in Figure 4 and 5. 

 

 

Figure 4 Results of fALFF analysis according to the statistical method used; only clusters of reduced fALFF activity were identified 
(blueish/purplish colored). fALFF = fractional amplitude of low frequency fluctuation; GRFT = Gaussian random field theory; TFCE 
= threshold free cluster enhancement. [Porcu et al., 2020a]. 



 53 

 

Figure 5: 3-dimensional view of the results of fALFF analysis according to the statistical method used; only clusters of reduced fALFF 
activity were identified (blue areas). fALFF = fractional amplitude of low frequency fluctuation; GRFT = Gaussian random field 
theory; TFCE = threshold free cluster enhancement. [Porcu et al., 2021a]. 

 

2.5.6. Discussion 

In this research, we tested the hypothesis that WMH (in terms of tWMHb) are able to alter the 

cognitive function in healthy subjects by inducing a reduction of the function of several cerebral 

regions, according to the theory that the disruption of the fibres included in the WMH could alter the 

normal functioning of the respective linked cortical structures [Schmidt et al., 2005; Mok et al., 2011; 

Ding et al., 2015].  

Firstly, we verified the correlations between age, tWMH, and the scores of TMT-A and B subtests 

in our study population. Although several neurocognitive tests were performed in the LEMON dataset 

[Babayan et al., 2019], we chose to use the TMT subtests as an indicator of the cognitive status 

because they are widely used in research and clinical practice as tool for detecting neuropsychological 

impairment, and they are able to assess several aspects of neurocognition (in particular processing 

speed, cognitive sequencing, cognitive flexibility and visual-motor skills) [Bowie & Harvey, 2006]. 

Despite the fact that 5 people showed moderately/severely impaired results in the PSBF TMT-A, and 

3 people showed moderately/severely impaired results in the PSBF TMT-B, we did not exclude these 
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subjects from the final population study because the results of these tests alone are not sufficient for 

the diagnosis of dementia [Hugo et al., 2014], besides the fact that no diagnosis of dementia was 

reported for these subjects in the LEMON dataset [Babayan et al., 2019]. Statistically significant 

positive correlation were found for all the tests, in particular between age and WMHb, as well as the 

other positive correlations between tWMHs and TMT-A, PSBF TMT-A, TMT-B, PSBF TMT-B, and 

TMT B minus A. These results were in line with what found in previous studies [Wright et al., 2008; 

Prins et al., 2015; Chavda et al., 2019; MacPherson et al., 2017].  

Subsequently, we performed the fALFF analysis for investigating the effects of tWMHb on 

regional neural activity. According to the lack of a unique standardized method of analysis of rs-

fMRI data, we decided to make multiple subanalyses applying different statistic approaches in order 

to limit potential biases derived from the analytical flexibility of rs-fMR data [Botvinik-Nezer et al., 

2020]. In particular, we made three different subanalyses; all of them revealed that tWMHb influence 

the brain activity of different cerebral areas, even if the results were slightly different. In fact, the 

absolute number of voxels that showed altered activity in relation to WMHb of subanalysis 1 was 

smaller when compared to the other two; further, the number, organization and composition of the 

clusters of voxels was different. However, all the three subanalyses shared a common aspect: they 

showed reduced regional activity of several same cerebral regions and no areas of increased regional 

activity in relation to the increase of WMHb.  

By looking globally at the results, we tried to make a sum of these findings and we observed that 

three main cerebral areas that showed reduced regional activity in relation to the increase of WMHb 

were the precuneus, PFC, and cerebellar Crus I/II. Studies from literature demonstrated that the 

dysfunction of these areas is involved in the impairment of several cognitive functions. For example, 

precuneus is a pivotal region of the M-PFN, involved in several cognitive process, included highly 

integrated tasks and visuo-spatial imagery [Kim et al., 2011], and recently Wang Z et al. [Wang et 

al., 2020] demonstrated an association between WMH load and dysfunction of M-PFN in patients 

with mild cognitive impairment. PFC is another cerebral regions that play a pivotal role in executive 
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functions control, as evidenced by several lesion studies [Yuan et al., 2014]. It is note from literature 

the association between WMH and dysfunction of PFC: in fact, a tasking fMRI study by Nordhal C 

et al. [Nordhal et al., 2006] demonstrated that both global WMH volume and WMH volume in the 

dorsolateral frontal regions are associated with decreased PFC function, and the results of our 

investigation, despite the different techniques of analysis, are in line with these observations. Lastly, 

despite to the best of our knowledge no studies analysed the relationships between WMH and the 

cerebellar activity, it is not surprising that the reduction of the cerebellar regional neural activity 

observed in relation to the increasing tWMHb could contribute neurocognitive impairment altering 

the activity of the cerebro-cerebellar networks. Indeed, it is well known that lesions of the 

neocerebellum in humans can cause severe impairments in executive functions [Schmahmann et al., 

1998]. Further, recent anatomical and fMRI studies demonstrated that cerebellum is involved in a 

wide spectrum of cognitive functions, and that the neocerebellum plays a pivotal role in executive 

function control [Jacobi et al., 2021]. For example, the rs-fMRI study conducted by Habas C et al. 

[Habas et al., 2009] with the Independent Component Analysis (ICA) method confirmed that 

cerebellar lobules Crus I/II (that belong to the neocerebellar cortex) participate in the right and left 

executive controls networks; this evidence has been also confirmed in a more recently tasking fMRI 

study by Balster JH et al. [Balster et al., 2013], demonstrating that the cerebellum contributes to 

cognitive control independently from motor control by elaborating inputs from PFC in the prefrontal-

projecting cerebellar lobules Crus I/II,  

Finally, looking at the distribution of the WMH, we observed that the majority of WMH were 

located in the periventricular region, and these data are in line with those found from literature 

[Nyquist et al., 2015]. This data suggests that pvWMH might play a role in influencing the cerebral 

regional activity that leads to cognitive impairment, according also to the robust evidence that 

pvWMH have a stronger significant negative impact on cognitive abilities when compared to jcWMH 

and dWMH [Bolandzadeh et al., 2012]. However, the analysis of the effects of the location of WMH 

on regional neural activity was beyond the purpose of this study. 
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2.5.7. Limits 

We recognize at least two major limits of this study. The first limit is the small study population, 

which resulted also heterogeneous in age and gender composition. However, we chose to apply strict 

criteria in order to limit biases derived by medical conditions such as known neurological diseases or 

drug use; further, we included age and sex as confounding factors in the regression model of all the 

three subanalyses of the rs-fMRI data in order to overcome the limitations of the heterogeneity of the 

study population. The second limit regards the fact that we tried to interpret the effects of tWMHb on 

the sole cognitive sphere: our first goal was to evaluate the pure statistical effect of WMHb on brain 

activity rs-fMR, and it is reasonable to speculate that these effects could influence other 

neuropsychological aspects such as mood and behaviour, or other higher cerebral functions such as 

for example motion and visual perception; future studies could clarify these aspects. 
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2.6. Study 2 - Effects of white matter hyperintensities on brain connectivity and 

hippocampal volume in healthy subjects according to their localization 

This study was published in 2020 on “Brain connectivity” [Porcu et al. 2020a]. The other 

authors of this paper were Annunziata Operamolla, Elisa Scapin, Paolo Garofalo, Francesco Destro, 

Alessandro Caneglias (Università di Cagliari - Italy), Jasjt S Suri (AtheropointTM, Roseville, CA - 

USA), Andrea Falini (Università San Raffaele, Milano – Italy), Giovanni Defazio, Francesco Marrosu 

and Luca Saba (Università di Cagliari - Italy). 

Starting from the evidences exposed in the previous sections, we designed a cross-sectional 

study in order to investigate whether the localization of supratentorial WMH load (jcWMH, dWMH, 

and pvWMH) plays a role in hippocampal shrinkage in HS and if it has also an impact on the global 

cerebral functional connectivity, assuming the involvement of the hippocampal regions. An 

exploratory cross-sectional study was designed for investigating the relationships between 

supratentorial hippocampal volume (in terms of tHRV) and WMHb of each zone of the white matter 

(jcWMHb, dWMHb and pvWMHb); subsequently, we analysed the influence of the jcWMHb, 

dWMHb and pvWMHb on global brain networking by making a resting-state fMRI analysis. The 

graph theoretical approach was applied to resting state functional integration analysis for the 

interpretation of the results [Bullmore et al., 2009; Barabási et al., 2011; Bassett et al, 2017; Liao et 

al., 2017; Bassett et al., 2018]. 

 

2.6.1. Study population 

We applied the following exclusion criteria to the LEMON dataset [Babayan et al., 2019] in 

order to make the study population as much homogeneous as possible: a) subjects that had only 

performed a 2D FLAIR instead of the 3D FLAIR; b) left-handed and ambidextrous subjects; c) 

subjects with urine test positive for the presence of drugs or that did not undergo the test; d) smokers, 

occasional smokers and subjects without this information; e) subjects with psychiatric disease 

diagnosed in the anamnestic phase or with no data relative to the presence/absence of psychiatric 
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disease; f) subjects with alcohol dependence and subjects without alcohol information; g) patients 

whose WMH segmentation was judged not correct form at least of the two expert Neuroradiologists. 

 Once applied these exclusion criteria the final study population consisted of 38 subjects, that 

consisted of 29 males and 9 females; (median age category value = 6; minimum age category = 5; 

maximum age category = 15). The mean tWMHb value was 0.963% (lower value = 0%; upper value 

= 6.392%), the mean pvWMHb value was 0.152% (lower value = 0%; upper value = 1.230% ), the 

mean jcWMHb value was 0.800% (lower value = 0%; upper value = 5.420%), the mean dWMHb 

value was 0.012% (lower value = 0%; upper value = 0.021%), and the mean tHRV value was 0.494% 

(lower value = 0.395%; upper value = 0.617%). 

The complete study population data, included the results of the volumetric analysis of WMH 

and hippocampus, are reported in Table 11.  

Study population 

Subject ID Gender Age Age (grade) tWMHb (%) pvWMHb (%) jcWMHb (%) dWMH b(%) tHRV (%) 

sub-010005 male 25-30 6 0.003 0.003 0.000 0.001 0.483 

sub-010093 female 70-75 15 0.690 0.625 0.048 0.017 0.450 

sub-010126 female 20-25 5 0.000 0.000 0.000 0.000 0.507 

sub-010137 female 25-30 6 0.000 0.000 0.000 0.000 0.481 

sub-010138 male 25-30 6 0.000 0.000 0.000 0.000 0.530 

sub-010146 female 65-70 14 0.295 0.011 0.275 0.009 0.576 

sub-010157 female 20-25 5 0.297 0.016 0.267 0.013 0.430 

sub-010163 female 25-30 6 1.066 0.196 0.864 0.006 0.555 

sub-010176 male 25-30 6 1.333 0.158 1.155 0.020 0.461 

sub-010191 male 25-30 6 0.678 0.038 0.610 0.031 0.460 

sub-010194 male 25-30 6 0.000 0.000 0.000 0.000 0.395 

sub-010195 male 20-25 5 0.018 0.000 0.006 0.011 0.411 

sub-010200 male 20-25 5 0.000 0.000 0.000 0.000 0.492 

sub-010203 male 25-30 6 0.003 0.000 0.000 0.003 0.493 

sub-010213 male 25-30 6 0.000 0.000 0.000 0.000 0.497 

sub-010220 male 30-35 7 0.564 0.001 0.562 0.000 0.489 

sub-010225 male 20-25 5 2.760 0.813 1.908 0.038 0.463 

sub-010226 male 25-30 6 0.012 0.000 0.000 0.012 0.450 

sub-010227 male 20-25 5 0.007 0.000 0.006 0.001 0.482 

sub-010228 male 20-25 5 3.464 0.027 3.416 0.021 0.498 

sub-010229 male 30-35 7 0.996 0.011 0.975 0.011 0.502 

sub-010239 male 60-65 13 1.710 0.485 1.217 0.008 0.532 
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sub-010256 female 25-30 6 1.071 0.000 1.071 0.000 0.553 

sub-010267 male 70-75 15 4.155 1.230 2.885 0.041 0.429 

sub-010275 female 55-60 12 0.497 0.006 0.484 0.007 0.539 

sub-010279 female 55-60 12 0.475 0.030 0.440 0.006 0.440 

sub-010283 male 70-75 15 0.728 0.451 0.262 0.015 0.575 

sub-010284 male 70-75 15 1.500 0.045 1.454 0.001 0.507 

sub-010285 male 65-70 14 0.018 0.005 0.000 0.012 0.481 

sub-010286 male 65-70 14 2.225 0.400 1.821 0.004 0.506 

sub-010287 male 65-70 14 6.392 0.952 5.420 0.021 0.514 

sub-010289 male 60-65 13 3.237 0.254 2.885 0.098 0.455 

sub-010290 male 60-65 13 0.860 0.007 0.850 0.003 0.527 

sub-010302 male 25-30 6 1.537 0.000 1.514 0.023 0.487 

sub-010303 male 20-25 5 0.010 0.000 0.000 0.010 0.492 

sub-010304 male 20-25 5 0.001 0.000 0.000 0.001 0.617 

sub-010310 male 20-25 5 0.000 0.000 0.000 0.000 0.516 

sub-010316 male 30-35 7 0.007 0.000 0.006 0.001 0.499 
Mean 
values - - - 0.963 0.152 0.800 0.012 0.494 

Table 11: Demographic data and data derived from volumetric analysis of WMH and hippocampus. Subject ID= subject identifier; 
tWMH = total white matter hyperintensities burden; pvWMH = periventricular white matter hyperintensities burden; jcWMH = 
jutacortical white matter hyperintensities burden; dWMH = deep white matter hyperintensities burden; tHRV = total hippocampal 
relative volume. The Subject corresponds to the one reported in the LEMON dataset [Babayan et al., 2019]. 

 

2.6.2. Statistical analysis: relationship between demographic and volumetric data 

The statistical analysis about the realtionships between demographic and volumetric data was 

conducted using the SPSS 24.0 statistical package (SPSS Inc., Chicago, IL). We performed a 

Kolmogorov-Smirnov test applying the Lillefors significance correction, assuming a p-value = 0.200 

as a statistical threshold, in order to verify the normal/nonnormal distribution of the following 

parameters: age of the subjects (expressed in grades), tWMH, pvWMH, dWMH, jcWMH and tHRV. 

This test revealed that only tHRV values followed a normal distribution (see below) and for this 

reason we choose to perform one-tailed Spearman’s correlation analysis for testing the correlations 

between the above-mentioned variables. The correlation coefficient (r) was calculated for every 

single relationship, and p-value < 0.05 was used as statistical threshold to identify a statistically 

significant correlations. In accordance to one of the aims of the study (evaluation of the relationships 

between supratentorial hippocampal volume and WMH load according to localization of the lesions) 

a Bonferroni corrected p-value = 0.017 was also taken into account as a statistical threshold for the 
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following three correlations: tHRV – jcWMH, tHRV – dWMH and tHRV - pvWMH (acorrected = 

0.05/3 = 0.017). 

 

2.6.3. Statistical analysis: rs-fMRI 

A second-level graph-analysis was made by exploiting the processed rs-fMRI data (see above). 

Individual correlation maps of the whole brain were created by the mean resting-state BOLD time 

course of every single ROI, obtaining the correlation coefficients with the BOLD time-course 

between ROI [Whitfield-Gabrieli et al., 2012; Porcu et al., 2019a; Porcu et al., 2019b]. Correlations 

were generated by using the general linear model and bivariate correlation analysis weighted for 

hemodynamic response function: higher Z-scores indicated positive correlations, indicating increased 

connectivity between ROIS as a reflection of increased synchronicity between them; lower Z-scores 

indicated negative correlations, indicating decreased connectivity between ROIs as a reflection of 

decreased synchronicity between them [Whitfield-Gabrieli & Nieto-Castanon, 2012; Porcu et al., 

2019a]. Fisher’s transformation was then applied to all Z-scores, and correlation coefficients were 

converted into standard scores [Whitfield-Gabrieli & Nieto-Castanon, 2012; Porcu et al., 2019a]. The 

group rs-fc ROI-to-ROI analyses were made including age, pvWMH, dWMH, and jcWMH as second 

level covariates. Three multiple regression analyses were then performed: pvWMH was the 

dependent variable for the first analysis (Analysis 1), jcWMH for the second one (Analysis 2), and 

dWMH for the third one (Analysis 3). Collinearity diagnostics were performed prior the rs-fc analyses 

for evaluating the presence of multicollinearity among independent variables by checking the 

variance inflation factor (VIF): multicollinearity was considered absent when all the independent 

variables showed VIF = 1, mild when all the independent variables showed VIF < 4, and severe if at 

least one independent variable showed VIF > 4 [Hair et al., 2010]. 

The graph theoretical analysis [Achard et al., 2007], was made with the CONN’s integrated tool, 

considering the ROIs as nodes and the suprathreshold connections as edges of the network [Nieto-

Castanon, 2020]. The following values were calculated for every ROI of the network [Nieto-
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Castanon, 2020]: a) degree, b) average path length, c) clustering coefficient, d) global efficiency, e) 

local efficiency, and f) betweenness centrality. For the calculation, a two-sided p-value corrected for 

False Discovery Rate (p-FDR) < 0.05 as statistic threshold for identifying statistically significant 

correlations between ROIs, and a two-sided cost value = 0.15 as adjacency matrix threshold for 

network edges were adopted [Alexander-Bloch et al., 2013; Porcu et al., 2019b; Dalong et al., 2020]. 

 

2.6.4. Results: relationship between demographic and volumetric data 

The Kolmogorov-Smirnov test revealed that only the tHRV scores showed normal distribution 

(Table 12).  

Tests of Normality – Kolmogorov-Smirnov test with Lillefors significance correction 

 Kolmogorov-Smirnov 

Statistic df p-value 

Age (grade) 0.313 38 0 

tWMHb 0.247 38 0 

pvWMHb 0.376 38 0 

jcWMHb 0.251 38 0 

dWMHb 0.258 38 0 

tHRV 0.1 38 0.200* 

*This is a lower bound of the true significance. 
Table 12: Results of Kolmogorov-Smirnov test with Lillefors significance correction. df = degree of freedom; tWMH = total white 
matter hyperintensities burden; pvWMH = periventricular white matter hyperintensities burden; jcWMH = juxtacortical white matter 
hyperintensities burden; dWMH = deep white matter hyperintensities burden; tHRV = total hippocampal relative volume. 

 

The following Spearman’s correlation tests identified 10 statistically significant correlations 

(p < 0.05), nine positive and one negative (Table 13).  

One-tailed Spearman's correlation 
 tWMHb pvWMHb** jcWMHb** dWMHb** tHRV** 

Age (grade) 

r 0.474* 0.592* 0.389* 0.269 0.133 

p-value 0.001 0 0.008 0.051 0.213 

Number of subjects 38 38 38 38 38 

tWMHb 

r 

- 

0.795* 0.957* 0.728* 0.014 

p-value 0 0 0 0.467 

Number of subjects 38 38 38 38 

pvWMHb** r - - 0.736* 0.658* -0.027 
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p-value 0 0 0.435 

Number of subjects 38 38 38 

scWMHb** 

r 

- - - 

0.614* 0.046 

p-value 0 0.391 

Number of subjects 38 38 

dWMHb** 

r 

- - - - 

-0.331* 

p-value 0.021 

Number of subjects 38 
*Statistically significant result (p-value < 0.05) 

**No statistically significant results for Bonferroni corrected p-value (p-value < 0.017)  
Table 13: Spearman’s correlations. r = Spearman’s correlation coefficient; tWMHb = total white matter hyperintensities burden; 
pvWMHb = periventricular white matter hyperintensities burden; jcWMHb = juxtacortical white matter hyperintensities burden; 
dWMHb = deep white matter hyperintensities burden; tHRV = total hippocampal relative volume. 

 

One statistically significant negative correlation was found between dWMHb and tHRV (r = 

0.331, p-value = 0.042 – Figure 6).  

 

Figure 6: Negative correlation between dMWHb and tHRV. R2 = 0.0904; equation: y = -0.7803x + 0.5032. 
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No statistically significant positive or negative correlations were found between age and 

dWMHb, age and tHRV, tWMHb and tHRV, pvWMHb and tHRV, and between jcWMHb and tHRV, 

When the Bonferroni corrected p-value = 0.017 was taken into account as statistical threshold for the 

correlations between tHRV – jcWMHb, tHRV – dWMHb and tHRV – pvWMHb, no statistically 

significant findings were found. 

 

2.6.5. Results: rs-fMRI analyses 

The alignment of structural and functional data was considered correct for every subject 

included in the analyses by both the Neuroradiologists. 

The independent variables showed VIF < 2 in all the analyses, indicating mild 

multicollinearity (Table 14). 

Results of collinearity diagnostics 

Analysis Dependent variable Independent variables Tolerance VIF 

Analysis 1 pvWMHb 

Age (grade) 0.864 1.157 

dWMH 0.697 1.435 

jcWMH 0.649 1.54 

Analysis 2 jcWMHb 

Age (grade) 0.738 1.356 

dWMH 0.803 1.245 

pvWMH 0.636 1.572 

Analysis 3 dWMHb 

Age (grade) 0.737 1.357 

jcWMH 0.592 1.688 

pvWMH 0.503 1.987 
Table 14: Results of collinearity diagnostics. VIF = Variance inflation factor; pvWMH = periventricular white matter hyperintensities 
burden; jcWMH = juxtacortical white matter hyperintensities burden; dWMH = deep white matter hyperintensities burden. 

 

Analysis 1 (effects of pvWMHb) and 2 (effects of jcWMHb) did not reveal any statistically 

significant results. Analysis 3, focalised on the effects of dWMHb, revealed several statistically 

significant results. The properties of several ROIs of the network resulted influenced by dWMHb:  

a) Global efficiency resulted reduced in the left posterior division of the parahippocapal 

gyrus (pPaHC L – beta value = -4.36; T-value = -6.41; p-FDR = 0.000033), left 
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hippocampus (Hippocampus L – beta value = -2.84; T-value = -5.47; p-FDR = 0.000277) 

and right hippocampus (Hippocampus R – beta value = -2.53; T-value = -5.05; p-FDR = 

0.000649).  

b) Average path length resulted increased in Hippocampus L (beta value = 21.54; T-value = 

8.46; p-FDR < 0.000001) and Hippocampus R (beta value = 14.32; T-value = 6.21; p-

FDR = 0.000035). 

c) Local efficiency resulted reduced in Hippocampus R (beta value = -6.73; T-value = -6.44; 

p-FDR = 0.000036) and left putamen (Putamen L - beta value = -6.9; T-value = -4.11; p-

FDR = 0.0016099). 

d) Betweenness centrality resulted increased in the right amygdala (Amygdala R - beta value 

= 0.4; T-value = 4.42; p-FDR = 0.007308) and in cerebellum 3 left (Cereb3 L - beta value 

= 0.24; T-value = 4.39; p-FDR = 0.007308).  

No ROIs were influenced in terms of degree and clustering coefficient. The results of analysis 

3 are reported in Table 15 and Figure 7. 

Analysis 3 - Effects of dWMHb 

Global efficiency 

ROI Coordinates on the MNI space (x,y,z - mm) beta T dof p-unc p-FDR 

network - 0.05 0.25 34 0.803085 - 

pPaHC L (-22, -32, -14) -4.36 -6.41 34 0 0.000033 

Hippocampus L (-25, -23, -14) -2.84 -5.47 34 0.000004 0.000277 

Hippocampus R (26, -21, -14) -2.53 -5.05 34 0.000015 0.000649 

Average path length 

ROI Coordinates on the MNI space (x,y,z - mm) beta T dof p-unc p-FDR 

network - -0.3 -0.31 33 0.759814 - 

Hippocampus L (-25, -23, -14) 21.54 8.46 33 < 0.000001 < 0.000001 

Hippocampus R (26, -21, -14) 14.32 6.21 33 0.000001 0.000035 

Local efficiency 

ROI Coordinates on the MNI space (x,y,z - mm) beta T dof p-unc p-FDR 

network  0.02 0.09 33 0.926864 - 

Hippocampus R (26, -21, -14) -6.73 -6.44 33 0 0.000036 
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Putamen L (-25, 0, 0) -6.9 -4.11 33 0.000244 0.016099 

Betweenness centrality 

ROI Coordinates on the MNI space (x,y,z - mm) beta T dof p-unc p-FDR 

network - 0 -0.34 33 0.73728 - 

Amygdala R (23, 4, 18) 0.4 4.42 33 0.000101 0.007308 

Cereb3 L (-9, -37, -19) 0.24 4.39 33 0.000111 0.007308 
Table 15: Results of the graph analysis 3. MNI = Montreal Neurological Institute; beta = beta value; T = T-value; dof = degree of 
freedom; p-unc = p uncorrected; p-FDR = p corrected for False Discovery Rate; pPaHC L = posterior division of the left 
parahippocampal gyrus; Hippocampus L = left hippocampus; Hippocampus R = light hippocampus; Putamen L = Left Putamen; 
Amygdala R = right amygdala; Cereb3 L = cerebelum 3 left. 

 

Figure 7: Analysis 3 – effects of dWMHb on brain network. pPaHC L = posterior division of the left parahippocampal gyrus; 
Hippocampus L = left hippocampus; Hippocampus R = light hippocampus; Putamen L = Left Putamen; Amygdala R = right amygdala; 
Cereb3 L = cerebelum 3 left. [Porcu et al., 2020a]. 

 

2.6.6. Discussion 

The relationship between WMH and age [Sachdev et al., 2007] has been described in several 

previously published papers, whereas the correlation between WMH load and hippocampal shrinkage 

was recently demonstrated by Fiford et al. [Fiford et al., 2017]. In addition, some resting-state 

functional connectivity MRI studies already investigated the influence of WMHb on brain 
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connectivity in HS [Benson et al., 2018; De Marco et al., 2017; Reijmer et al., 2015]. In the current 

study, the results showed how the distribution of WMH influences both the hippocampal volume and 

the architecture of brain networks in HS.  

The morphometric analysis confirms that tWMHb tends to increase with aging [Sachdev et al., 

2007]. However, although tWMHb is positively correlated to pvWMHb and jcWMHb, no statistically 

significant correlations were found between tWMHb and dWMHb and between age and dWMHb. 

According to these findings, we hypothesize that the expression of dWMH follows an independent 

pathway compared to pvWMH and jcWMH due to the different suggested etiopathogenesis of these 

lesions [Gouw et al., 2011]. For example, it has been hypothesized that pvWMH recognized in 

chronic hemodynamic abnormalities the more likely development mechanism, whereas dWMH 

seems to be more likely related to ischemic changes due to atherosclerosis or micro-embolic events 

[Kim et al, 2008]. Moreover, previous studies found an association between dWMS and 

cardiovascular risk factors: Strassburger TL et al. [Strassburger TL et al, 1997] showed that subjects 

with hypertension showed increased dWMHb (but not pvWMHb) when compared to age-matched 

normotensive individuals. More recently it was shown that dWMH and pvWMH have different 

progression rates with aging, and that the progression of dWMH is associated with cardiovascular 

mortality [Sabayan et al., 2015]. The same study, interestingly, evidenced that the progression of 

pxWMH was associated with non-cardiovascular mortality [Sabayan et al., 2015]. The impact of 

scWMH on hippocampal volume loss would be less evident due to the involvement of short 

association fibers (U-fibers); similarly, the impact of pvWMH on hippocampal shrinkage would be 

minimal due to the low number of long-association fibers directed to the limbic region, although the 

periventricular fiber system consists of important crossroad areas [Judas et al., 2005]. Another 

interesting finding derived from these correlation analyses is related to the fact that only dWMH load 

resulted to be inversely correlated to tHRV. We know from neuroanatomic studies that the long 

association fibers of the brain pass mainly through the deep WM, and that lesions of these nerve 

bundles alter the connection between cortical areas engaged in different cognitive fields 
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[Schmahmann et al., 2008]. According to this, we assume that dWMH could prevent the regular 

interconnection between cortical areas, in particular the fibers of cortico-limbic system, leading to 

hippocampal volume loss as the final result of Wallerian degeneration [von Bohlen und Halbach et 

al., 2002]. A recent diffusion tensor imaging (DTI) study by Reginold W et al. [Reginold et al., 2018], 

which evidenced the alteration of diffusion properties of the WM tracts surrounding WMH along 

with WM pathways crossing the WMH, represents another evidence in support of this hypothesis.  

The resting state functional connectivity analysis revealed that dWMHb represents the most 

relevant element which influences the weight of brain networks, whereas no significant results were 

found in analysis 1 (focused on the pure effects of pvWMHb) and analysis 2 (focused on the effects 

of jcWMHb). In particular, increased values of dWMHb were associated with increased average path 

length and reduced global efficiency in both the hippocampi. These data suggest that dWMH 

influences the activity of both hippocampi by reducing the centrality of these ROIs within the cerebral 

network or, in other words, reducing the degree of global connectedness of both the hippocampi 

within the network [Nieto-Castanon, 2020]. Hippcocampus R showed also reduced local efficiency, 

indicating a reduction of the ability of this ROI to transfer information at the local level. Reduced 

local efficiency was also found in the Putamen L, whereas the pPaHC L resulted reduced in global 

efficiency. Finally, the Amygdala R and the Cereb3 L showed increased betweenness centrality, 

indicating increased centrality of these structures within the network. 

Although to the best of our knowledge the present study is the first to address these features in 

HS, it is worthwhile to interpret more holistically our data according to other investigations led in 

previous subjects. It is pertinent to recall that the most relevant hippocampal efferent return to the 

subicular complex and to the most inner part of the entorhinal cortex from where the information are 

routed back to the several parts of the neocortex, giving rise to a complex choreography of a recurrent 

multiplexed loop [Buzsáki, 1996; Buzsáki et al., 2003]; based on these considerations it becomes 

intuitive that even small interruption in this circuitry of recurrent pathways, which integrate the 

process of sophisticated retrieval of episodic memory and spatial maps, can easily induce crucial 
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disruptions. Indeed, it has been evidenced that WMH correlate with cognitive decline [Brickman, et 

al., 2009] and of particular interest is the observation that those located in the parietal lobe can predict 

impending severe cognitive decline in spite of normal hippocampal volumes [Brickman et al., 2012].  

Together, the results of our explorative research allow us to speculate that the dWMH induces 

hippocampal atrophy through direct or indirect damage of the long association fibres of the deep WM, 

in particular the fibers of cortico-limbic system. The hippocampal structural changes are accompanied 

by alteration of the activity of hippocampus revealed by graph analysis, These complex alterations 

would induce a decreased ability to transfer information both at the global level (as well as at the 

local level of the Hippocampus R) by impairing the functions of spatial and memory retrieval 

[Abrahams et al., 1997] since these lesions disrupt the correct structural and biochemical hippocampal 

operations along the entire sleep-waking cycle [Marrosu et al., 1995].  

It is also interesting to note that the dWMH load influences the activity of other several cerebral 

regions. We observed reduction of global efficiency in pPaHC (involved in many cognitive processes, 

including episodic memory and visuospatial processing [Aminoff et al., 2013]), reduced local 

efficiency of the Putamen L (involved in the articulatory process [Abutalebi et al., 2013]), and the 

increased betweenness centrality of Amygdala R (a structure implied in instructed and experienced-

based fear [Braem et al., 2017]) and Cereb3 L (cerebellar region whose alterations are correlated with 

ataxia [Schmahmann, 2019]). 

 

2.6.7. Limits 

In this study, we have identified several limits. The first one is related to the sample count 

represented by the relatively low number of patients, even if the study was designed as exploratory: 

we applied strict exclusion criteria in order to minimize potential biases related to the presence of 

conditions such as drug consumption and alcohol dependence. Another significant limitation of the 

analysis, somewhat related to the above mentioned, is the potential bias related to the gender 

disproportion in the study population (9 females and 29 males), considering the fact that it is noted 
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that WMH is more common in women than in men [Sachdev et al., 2009]; this parameter should have 

to be taken into account in a future confirmative study.  

For what concerns the correlation’s analyses, another important limitation is related to the fact 

that no statistically significant results were found in the correlations between tHRV and jcWMHb, 

dWMHb, and pvWMHb when the Bonferroni corrected p-value was taken into account. In our 

opinion, the exploratory nature of the study can justify the choice of considering as statistically 

significant the result of the correlation between tHRV and dWMHb avoiding applying a multiple 

comparison correction. Further, the p-value obtained in this analysis (p-value = 0.021) slightly 

exceeds the Bonferroni corrected p-value adopted as the statistical threshold (p-value = 0.017); in our 

opinion, this data is noteworthy because it can be interpreted as a strong clue that this correlation 

would result statistically significant in future confirmative studies with bigger study populations, 

although this theory is purely speculative. 

Besides the low sample size, the presence of a mild degree of multicollinearity between the 

independent variables in all the resting state functional connectivity analyses represents another limit 

of the study. Further, the low VIF values observed let us reasonably affirm that these values were not 

severe enough to determine significant biases. 

Finally, a possible limit is represented by the absence of correlation with clinical data: indeed, 

even though several cognitive and behavioural data have been collected in the dataset, we focused 

our attention on the “pure” anatomical elements according to the fact that all the subjects included in 

the population study were considered as in healthy conditions. Again, further longitudinal study with 

statistically eloquent cohort of subjects will help to better evaluate whether studies lead with the 

WMH approach may impact our knowledge on the cognitive decline or other related conditions (e.g. 

several neurodegenerative diseases). 
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2.7. Study 3 - Global fractional anisotropy: effect on resting-state neural activity 

and brain networking in healthy participants 

This study was published in 2021 on “Neuroscience” [Porcu et al. 2021b]. The other authors of 

this paper were Luigi Cocco (Università di Cagliari - Italy), Sirio Cocozza, Giuseppe Pontillo 

(Università Federico II, Napoli - Italy), Giovanni Defazio (Università di Cagliari - Italy), Jasjt S Suri 

(AtheropointTM, Roseville, CA - USA), Arturo Brunetti (Università Federico II, Napoli – Italy), and 

Luca Saba (Università di Cagliari - Italy). 

In addition to the other evidences above mentioned, a recent study by Garcia-Lazaro et al., 

[Garcia-Lazaro et al., 2016] demonstrated that gFA is a good parameter for discriminating young 

from older participants in healthy population; further, the authors of this study suggested that age-

related changes in FA should be evaluated by using a global rather than a regional approach due to 

the fact that the global approach allows a comprehensive evaluation of the state of WM integrity and 

not only a partial measurement (as is the case when a regional-based approach is used) [Garcia-Lazaro 

et al., 2016]. According to this study and to the fact that aging-related reduced integrity of specific 

WM tracts is associated with decreased functional connectivity in several hubs, particularly in the 

default mode network (DMN) [Yang et al., 2016; Teipel et al., 2010], we conducted a cross-sectional 

study to explore the effects of gFA value as a quantative marker of global white matter integrity on 

the functional activity of the whole brain at resting-state. 

 

2.7.1. Study population 

We applied the following exclusion criteria to the LEMON dataset [Babayan et al., 2019] in 

order to make the study population as much homogeneous as possible:  

a) Left-handers participants 

b) Diagnosis of previous or current psychiatric disease, including alcohol and drug 

addiction, and participants with urine test positive for the presence of drugs 

c) Smoker participants 
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d) Subjects whose DWI scans resulted incomplete or low quality/defective, i.e. that 

showed at least one of these features (see above): 

1. DWI count < 67; image dimension ≠ 128 x 128 x 88; image resolution ≠ 

1.71875 x 1.71875 x 1.7 mm; max b-value ≠ 1005 

2. Presence of ≥ 1 bad slice because of signal dropout 

3. Sequences with neighboring DWI correlation value < 0.80. 

e) Subjects with at least one of these features identified in the quality control following 

the preprocessing phase: 

1. a number of invalid scans > 10% of the total amount 

2. maximum global-signal z-value change > 9 std 

3. maximum subject motion > 2 mm 

Once applied these exclusion criteria, the final population study consisted of 79 participants 

(Table 16). 

Population study selection 

 Exclusion criteria Number of subjects 

Total dataset population - 227 

Participants excluded 
according to the clinical 

data* 

Non-right handed participants 25 

Diagnosis of past or current psychiatric disease, including 
alcohol and drug addiction, and participants with urine test 

positive for the presence of drugs 
76 

Smoker participants 36 

Participants excluded 
following the DWI 
sequences analysis* 

Incomplete or defective scans 1 

Presence of ≥ 1 bad slices because of signal dropout 7 

Sequences with neighboring DWI correlation value < 0.80 2 
Participants excluded 
following the quality 

control of the 
preprocessing phase of the 

fMRI analysis* 

Number of invalid scans > 10% of the total amount 2 

Maximum global-signal z-value change > 9 std 19 

Maximum subject motion > 2 mm 4 

Final study population - 79 

*One or more exclusion criteria can be present at the same time in one subject. 

Table 16: Details of the study population selection process. std = standard deviations. 
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2.7.2. Statistical analysis: relationship between demographic data and gFA value 

The evaluation of the relationships between gFA values and age, and the comparison of the mean 

distribution values of gFA between males and females were made by using the SPSS 24.0 statistical 

package (SPSS Inc., Chicago, IL).  

Firstly, we identified the outliers with the interquartile range rule using a multiplier of 3.0 

according to Hoaglin et al. [Hoaglin et al., 2018] on both age and gFA values obtained from the DWI 

analysis.  

Secondly, we performed a Kolmogorov-Smirnov normality test (with Lilliefors correction) in 

order to evaluate the normal/ abnormal distribution of age and gFA values, assuming a p = 0.2 as 

lower bound of the true significance. This test revealed that only the gFA variable was normally 

distributed (see below), so we performed a two-tailed Spearman’s correlation test for analyzing the 

relationships between age and gFA. The correlation’s coefficient (r) was calculated choosing a p < 

0.05 as the statistical threshold for refusing the null hypothesis. 

By looking at the abnormal composition of the population in terms of age categories through the 

inspection of the skweness and kurtosis measures and standard errors, and the visual inspection of its 

histogram [Cramer et al., 2004; Doane et al., 2011], we divided the population into two distinct 

subgroups (see below): a) a young subgroup (age categories: 5-7), and b) an elderly subgroup (age 

categories: 12-16). 

Lastly, we performed a nonparametric Levene’s test for equality of variance for evaluating the 

variance of gFA in males and females values of the whole population, young group, and elderly group 

assuming a p < 0.05 for rejecting the null hypothesis. According to the fact that the null hypothesis 

was rejected in all these cases (see below), we performed a Mann-Whitney U test for evaluating the 

presence of statistically significant differences in gFA mean ranks values between males and females 

in the whole population, young group and elderly group, by assuming a p < 0.05 to reject the null 

hypothesis. 
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2.7.3. Statistical analysis: rs-fMRI 

Similarly to a previously published paper [Porcu et al., 2020d], we conducted three different 

rs-fMRI analyses on the processed rs-fMRI data to study the effects of gFA values: the first (Analysis 

A) aimed at evaluating the regional neural activity by exploiting the fALFF method [Zou et al., 2008; 

Lv et al., 2018]; the second (Analysis B) and the third (Analysis C) aimed at evaluating the functional 

connectivity throughout the whole brain by exploiting ROI-to-ROI approach [Lv et al., 2018; Porcu 

et al., 2019a]. 

Analysis A was made with the fALFF method by calculating for each voxel the relative 

amplitude (root mean square ratio) of BOLD signal fluctuations in the frequency band of interest 

(0.008 to 0.09 Hz, as previously set in the denoising process) compared with the entire detectable 

frequency range [Zou et al., 2008; Lv et al., 2018; Porcu et al., 2019a]. A mass univariate regression 

analysis was then performed by using the gFA values as a second-level covariate, adopting 

nonparametric statistics based on Threshold Free Cluster Enhancement (TFCE), using 1000 

permutation iterations of the original data, choosing a peak family-wise corrected p (p-FWE) < 0.05 

for voxel statistical threshold and a cluster size > 100 voxels for cluster statistical threshold [Smith et 

al., 2009; Nieto-Castanon, 2020].  

Regarding the seed-based analyses (analyses B and C), individual correlation maps of the 

whole brain were made using the mean resting-state BOLD time course of each ROI, followed by the 

computation of the correlation coefficients of the BOLD time-course among predefined ROIs 

[Whitfield-Gabrieli et al., 2012; Porcu et al., 2019a,; Porcu et al., 2020d]. Correlations were computed 

by using the General Linear Model (GLM), applying a bivariate correlation analysis weighted for 

Haemodynamic Response Function (HRF) [Whitfield-Gabrieli et al., 2012; Porcu et al., 2019a,; 

Porcu et al., 2020d]: higher Z-scores indicated positive correlations as a reflection of the increased 

synchronicity between ROIs and vice-versa [Whitfield-Gabrieli et al., 2012; Porcu et al., 2019a,; 

Porcu et al., 2020d]. Fisher’s transformation was applied to all Z-scores, and the correlation 

coefficients were converted into standard scores [Whitfield-Gabrieli et al., 2012; Porcu et al., 2019a,; 
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Porcu et al., 2020d; Porcu et al., 2021c]. In analogy to analysis A, a linear regression analysis was 

performed to measure the effects of gFA values on functional connectivity among the ROIs. For 

analysis B, the TFCE nonparametric statistics for cluster-level inferences identification was applied, 

using 1000 permutation iterations of the original data, adopting p-FWE < 0.05 for connection 

threshold [Smith et al., 2009; Nieto-Castanon, 2020]. For analysis C, we applied the graph-theoretical 

approach in order to identify statistically significant changes of several properties of the ROIs of the 

network [Bullmore et al., 2009; Nieto-Castanon, 2020]: global efficiency, local efficiency, average 

path length, degree, cost, betweenness centrality, and clustering coefficient. In analogy to Porcu et 

al. [Porcu et al., 2020c] we applied a conventional two-sided p-value corrected for false discovery 

rate (p-FDR) < 0.05 for identifying statistically significant correlations between ROIs of the network, 

and a two-sided cost value = 0.15 as adjacency matrix threshold for network edges. 

 

2.7.4. Results: relationship between demographic and volumetric data 

The population study consisted of 46 males and 33 females, with overall median value of age 

categories = 6 (25-30 years). Mean gFA value was of 0.461 (minimum value = 0.392; maximum 

value = 0.489), and no outliers were detected (see below) (Table 17). 

Final study population 

Number of 
participants 
and gender 
composition 

Composition of the group by 
age categories 

Median 
age 

categoy 
value 

Skewness 
(age 

category) 

Kurtosis (age 
category) 

Mean gFA 
value 

Skewness 
(gFA value) 

Kurtosis 
(gFA 
value) 

Males = 33 
Females = 46 
Total = 79 

Age category 5 (20-25) = 32 
Age cateogry 6 (25-30) = 21 
Age category 7 (30-35) = 3 
Age category 12 (55-60) = 2 
Age category 13 (60-65) = 6 
Age category 14 (65-70) = 6 
Age category 15 (70-75) = 7 
Age category 16 (75-80) = 2 

 

6 

0.962 
(standard 
error = 
0.271) 

-0.918 
(standard 
error = 
0.535) 

0.4619 (range 
= 0.3928 – 

0.4899; 
standard 

deviation = 
0.0169) 

-0.921 
(standard 
error = 
0.271) 

2.411 
(standard 
error = 
0.535) 

Table 17: Details of the final study population. gFA = global fractional anisotropy. 

 
Kolmogorov-Smirnov normality test (with Lilliefors correction) revealed that the gFA values 

were normally distributed (p-value = 0.062) whereas the age resulted abnormally distributed (p-value 



 75 

= 0.360); Therefore, we performed a Spearman’s correlation analysis, that revealed a statistically 

significant moderate inverse correlation between gFA and age (r = -0.343; p-value = 0.002). 

The whole population study present a bimodal distribution (Figure 8).  

 

Figure 8: Distribution of the participants of the whole population study according to their age category. It is possible to note the 
bimodal distribution of the population. [Porcu et al., 2021b]. 

 

We further divided the whole population in two subgroups: the young subgroup (total 

population = 56 participants; gender composition = 36 males and 20 females; age categories = 5-7; 

median age category value = 6) and the elderly subgroup (total population = 23 participants; gender 

composition = 10 males and 13 females; age categories = 12-16; median age category value = 14).  

The nonparametric Levene’s test for equality of variance did not demonstrate a statistically 

significant different variance in gFA distribution between males and females in the whole population 

(p = 0.216), in the young subgroup (p = 0.107), and in the elderly subgroup (p = 0.839); the subsequent 

Mann-Whitney U tests did not show statistically significant differences in gFA mean ranks values 

between males and females in the whole population (p = 0.229), in the young subgroup (p = 0.798) 

and in the elderly subgroup (p = 0.951). 
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2.7.5. Results: rs-fMRI 

Analysis A (fALFF analysis with TFCE statistics) identified a single cluster of voxels of 

increased regional neural activity related to gFA; this cluster consisted of 94117 voxels and 1167 

(peak p-FWE < 0.00001; peak p-unc < 0.00001; peak p-FDR < 0.00001), and it covered the brain 

almost ubiquitously in both in cortical and subcortical regions. No other clusters were identified, in 

particular, we did not detect any cluster of reduced regional neural activity. The statistical data are 

reported in Table 18, the results are graphically shown in Figure 9.  

Analysis A (fALFF analysis - TFCE statistics) 

Cluster 
(x,y,z) 

Cluster size 
(number of 

voxels) 
peaks TFCE peak p-FWE peak p-FDR peak p-unc 

+58 +20 + 02 94117 1167 3577.68 < 0.00001 < 0.00001 < 0.00001 

Voxels identified and relative brain areas 

• 5792 voxels (6%) covering 72% of atlas.FP r (Frontal Pole Right) 

• 3561 voxels (4%) covering 51% of atlas.FP l (Frontal Pole Left) 

• 2600 voxels (3%) covering 46% of atlas.Precuneous (Precuneous Cortex) 

• 2494 voxels (3%) covering 57% of atlas.PreCG l (Precentral Gyrus Left) 

• 2211 voxels (2%) covering 46% of atlas.sLOC r (Lateral Occipital Cortex, superior division Right) 

• 2208 voxels (2%) covering 52% of atlas.PreCG r (Precentral Gyrus Right) 

• 2204 voxels (2%) covering 88% of atlas.OP r (Occipital Pole Right) 

• 1969 voxels (2%) covering 75% of atlas.OP l (Occipital Pole Left) 

• 1802 voxels (2%) covering 69% of atlas.AC (Cingulate Gyrus, anterior division) 

• 1794 voxels (2%) covering 49% of atlas.PostCG l (Postcentral Gyrus Left) 

• 1783 voxels (2%) covering 36% of atlas.sLOC l (Lateral Occipital Cortex, superior division Left) 

• 1754 voxels (2%) covering 54% of atlas.PostCG r (Postcentral Gyrus Right) 

• 1651 voxels (2%) covering 62% of atlas.SFG r (Superior Frontal Gyrus Right) 

• 1419 voxels (2%) covering 52% of atlas.MidFG r (Middle Frontal Gyrus Right) 

• 1252 voxels (1%) covering 44% of atlas.SFG l (Superior Frontal Gyrus Left) 

• 1172 voxels (1%) covering 86% of atlas.PaCiG r (Paracingulate Gyrus Right) 

• 1091 voxels (1%) covering 57% of atlas.Cereb2 l (Cerebelum Crus2 Left) 

• 1087 voxels (1%) covering 48% of atlas.Cereb8 r (Cerebelum 8 Right) 

• 1060 voxels (1%) covering 44% of atlas.PC (Cingulate Gyrus, posterior division) 

• 1059 voxels (1%) covering 52% of atlas.iLOC l (Lateral Occipital Cortex, inferior division Left) 

• 1054 voxels (1%) covering 52% of atlas.iLOC r (Lateral Occipital Cortex, inferior division Right) 

• 1008 voxels (1%) covering 47% of atlas.Cereb2 r (Cerebelum Crus2 Right) 

• 52092 voxels (55%) covering other brain areas 
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Table 18: Results of analysis A (fALFF with TFCE statistics). fALFF = fractional amplitude of low frequency fluctuations; TFCE = ; 
threshold free cluster enhancement; p-FWE = family wise error corrected p-value; p-FDR = p-value corrected for false discovery 
rate; p-unc = p-value uncorrected. 

 

 

Figure 9: Results of analysis A (fALFF – TFCE statistics); results are showed on axial view with TFCE colorimetric scale. [Porcu et 
al., 2021b]. 

 

Analysis B (seed-based analysis with TFCE statistics) identified 7 clusters of increased 

connectivity related to gFA (TFCE comprised between 79.06 and 183.17; degrees of freedom = 77), 

in particular the regions of the limbic system (hippocampal cortex and amygdala of both sides), the 

basal ganglia, the cerebellum (cerebellar lobules 4, 5 and 6), the cuneal cortex and several areas of 

the temporal and occipital cortex. No clusters of reduced connectivity were found. The biggest cluster 

consisted of 56 connections. The statistical data are reported in Table 19, and the resuming 

connectogram is reported in Figure 10. 

Analysis B (Seed-based analysis – TFCE statistics) 
Analysis Unit Number of connections Statistic p-unc p-FDR p-FWE 

Cluster 1/7 56 TFCE = 183.17 < 0.00001 < 0.00001 < 0.00001 

Cluster 2/7 2 TFCE = 88.43 0.000124 0.025200 0.026000 

Cluster 3/7 2 TFCE = 87.46 0.000134 0.025200 0.030000 

Cluster 4/7 7 TFCE = 83.17 0.000185 0.025200 0.040000 

Cluster 5/7 1 TFCE = 82.48 0.000189 0.025200 0.041000 

Cluster 6/7 7 TFCE = 79.56 0.000228 0.025200 0.046000 

Cluster 7/7 2 TFCE = 79.06 0.000240 0.025200 0.050000 
Table 19: Results of analysis B (Seed-based analysis -TFCE statistics). ROI-to-ROI = region of interest to region of interest; TFCE = 
threshold free cluster enhancement; p-FWE = family wise error corrected p-value; p-FDR = p-value corrected for false discovery 
rate; p-unc = p-value uncorrected. 
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Figure 10: Resuming connectogram of the results of Analysis B (ROI-to-ROI analysis – TFCE) with TFCE colorimetric scale (upper 
right corner). l = left; r = right; LG = Lingual gyrus; ICC= Intracalcarine cortex; Cereb45 = Cerebellar lobules 4 and 5; Cereb6 = 
Cerebellar lobule 6;; sLOC = Lateral occipital cortex, superior division; OP = Occipital cortex; OFusG = Occipital fusiform gyrus; 
TOFusC = Temporal occipital fusiform cortex; iLOC = Lateral occipital cortex, inferior division; toITG = Inferior Temporal Gyrus, 
temporooccipital part; pSTG = Superior temporal gyrus, posterior division; aSTG = Superior temporal gyrus, anterior division; TP 
= Temporal pole; AC = Cingulate gyrus, anterior division. [Porcu et al., 2021b]. 

 

Analysis C (graph analysis) revealed various statistically significant changes of several 

properties of the ROIs of the network in relation to gFA values (p-FDR < 0.05; degrees of freedom 

= 77). In particular, global efficiency resulted increase in 9 ROIs (posterior division of right and left 

parahippocampal gyrus, a posterior division of right and left temporal fusiform cortex, both the 

amygdalae, vermis 6, and cerebellar 4th and 5th lobules). The clustering coefficient was reduced in the 

anterior division of the right superior temporal gyrus. Finally, betweenness centrality resulted reduced 

in vermis 1 and 2. Regarding degree and cost, we observed reduced values of these two properties in 
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the left frontal pole and right superior parietal lobule and increased values in both the amygdale and 

in the posterior division of the right parahippocampal cortex. No statistically significant changes in 

the average path length were found. The results are reported in Table 20 and in Figure 11. 

Analysis C (Graph analysis – TFCE statistics) 
Global efficiency 

ROI 
Coordinates 
in MNI space 
x, y, z (mm) 

beta T dof p-unc p-FDR 

Network - 0.39 2.57 77 0.012207 - 

pPaHC l (Parahippocampal gyrus, posterior division left) -22, -32, -17 1.96 4.32 77 0.000047 0.002704 

pPaHC r (Parahippocampal gyrus, posterior division right) 23, -31, -17 2.04 4.27 77 0.000055 0.002704 

Ver6 (Vermis 6) 1, -66, -16 2.30 4.22 77 0.000066 0.002704 

Amygdala l -23, -5. -18 1.74 4.16 77 0.000082 0.002704 

Amygdala r 23, -4, -18 1.71 3.54 77 0.000679 0.017931 

Cereb45 l (Cereb 4 5 left) -14, -44, -17 2.36 3.48 77 0.000841 0.018497 

aITG l (Inferior temporal gyrus, anterior division left) -48, -5, -39 2.17 3.38 77 0.001158 0.021837 

pTFusC r (Temporal fusiform cortex, posterior division right) 36, -24, -28 1.16 3.23 77 0.001830 0.028805 

pTFusC l (Temporal fusiform cortex, posterior division left) -36, -30, -25 1.41 3.21 77 0.001964 0.028805 

Local efficiency 

ROI 
Coordinates 
in MNI space 

x,y,z (mm) 
beta T dof p-unc p-FDR 

Network - -0.09 -0.53 77 0.596947 - 

aSTG r (Superior temporal gyrus, anterior division right) 58, -1, -10 -2.37 -4.14 77 0.000089 0.011713 

Betweenness Centrality 

ROI 
Coordinates 
in MNI space 

x,y,z (mm) 
beta T dof p-unc p-FDR 

Network - 0.00 0.62 77 0.536241 - 

Ver12 (Vermis 1 2) 1, -39, -20 -0.05 -4.14 77 0.000089 0.011710 

Average path length 

ROI 
Coordinates 
in MNI space 

x,y,z (mm) 
beta T dof p-unc p-FDR 

Network - -0,43 -0,88 77 0,383990 - 

Clustering coefficient 

ROI 
Coordinates 
in MNI space 

x,y,z (mm) 
beta T dof p-unc p-FDR 

Network - -0.42 -1.58 77 0.117738 - 

aSTG r (Superior temporal gyrus, anterior division right) 58, -1, -10 -3.98 -4.79 77 0.000008 0.001061 

Degree 



 80 

ROI 
Coordinates 
in MNI space 

x,y,z (mm) 
beta T dof p-unc p-FDR 

Network - 0.00 -0.11 77 0.915683 - 

pPaHC r (Parahippocampal gyrus, posterior division right) 23, -31, -17 163.10 3.67 77 0.000439 0.036586 

Amygdala l -23, -5. -18 208.49 3.54 77 0.000687 0.036586 

Amygdala r 23, -4, -18 214.31 3.48 77 0.000832 0.036586 

SPL r (Superior parietal lobule right) 29, -48, 59 -201.02 -3.31 77 0.001400 0.037362 

FP l (Frontal pole left) -25, 53, 8 -188.81 -3.31 77 0.001415 0.037362 

Cost 

ROI 
Coordinates 
in MNI space 

x,y,z (mm) 
beta T dof p-unc p-FDR 

Network - 0.00 -0.11 77 0.915504 - 

pPaHC r (Parahippocampal gyrus, posterior division right) 23, -31, -17 1.25 3.67 77 0.000439 0.036586 

Amygdala l -23, -5. -18 1.59 3.54 77 0.000687 0.036586 

Amygdala r 23, -4, -18 1.64 3.48 77 0.000832 0.036586 

SPL r (Superior parietal lobule right) 29, -48, 59 -1.53 -3.31 77 0.001400 0.037362 

FP l (Frontal pole left) -25, 53, 8 -1.44 -3.31 77 0.001415 0.037362 
Table 20: Results of analysis C (Graph analysis). ROI = region of interest; ROI-to-ROI = region of interest to region of interest; T = 
T-score; dof = degree of freedom; p-unc = p-value uncorrected; p-FDR = p-value corrected for false discovery rate. 

 

 

Figure 11: Results of analysis C (Graph analysis): a) global efficiency; b) clustering coefficient; c) betweenness centrality; d) degree 
and cost. l = left; r = right; pPaHC = Parahippocampal gyrus, posterior division; Cereb45 = Cerebellar lobules 4 and 5; Ver6 = 
Vermis 6; pTFusC = Temporal fusiform cortex, posterior divison; aITG = Inferior temporal gyrus, anterior division; aSTG = Superior 
temporal gyrus, anterior division; Ver12 = Vermis 1 and 2; FP = Frontal pole; SPL = Superior parietal lobule. [Porcu et al., 2021b]. 
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2.7.6. Discussion 

In the current study, we aimed to evaluate how gFA influences brain activity and brain networks 

of the whole brain in healthy participants of different ages. We applied strict exclusion criteria in 

order to avoid biases related by confounding factors, such as smoking or psychiatric diseases.  

The first step of the study was focused on the evaluation of the relationships between gFA values, 

sex, and age. Despite the limited number of participants included in the analyses and the heterogeneity 

of the study population in terms of age and gender composition, we found no statistical significant 

differences in mean gFA between males and females, both at a global level and in the young and 

elderly subgroups. Although several studies identified sex-related regional differences in FA values 

in various WM tracts [van Hemmen J et al., 2017], our findings at a global level are in line with other 

studies. Hsu et al. [Hsu et al., 2008] demonstrated no differences in gFA between males and females. 

However, we found an inverse correlation between age and gFA. This finding is in agreement with 

the literature [Hsu et al., 2008; Wassenaar et al., 2019]. The inverse correlation was not absolute but 

moderate can be related with other factors besides aging, that are associated with the degree of 

myelination [Wassenaar et al., 2019], such as the body mass index [Bennett et al., 2017]. 

Regarding the fMRI analysis, it is noted from the literature that the fMRI field of research suffers 

of an intrinsic limit of reproducibility due to the great analytical approach variability, as well 

demonstrated for example by the recent research conducted by Botvinik-Nezer R et al. [Botvinik-

Nezer R et al., 2020]. Every technique of fMRI analysis has its pros and cons, and a single standard 

method of analysis has still not been identified [Lv et al., 2018]. The choice of the analytical approach 

for this research was driven in particular by its exploratory nature; for this reason, we opted for an 

approachable to give information about brain activity and networking that could be easy to be 

computed and interpreted. In particular, we adopted a functional segregation approach for the analysis 

of the activity of specific cerebral region by using the fALFF technique, and a functional segregation 

approach for the analysis of the relationships between the cerebral regions by using the ROI-to-ROI 

technique with an a priori definition of the ROI [Lv et al., 2018]. The advantage of the fALFF 
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approach lies in its simplicity of analysis in absence of an underlying hypothesis [Lv et al., 2018] and 

its specificity for grey matter activity [Zou et al., 2008]. Looking at the functional integration 

approach, it is note that the ROI-to-ROI approach requires a priori definition of the ROI, and that the 

results of the analysis depend on the selection of the seeds, making it vulnerable to biases [Lv et al., 

2018]. A data-driven approach like the independent component analysis (ICA) does not suffer from 

the limitations derived by the a priori definition of the ROI, but it has other important disadvantages 

such as the fact that ICA presents network one by one and it is unable to show interconnections 

between different brain networks [Bertolero et al., 2015; Lv et al., 2018]; for this reason, we finally 

opted for the ROI-to-ROI technique, exploiting atlases already extensively used in research for the 

definition of the ROI [Tzourio-Mazoyer et al., 2002; Desikan et al., 2006] 

The results of Analysis A (fALFF) evidenced that the neural activity was increased in patients 

with higher gFA, included different areas of the M-FPN, the primary sensor and motor regions, and 

several areas of the cerebellum. A possible interpretation of these findings is that a better degree of 

global myelination may improve the transmission of the neural impulse throughout the brain, 

resulting in a diffuse activation of brain areas. This is seen for example in areas of the M-FPN (in 

particular of precuneus, both the frontal poles). M-FPN is one of the most studied brain networks, 

and notes its role in cognition and self-generated thoughts [Axelrod et al., 2017]; our findings are in 

line with those of two previous combined DTI-fMRI studies [Teipel et al., 2010; Yang et al., 2016]. 

They demonstrated that loss of WM integrity is associated with a reduction of the activity of several 

hubs of M-FPN. The increased activation of primary motor and sensory areas in the precentral and 

postcentral gyrus has been reported previously, suggesting that higher gFA values lead to better 

transmission of information to and from these regions [Warbrick et al., 2017].  

In the seed-based analyses, several areas showed increased activation synchronicity across the 

whole brain, involving particular areas of the limbic system (both the hippocampi and amygdala), the 

basal ganglia, the cuneal cortex and several areas of the temporal and occipital cortex. Further, no 

statistically significant patterns of decreased synchronicity were found. Additionally, gFA values 
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influenced the properties of several nodes of the network; the majority of these findings involved 

structures of the limbic areas. In fact, increased global efficiency correlated with increased gFA values 

in the amygdalae, posterior division of the parahippocampal cortex of both sides, and in cerebellum 

(left fourth and fifth lobules and vermis 6), as well as in the temporal lobes (the posterior division of 

the temporal fusiform cortex of both hemispheres and the anterior division of the left inferior temporal 

gyrus). Both the amygdalae and the right posterior division of parahippocampal cortex also showed 

increased degree and cost in relation to increased values of gFA, whereas the left frontal pole and the 

right superior parietal lobule (areas not comprised in the limbic system) showed reduced cost and 

degree. Finally, the increase of gFA was associated with a reduction of the clustering coefficient of 

the anterior division of the right superior temporal gyrus, and reduced betweenness centrality of the 

cerebellar vermis 1 and 2. 

Although a precise interpretation of the findings is hard due to the complex interactions that exist 

between the different areas of the brain, these findings evidence how the gFA may influence the 

activity of the limbic system and its relationships with the other cerebral and cerebellar areas. The 

limbic system is a complex anatomical and functional structure implied in the process of sensory 

inputs from the internal and external environment for determining motor autonomic, emotional and 

cognitive responses for self-preservation and survival through memory and motivation [McLachlan, 

2009]. Due to these properties, the limbic system interact with different areas of the brain, included 

the temporal cortex (important in particular for visual memory, verbal function, and hearing [Patel et 

al., 2020]) and occipital cortex (important in particular for visual function [Rehman et al., 2020]). 

Further, it is noteworthy to observe how the activity of several cerebellar areas are influenced by gFA, 

as seen for as well as the interactions of the cerebellum with the structures of the limbic system; 

however, this is not surprisingly according to the recent definition of the cerebellum-hippocampal 

network, a polysynaptic network involved in spatial and temporal processing [Weaver, 2005; Yu et 

al., 2015].  
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We speculate that impairments of the normal functioning of the limbic system could at least partly 

explain the neurological impairments observed in aging, according to the fact the limbic system 

structures are among the more sensible to the WM damage than in healthy participants. The 

degeneration of WM, characterized also by reduction of myelination of the WM, could disrupt the 

intrinsic functioning of the limbic system and of the interactions between the limbic system and the 

surrounding structure of the brain. This hypothesis is also sustained by the absence of negative 

correlations found in both Analyses A and B, suggesting that WM integrity is crucial in preserving 

the neural activity of intercommunication of the different cerebral regions. 

 
2.7.7. Limits 

This study has limitations merit to comment. The sample size is small, despite we opted to 

significantly reduce the number in order to limit biases resulting from several serious confounding 

factors; further, we did not correlate these findings with cognitive status and education. However, our 

study was designed as exploratory, and it was focused on structural and functional data. The analysis 

of the effects of gFA values on the neurocognitive sphere was beyond the goal of our investigation. 

The results of our research, of course, will need to be confirmed within future studies with bigger 

populations, but at the same time they could be useful food for thoughts for further analyses of the 

complex relationships between white matter integrity and higher neurological functions.  
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3. General considerations and conclusion  
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The findings of our studies could help to better understand how the aging-associated 

degenerative changes of the white matter affect brain activity and cognitive performances.  

Regarding the first study [Porcu et al. 2021a] we demonstrated that the increase in tWMHb is 

associated with impairments in neurocognitive function and a reduction of the neural activity of 

several cortical supratentorial and infratentorial areas, cerebellum included. The validity of our results 

is mainly sustained by the strict exclusion criteria applied for the study population selection, by the 

fact that age and sex were included as confounding factors in the study model, and by the fact that 

similar results were obtained by using three different statistical analysis methods. Of course, the small 

population study remain the main limit of our study. 

 Regarding the second study [Porcu et al. 2020a], we demonstrated that the location of WMH 

differently affects cerebral networking. In particular we demonstrated a statistically significant 

inverse correlation between dWMHb and tHRV, and we further demonstrated that dWMHb 

significantly alter the network properties of several areas limbic structures, hippocampus included. 

On the contrary, no statistically significant effects found for what concern jcWMH and pvWMH. 

According to these results, we speculate that brain is able to compensate the effects of jcWMH 

pvWMH, whereas these compensatory mechanisms are not able to compensate the effects of dWMH, 

deeply altering the network architecture of the limbic system. However, the very small population 

study (38 subjects) and the absence of a correlation analysis with the neurocognitive tests represent 

the major limits of this study. 

 In the third study [Porcu et al. 2021b] we analyzed the effect of a quantitative parameter of 

WMH degeneration, the gFA, on both the neural activity and brain networking. We opted for gFA 

because it is relatively easy to calculate and because it gives information on the microstructural status 

of WM, in particular about the myelination status of WM. We found that higher gFA values, 

indicating better myelination status, is associated with increased activity of several cerebral areas; by 

looking at the distribution of these areas, it is interesting to observe a substantial overlap between 

these areas and those found in the first study [Porcu et al. 2021a]. Further, we observed that a better 
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myelination status is associated with higher connectivity between several cerebral areas, in particular 

within the limbic system, and when the graph theory was applied to the results several nodes of the 

limbic system showed better global efficiency values as reflection of a better ability of these nodes to 

exchange information at a global level. Also in this case, in analogy to the second study [Porcu et al. 

2020a], the small number of subjects included in the study population and the absence of a correlation 

analysis with the neurocognitive tests represent the major limits of this study. 

 By trying to give an holistic interpretation of the results of our studies, it is interesting to note 

that they tend to confirm the so called “disconnection hypothesis” [O’Sullivan et al., 2001; Salat, 

2011; Bennett et al., 2014; Filley et al., 2016]. In our opinion, the most interesting data in this sense 

is the substantial overlap of the results of the first [Porcu et al. 2021a] and the third study [Porcu et 

al. 2021b] regarding the effects of WMH and gFA on regional neural activity measured with the 

fALFF technique, despite the fact that these studies differed in terms of study population according 

to the different exclusion criteria adopted. In our opinion this result can be considered as a proof about 

the validity of our studies and it clearly proves that WM degeneration is associated with a generalized 

reduction of neural activity of the brain. Secondly, it is reasonable to speculate that this finding 

represents another proof that demonstrates that WMH and gFA are strictly interconnected one to each 

other and that these two markers represent different expressions of the same degenerative process of 

the WM. For what concern the effects on brain networking, the results are less easily interpretable, 

due to the heterogeneity of analysis; however, it is clear that the localization of WMH influences 

differently brain networking, and that WM degeneration mainly affect the activity of the limbic 

system, with reflections also in the volume of anatomic structures, such as the hippocampus. 

Of course it is important to underline that the studies realized in the PhD project were designed 

as explorative and not confirmative, although they were based on clear evidences derived from 

literature. Even if further studies with bigger study populations will help to better clarified the validity 

of our findings, these results can represent a useful starting point for better understand other aspects 

of the effects of WM degeneration on brain circuits in healthy aging, such as for example the 
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compensatory mechanisms activated by brain in order as a response to WM degeneration, and the 

contribution of WM degeneration in other pathological conditions, included degenerative conditions 

such as Alzheimer disease and vascular dementia. 
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