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Abstract

Despite exhibiting unprecedented success in many application domains, machine-
learning models have been shown to be vulnerable to adversarial examples, i.e.,
maliciously perturbed inputs that are able to subvert their predictions at test time.
Rigorous testing against such perturbations requires enumerating all possible out-
puts for all possible inputs, and despite impressive results in this field, these methods
remain still difficult to scale to modern deep learning systems. For these reasons,
empirical methods are often used. These adversarial perturbations are optimized via
gradient descent, minimizing a loss function that aims to increase the probability
of misleading the model’s predictions. To understand the sensitivity of the model
to such attacks, and to counter the effects, machine-learning model designers craft
worst-case adversarial perturbations and test them against the model they are eval-
uating. However, many of the proposed defenses have been shown to provide a false
sense of security due to failures of the attacks, rather than actual improvements in
the machine-learning models’ robustness. They have been broken indeed under more
rigorous evaluations. Although guidelines and best practices have been suggested
to improve current adversarial robustness evaluations, the lack of automatic testing
and debugging tools makes it difficult to apply these recommendations in a system-
atic and automated manner. To this end, we tackle three different challenges: (1)
we investigate how adversarial robustness evaluations can be performed efficiently,
by proposing a novel attack that can be used to find minimum-norm adversarial
perturbations; (2) we propose a framework for debugging adversarial robustness
evaluations, by defining metrics that reveal faulty evaluations as well as mitigations
to patch the detected problems; and (3) we show how to employ a surrogate model
for improving the success of transfer-based attacks, that are useful when gradient-
based attacks are failing due to problems in the gradient information.
To improve the quality of robustness evaluations, we propose a novel attack, re-
ferred to as Fast Minimum-Norm (FMN) attack, which competes with state-of-the-
art attacks in terms of quality of the solution while outperforming them in terms
of computational complexity and robustness to sub-optimal configurations of the
attack hyperparameters. These are all desirable characteristics of attacks used in
robustness evaluations, as the aforementioned problems often arise from the use
of sub-optimal attack hyperparameters, including, e.g., the number of attack iter-
ations, the step size, and the use of an inappropriate loss function. The correct
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refinement of these variables is often neglected, hence we designed a novel frame-
work that helps debug the optimization process of adversarial examples, by means
of quantitative indicators that unveil common problems and failures during the at-
tack optimization process, e.g., in the configuration of the hyperparameters. Using
such indicators, specific mitigation strategies can help avoid the common pitfalls en-
countered in state-of-the-art adversarial robustness evaluations of machine-learning
models, providing a first concrete step towards improving the reliability of such
evaluation processes and designing more trustworthy machine-learning technologies.
Unfortunately, even a careful analysis with gradient-based attacks is sometimes not
sufficient to prove that a defense is robust. Commonly-accepted best practices sug-
gest further validating the target model with alternative strategies, among which is
the usage of a surrogate model to craft the adversarial examples to transfer to the
model being evaluated is useful to check for gradient obfuscation. However, how to
effectively create transferable adversarial examples is not an easy process, as many
factors influence the success of this strategy. In the context of this research, we
utilize a first-order model to show what are the main underlying phenomena that
affect transferability and suggest best practices to create adversarial examples that
transfer well to the target models.
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Chapter 1

Introduction

The broad use of Machine Learning in our everyday life has reached the point in
which we do not notice anymore that it is there. Machine Learning is indeed not par-
ticularly new, in fact being around since the 1960s. What is new is the applications.
We see machine learning operate successfully in the most complex tasks, sometimes
even impossible for humans. For example, in the cybersecurity domain, it is often
machine learning that does the job, due to the massive amount of data to process.
It is exactly this use of machine learning in increasingly safety-critical applications
that motivates the research in Adversarial Machine Learning. In a nutshell, this
study analyzes how machine learning can be broken and how to prevent that from
happening. The first step is understanding what is the impact of the attacks on
the machine learning model. Of course, such impact depends on the application
and there is not much control on that, other than limiting the effects of a possible
attack. In order to understand the risk deriving from adversarial attacks, machine-
learning system designers should assess the sensitivity of the model against such
attacks, by crafting them and testing the performances of the models against them.
This process requires creating adversarial perturbations that target the worst-case
scenarios for the specific model, hence it is often necessary to have deep knowledge
of the possible breaking points of the model (see Figure 1.1), and some expertise in
how to target them appropriately.

Once it has been established what is the potential attacker’s entry point, it is impor-
tant to assess what is the sensitivity of the model to the adversarial attacks that it
might be exposed to. In this thesis, we focus on a particular case of models, namely
classification models, and of attacks, namely the evasion attacks. The first evasion
attacks date back to 2004, but they became popular around 2013 when they were
crafted against deep networks. These attacks specifically target the ability of the
model to correctly classify an input sample at test time by applying an impercepti-
ble perturbation to it. This perturbation, despite being very small, causes a strong
reaction to the model that is misguided and misclassifies the sample. One example
of this is the popular paper where a face recognition algorithm was fooled with a
physically-realizable attack through the use of a pair of adversarial glasses. With the
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Figure 1.1: Possible entry points of the attacker that targets a classification model.

accessory on, the person could be recognized as a different individual, evading the
recognition system. Now, we move to safety-critical applications. What if, instead,
your antivirus checks a software that you just downloaded as safe, instead of recog-
nizing it as a virus? This is the reason why we need to understand how sensitive is
our model to adversarial evasion attacks. The approach that is often used in these
cases is to create a lot of adversarial examples for different levels of perturbation,
and then check what is the performance of the model on those perturbed inputs.
Techniques such as formal verification, i.e. ensuring consistency of the model on all
possible inputs, can provide some robustness guarantees, but unfortunately, they
are not suitable to scale well on modern machine learning systems. For this reason,
we have to rely on empirical approaches, creating adversarial examples with more
practical search techniques. This can be a very time-consuming process, as these
adversarial attacks require defining an optimization problem to solve for finding the
perturbations and the algorithms for solving such optimization. The selection of
both these aspects cannot be taken lightly. There is a wide range of algorithms
that attempt to find an adversarial perturbation. Technically speaking, the space
where we are looking for adversarial examples is big, in fact, imagine trying to search
among all the possible variations of an image and finding the worst case. Here comes
to the rescue the gradient-based optimization. For finding adversarial attacks, we
first define a loss function that depends on the parameters of the model and on the
input that we pass to it. Then, if we have a starting point, we can follow the direc-
tion of the gradient by changing the input, i.e., we exploit the direction for which the
loss changes the most, and we can travel along the loss landscape and reach optimal
points, likely adversarial examples. This is often accompanied by a requirement on
the maximum-norm of the perturbation, which enforces a trade-off between the ad-
versarial confidence of the resulting classification and how much perturbation we are
adding. All this process adds up to the security evaluation curve, i.e., a complete
evaluation of the model’s performances as the perturbation level increases. Each
point of the security evaluation curve constitutes the robust accuracy of the model
under the given perturbation bound.
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Once everything is set up, we can craft our adversarial attacks. What is usually
done in this context is to take a set of algorithms and run them on the testing
set. Then, the designer should select among all the results the worst cases for that
model and for the threat model they selected. Then we will have the evaluation
of the security of that model. What to do when the model is not robust at all?
For standard training models, i.e., models with no particular defense in place, the
robust accuracy drops pretty quickly. In these cases, we can try to limit the effect
of worst-case perturbation by considering a defense mechanism. But what should
we do when the model shows instead to be robust to the adversarial perturbation
we create? In these cases, there are two possibilities. The first is that there are
no adversarial examples in the region considered, and we did a good job evaluating
them. The second possibility is, unfortunately, more common: we just did not find
adversarial examples, but they might still be there. When we create a defense, we
might actually be breaking the mechanism that we use for creating attacks, rather
than actually making the model robust. There is a long history of the never-ending
battle between who publishes a defense and who shows that it can be broken with a
more careful evaluation. The key problem is that although the presence of guidelines,
there is no systematic way to apply them.
These defenses have all been published, and soon broken, because of repeating pat-
terns that have been neglected in the past, but are also constantly overlooked in
the state-of-the-art. Some of them were just evaluated lightly, with incomplete
optimization or wrong attack configurations. Many of these evaluations, however,
suffer from a more specific problem, gradient obfuscation, i.e., the defense mecha-
nism makes the information contained in the input gradients useless. It is important
to understand here that hiding the adversarial examples by making them difficult
to find is not the same as removing them by learning more robust decision functions
or detecting/rejecting the malicious inputs. In these cases, it is just a matter of
time before someone finds out a way to create adversarial perturbations that work.
Other problems might arise also for wrong assumptions or wrong implementation of
the attacks. Understanding what is the correct attack strategy is definitely a more
difficult problem than the one of creating adversarial attacks per se, and the absence
of easy-to-use debugging tools makes it even more complicated.
Attacking a model with only one strategy is also not the best way of understanding
its robustness to a wide range of potentially unknown attacks. Current guidelines
suggest complementing the gradient-based evaluation with sanity checks, which of-
ten reveal the presence of problems in the security evaluation process itself, rather
than in the model. For example, in Tramer et al. (2020), 13 defenses were evalu-
ated and broken by reversing the mechanism and adapting the attack strategy to
target the specific model. Optimization attacks are by far among the most power-
ful algorithms, however, they tend to fail when applied blindly to models that do
not consider aspects of the implemented defense. Sanity checks are almost always
helpful to understand if the model is being attacked in the wrong way. This is when
we should move to gradient-free attacks and transfer attacks. Gradient-free attacks
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try to optimize the loss function just by exploration of the landscape and inspection
of the answers returned by the model. By utilizing transferability instead, one can
optimize a loss landscape that behaves a lot better than the one of the original
model, and then attempt to transfer the attack on the target model. If this attack
succeeds, that can be a clear indication of obfuscated gradients, as the adversarial
examples are proved to be still there. Unfortunately, crafting transferable adversar-
ial examples is still a complicated process that requires a lot of effort to succeed,
especially without the help of guidelines on how to choose the target model or the
right attack algorithm.
In general, evaluating adversarial robustness is a key aspect of designing machine-
learning algorithms that have to operate in security-critical applications or environ-
ments. The process of creating adversarial attacks and testing the model against
them involves many steps that have to be taken carefully and require regard to many
aspects that are not easy to understand and apply by practitioners.

1.1 Thesis Statement

In this thesis, we aim to overcome some of the aforementioned problems that af-
fect the process of evaluating adversarial robustness by improving the main time-
consuming and difficult-to-apply steps.

1. we want to improve the process of searching for adversarial examples, by mak-
ing it more efficient and less difficult to configure;

2. we want to introduce a framework that allows debugging the creation of adver-
sarial examples, by creating specific indicators to reveal failures and proposing
mitigations to the identified problems, including a novel metric for detecting
when a defense is obfuscating the gradients; and

3. we want to provide additional tools to test the robustness of a model, by
proposing novel metrics to assess the intrinsic vulnerability of a model, and
its sensitivity to transferable adversarial examples created with a surrogate
model.

Improving the efficiency of the evaluations. One of the problems is that evalu-
ating a model’s robustness takes time. It takes time to run the attacks, as computing
the gradient direction requires computing the gradient, and this is even worsened by
the difficult search for the perfect hyperparameters (i.e. variables that have to be
chosen by the designer) that have to be tuned in order to achieve good enough so-
lutions. On top of that, if we want to compute the drop in the model’s performance
when attacked with different perturbation strengths, we need to compute all the
adversarial examples, with their respective constraints, for every value tested. We
aim to improve this aspect of the robustness evaluation by proposing a novel attack
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algorithm for finding the minimum perturbation required to reach the adversarial
class. The main advantage of this approach is that it does not have to be restarted
for every value of the perturbation size threshold, as a single run allows to set the
evaluation threshold and find out immediately how many adversarial examples are
found within a given constraint in the norm of perturbation. This allows to greatly
reduce the computational cost of the complete evaluation. Second, with a single
algorithm, it is possible to evaluate under 4 different perturbation models, i.e., dif-
ferent `p norms, and with two different scenarios, namely targeted and untargeted.
To reduce the time spent in crafting the attacks, it reaches fast convergence with a
few lightweight steps, and to reduce the time spent in finding the best configuration
it is robust to the hyperparameter choice.

Providing a framework for the optimization, debugging, and visualization
of adversarial attacks. It is easy to understand that the approach used in security
evaluations is very empirical and it can go incredibly wrong as we don’t have guar-
antees on how good is the optimum that we found with our algorithm. Adversarial
attacks are difficult to configure and debug: if the search is not initialized well,
or conducted well, or reported well, the algorithms fail. The even bigger problem
is that they fail in the same way even when the actual adversarial example is not
there, and there is no way to understand the difference, unless by delving deeply
into the concepts of optimization, loss functions, and adaptive evaluations. This
research work provides a systematic framework for debugging optimization-based
adversarial attacks and making sure that the misconfiguration problems, as well as
the misconceptions about the model, are detected and fixed.

Providing guidelines on how to evaluate the model beyond gradient-based
attacks. The problem is only half-solved by conducting a thorough security eval-
uation. Then, if gradient-based optimization fails, we cannot be certain that the
attacks are not suffering from other problems, e.g., gradient obfuscation. One very
simple check is to create alternative adversarial examples by optimizing the per-
turbation on a similar, but different model, and then submitting the result to the
model under evaluation. If this transfer test fails, hence the adversarial attacks do
not succeed upon transfer, we are still in the same situation. We cannot tell if the
adversarial attacks are failing because they are created in the wrong way, or because
the model is actually robust. For this reason, in order to improve the quality of the
attacks being created, we felt the need of finding out what are the underlying factors
that affect transferability. We provide an extensive evaluation of these phenomena
and suggest guidelines on how to create transferable adversarial attacks.

1.2 Outline of the Thesis

In this thesis, first, we give some background and context information (Chapter 2),
then we provide an overview of the state of the art and its limitations (Chapter 3),
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present our contributions (Chapter 4) along with the experimental analysis (Chap-
ter 5), and finally discuss the main results, conclusions and future directions (Chap-
ter 6).

Significance and advantage. We believe this work will facilitate reliable robust-
ness evaluations, and we hope that the field of adversarial robustness will benefit
from the insight presented in this work towards designing more robust machine
learning algorithms.
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Chapter 2

Background Concepts

Nowadays machine learning is used for the most complicated tasks, included in in-
dustrial processes, used as a workforce, and considered a strong ally for solving
difficult data-heavy problems. However, while many people consider machine learn-
ing such a powerful tool, there is still a chance that these algorithms may fail in
unexpected ways. For this reason, there is much interest in explaining the decisions
taken by machine learning, and in testing its robustness against crafted attacks.

In this chapter we will provide background concepts on machine learning and ad-
versarial machine learning, and we will introduce the notation that will be used for
the rest of the thesis.

2.1 Machine Learning and Supervised Learning

Algorithms

Machine Learning (ML) is the science of automatically improving computer algo-
rithms, through the use of data, to perform tasks for which they are not explicitly
programmed. In other words, machine learning is nothing more than parameter
estimation for modeling a decision process by looking at the data.
A machine learning model is an algorithm that learns from data to perform a specific
task. Building such a system requires creating a machine able to recognize patterns
in the data, that are represented through measurable characteristics called features.
Thereafter, we will represent an input sample as x = (x1, x2, . . . , xd), where each xi
is one of its features.
In general, since domains have different bounds, it is usually a good practice to
rescale everything in a known interval, e.g., between 0 and 1, or reshape as a Stan-
dard distribution, i.e. a Gaussian with zero mean and unit variance. After such
preprocessing step, each sample will be encoded on a space of features with values
included in a range between a minimum value xlb (lower bound) and a maximum
value xub (upper bound). We can then define a vector that contains all the lower
bounds, xlb, and another vector that will be containing all the upper bounds xub.
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Hence, we can say that xlb � x � xub, where the � operator indicates the ≤
operator applied feature-wise.
On top of this feature extraction phase, depending on the use case and the data
that are used, machine learning can be divided into three main categories:

• Supervised Learning. The algorithm is trained on labeled data and has to
find the relationship between the data and the provided labels.

• Unsupervised Learning. Algorithms that learn from unlabeled data, hence
learning hidden structures within it.

• Reinforcement Learning. Algorithms that work by putting a model in an
environment and letting it learn by itself through observation of the environ-
ment and a reward system that provides feedback on the actions taken. The
algorithm is trained to learn an optimal policy for achieving the maximum
reward.

In this thesis, we will focus on classification problems, a family of algorithms that
falls in the supervised learning category. A classifier is a machine learning algorithm
that learns a mapping f : x 7→ y, where x ∈ Rd is a feature vector, d is the input
space dimension, y ∈ {0, . . . , C − 1} is the label, C is the number of classes, and
f is the learned function that maps the input vector x to the label y. The model
is defined by a set of parameters θ, that are optimized to obtain the mapping and
control the behavior of the system.
The model will produce output scores, one for each of the classes C, and the classi-
fication is achieved by taking

ŷ = argmax
C∈{0,...,C−1}

f(x;θ)

as the predicted label. Note that the classes are numbered from 0 to C − 1, and we
will keep this convention for the rest of this thesis.
The model outputs C different scores, one for each of the classes in the dataset,
that are called logits. The logits for a class c will be denoted as fc(x;θ). Since it is
usually desirable to have the outputs modeled as probabilities, sometimes a Softmax
function is applied to the logits. The Softmax is a function that takes a vector of
values and produces another vector of the same dimension, where the values satisfy
the conditions to be in the [0, 1] range, and add up to 1.0, i.e., they can be considered
a probability of the sample being of class c. The Softmax defined as

σ(t)j =
etj∑K
k=1 e

tk
,

takes elements of the vector, computes the element-wise exponential, and divides
each element by the sum of the exponentials of the whole vector. Hence, we can
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define the probability scores z(x;θ) = σ(f(x;θ)) as the Softmax output of the
model, where each value zc is the probability of the input sample of belonging to
class c.

The parameters of the model are estimated through modeling of the empirical dis-
tributions contained in the data. The original dataset D is divided into the training
set, Dtrain, and the testing set, Dtest. The training set is used to train the model by
optimizing its parameters, and the testing set is used to test its performance since
they mimic future unknown data. The parameters θ are learned by defining a loss
function L : (x, y;θ) 7→ R, that returns a real value for evaluating a candidate set
of parameters in the given task. In simpler words, the loss can be seen as the ability
of the model on classifying the sample x as the true label y. A loss function (or cost
function) is a function that returns a numerical value typically proportional to the
difference between the desired outputs and the output produced by the model on a
set of training samples. The loss function can be defined in different ways, depend-
ing on which errors we want to prioritize and fix from the output. One typical loss
function that is used for training machine-learning models is the cross-entropy loss,
as it penalizes the misclassifications, i.e. when the model predicts the wrong label,
in the training data.

The cross-entropy loss is defined as

L(x, y;θ) = −
C−1∑
c=0

(yc log((zc(x;θ)))). (2.1)

where the value of yc is 1 if the correct label for the sample is c, otherwise 0, i.e. the
one-hot-encoded vector corresponding to the label y, and zc(x;θ) is the probability
score for the class c. For example, if the problem includes 10 classes, the label y = 2
should be encoded as [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]. Note, as already stated before, that
the numbering starts from class 0. Thus, the goal is to make the score of the correct
class higher for each sample, i.e. minimizing the loss.

The most straightforward and popular way to optimize loss functions is through
the use of gradient descent. Gradient descent requires a differentiable function, e.g.
the one in Eq. 2.1, and iteratively optimizes it to find the values that achieve the
minimization. The gradient measures how much the loss changes when changing the
input parameters of the loss, and gives the steeper direction to the minima of the
loss. In the case of training, we use the partial derivative of the loss L with respect
to the weights θ, i.e. ∇θL = ∂L(x,y;θ)

∂θ
, and we iteratively update the weights to

achieve a decrease in the loss. Since we want to modulate the amount of movement
inside the space of the parameters, we set a hyperparameter that controls the size
of each step in the descent. We must set a multiplier, called the learning rate (α),
to an appropriate value. Each update is thus obtained through the product:

θi+1 = θi − α∇θL
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(a) α = 0.1
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−1 0 1 2 3 4
θ0

−1

0

1

2

3

4

5

6

θ 1

0.
50

0

1.
00

0

1.500

2.000

2.500

3.
00

0

3.
50

0

4.000

4.
50

0

5.
00

0

5.000
5.5

00
5.500

6.
00

06.
50

07.
00

0

7.
50

0

L(x, y;θ)

(c) α = 0.01

Figure 2.1: Importance of tuning the step size (α) properly in the optimization
process. The step size regulates the optimization of the loss L(x, y;θ) in the space
spanned by θ0 and θ1. When the step size is correct (a), the updates bring the
optimized point to the minimum of the loss. When the step size is too small (b),
the updates are not sufficient for the optimized point to reach the optimum. When
the step size is too big (c), the optimized point overshoots the minimum and it is
unable to descend properly.

In this context, it is important to highlight the distinction between parameters
and hyperparameters. Parameters are the variables in the models that must be
determined using the training data. These are fitted by the optimization algorithm.
Hyperparameters are adjustable values that must be tuned in order to obtain training
with good performance. Under this notation, the model’s weights θ are clearly
parameters, whereas the step size α falls into the category of hyperparameters. In
general, this separation stands true also in other optimization problems, such as
the optimization-based adversarial attacks, which will be presented in the following
sections.
Tuning the hyperparameters, e.g. α, is a consistent part of training the models, as
the choice of these might affect significantly the result of the optimization. Figure 2.1
shows an example of gradient descent using different step sizes for optimization.
This is the size of the change from one step and the other, and making it too big
might make the optimization skip the optimal value while making it too small might
require many steps to reach convergence.
The final performance of a model can be computed as its accuracy, defined as:

A =
1

N

N∑
i=1

1ŷi=yi ,

where the 1 is the indicator function, equal to 1 only when the condition ŷi = yi is
satisfied, hence when the predicted label for the sample x ∈ Dtest ŷi is equal to the
true label yi.
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2.2 Adversarial Machine Learning

As clear from the news, AI is being used in many applications. To demonstrate
how this field is advancing quickly, we want to mention that in 2021, Israeli op-
eratives reportedly carried out an assassination mission with an AI-guided Sniper
Rifle1. The progressive use of AI in increasingly risky environments places even
more emphasis on the importance of protecting these systems from intentional at-
tacks and blatant mistakes. As more and more systems are now based mainly on
machine learning models, researchers are showing that these powerful methods are
not without weaknesses. The inputs and the systems themselves are vulnerable to
noteworthy adversarial attacks, i.e. manipulated samples that tamper the model’s
decision or prevent its normal functioning. These attacks, often imperceptible to
humans, can be inconvenient or even threatening to deployed AI systems. The
highly critical tasks for which these systems are being used have raised questions
about their trustworthiness and the interpretation of their results. The extensive
use of machine learning in safety-critical systems can expose new weaknesses that
are specific to these kinds of models and for which not only a few defenses exist, but
they are also not trivial to evaluate effectively.

The first popular examples of adversarial perturbation appeared in 2012 (Biggio
et al., 2013; Szegedy et al., 2014) and are known under the name of adversarial
examples. In 2016 Carlini et al. (2016) showed that it is possible to design perturbed
audio signals that fool the voice-recognition systems to act on commands that are
hidden to our hearing but interpreted by our trusted assistants. In April 2019, an
attack against self-driving cars has shown that it takes only some small sticker in
the road for causing the autopilot to follow an unexpected path or an image that
looks like noise to activate the windshield wipers2.

These findings are part of the field of research of Adversarial Machine Learning. This
topic has gained soaring interest in recent years precisely because of this alarming
evidence and of the disastrous consequences of a successful attack, depending on
the targeted application scenario. This phenomenon has been growing especially
in the context of security domains, including cybersecurity, typically involved in
an adversarial context where the impostor wants to access undetected restricted
resources. Current machine learning methods have been designed carelessly of the
security aspect required for trusting them in the real world. These systems can be
fooled with well-crafted adversarial manipulation to the input data, also known as
evasion attacks (Biggio et al., 2013; Szegedy et al., 2014), and the manipulation of
the training sets used for updating the model based on online training, performing
attacks known as poisoning attacks (Biggio et al., 2012; Koh and Liang, 2017).

1https://www.nytimes.com/2021/09/18/world/middleeast/iran-nuclear-fakhrizadeh-
assassination-israel.html

2https://keenlab.tencent.com/en/2019/03/29/Tencent-Keen-Security-Lab-Experime

ntal-Security-Research-of-Tesla-Autopilot/

https://keenlab.tencent.com/en/2019/03/29/Tencent-Keen-Security-Lab-Experimental-Security-Research-of-Tesla-Autopilot/
https://keenlab.tencent.com/en/2019/03/29/Tencent-Keen-Security-Lab-Experimental-Security-Research-of-Tesla-Autopilot/
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Other attacks discover hidden information – potentially personal or sensitive data -
from the deployed model (Papernot et al., 2016a).

In the following section, we will provide a taxonomy that organizes the adversarial
attacks against classification systems and, in general, supervised learning algorithms.
The description of adversarial attacks against unsupervised learning algorithms and
reinforcement learning algorithms is beyond the scope of this thesis.

2.2.1 Taxonomy of Adversarial Attacks Against Classifiers

Adversarial attacks against classification learning algorithms can be categorized
along three primary axes: the attacker’s goal, the attacker’s knowledge, and the
attacker’s capability. A widely-established taxonomy was presented by Biggio and
Roli (2018) and will be summarized in the following while localizing the adversarial
attacks that will be included in this thesis, i.e. evasion attacks, within the different
aspects presented.

Attacker’s Goal. The attacker’s goal is what the attackers aim to achieve with
their actions. Cybersecurity concepts define the CIA Triad3, which models the
information security threats in three axes, namely Confidentiality, Integrity, and
Availability. In evasion attacks, the attacker aims to achieve an integrity security
violation, i.e., to compromise the normal system operation. The attack can be error-
generic, i.e. aiming to have the input sample classified as any class excluding the
true label, or error-specific, i.e. aiming to have the input sample misclassified as
a specific class. This distinction is also known in the literature as untargeted and
targeted attacks respectively, and this notation will be used for the remaining part
of the thesis.

Attacker’s Knowledge. The attacker’s knowledge indicates the information that
is available to the attacker. Intuitively, the more information available, the more
impact the attacks should have on the target model. The knowledge of the attacker
in adversarial attacks against classification can be divided on the availability to the
parameters of the model, i.e. the weights, and the output of the classifier. Moreover,
different shades of availability can be identified. The attacker can have direct access
to the model, or know at least the type of model and how it was trained, hence
having the possibility of creating a similar model, or can have access to the outputs
in two different modes, knowing either the output scores or the classification labels.

• White-box attacks. This is the ideal case for attackers, as they have complete
access to the model. They can query the classifier, obtain its outputs, but
most importantly they can compute the gradients with respect to the input
features, that are required by many attacks. More information will be given
in Sect. 3.1.1.

3https://en.wikipedia.org/wiki/Information security

https://en.wikipedia.org/wiki/Information_security
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• Black-box attacks. Attackers can only query the model and obtain either the
predicted labels or, if accessible, the output scores of the decision function.
This is often the case of Machine Learning as a Service (MLaaS), where the user
can send queries to a model that is deployed on the web and not downloadable,
and the platform returns only the model’s output. More information about
black-box attacks will be provided in Sect. 3.2.2.

• Gray-box attacks. In this case, the attacker knows additional information on
how the model was created. One example can be an MLaaS platform that gives
access to training data or open-sources the model architecture that is being
used. This case is more unusual, as often MLaaS are owned by companies and
avoid disclosing information about the deployed models.

Attacker’s Capability. This axis indicates if the attacker can act on the training
phase of the model, and perturb the training data, i.e. altering the weights that
will be learned, or only on the testing phase, i.e. only changing the output for the
samples that are being passed. This divides the attacks between poisoning attacks,
that aim to achieve a specific behavior of the model after training, and evasion
attacks, that aim to obtain a specific output in the inference phase of the model.
Another limitation for the capability of the attackers is if the specific application
includes further constraints on the things that they can change. For example, when
perturbing a sample in the image domain, the features have to remain in the bounds
of the representation, typically within a value of 0 and 255 for each pixel (see Sect. 2.1
for recalling about feature space bounds).

Table 2.1 shows the taxonomy of the adversarial attacks against machine learning,
highlighting where evasion attacks are located depending on the attacker’s goal and
capability. In this thesis, we will focus on evasion attacks with both white-box and
black-box attacker’s knowledge scenarios.

Attacker’s Goal
Attacker’s Capability Integrity Availability Privacy/Confidentiality

Test data Evasion (a.k.a. adversarial examples)
Energy-latency attacks
(a.k.a. sponge examples)

Model extraction / stealing and model
inversion (a.k.a. hill-climbing attacks)

Training data
Poisoning (to allow subsequent
intrusions, e.g. backdoors or
neural network trojans)

Poisoning (to maximize
classification error)

-

Table 2.1: Categorization of attacks against machine learning depending on the
capability and the goal of the attacker, as defined in Biggio and Roli (2018).

2.2.2 Evasion Attacks

As previously discussed, evasion attacks allow to find, given an input x correctly
classified as y, a small perturbation for which x + δ is classified as y′ 6= y. The
attack can be targeted or untargeted. A targeted attack aims to have the sample
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misclassified as a specific label y′t 6= y, whereas an untargeted attack will create
adversarial examples that are simply misclassified, hence having simply y′ 6= y.

Creating adversarial examples amounts to optimizing a trade-off between the size of
the perturbation and the confidence of the classifier on the misclassification objective
within a constrained region ∆:

min
δ∈∆

(L(x+ δ, y; θ), ||δ||p). (2.2)

A targeted attack will maximize the score of the target class yt and an untargeted
attack will simply minimize the score of the original label y. The region ∆ is defined
by several bounds, that limit the search space. One bound constrains the sample
to remain within the input space of the model, i.e., xlb � (x+ δ) � xub as defined
in Sect. 2.1. The norm constraint ||δ||p bounds instead the maximum perturbation
size in the given perturbation model. Commonly-used perturbation models are `0,
`1, `2, `∞, and will produce respectively sparse to increasingly dense perturbations.
In summary, we can write such constrained regions as

∆ = {δ ∈ Rd | ‖δ‖p ≤ ε ∩ xlb � x+ δ � xub}.

The loss function L(x + δ, y;θ) determines the landscape where we are optimizing
our attacks and whether the attack is targeted or untargeted by including the speci-
fication in the objective. In the following of this thesis, we will adopt the convention
for which the desired adversarial examples are found in the minima of the loss func-
tion (changing that will only require swapping the signs in all the equations). Thus,
attackers aim to minimize the loss for achieving their goals.

Depending on the case, the attack can have different loss functions as objective.

• Cross-entropy Loss (CE-Loss). The loss that Szegedy et al. (2014) used
for the FGSM attack, defined as in Eq. 2.1, but slightly modified for achiev-
ing misclassification, rather than the correct functioning of the model. The
attacker aims to minimize:

L(x, y;θ) =
C∑
c=1

(yc log(zc(x;θ))), (2.3)

where, in contrast to the case of training, the loss has swapped sign, i.e. for
each sample the attacker aims to minimize the probability score of the correct
class. The score zc is the probability output of the model for classifying the
sample x as class y. For a targeted attack, it is sufficient instead to maximize
the probability of the target class zt, i.e. using Eq. 2.3 with the opposite sign,
and substituting the original label y with the target label yt.
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• Logit Difference (CW-Loss). This loss was introduced by Carlini and
Wagner (2017b), in the popular attack that brings their name. In this case,
the loss is directly applied to the logits, i.e. the outputs of the model.

L(x, y;θ) = fc(x;θ)−max
j 6=y

fj(x;θ) , (2.4)

where fj(x,θ) is the score output of the model for the sample x as class j,
and θ is the set of its learned parameters. Assuming the classifier assigns
higher scores to the correct class, the loss function takes on negative values
when x becomes adversarial. As for the previous case, this loss can become
targeted if the score ft(x;θ) is used instead of the score for the original class,
and the sign of the loss is swapped, i.e. the objective becomes maximizing the
logit of the target class. It is worth noting that setting this loss equal to zero
means finding the decision boundary while imposing an offset means enforcing
a margin of misclassification confidence on the sample.

• Difference of Logit Ratio (DLR). This loss function was introduced
by Croce and Hein (2020b), and it is both shift and rescaling invariant to
the outputs of the model. This is obtained by using the Logit Difference and
dividing it by a scaling factor computed on the logits themselves.

DLR(x, y;θ) =
fc(x;θ)−maxj 6=y fj(x;θ)

fπ1(x;θ)− fπ3(x;θ)
, (2.5)

where π is the ordering of the components of the logits in decreasing order. The
shift invariance is achieved by having a difference of logits in the denominator.
The targeted version of this loss is further complicated and will not be used
in the context of this thesis, suggesting the interested readers to refer to the
original paper for more details (Croce and Hein, 2020b).

Keeping on with the parallel to training machine learning models, also adversarial
attacks define losses that they need to optimize, and the most straightforward way to
do so is using gradient descent. In contrast to what happens in training, in this case,
we are keeping the parameters of the model θ fixed, while varying the perturbation
added to the input data δ. For this reason, we need to know how much the loss
changes w.r.t. the features of the sample, i.e. we need to compute the gradient of
the loss w.r.t. to the input data. The gradient is expressed as ∇Lx = ∂L(x,y;θ)

∂x
.

The algorithms then update, in many cases iteratively, the attack sample along the
negative gradient of the objective function, in order for it to decrease.

An adversarial attack is thus defined by its objective function, i.e. the loss, and an
optimizer, i.e. the algorithm, that aims to minimize the objective function within
the constraints. A list and description of the state-of-the-art attacks, along with the
associated objectives and algorithms, will be given in Chapter 3.
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2.3 Assessing Robustness of Machine Learning

Models

For model designers, it is thus important to estimate robustness to the adversarial
attacks. One simple evaluation can be to evaluate the model’s sensitivity as the
expected value of its correct classification after the inputs have been perturbed with
a given perturbation model. The robust accuracy is defined by setting a region
delimited by ||δ||p ≤ ε and centered in x and computing the classification accuracy
of the samples perturbed with an `p norm smaller than ε for all the points in a
testing set.

E
(x,y)∼Dtest

[A(x+ δ, y;θ)| δ ∈ ∆]

Thus, it is clear that stronger attacks will produce, for the same perturbation
bounds, lower robust accuracies. The threshold ε > 0 is set for different datasets
and models, ranging in values that produce robust accuracies between the clean
accuracies and zero. For example, common standards for the MNISTdataset are to
set the `∞ norm at 0.3 and the `2 norm at 0.5. For having a complete snapshot
of the robustness of a model, and for better comparing different models, one can
also produce the security evaluation curves, that compute the robust accuracy as a
function of the distance, by running attacks for different values of the threshold ε
and inspecting their success. Figure 2.2 shows an example of security evaluation on
two different models.
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Figure 2.2: Example of security evaluation curve. The robust model (green) retains
higher accuracy than the standard model (red) on increasing amounts of perturba-
tion.

Alternatively, one can fix the other objective of the trade-off, i.e. the accuracy
(under attack), and inspect the minimum distance. For this, an evaluation procedure
was established in Schott et al. (2018) and followed in other minimum-distance
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attack papers. The idea is to inspect the distance for which 50% of the samples are
adversarial, i.e. for which the attack succeeds. For achieving that, it is sufficient to
compute the median of the minimum distances found for the points in the testing
set, taking care to set the samples that are not adversarial after the attack to a
distance of∞ in order for them to not be taken into account (unless the majority of
the samples are not adversarial, then the median distance will result equal to ∞).

2.3.1 Defenses Against Evasion Attacks

To improve robustness, various defense techniques against adversarial examples have
been proposed. Such defenses can be roughly categorized into 7 categories:

• Adversarial training. This is the most straightforward defense, introduced
by Goodfellow et al. (2015) and Kurakin et al. (2017), and then extended
by Madry et al. (2018). The robustness of this model is achieved by augment-
ing the training data with adversarial examples so that the model can learn
how to map them to their true labels. This improves adversarial robustness
but it is resource-demanding and time-consuming, as it requires creating ad-
versarial examples during training. Training time is slowed down by the inner
attack iterations that create the augmented samples, however, applying faster
attacks still produces good results (Wong et al., 2019; Rony et al., 2019). This
method is often combined with other defense mechanisms for further increasing
robustness.

• Robust regularization. The method consists in penalizing the input gradi-
ents, hence the sensitivity to input perturbations, during training. The cost of
computing adversarial examples is removed, but the method still requires the
computation of the input gradients to regularize them along with the objec-
tive function. This method is shown to be equivalent to adversarial training
in Ross and Doshi-Velez (2018).

• Manifold projections. In this defense, the input data is projected into a
learned data manifold, that models the distribution of the training samples. In
this way, if an adversarial example is submitted to the model, it is reprojected
in the data distribution, with the intent of removing the adversarial perturba-
tion (Jalal et al., 2017; Shen et al., 2017; Samangouei et al., 2018; Song et al.,
2018; Schott et al., 2018).

• Stochasticity. The defense adds randomness to the input (Xie et al., 2018;
Prakash et al., 2018), the activations (Xiao et al., 2020; Dhillon et al., 2018),
or to the outputs (Park et al., 2021). These defenses are often broken by the
use of smoothing techniques in the loss (Tramer et al., 2020).
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• Preprocessing/Input Quantization. This defense mechanism preprocesses
the inputs (Guo et al., 2018; Munusamy Kabilan et al., 2018) or the activa-
tions (Buckman et al., 2018), often by quantizing them (Papernot et al., 2016b;
Lu et al., 2017). Unfortunately, these are often found ineffective (Carlini and
Wagner, 2016).

• Detectors. A separate model is trained to detect the adversarial exam-
ples (Bendale and Boult, 2016; Meng and Chen, 2017; Li and Li, 2017; Melis
et al., 2017; Yu et al., 2019). The output of the model is the label and the
probability that the sample is adversarial, which can be thresholded to reject
the decision. The peculiarity of this model is that it does not provide the
prediction if the sample is rejected unless a separate algorithm recovers the
input sample.

• Certified Defenses. These defenses provide guarantees of robustness to
norm-bounded attacks by ensuring no adversarial example is present in the
certified radius (Cohen et al., 2019; Zhang et al., 2020). The limitation of
these defenses is that they do not scale well, or are supported for very specific
types of models or attacks.

Despite the considerable number of defense papers proposed in the last years, only
a few of them stood the test of time. Why, you may ask. The main problem that
plagues these defenses lies in the method by which they are evaluated. Searching for
adversarial examples produces a binary output, i.e., it indicates whether they were
found in the region in which they were searched. Unfortunately, the state-of-the-art
algorithms and frameworks are not capable of providing support to understand if
the optimization process went correctly. In the next chapter, we will dive deeper
into the reasons why adversarial robustness evaluations are not an easy task, and
what should be done to make them more efficient and effective.



Chapter 3

Adversarial Robustness
Evaluations

Research on adversarial machine learning has been carried out for many years and
has shown impressive improvements in the attack side, while the mitigation tech-
niques proceed slower mainly due to the different nature of the proof: it takes only
a sample to show that a defense does not work, while the attack can work in some
case and still be effective. In other words, for proving a defense effective it should
be evaluated with all possible inputs to the model, a task impossible even for the
most advanced systems.

The design of the system is a constantly-updating arms race, where the attacker and
the defender act based on the opponent’s moves evolving over time to reach their
opposite goals (Biggio et al., 2013; Biggio and Roli, 2018). An update to the model
happening only after a successful attack – a reactive approach - may be too latecomer
to avoid damage. A proactive approach, i.e. the anticipation of the possible attacks,
is preferable especially in case of critical applications. This approach advocates the
secure-by-design paradigm, that is the identification of potential threats against the
system and the embedding on the system itself of specific countermeasures that
address the problem before it can be exploited by the attacker.

It is of paramount importance to define an experimental protocol and state clearly
the settings of the scenario, the model, the processes, and the attacker, in order to
have a complete view of the problem. The threat model defines the attacker’s goal,
knowledge, and capability for manipulation, which have been already discussed in
Sect. 2.2.1. For this, a substantial help, at least to start the analysis, is provided by
the white-box attacks and by the libraries that implement them, which allow in few
lines of code to set up a preliminary robustness evaluation. We have deliberately
used the adjective preliminary because the search for adversarial examples cannot be
limited to a hasty analysis with things already built, but this is just the beginning.
Once this step is completed, and no adversarial examples are found, one should
move on to more complicated and dedicated search techniques.
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Unfortunately, the designed defenses often lack a fulfilling evaluation protocol and
have been proved ineffective (Athalye et al., 2018). The main limitations of these
evaluations are the following:

• many defenses are able to identify only existing attacks. The solutions pro-
vided by these defenses are the attack identification, e.g. with a specifically
trained classifier, and the reject option, i.e. the rejection of low-confidence
decisions. These solutions are unfortunately not able to detect the unknown.
Adaptive attacks, i.e. attacks aware of the defense in place, have successfully
fooled this kind of defense;

• some of the known defenses only hide the gradients of the decision function, so
that they cannot be exploited for creating the attacks. This is not a solution, as
they can be bypassed by using an approximation of the target function (Atha-
lye et al., 2018);

• in many other cases, the attacks used for testing the defenses are run with
the default hyperparameters, resulting in a complete underestimation of the
impact of the attack.

In Chapter 2 we introduced the background on machine learning, adversarial ma-
chine learning, and what it means to assess adversarial robustness. In this chapter
we will first detail the robustness evaluation process, then we will describe its main
limitations, along with stating what will be addressed in this thesis.

3.1 Existing Tools and Frameworks

Learning algorithms are vulnerable to adversarial examples, i.e., intentionally-
perturbed inputs aimed to mislead classification at test time (Szegedy et al., 2014;
Biggio et al., 2013). Since their discovery and formalization, there has been a prolif-
eration of attack algorithms that attempt to find these small perturbations. In this
thesis, we will focus on the gradient-based category of attacks, i.e. all the attacks
that aim to find the steepest descent direction on a loss function.

3.1.1 Gradient-based Adversarial Attack Algorithms for
Evading Classifiers

The first test to assess the robustness of a model is always to try the defense with the
strategy that already works well enough, in the majority of the cases, to reveal that
the defense is weak. This restricts the first part of the analysis to gradient-based
attacks. Depending on the strategy adopted, these attacks can be divided into three
main sub-categories:
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• Projected-gradient attacks. These algorithms perform a maximum-
confidence attack in each step under a given perturbation budget ε. Some
of them also iteratively adjust ε to reduce the perturbation size.

• Soft-constraint attacks. They optimize a trade-off between the confidence
of the misclassified samples and perturbation size.

• Boundary attacks. These attacks move along the decision boundary towards
the closest point to the input sample.

An important distinction has to be highlighted here. All these attacks define an
optimization problem where maximum-confidence and minimum-distance attacks
are either the objective or the constraint. Specifically, maximum-confidence attacks
optimize the following problem:

δ? ∈ arg min
δ

L(x+ δ, y,θ) (3.1)

s.t. ‖δ‖p ≤ ε (3.2)

xlb � x+ δ � xub , (3.3)

where || · ||p indicates the `p-norm operator. The loss L in the constraint in Eq. (3.2)
can be any of the losses defined in Sect. 2.2.2, e.g., the cross-entropy loss, defined
accordingly to the goal of the attack, i.e. untargeted or targeted misclassification,
and keeping in mind that we defined them as having adversarial examples in the
minima. Minimum-distance attacks instead have the misclassification confidence as
the main objective, while constraining the maximum distance, i.e.

δ? ∈ arg min
δ

‖δ‖p (3.4)

s.t. fy(x+ δ,θ) 6= fy(x,θ) (3.5)

xlb � x+ δ � xub , (3.6)

where || · ||p indicates the `p-norm operator. The constraint in Eq. (3.5) can be,
for example, the difference between the output score of the original class y and
the scores of the other classes, hence enforcing a misclassification whenever the loss
is negative. The problem may be formulated also as a targeted attack by setting
accordingly the sign of the loss, and targeting the class ŷ. Hence, in this problem,
the misclassification confidence is the constraint, and the distance is the objective
to minimize.

In contrast to maximum-confidence attacks, which maximize confidence in a wrong
class within a given perturbation budget, the latter are better suited to evaluate
adversarial robustness as one can compute the accuracy of a classifier under attack
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for any perturbation budget without re-running the attack. Having a set of diverse
attacks available is however important, as for evaluating a model’s robustness it
does not matter how the adversarial example is found, only whether it was found or
not. This emphasizes the importance of understanding what are the main attacks
and their principles, as it might reveal where they can work better than others and
where they can fail.

Projected Gradient Descent (PGD). PGD is a powerful projected-gradient
iterative attack that was proposed by Kurakin et al. (2017) and by Madry et al.
(2018). This attack implements the multiple-step version of a previously-proposed
attack named Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015), that
attacks the `∞-bounded region with a single step of normalized gradient descent
on the negative cross-entropy loss (as in the one defined in Eq. 2.3), to maximize
the misclassification rate. Other methods that incrementally improve FGSM or
PGD have also been proposed later on (Dong et al., 2018; Lin et al., 2020), but the
underlying principle remains the same. FGSM computes a single iteration as

x− ε sign(∇xL(x, y;θ)),

on the cross-entropy loss L(x, y;θ). Note that the attack can aim to increase the
cross-entropy loss of the model on the original labels to achieve error-generic mis-
classifications, i.e. untargeted attacks, or can reduce the loss on the classification of
the input as a specific target class to achieve an error-specific misclassification, i.e.
a targeted attack. This attack assumes local linearity of the loss function within the
step size and moves the perturbed points in the normalized vertices of an `∞ box
around the current iterate with a radius of ε.
The iterative versions, i.e. PGD, computes the multi-step variant

xt+1 = Π∆(xi − α sign(∇xL(x, y;θ)),

that produces a more refined optimization on the loss landscape by performing small
steps of maximum size α while keeping the updates inside the ε-bounded region.
Other variants introduce improvements such as momentum (Dong et al., 2018), or
Nesterov acceleration and scale invariance (Lin et al., 2020).

Carlini & Wagner Attack (CW). This is a soft-constraint attack, introduced
by Carlini and Wagner (2017a), that minimizes the soft-constraint version of the
attack problem, i.e.,

min
δ
‖δ‖p + c ·min(L(x+ δ, y,θ),−κ).

The loss used here is the logit-difference loss, as in Eq. 2.4. The hyperparameters κ
and c are used to tune the trade-off between perturbation size and misclassification
confidence. Respectively, κ regulates the misclassification confidence by setting a
minimum required value for the loss, while c is a multiplier for the loss term that is
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searched through line search in an outer loop of the attack algorithm (the inner loop
computes the gradient-descent steps). To find minimum-norm perturbations, CW
requires setting κ = 0, while the constant c is tuned via binary search (re-running
the attack at each iteration).

Decoupling Direction and Norm (DDN). This boundary attack, proposed
by Rony et al. (2019), can be seen as a minimum-distance version of the PGD
attack, as it optimizes the cross-entropy loss within an ε-sized constraint, but with
the difference that it adjusts ε to minimize the perturbation size.

Brendel & Bethge Attack (BB). This boundary attack, proposed by Brendel
et al. (2020), starts from a randomly-drawn adversarial point, performs a multi-step
binary search to find a point that is closer to the decision boundary, and then updates
the point to minimize its perturbation size by following the decision boundary. The
direction of the update moves alongside the boundary, by using the gradient of
the difference of logits. In each iteration, BB computes the optimal update within a
given trust-region of radius ρ. In contrast to standard gradient-based attacks, which
start from the clean sample, this attack starts from a point that is adversarial and
far away from the initial one, and walks along the boundary towards the smallest
perturbations that produce an adversarial example.

Fast Adaptive Boundary (FAB). This boundary attack, proposed by Croce and
Hein (2020a), iteratively optimizes the attack point by linearly approximating its
distance to the decision boundary. FAB uses a scale-invariant version of the logit
difference loss, which selects the steepest descent on the class that is the closest,
according to the linear approximation, to the current iterate, i.e. it selects the
closest hyperplane that leads to untargeted misclassification. This attack does not
implement a targeted version in the sense that is commonly intended in this field.
The “targeted” version of the FAB attack is actually a method to accelerate finding
an untargeted adversarial example. It uses an adaptive step size bounded by αmax

and an extrapolation step η to facilitate finding adversarial points. For each step,
it computes the direction and performs a trade-off update including a forward step
towards the adversarial region, and a backward step to reduce the perturbation size.

Other attacks and variations of the presented attacks. Many of these at-
tacks have been later incrementally improved by small variations that improve their
optimization process in some specific cases. For example, the popular PGD attack
has been later on enhanced with momentum (Dong et al., 2018). We are restricting
our analysis to the category of PGD attacks, without diving into much detail on
all the variations. The same goes for the CW attack, which was also proposed to
support a mixed trade-off of the `1 and `2 norms, as ElasticNet attack (Chen et al.,
2018).
Moreover, minimum-norm attacks like DDN, FAB, and BB do not produce high-
confidence adversarial examples (otherwise they could always find smaller perturba-
tions). Despite that, they are not weak. In fact, minimum-norm attacks such as CW
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and BB have served as standard tools in the breaking of many defenses (Athalye
et al., 2018; Brendel et al., 2020), and are recommended in widely-accepted com-
munity guidelines (Carlini, 2019; Tramer et al., 2020), that will be presented in
Sect 3.2. Aside from that, there exist some weak minimum-norm attacks like Deep-
Fool (Moosavi-Dezfooli et al., 2016), which make strong assumptions on the models
to increase query efficiency but are considered sub-optimal algorithms compared to
the ones listed here as they aim to achieve primarily different objectives, e.g. a
limited computational cost. For these reasons, we are not giving many details on
a number of adversarial attacks that fall outside the categories presented here and
outside the scope of this thesis.

AutoAttack. Special mention should be made of the work by Croce and Hein
(2020b) that partially automates the choice of attacks and their hyperparameters.
AutoAttack is a hyperparameter-free attack that includes 4 sub-strategies, namely:

• AutoPGD with Cross-entropy Loss (APGD-CE), which is an extension of PGD
that automatically tunes the step size with an internal search;

• AutoPGD with the Difference of Logits Ratio (APGD-DLR), which in addition
to doing the step-size tuning, changes the original cross-entropy loss to the
DLR loss defined in Eq. 2.5.

• FAB, the boundary attack presented in the previous overview of gradient-based
attacks (Croce and Hein, 2020a);

• SquareAttack, a query-efficient black-box attack by Andriushchenko et al.
(2020), that searches for adversarial examples with `2 and `∞ perturbation
models by exploring at each iteration in localized square-shaped regions.

The APGD attack partially solves the problem of the careful selection of the step
size, trading it off with fewer queries available for actually running the attack. Fur-
thermore, the AutoAttack can be considered a framework of adversarial attacks
itself, as it runs for each input point all the available internal strategies and selects
the best one.

Table 3.1: Summary of the main state-of-the-art evasion attacks. CE and DL refer
to the Cross-Entropy Loss and to the Difference of Logits respectively.

Attack Category Loss Pert. Model Targeted Untargeted
PGD projected gradient CE `1, `2, `∞ X X
CW soft constraint DL `2 X X
DDN projected gradient CE `2 X X
BB boundary DL `0, `1, `2, `∞ X X
FAB boundary DLa `1, `2, `∞ X

a FAB uses a scale-invariant version of the difference of logits.
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As described here, there is a great variety of attacks and implementations, that
are also summarized in Table 3.1. However, the main difficulty remains: it is not
easy to choose the right one, tune the hyperparameters correctly, without incurring
mistakes and failures that can lead to a faulty evaluation. First, every attack has
its strengths and weaknesses. Soft-constraint attacks like CW optimize a trade-off
between the confidence of the misclassified samples and perturbation size. This class
of attacks needs a sample-wise tuning of the trade-off hyperparameter to find the
smallest possible perturbation, thus requiring many steps to converge. Boundary
attacks like BB or FAB move along the decision boundary towards the closest point
to the input sample. These attacks converge within relatively few steps but may
require an adversarial starting point and need to solve a relatively expensive opti-
mization problem in each step. Finally, recent minimum-norm projected-gradient
attacks like DDN perform a maximum-confidence attack in each step under a given
perturbation budget ε, while iteratively adjusting ε to reduce the perturbation size.
DDN combines the effectiveness of boundary attacks with the simplicity and per-step
speed of soft-constraint attacks; however, it is specific to the `2 norm and cannot be
readily extended to other norms.

All these attacks are gradient-based, hence they optimize a loss function towards
finding adversarial examples. An important aspect to keep in mind, that will be
described profusely in Sect. 3.2, is the problem of gradient obfuscation. In short,
gradient obfuscation happens when the defense breaks the gradient-descent mecha-
nism by either making the loss function highly non-linear or by making the gradients
zero in the local region where the attack is being optimized, i.e. there is no direction
to follow to find the optimum.

3.1.2 Toolboxes and Benchmarks

The implementation of the aforementioned attacks can be found in many different
ad hoc open-source code libraries. The adversarial toolboxes provide powerful off-
the-shelf, ready-to-use attacks, to evaluate machine learning models. Such libraries
are useful to evaluate individual schemes, i.e., a single attack against a single model.
These libraries provide unified interfaces for the attacks so that it is easy to test
attacks in a plug-and-play manner.

Toolboxes for Adversarial Attacks. Compared to the years when adversarial
machine learning was born, there is now a wide variety of open-source code libraries
that focus on implementing attack algorithms. Some of them also provide imple-
mentations of several basic defenses, but they do not generally include up-to-date
state-of-the-art pre-trained models. Here we give a quick overview of the most used
libraries for adversarial attacks.
CleverHans1 (Papernot et al., 2018) is an adversarial-machine-learning library
that provides standardized reference implementations of attack algorithms and

1https://github.com/cleverhans-lab/cleverhans

https://github.com/cleverhans-lab/cleverhans
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adversarial training techniques. This library originally supported only Tensorflow
models, but it was recently updated to support more back-end frameworks for deep
learning.
AdverTorch2 (Ding et al., 2019), similarly to CleverHans implements state-of-the-art
attacks through the use of standard optimizers commonly used for deep learning,
but it is restricted to PyTorch users.
Foolbox3 (Rauber et al., 2017, 2020) is a library that lets you easily run adversarial
attacks against machine learning models like deep neural networks. It is built on
top of EagerPy, a wrapper that makes it works natively with models in different
deep learning frameworks. It is nowadays the most used library for adversarial
robustness evaluations.
The Robustness Library4 (Engstrom et al., 2019) implements primarily methods
for training, evaluating, and exploring robust neural networks. It contains some of
the most used attacks, but it focuses more on the defenses.
Adversarial Robustness Toolbox (ART)5 (Nicolae et al., 2019) contains by far one
of the widest collections of attacks and applications against machine learning. It
includes the adversarial threats of Evasion, Poisoning, Extraction, and Inference,
supports many popular machine learning frameworks, data types (images, tables,
audio, video, etc.), and machine learning tasks (classification, object detection,
speech recognition, generation, certification, etc.).
SecML6 (Melis et al., 2019) is a security evaluation library for machine-learning
algorithms, that supports the PyTorch deep learning framework as well as the
scikit-learn models, and includes many useful tools for inspecting the internal
process of creating adversarial attacks.

Despite seeming very easy to use, the majority of these libraries often come with
default hyperparameters and lack of support to correctly configure the attacks. This
scenario, often combined with tight time constraints for testing the defense properly,
might expose the model to the risk of being evaluated too lightly, as will be explained
in the following sections. It is worth pointing out that there is also a small number of
tools to compare attacks other than in terms of their success rate, as these libraries
rarely collect logs and statistics during the optimization process.

Benchmarks. Related to the aforementioned libraries, there are a number of at-
tack benchmarks that have been constructed. Instead of measuring the robustness
of individual schemes as the just-described libraries do, these benchmarks aim to
provide a complete evaluation framework that can be extended to any future model
and attack as well.

2https://github.com/BorealisAI/advertorch
3https://github.com/bethgelab/foolbox
4https://github.com/MadryLab/robustness
5https://github.com/Trusted-AI/adversarial-robustness-toolbox
6https://github.com/pralab/secml

https://github.com/BorealisAI/advertorch
https://github.com/bethgelab/foolbox
https://github.com/MadryLab/robustness
https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/pralab/secml
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The MNIST7 Challenge and CIFAR108 Challenge (Madry et al., 2018) were among
the first benchmarks that appeared in the field, hosted at NeurIPS 2017 and 2018.
The aim of these challenges was to find, in a black-box manner, the adversarial
examples for the models trained with adversarial training (Madry et al., 2018) on
the respective datasets, for which the weights were initially kept secret. The chal-
lenge received many submissions, and later on, the models were released to the
public. Ling et al. (2019) proposed DEEPSEC9, a benchmark that tests several
attacks against a wide range of defenses. However, this framework was shown to
be flawed by several implementation issues and problems in the configuration of the
attacks (Carlini, 2019). One of the first public benchmarks for evaluating and com-
paring different models was RobustML10, that despite being a valuable contribution
for the community, relied on evaluations performed by users, and the last submitted
model dates back to 2019. Croce et al. (2020) propose RobustBench11, that accepts
state-of-the-art models as submissions, and it tests their robust accuracy by apply-
ing AutoAttack (Croce and Hein, 2020b). However, this benchmark suite is not able
to determine which are the possible causes of such scored performance, e.g. it does
not inspect why the attacks failed. This is a limitation of all available benchmarks,
as it will be clear after reading the next section.

3.2 Current Guidelines for Evaluating Adversar-

ial Robustness

There have been a number of prior papers evaluating the robustness of particular
defense schemes (Carlini and Wagner, 2017a; Athalye et al., 2018; Tramer et al.,
2020). These papers focus on understanding whether the robustness claims of par-
ticular defenses are true, often by performing one-off attacks or by proposing new
general attack approaches that can be used to break future defenses. The main
aspect of these papers is that the authors focus their efforts on breaking defenses
by manually reversing their mechanisms, showing what the authors of the original
evaluation had overlooked. In many cases, it involved problems in the optimization
of the attacks, rather than errors in the implementation or in the code itself. Carlini
et al. (2019) systematized various suggestions from the literature for how to ensure
that adversarial robustness evaluations are performed thoroughly.

7https://github.com/MadryLab/mnist challenge
8https://github.com/MadryLab/cifar10 challenge
9https://github.com/kleincup/DEEPSEC

10https://www.robust-ml.org/
11https://github.com/RobustBench/robustbench

https://github.com/MadryLab/mnist_challenge
https://github.com/MadryLab/cifar10_challenge
https://github.com/kleincup/DEEPSEC
https://www.robust-ml.org/
https://github.com/RobustBench/robustbench
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3.2.1 Obfuscated Gradients and the Rise of Adaptive Eval-
uations

At this point, it is clear that performing security evaluations is not just taking a set
of attacks and running them against the defense, but it requires a careful analysis
of the problem. In the field, many published defenses have been shown to conduct
an incorrect or incomplete evaluation. Figure 3.1 shows a timeline demonstrating
a few representative defense papers, published also in top venues for the field, that
were broken by subsequent evaluations. The fact that many defenses were created
and evaluated even after the publications of the most relevant paper containing the
guidelines for robustness evaluations (Carlini et al., 2019) proves that we are still
far from having a well-defined protocol for properly checking a defense.

1

Proposed defenses

Defenses shown to be broken

Adv. Robustness evaluation guidelines

Figure 3.1: Timeline of the arms race for adversarial robustness evaluations.

The main problem that often leads to the defense being broken after publication
is that the evaluation does not cover properly the possibility of unknown attacks.
Moreover, it is not possible to rule out the presence of adversarial examples if they
were not found with an empirical strategy, as a different method may find them and
reveal a broken defense.
Even the state-of-the-art attacks might be not strong enough, as they are tested
only against existing defenses, hence leaving a good chance these attacks will not
work against a new defense. One typical example of this is the paper by Athalye
et al. (2018), where the authors found that 7 published defenses were indeed only
apparently robust to adversarial examples. These models were not creating a robust
decision landscape with no adversarial points, but in fact, they were only making
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(a) (b) (c)

Figure 3.2: When the landscape is sufficiently smooth (a), gradient descend is able
to decrease the loss. When the gradient is zero (b), it is not possible to find the
steepest direction. When the landscape is highly irregular, the descent is noisy as
the local steepest descent might not point to a good solution.

them difficult to find by making the gradients of the models useless for generating
adversarial examples. Figure 3.2 shows examples of how gradient-descent works well
when the loss is smooth (Figure 3.2a), while it becomes difficult when the loss is
locally flat (Figure 3.2b), or when the landscape is noisy (Figure 3.2c). The gradient
obfuscation problem was thus defined as a defense that either causes the loss to
be non-differentiable or with incorrect gradients (gradient shattering), to have a
highly variable landscape by introducing randomness (stochastic gradients), or to
be causing numerical instabilities that cause the gradients to be infinite or zero
(exploding/vanishing gradients). This paper notably set the bar high for authors
that wanted to publish their own robust models, as it demonstrated that a lot of
care should be put in the evaluation part, rather than focusing only on the design
of the defense.
Later on, this difficulty of properly assessing the robustness of defenses led to the
creation of guidelines that are generically applicable to all evaluations, in order to at
least avoid common problems and check the model as hard as possible. In Chapter 4
we will formalize these problems as 4 failures that affect the robustness evaluations,
and provide a concrete advancement in the methods that can be used to detect them
and to fix them automatically. However, at the current state, only a checklist for
the evaluation is available. The list divides the items into three main categories:

• Common severe flaws. This category includes items whose invalidity results in
the invalidity of all robustness claims derived from the evaluation. It states to
define a precise threat model, to validate that with strong attacks, to release
the model and evaluation as open-source code, and to perform sanity tests
to ensure that the approach is valid. One particular point is to evaluate the
model with adaptive attacks, i.e. attacks that have full knowledge of and access
to the defense.

• Common pitfalls. This category includes mistakes that might prevent the
detection of ineffective defenses, but do not apply to all defense mechanisms.
Failing items in this category might not result in a completely invalid claim,
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however, they are still important to carefully check the correctness of the
evaluation. These include testing with a set of diverse attacks, trying attacks
that do not use the gradients of the target model, verify that attacks have
converged and have been configured well.

• Special-case pitfalls. The items in this category apply only to a restricted frac-
tion of defenses, but they can provide additional evidence that the evaluation
was performed correctly. These include the use of provable approaches when
possible, the use of random-search attacks, and the investigation of domains
different from the image domain.

Recently, Tramer et al. (2020) proved once again that using a well-defined checklist
is not yet sufficient for having the complete picture of the robustness of a model.
In this work, the authors tested thirteen defenses that were evaluated with report-
edly adaptive attacks, but then a more thorough evaluation showed that the robust
accuracy of the models was nowhere near the declared one. The authors also try
to systematize again the main strategies to use for creating attacks, by defining 6
recurring “attack themes”, i.e. repeating patterns of wrong assumptions, that they
fixed to break the included defenses. This is a very interesting work, where each
defense is mapped to which attack themes broke it, however, it still requires a lot of
manual work and a deep knowledge of the topic.

The guidelines by Carlini et al. (2019) and the attack paper by Tramer et al. (2020)
themselves stress the importance of evaluating the defenses with all the available
tools, and of trying also new strategies that target the particular defense, without
using the presented strategies as templates. Unfortunately, there is little help from
the attack algorithms, that do not provide much feedback on the failures. This re-
quires inspecting the failures one-by-one, and manually applying strategies designed
for each specific case. One little guidance can be found in performing sanity checks
that reveal if the assumptions on the attack strategy are being overlooked in some
way. In the next section, we will dive deeper into the problem of gradient obfus-
cation, and describe additional strategies that can be used as tests for inspecting
carefully if the evaluation is being affected by such a problem.

3.2.2 Additional Attack Strategies and sanity checks

The guidelines in Carlini et al. (2019) present, along with the standard pitfalls, a
comprehensive list of sanity checks that should be performed to complement the
robustness evaluation, i.e. to make sure that there are no inconsistencies in what to
expect from the results.

Among the sanity checks, the simplest but also extremely useful ones include (i)
making sure the performance of the model goes to zero when attacked with un-
bounded perturbations; (ii) ensuring doubling attack iterations does not increase
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attack success rate; (iii) trying brute-force and random-search attacks; (iv) trying
both targeted and untargeted attacks12; and (iv) verify iterative attacks perform
better than single-step attacks. All these checks are very helpful to make sure that
the results make sense logically, as there should be a strict improvement of the at-
tack’s success rate with the increase in either computational budget or perturbation
budget.

There is then a set of sanity checks that require more attention. First, adaptive
attacks should be stronger than baseline attacks. Second, all white-box attacks
should work better than black-box attacks. The black-box threat model is a subset
of the white-box threat model, as it works with less information and it usually finds
solutions that are less close to the optimal ones. Surprisingly, there are some cases
where using the gradients of another model, or using no gradients at all, works better.
If this happens, it means that the loss function is affected by gradient obfuscation as
the white-box attacks are not able to use the information contained in the gradients
to optimize the objective.

Creating adversarial examples without using the gradients of the model means that
we should either use another model’s gradients, i.e. using transfer attacks, or op-
timize the loss function with different methods, e.g. with query-based attacks.
Query-based attacks can be divided into score-based attacks (Chen et al., 2017;
Narodytska and Prasad Kasiviswanathan, 2016), which use the output scores of the
model for approximating the gradient, and decision-based attacks (Brendel et al.,
2018), which rely only on the final decision of the model. Other attacks do not
necessarily rely on model information nor model outputs13, and are called transfer-
based attacks (Goodfellow et al., 2015; Szegedy et al., 2014). This last category of
attacks needs only some information on the training data, that is either known or at
least reproduced as best as possible. Then, the data is used to train a model from
which adversarial perturbations can be created. This is based on empirical evidence
that adversarial examples transfer between models, but unfortunately it is indeed
not easy to maximize their success. Notwithstanding that all the premises made
for the correct configuration and optimization of attacks are valid, in this case also
selecting the model and selecting attacks that are effective for this threat model is
not yet a process of which all aspects are perfectly understood. The variables in
play are many, and understanding which ones influence the success of transferability
the most, and in which way to change them, is not yet a well-known process.

12In many situations, untargeted attacks succeed more easily, however, there are cases in which
the loss behaves better when targeting, for example, only a subset of the classes (Gowal et al.,
2019; Tramer et al., 2020).

13Transfer attacks can however use information collected from the model for creating a model
as similar as possible to the target, or to verify the success of the attacks between iterations.
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3.3 Limitations of the State of the Art

Although the process of evaluating adversarial robustness seems to be well-defined,
it is indeed much more difficult and time-consuming and requires expert knowledge
of different subjects, including machine learning, optimization techniques, and last
but not least good coding skills. This is further demonstrated by the state-of-the-art
defenses that are broken in the never-ending arms race of robustness evaluations.
Recent papers like the one by Tramer et al. (2020) provide further evidence that the
field is still much divided between defense and attack papers, leaving practitioners
of both sides very far apart from each other. In this work, we are attempting to
bridge the gap between the guidelines for robustness evaluations, and the papers
that break the defenses one-by-one. For now, proving a system is robust has been
treated as a failure of all the known attacks. This is clearly a limitation of the
approach, and raises the following open questions:

• How can we create strong attacks in an efficient way?

• Are these attacks effectively testing the defense? How can we understand if the
attacks used for this evaluation are suffering from sub-optimal configuration
or problems like gradient obfuscation?

• How can we conduct a thorough evaluation of a defense, making sure that
every weak spot has been effectively tested in the worst-case scenario?

These are the main open problems that will be investigated in this thesis and tackled
in the next chapter. We firmly believe that the proposed scheme could significantly
advance the state of the art and favor a much larger adoption of secure machine
learning models.

3.3.1 Main Thesis Goals and Outputs

This thesis aims to create tools and methods for evaluating a defense strategy for a
machine learning system in a reliable and rigorous way. Existing guidelines (Carlini
et al., 2019) will be used as starting point, and new directions will be explored in
this work.

First, evaluations are often performed with adversarial attacks that have to be prop-
erly configured, might be taking a long time to run, and might also be limited to
only one perturbation model. To overcome these limitations, in this work we pro-
pose a novel, fast minimum-norm (FMN) attack (Sect. 4.2), which retains the main
advantages of many of the competing attacks, while generalizing it to different `p
norms (p = 0, 1, 2,∞). We perform large-scale experiments on different datasets
and models (Sect. 5.1), showing that FMN is able to significantly outperform cur-
rent minimum-norm attacks in terms of convergence speed and computation time
while finding equal or better optima across almost all tested scenarios and `p norms.
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FMN thus combines all desirable traits a good adversarial attack should have, pro-
viding an important step towards improving adversarial robustness evaluations. This
contribution is included in a recently-accepted NeurIPS paper:

• M. Pintor, F. Roli, W. Brendel, and B. Biggio. Fast minimum-norm adversar-
ial attacks through adaptive norm constraints. In Thirty-fifth Conference on
Neural Information Processing Systems (NeurIPS 2021), 2021.

Second, it is not easy to debug if the optimization within the attack algorithms is
encountering problems that are preventing the attacks to succeed. To tackle this
limitation, we introduce a unified attack framework that captures the predominant
styles of existing gradient-based attack methods, and allows us to categorize the
five main causes of failure that may arise during their optimization, we propose
five indicators of attack failures (IoAF), i.e., metrics and principles that help un-
derstand why and when gradient-based attack algorithms fail (Sect. 4.3), and we
empirically evaluate the utility of our metrics on four recently-published defenses,
showing how their robustness evaluations could have been improved by monitoring
the IoAF values and following our evaluation protocol (Sect. 5.2). We also add to
the presented metrics a non-trivial technique, called Slope, to measure in general
the ease of decreasing the attacker loss, including the presence of gradient obfusca-
tion. The triggering of this metric may suggest changing strategy as gradient-based
white-box attacks might be failing due to problems in the gradient. This contribu-
tion encloses the work of two papers, one accepted at ESANN 2021, and the other
in preprint, available on ArXiv:

• M. Pintor, L. Demetrio, G. Manca, B. Biggio, and F. Roli. Slope: A first-order
approach for measuring gradient obfuscation. In Proceedings of the ESANN,
29th European Symposium on Artificial Neural Networks, Computational In-
telligence and Machine Learning (ESANN 2021), 2021;

• M. Pintor, L. Demetrio, A. Sotgiu, G. Manca, A. Demontis, N. Carlini, B.
Biggio, and F. Roli. Indicators of attack failure: Debugging and improving
optimization of adversarial examples, arXiv preprint, 2021.

Third, within the sanity checks included in the guidelines, we want to improve
the transferability analysis by understanding which phenomena affect the success
rate of transferable evasion attacks. We highlight two main factors contributing to
attack transferability: the intrinsic adversarial vulnerability of the target model,
and the complexity of the surrogate model used to optimize the attack. Based on
these insights, we define three metrics that impact an attack’s transferability. The
publication that accompanies this contribution was presented at USENIX 2019:

• A. Demontis, M. Melis, M. Pintor, M. Jagielski, B. Biggio, A. Oprea, C.
Nita-Rotaru, and F. Roli. Why do adversarial attacks transfer? explaining
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transferability of evasion and poisoning attacks. In 28th USENIX Security
Symposium (USENIX Security 19), 2019.

In the next chapter, we will describe in detail these contributions, and how they
concretely improve the overall process of evaluating the adversarial robustness of
machine learning models.



Chapter 4

Efficient and Bug-free Adversarial
Robustness Evaluations

This chapter will introduce a mathematical framework that can be used for cre-
ating gradient-based adversarial attacks (Sect. 4.1), use it for designing a power-
ful optimization algorithm (Sect. 4.2), and for analyzing the point where generic
gradient-based attacks can fail (Sect. 4.3). Finally, the framework can also be used
for creating transferable adversarial examples, following the guidelines that we found
in our study (Sect. 4.4).

4.1 Attack Framework

Resuming from Chapter 2, adversarial attack algorithms solve an optimization prob-
lem defined as objective and constraints. We argue here that optimizing adversarial
examples amounts to solving a multi-objective optimization:

min
δ∈∆

(L(x+ δ, y;θ), ‖δ‖p) , (4.1)

where x ∈ [0, 1]d is the input sample, y ∈ {1, . . . , c} is either its label (for untargeted
attacks) or the label of the target class (for targeted attacks), and δ ∈ ∆ is the
perturbation optimized to have the perturbed sample x′ = x + δ misclassified as
desired, within the given input domain. The target model is parameterized by θ.
The given problem presents an inherent tradeoff: minimizing L amounts to finding
an adversarial example with large misclassification confidence and perturbation size,
while minimizing ‖δ‖p penalizes larger perturbations (in the given `p norm) at the
expense of decreasing misclassification confidence.1 Typically the attacker loss L is
defined as the Cross-Entropy (CE) loss (Eq. 2.3), the logit difference by Carlini and
Wagner (2017b) (Eq. 2.4), or the Difference of Logit Ratio (DLR) by Croce and
Hein (2020b) (Eq. 2.5).

1Note that the sign of L may be adjusted internally in our formulation to properly account for
both untargeted and targeted attacks.
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In addition, when the input space is bounded, e.g., x ∈ [0, 1]d, a box constraint is
also enforced on δ to ensure that the perturbed sample x′ lies in the same space.

Multiobjective problems define a Pareto frontier in a plane with two axes, namely
the misclassification confidence and perturbation size. Depending on the strongest
requirements, one can select the best trade-off between the given objectives along the
Pareto frontier, by either using soft- or hard-constraint reformulations. For example,
Carlini and Wagner (CW) (Carlini and Wagner, 2017b) is a soft-constraint attack,
which reformulates the aforementioned multiobjective problem as an unconstrained
optimization:

min
δ
‖δ‖p + c ·min(L(x+ δ, y,θ),−κ),

where the hyperparameters κ and c tune the trade-off between misclassification con-
fidence and perturbation size. Hard-constraint reformulations instead aim to mini-
mize one objective while constraining the other. They include maximum-confidence
attacks like Projected Gradient Descent (PGD) (Madry et al., 2018), which is for-
mulated as

min
δ
L(x+ δ, y;θ) s.t. ‖δ‖p ≤ ε,

and minimum-norm attacks like Brendel and Bethge (BB) (Brendel et al., 2020) and
Decoupling-Direction-Norm (DDN) (Rony et al., 2019), which can be formulated as

min
δ
‖δ‖p s.t. L(x+ δ, y;θ) ≤ k.

In these cases, ε and k upper bound the perturbation size and the misclassification
confidence, respectively, thereby optimizing a different trade-off between these two
quantities.

The aforementioned attacks often need to use an approximation θ̂ of the tar-
get model, since the latter may be either non-differentiable or not sufficiently
smooth (Athalye et al., 2018), hindering the gradient-based attack optimization
process. In this case, once the attacker loss has been optimized on the surrogate
model θ̂, the attack is considered successful if it evades the target model θ.

Attack Algorithm. According to the previous discussion, even if different attacks
minimize different objectives or require different constraints, they can all be seen
as solutions to a common multi-objective problem, based on gradient descent. We
summarize their main steps in Algorithm 1. First, an initialization point (line 1)
needs to be defined, which can be achieved by directly using the input point x, a
randomly-perturbed version of it, or even a sample from the target class (Brendel
et al., 2020). Then, if the target model θ is difficult to handle (e.g., because it is non-
differentiable) the attacker must choose a surrogate model θ̂ that approximates the
real target θ (line 2). The attack then iteratively updates the initial point searching
for a better and better adversarial example (line 4), computing in each iteration one
(or more) gradient descent steps (line 5) using the initial point and the perturbation
δi computed so far. Hence, the new perturbation δi+1 is obtained by enforcing the
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Algorithm 1 Our framework for computing adversarial attacks

Input: x, the input sample; y, the target (true) class label if the attack is targeted
(untargeted); n, the number of iterations; α, the learning rate; f , the target
model; ∆, the considered region.

Output: The adversarial example x? that satisfies the constraints.

1: x0 ← initialize(x) // initialize starting point
2: θ̂ ← approximation(θ) // Approximate model parameters
3: δ0 ← 0 //Initial δ
4: for i ∈ [1, n] do
5: δ′ ← δi − α∇xiL(x0 + δi, y; θ̂) // Compute optimizer step
6: δi+1 ← apply-constraints(x0, δ

′,∆) // Apply constraints (if needed)
7: end for
8: δ? ← best(δ0, ..., δn) // Choose best perturbation
9: return δ?

constraints defined in the problem (line 6), which can be updated accordingly to
the chosen strategy (Rony et al., 2019). For maximum confidence approaches, the
attack can not exit the ∆ region, and samples are projected accordingly on this
ball when reaching the constraints. Alternatively, we consider minimum distance
attacks successful only if they found adversarial examples inside the ∆ region. At
the end of the gradient descent iterations, the attacker collects all the perturbations
along with the iterations into an attack path. The final result of the algorithm is
the best perturbation contained anywhere in the attack path, w.r.t. the loss being
minimized (line 8).

4.2 Fast Minimum-norm Adversarial Attacks

through Adaptive Norm Constraints

As the first contribution, we present an efficient attack algorithm that finds
minimum-norm perturbations in different `p norms (p = 0, 1, 2,∞), that combines
the main advantages of many other attack algorithms becoming an efficient and
reliable tool for testing adversarial defenses. In other words, we aim to achieve an
algorithm that is faster, more efficient, and that produces adversarial examples with
a smaller perturbation budget, i.e. with a smaller norm of perturbation. We expand
from the formulation of gradient-based attacks in Algorithm 1, and implement the
steps to provide substantial improvement w.r.t. the current strategies.

Problem formulation. Given an input sample xlb � x + δ � xub, belonging to
class y ∈ {1, . . . , c}, the goal of an untargeted attack is to find the minimum-norm
perturbation δ? such that the corresponding adversarial example x? = x + δ? is
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Figure 4.1: (a) Conceptual representation of the FMN attack algorithm (leftmost
plot). The ε-step updates the constraint size ε to minimize its distance to the
boundary. The δ-step updates the perturbation δ with a projected-gradient step
to maximize misclassification confidence within the current ε-sized constraint. (b)
Example of execution of our attack on a bi-dimensional problem (middle plot), along
with the corresponding values of the loss function L and the constraint size ε across
iterations (rightmost plot). Our algorithm works by first pushing the initial point
(red dot) towards the adversarial region (in red), and then perturbing it around the
decision boundary to improve the current solution towards a local optimum. The
vertical lines in the rightmost plot highlight the steps in which a better solution
(smaller ‖δ?‖ and L < 0) is found.

misclassified. This problem can be formulated as:

δ? ∈ arg min
δ

‖δ‖p , (4.2)

s.t. L(x+ δ, y,θ) < 0 , (4.3)

xlb � x+ δ � xub, (4.4)

where || · ||p indicates the `p-norm operator. The loss L in the constraint in Eq. (4.3)
is defined as:

L(x, y,θ) = fy(x,θ)−max
j 6=y

fj(x,θ) , (4.5)

where fj(x,θ) is the confidence given by the model f for classifying x as class j,
and θ is the set of its learned parameters. Note that this is the difference of logits
that is used also in Carlini and Wagner (2017b), and similarly to the CW attack,
misclassification confidence can be enforced by adding an offset κ to the difference
of logits, i.e. by setting L(x, y,θ) < −κ.
Assuming that the classifier assigns x to the class exhibiting the highest confidence,
i.e.,

y? = arg max
j∈1,...,c

fj(x,θ),

the loss function L(x, y,θ) takes on negative values only when x is misclassified.
Finally, the box constraint in Eq. (4.4) ensures that the perturbed sample x + δ
lies in the feasible input space. The aforementioned problem typically involves a
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non-convex loss function L (w.r.t. its first argument), due to the non-convexity of
the underlying decision function f . For this reason, it may admit different locally-
optimal solutions. Note also that the solution is trivial (i.e., δ? = 0) when the input
sample x is already adversarial (i.e., L(x, y,θ) < 0).

Extension to the targeted case. The goal of a targeted attack is to have the
input sample misclassified in a given target class y′. This can be accounted for by
modifying the loss function in Eq. (4.5) as

Lt(x, y′,θ) = max
j 6=y′

fj(x,θ)− fy′(x,θ) = −L(x, y′,θ),

i.e., changing its sign and using the target class label y′ instead of the true class
label y.

Solution algorithm. To solve Problem (4.2)-(4.4), we reformulate it using an
upper bound ε on ‖δ‖p:

min
ε,δ

ε , s.t. ‖δ‖p ≤ ε, (4.6)

and to the constraints in Eqs. (4.3)-(4.4). This allows us to derive an algorithm
that works in two main steps, similarly to DDN (Rony et al., 2019), by updating
the maximum perturbation size ε separately from the actual perturbation δ, as
represented in Fig. 4.1(a). In particular, the constraint size ε is adapted to reduce
the distance of the constraint to the boundary (ε-step), while the perturbation δ is
updated using a projected-gradient step to minimize the loss function L within the
given ε-sized constraint (δ-step). This essentially amounts to a projected gradient
descent algorithm that iteratively adapts the constraint size ε to find the minimum-
norm adversarial example. The complete algorithm is given as Algorithm 2, while
a more detailed explanation of the two aforementioned steps is given below.

ε-step. This step updates the upper bound ε on the perturbation norm (lines 4-12
in Algorithm 2). The underlying idea is to increase ε if the current sample is not
adversarial (i.e., L(xk−1, y,θ) ≥ 0), and to decrease it otherwise, while reducing the
step size to dampen oscillations around the boundary and reach convergence. In
the former case (ε-increase), the increment of ε depends on whether an adversarial
example has been previously found or not. If not, we estimate the distance to the
boundary with a first-order linear approximation and set

εk = ‖δk−1‖p + L(xk−1, y,θ)/||∇L(xk−1, y,θ)||q,

being q the dual norm of p. This approximation allows the attack point to make
faster progress towards the decision boundary. Conversely, if an adversarial sample
has been previously found, but the current sample is not adversarial, it is likely that
the current estimate of ε is only slightly smaller than the minimum-norm solution.
We thus increase ε by a small fraction as εk = εk−1 (1 + γk), being γk a decaying
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Algorithm 2 Fast Minimum-norm (FMN) Attack

Input: x, the input sample; t, a variable denoting whether the attack is targeted
(t = +1) or untargeted (t = −1); y, the target (true) class label if the attack is
targeted (untargeted); γ0 and γK , the initial and final ε-step sizes; α0 and αK ,
the initial and final δ-step sizes; K, the total number of iterations.

Output: The minimum-norm adversarial example x?.

1: x0 ← x, ε0 = 0, δ0 ← 0, δ? ←∞
2: for k = 1, . . . , K do
3: g ← t · ∇δL(xk−1 + δ, y,θ) // loss gradient
4: γk ← h(γ0, γK , k,K) // ε-step size decay (Eq. 4.7)
5: if L(xk−1, y,θ) ≥ 0 then
6: εk = ‖δk−1‖p + L(xk−1, y,θ)/‖g‖q if adversarial not found yet else εk =

εk−1(1 + γk)
7: else
8: if ‖δk−1‖p ≤ ‖δ?‖p then
9: δ? ← δk−1 // update best min-norm solution

10: end if
11: εk = min(εk−1(1− γk), ‖δ?‖p)
12: end if
13: αk ← h(α0, αK , k,K) // δ-step size decay (Eq. 4.7)
14: δk ← δk−1 + αk · g/‖g‖2

15: δk ← Πε(x0 + δk)− x0

16: δk ← clip(x0 + δk)− x0

17: xk ← x0 + δk
18: end for
19: return x? ← x0 + δ?

step size. In the latter case (ε-decrease), if the current sample is adversarial, i.e.,
L(xk−1, y,θ) < 0, we decrease ε as εk = εk−1 (1− γk), to check whether the current
solution can be improved. If the corresponding εk value is larger than the optimal
‖δ?‖p found so far, we retain the best value and set εk = ‖δ?‖p. These multiplica-
tive updates of ε exhibit an oscillating behavior around the decision boundary, due
to the conflicting requirements of minimizing the perturbation size and finding an
adversarial point. To ensure convergence, as anticipated before, the step size γk is
decayed with cosine annealing:

γk = h(γ0, γK , k,K) = γK + 1
2
(γ0 − γK)

(
1 + cos

(
kπ
K

))
, (4.7)

being k the current step, K the total number of steps, and γ0 and γK the initial and
final step sizes.

δ-step. This step updates δ (lines 13-17 in Algorithm 2). The goal is to find the
adversarial example that is misclassified with maximum confidence (i.e., for which L



4.2. FMN ADVERSARIAL ATTACKS 53

is minimized) within the current ε-sized constraint (Eq. 4.6) and bounds (Eq. 4.4).
This amounts to performing a projected-gradient step along the negative gradient of
L. We consider a normalized steepest descent with decaying step size α to overcome
potential issues related to noisy gradients while ensuring convergence (line 14). The
step size α is decayed using cosine annealing (Eq. 4.7). Once δ is updated, we project
it onto the given ε-sized `p-norm constraint via a projection operator Πε (line 15),
to fulfill the constraint in Eq. (4.6). The projection is trivial for p =∞ and p = 2.
For p = 1, we use the efficient algorithm by Duchi et al. (2008). For p = 0, we retain
only the first ε components of δ exhibiting the largest absolute value. We finally
clip the components of δ that violate the bounds in Eq. (4.4) (line 16).

Execution example. In Fig. 4.1(b), we report an example of the execution of
our algorithm on a bi-dimensional problem. The initial sample is updated to follow
the negative gradient of L towards the decision boundary. When an adversarial
point is found, the algorithm reduces ε to find a better solution. The point is
thus projected back onto the non-adversarial region, and ε increased (by a smaller,
decaying amount). These oscillations allow the point to walk on the boundary
towards a local optimum, i.e., an adversarial point lying on the boundary, where
the gradient of the loss function and that of the norm constraint have opposite
directions. FMN tends to quickly converge to a good local optimum, provided that
the step size is reduced to a sufficiently-small value and that a sufficiently large
number of iterations are performed. This is also confirmed empirically in Sect. 5.1.

Adversarial initialization. Our attack can be initialized from the input sample x,
or from a point xinit belonging either to a different class (if the attack is untargeted)
or to the target class (if the attack is targeted). When initializing the attack from
xinit, we perform a 10-step binary search between x and xinit, to find an adversarial
point which is closer to the decision boundary. In particular, we aim to find the
minimum ε such that L(x+ Πε(xinit−x), y,θ) < 0 (or Lt < 0 for targeted attacks).
Then we run our attack starting from the corresponding values of xk, εk, δk and δ?.

Differences with DDN. FMN applies substantial changes to both the algorithm
and the formulation of DDN. The main difference is that (i) DDN always rescales
the perturbation to have size ε. This operation is problematic when using other
norms, especially sparse ones, as it hinders the ability of the attack to explore the
neighboring space and find a suitable descent direction. Another difference is that
(ii) FMN does not use the cross-entropy loss but rather the logit difference as the
loss function L. Moreover, (iii) FMN does not need an initial value for ε, as ε is
dynamically estimated; and (iv) γ is decayed to improve convergence around better
minimum-norm solutions, by more effectively dampening oscillations around the
boundary. Finally, we include the possibility of (v) initializing the attack from an
adversarial point, which can greatly increase the convergence speed of the algorithm.

In this section, we presented a powerful attack that efficiently finds adversarial per-
turbations with gradient-based techniques combined with query-optimization strate-
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gies. Unfortunately, even such powerful tools might still be affected by failures that
prevent the attack to work with the standard settings. In the next section, we
present useful indicators that detect problems in gradient-based optimization of ad-
versarial attacks, along with mitigation strategies to correct the problems found, in
order to open the way to bug-free and more reliable security evaluations.

4.3 Understanding Failures of Gradient-based At-

tacks

We want to point out that the currently available algorithms, which can all be
seen as different expansions of Algorithm 1, lack any form of debugging system. In
this context, we would like to start by drawing a parallel with software debugging,
where specific tools help to pinpoint exactly the line that introduces the problem
and make it much easier to fix it. With adversarial attacks instead, what happens
is the equivalent of a program saying “failure”, but without understanding where
the problem is located, or without even having a vague indication through error
messages. In this section we will first introduce a systematic analysis of the known
possible failures that might affect the attacks, then we design measurable indicators
that are able to detect when a known failure is happening, allowing us to fix the
problem right away and patch the security evaluation.

4.3.1 Attack Failures

We now systematize the ways that gradient descent attacks fail into four failure
categories, each of which corresponds to a particular step of Algorithm 1.

F1: Implementation Problems. If no adversarial examples are found by the
attack, it is possible that the attack implementation has errors or bugs. For example,
we isolated a problem inside the PGD procedure proposed by Madry et al. (2018).
As described, the attack returns the adversarial example only by looking at the last
point of the attack path (line 8 of Algorithm 1), as shown in Fig. 4.2a, but would
not return an adversarial example if one was found during search and then passed
over.

F2: Non-converging attack. When performing gradient-based attacks, a common
problem is that they may not converge to any local minimum, as shown in Fig. 4.2b.
This problem can be caused by sub-optimal choices of the attack hyperparameters,
including the step size α and the number of iterations n (as shown in Algorithm 1).
If α is too small, the gradient update step is not exploring the space (line 5 of
Algorithm 1), while using too few iterations n might cause an early stopping of
the attack (line 4 of Algorithm 1). An example of this failure can be found in the
evaluation of the defense proposed by Buckman et al. (2018), where the authors
only used 7 steps of PGD for testing the robustness of their defense, or by the one
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Figure 4.2: The four attack failures that can be encountered during the optimization
of an attack. The failed attack path is shown in gray, while the successful attack
is displayed in black. The point x0 is marked with the red dot, the returned point
of the failed attack with a red cross, and the successful adversarial point with the
green star. The top row shows the loss landscape, as L(x + av1 + bv2, yi;θ). v1

is the normalized direction (xn − x0), while v2 is a representative direction for the
displayed case. In the second row we show the value of L(x + δi, yi;θ) for the
evaluated model.

proposed by Pang et al. (2019), where the defense has been evaluated with only 10
steps of PGD. Alternatively, this failure might be triggered either by setting the step
size too large, which leads the optimizer to keep overshooting the local minimum, or
the presence of gradient obfuscation techniques that alter the gradients of the model
to point to random directions, leading gradient descent to fail. An example of such
failure is found in the defense proposed by Xiao et al. (2020), where the model keeps
only the top-k neurons for each layer, resulting in a noisy loss landscape, where
gradients point in many different directions.

F3: Bad local optimum. Once the attack reached convergence, the computed
point might not be adversarial, if the optimizer has reached a region where it can
no longer update the adversarial perturbation, as shown in Fig. 4.2c. There are
a few reasons that might lead to such a failure. One of them is again caused by
the presence of gradient obfuscation, where the optimizer is unable to continue the
descent since it arrived in a region where the norms of gradients are (nearly) zero
(i.e. flat regions), or again because the gradients are noisy, and the optimization
lands on a bad local optimum (line 5 of Algorithm 1). An example of such failure is
detected inside the defense proposed by Papernot et al. (2016b), where the model
is trained to have signal in correspondence of samples, and producing regions with
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Figure 4.3: Indicators of Attack Failures. The top row lists the four general failures
encountered in gradient-based attacks. The second row lists the Indicators of Attack
failures we propose, and the last row depicts possible mitigations that can be applied.

no gradient all around them. Another reason might be triggered by the choice
of the initialization point itself (line 1 of Algorithm 1), which leads the optimizer
into a region where no adversarial examples can be found. In other words, a poor
initialization might prevent the algorithm from properly exploring some zone of the
landscape that might produce better solutions. This problem has been detected by
the analysis conducted by Tramer et al. (2020) against the defense proposed by Pang
et al. (2019), where a different initialization point leads the attack to find a better
solution.

F4: Non-adaptive attack. In this failure, the loss function that the attacker
optimizes does not take into account the actual defense that has been evaluated, i.e.
the objective does not match the actual loss of the target system, and this is caused
by a bad choice of the surrogate model (line 2 of Algorithm 1), as also shown in
Fig. 4.2d. This issue manifests when either the attack is computed on an undefended
model, and later tested against the defense, or the target model is not differentiable
and the surrogate is not a correct approximation of the differentiable function. Since
we consider both cases, we differ from the literature, where the term non-adaptive
has been used only for attacks that were not specifically designed to target a given
defense (Tramer et al., 2020). We thus restrict our definition of adaptive specifically
to the case in which the attacker’s loss goes down (i.e., the attack is being correctly
optimized), but the defender’s loss does not (i.e., despite the attack working on
the surrogate, it does not work on the actual defended model). An example of
this failure is found in the defense proposed by Yu et al. (2019), where the attack
has been computed against the undefended model, and then evaluated against the
defense later.
To maximize the likelihood of creating successful attacks and hence avoiding such
failures, current recommendations (Carlini et al., 2019; Tramer et al., 2020) suggest
to (i) select the strongest attacks against the model that is being tested; (ii) state the
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precise threat model being considered; (iii) select the correct hyperparameters for the
attack being used; and (iv) compute charts to understand how the attacks behave
by varying the size of the perturbation. Indeed useful, these are only qualitative
recommendations that require ad-hoc inspection of each failed attack.

4.3.2 Indicators of Attack Failure

Above we list several problems that can occur during adversarial example defense
evaluations, however, it is not clear how one might go about checking for their
presence. The existing literature documents crude techniques to diagnose some
failures (e.g., that applying more iterations of an attack should increase the attack
success rate) but most recent defense evaluations pass all of these basic sanity checks.

To further complement evaluations we now describe our Indicators of Attack Failures
(IoAF): actionable tests designed to help an analyst debug a failing attack. Each of
these tests outputs a value bounded between 0 and 1, where values towards 1 imply
the presence of the failure described by the test. Along with the indicators to check
the attacks, we also introduce a metric that can be used to detect when a model
is obfuscating the gradients, hence making the optimization implicitly difficult for
gradient-based attacks.

Informed by the results of the indicators, we propose potential mitigations that can
resolve the presence of the detected failure. An overview of such an approach can be
appreciated in Fig. 4.3, where we connect failures with the indicators that quantify
them, along with possible mitigations.

I1: Silent Success. This indicator is designed as a binary flag that triggers when
the attack is failing, but a legitimate adversarial example is found inside the attack
path, as described by the implementation problem failure (F1). While it is true that
this is a zeroth-order and trivial strategy that developers can apply, we find that it
is missing in most of the state-of-the-art evaluations and implementations.
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Figure 4.4: I2 indicator.

I2: Break-point angle. This indicator is de-
signed to quantify the non-convergence of the
attack (F2) caused by the choice of too small hy-
perparameters. Note that this indicator checks
only if the loss stabilizes to a certain value by
inspecting if the optimization trend has a spe-
cific shape of the curve, without looking at the
specific value reached, which can be different for
every model. We normalize the loss along the
attack path and the iteration, to fit the loss in
the domain [0, 1] × [0, 1], and, ideally, a well-
converged loss should approximate a triangle in
that domain, as shown in Fig. 4.4. To create that triangle, we connect the first and
the last point in the loss curve, and we conclude the shape by considering the point
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of the loss curve that is further to such conjunction. Thus, the three points that
define the triangle are the initial point used for gradient descent p1 = (0,L(x, y; θ)),
the final adversarial example returned p2 = (1,L(x + δn, y; θ)) and a third point
p3( b

n
,L(x+ δb, y; θ)). The index b is the index of the point in the attack path whose

loss is further away from the line p2 − p1, i.e. the break-point of the loss curve, and
n is the total number of iterations of the attack. We are interested in the amplitude
of the basis β angle since it is the one that characterizes the shape of the triangle:
when β ≈ π, the triangle is flat, implying that the loss is still decreasing. For this
reason, the indicator computes 1 − |cosβ|, matching such intended behavior. On
the other hand, this indicator is close to 0 when the triangle is close to being right,
hence β ≈ π
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Figure 4.5: I3 indicator.

I3: Increasing loss. This indicator is designed
to quantify either the non-convergence of the at-
tack (F2), or the inability of converging to a good
local optimum (F3), both caused by the pres-
ence of noisy gradients. In this case, the loss
of the attack does not decrease smoothly as the
number of iterations grows, typically exhibiting
an oscillating behavior, as reported in Fig. 4.5.
To characterize such behavior, we first normal-
ize the loss of the attack and the iterations as
done in I2. We then consider only the iterations
for which the loss increases, and compute the
corresponding area under the curve, as shown in

Fig. 4.5. Accordingly, this indicator is 0 only when the attack loss monotonically
decreases, while it tends to 1 when the loss increases across iterations (rather than
decreasing). Note that in this case, as no formal methods can state if a point is the
global minimum or maximum of a non-convex/non-linear function, we rely on the
fact that, if the loss is increasing over the iterations, the final solution is very likely
not to be a good local optimum. Moreover, since this indicator characterizes the
path followed while optimizing, which is different from attack to attack, the value
of this indicator is not comparable across different attacks.

I4: Zero gradients. This indicator is designed to quantify the bad-local optimum
failure (F3), caused by the absence of gradient information. For this reason, we
compute how many times, along the attack path, the gradients of the loss function
are zero: 1

n+1

∑n
i=0 1‖∇x+δi

L‖=0. This indicator is close to 1 when most of the norms
of the gradient are 0, causing the attack step to fail. Here we check if the product
of the gradient and step size (line 5 of Algorithm 1) is zero by checking the norm of
the computed gradient (ignoring the trivial case where the step size is zero).

I5: Non-transferability. This indicator is designed to quantify the non-adaptive
failure (F4), by measuring if the optimized attack fails against the real target model
while succeeding against the surrogate one. If the attack transfers successfully, the
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indicator is set to 0, otherwise it is set to 1. Note this is different from standard
transfer attacks, that transfer adversarial examples from an unrelated source model
and so the success rate is often low. In this case, we are considering a surrogate
that is the same model as the target but is neglecting the defense mechanism. One
example of this is the case where the defense is composed of a classifier model that
performs the original classification task and a detector model that is able to identify
an adversarial example, even if correctly optimized, crafted with the model that
performs classification. In this case, the attacker should change the objective of the
optimization by also enforcing the detection to not be triggered.

Slope: a specific metric to measure gradient obfuscation. As a follow-up
work of the indicators, we designed an additional metric to detect the presence of
gradient obfuscation. This metric is different from I3, and I4, as it characterizes
the loss being used and the model under attack, rather than the single optimization
path. The underlying idea of the Slope metric is to compare the expected loss after
one gradient update of size η against the actual observed loss after the update. To
this end, we consider one normalized PGD step of size η, for which the expected
loss increment is obtained by solving this linearized problem:

max
‖δ‖p≤η

L(x+ δ; y;θ)− L(x, y;θ) ≈ max
‖δ‖p≤η

δ>∇xL(x, y;θ)︸ ︷︷ ︸
g

= η‖g‖q , (4.8)

where ‖ · ‖q is the dual norm of ‖ · ‖p. This equation tells us that the loss increment
depends on the dual norm of the loss gradient and the step size η, as the optimal
perturbation δ? is found by aligning δ with the loss gradient g depending on the
given norm; e.g., δ? = η sign(g) when p =∞, and δ? = ηg/||g||2 when p = 2.
Based on the aforementioned first-order approximation, we define the Slope metric
P evaluated at x as the ratio between the estimated loss increment and the actual
one:

P (x) =
η‖g‖q

L(x+ δ, y;θ)− L(x, y;θ)
. (4.9)

The ideal scenario would be P (x) ≥ 1, where the approximation is consistent with
the actual loss increment. If 0 < P (x) < 1, the approximation is following a good
direction, but it could be improved since the actual loss increment is higher than
the computed approximation. However, if P (x) ≤ 0 means that either the loss can
not be increased, or the step is performed in the opposite direction, thus resulting
in a decrease in the attacker loss. Such is the case when the attacker should rethink
or debug their strategy since it is not being correctly optimized.
The Slope metric is calculated sample-wise, and we can also compute the mean value
over many observations x0, ...,xn as

P̄ =
1

n

n∑
i=1

P (xi). (4.10)

This average acts as a global measure for the ease of increasing the attacker loss
against a particular model.
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4.3.3 Mitigate the Failures of Security Evaluations

To set up the evaluation, the attacker should choose a target model to attack,
and decide on a surrogate for this model (or use the model unchanged if it is al-
ready smoothly differentiable). Then, they must choose an attack and its hyper-
parameters, and run the attack against the surrogate model they chose. If the
attack succeeds then nothing needs to be done. If the attack fails, however, the
result can be inspected using our framework to determine the causes of the failures,
and hence apply the proposed mitigations. For each point, the attacker should check
the feedback of the indicators and mitigate accordingly the detected failures.

M1: Fix the implementation. If I1 is active, the attack is considered failed,
but there exists an adversarial point inside the computed path that satisfies the
attack objective. Hence, the resulting robust accuracy must be lowered to reflect
this patch accordingly. Also, the attacker would want to run again their evaluations
using another library, or a patched version of the same attack.
M2: Tune the hyperparameters. If I2 activates, it means that the optimization

can be improved, and hence both the step size and iteration hyperparameters can
be increased. Otherwise, if I3 activates, the attack should consider a smaller step
size, since the loss might be overshooting local minima.
M3: Use a different loss function. If I3 activates, and the decrement of the

step size did not work, the attack should change the loss to be optimized (Tramer
et al., 2020), preferring one that has a smoother behavior. If I4 activates, the attack
should consider loss functions that do not saturate (e.g. avoid the softmax) (Carlini
and Wagner, 2016), or also increase the step size of the attack to avoid regions with
zero gradients.
M4: Consider different restarts for the attack. If I3 or I4 activates, the

attack might also consider repeating the experiments with more initialization points
and restarts, as the failure could be the result of added randomness or an unlucky
initialization.
M5: Perform adaptive attacks. Lastly, if none of the above is applied, the attack

might be optimizing against a bad surrogate model. If I5 is active, the attack should
be repeated by changing the surrogate to better approximate the target, or include
the defense inside the attack itself (Tramer et al., 2020). This step implies repeating
the evaluation, as the change of the surrogate might trigger other previously-fixed
failures.

When attacks fail even after the application of recommended mitigations, it would
be easy to assume that the evaluated defense is strong against adversarial attacks.
However, the only thing known is that baseline attacks, properly tested, are not
working against the defense. Hence, the designer of the defense should try as hard
as possible to break the proposed defense with further investigations (Carlini et al.,
2019), and by performing sanity checks, e.g., ensuring that the robust accuracy
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drops to 0% when the perturbation size is unbounded, or by trying different attack
strategies, e.g., using gradient-free attacks, transfer attacks, or attacks designed by
specifically reversing the defense mechanism. In the next section, we will provide
some helpful guidelines to successfully create transferable adversarial examples, that
can be used as alternative optimization strategies to find further weak spots on the
decision landscape of a model.

4.4 Creating Transferable Adversarial Attacks

In transfer attacks, the steps in Algorithm 1 are performed with a model θ̂ that is
used as an approximation of the different model parametrized by θ.
We discuss here a connection among transferability of evasion attacks, input gradi-
ents, and model complexity. First, we will detail how the size of input gradients of a
model can be used to understand its intrinsic vulnerability, then we will specify how
the complexity of the surrogate used for crafting the adversarial examples affects
the quality of the solutions found for evasion attacks. Here, for model complexity,
we intend the capacity of a learning algorithm to fit the training data. It is typically
controlled by tuning either the number of classifier parameters to be learned or their
size (e.g., via regularization).

Transferability of Evasion Attacks. Given an evasion attack point x′, crafted
against a surrogate learner (parameterized by θ̂), we measure its transferability as
the loss attained by the target classifier f (parameterized by θ) on that point, i.e.,
T = L(y,x + δ̂;θ). This can be simplified through a linear approximation of the
loss function as:

T = L(x+ δ̂, y;θ) u L(x, y;θ) + δ̂
>∇xL(x, y;θ) . (4.11)

This approximation may not only hold for sufficiently-small input perturbations. It
may also hold for larger perturbations if the classification function is linear or has a
small curvature (e.g., if it is strongly regularized).
Under the same linear approximation, for any given point x, y, the evasion problem
can be rewritten as:

δ̂ ∈ arg max
‖δ‖p≤ε

L(x+ δ, y; θ̂) , (4.12)

i.e. the attacker should look for the local change in the input sample that linearly
produces the biggest change in the loss. Under the same linear approximation, this
corresponds to the maximization of an inner product over an ε-sized ball:

max
‖δ‖p≤ε

δ>∇xL(x, y; θ̂) = ε‖∇xL(x, y; θ̂)‖q , (4.13)

where `q is the dual norm of `p.
The above problem is maximized as follows:
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1. For p = 2, the maximum is δ̂ = ε ∇xL(x,y;θ̂)

‖∇x`(x,y;θ̂)‖2
;

2. For p =∞, the maximum is δ̂ ∈ ε · sign{∇xL(x, y; θ̂)};

3. For p = 1, the maximum is achieved by setting the values of δ̂ that correspond
to the maximum absolute values of ∇xL(x, y; θ̂) to their sign, i.e., ±1, and 0
otherwise.

Substituting the optimal value of δ̂ into Eq. (4.11), we can compute the loss incre-

ment ∆L = δ̂
>∇xL(x, y;θ) under a transfer attack in closed form; e.g., for p = 2,

it is given as:

∆` = ε
∇xL̂

>

‖∇xL̂‖2

∇xL ≤ ε‖∇xL‖2 , (4.14)

where, for compactness, we use L̂ = L(x, y; θ̂) and L = L(x, y;θ).
In this equation, the left-hand side is the increase in the loss function in the black-
box case, while the right-hand side corresponds to the white-box case. The upper
bound is obtained when the surrogate classifier θ̂ is equal to the target θ (white-box
attacks). Similar results hold for p = 1 and p = ∞ (using the dual norm in the
right-hand side).

Intriguing Connections and Transferability Metrics. The above findings re-
veal some interesting connections among transferability of attacks, model complex-
ity (controlled by the classifier hyperparameters), and input gradients, as detailed
below, and allow us to define simple and computationally-efficient transferability
metrics.
(1) Size of Input Gradients. The first interesting observation is that transferability
depends on the size of the gradient of the loss ` computed using the target clas-
sifier, regardless of the surrogate: the larger this gradient is, the larger the attack
impact may be. This is inferred from the upper bound in Eq. (4.14). We define the
corresponding metric S(x, y) as:

S(x, y) = ‖∇xL(x, y;θ)‖q , (4.15)

where q is the dual of the perturbation norm.
The size of the input gradient also depends on the complexity of the given model,
controlled, e.g., by its regularization hyperparameter. Less complex, strongly-
regularized classifiers tend to have smaller input gradients, i.e., they learn smoother
functions that are more robust to attacks, and vice-versa. In Fig. 4.6 we report
an example showing how increasing regularization (i.e., decreasing complexity) for
a neural network trained on MNIST89, by controlling its weight decay, reduces the
average size of its input gradients, improving adversarial robustness to evasion. It is
however worth remarking that, since complexity is a model-dependent characteristic,
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Figure 4.6: Size of input gradients (averaged on the test set) and test error (in
the absence and presence of evasion attacks) against regularization (controlled via
weight decay) for a neural network trained on MNIST89. Note how the size of input
gradients and the test error under attack decrease as regularization (complexity)
increases (decreases).

the size of input gradients cannot be directly compared across different learning al-
gorithms; e.g., if a linear SVM exhibits larger input gradients than a neural network,
we cannot conclude that the former will be more vulnerable.
Another interesting observation is that, if a classifier has large input gradients (e.g.,
due to high-dimensionality of the input space and low level of regularization), for an
attack to succeed it may suffice to apply only tiny, imperceptible perturbations. This
explains why adversarial examples against deep neural networks can often only be
slightly perturbed to mislead detection, while when attacking less complex classifiers
in low dimensions, modifications become more evident.
(2) Gradient Alignment. The second relevant impact factor on transferability is
based on the alignment of the input gradients of the loss function computed using
the target and the surrogate learners. If we compare the increase in the loss function
in the black-box case (the left-hand side of Eq. 4.14) against that corresponding to
white-box attacks (the right-hand side), we find that the relative increase in loss, at
least for `2 perturbations, is given by the following value:

R(x, y) =
∇xL̂

>∇xL
‖∇x ˆ̀‖2‖∇x`‖2

. (4.16)

Interestingly, this is exactly the cosine of the angle between the gradient of the
loss of the surrogate and that of the target classifier. This is a novel finding which
explains why the cosine angle metric between the target and surrogate gradients can
well characterize the transferability of attacks, confirming empirical results from
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previous work (Liu et al., 2017). For other kinds of perturbation, this definition
slightly changes, but gradient alignment can be similarly evaluated. Differently from
the gradient size S, gradient alignment is a pairwise metric, allowing comparisons
across different surrogate models. These two metrics can be used to understand the
intrinsic vulnerability of a model, and if an adversarial attack can transfer well to
other scenarios.

In the next chapter, we will report our experimental analysis that supports the main
contributions of this thesis.



Chapter 5

Experiments

In this Chapter, we provide experimental evidence to support the contributions
presented in Chapter 4. For each of the sections, we introduce the scenario, eval-
uation criteria, and the experimental protocol, then report the results and discuss
them. In the next sections, we present the experiments for the Fast Minimum-norm
attack (Sect. 5.1), for the Indicators of Failure and Slope (Sect. 5.2), and for the
transferability analysis (Sect. 5.3).

5.1 Fast Minimum-norm Adversarial Attacks

We report here an extensive experimental analysis involving several state-of-the-art
defenses and minimum-norm attacks, covering `0, `1, `2 and `∞ norms. The goal is
to empirically benchmark the proposed FMN attack and assess its effectiveness and
efficiency as a tool for adversarial robustness evaluation.

5.1.1 Experimental Setup

Datasets. We consider two commonly-used datasets for benchmarking adversarial
robustness of deep neural networks, i.e., the MNIST handwritten digits and CI-
FAR10. We normalize the datasets in the range [0, 1], i.e. we set xlb = 0 and
xub = 1, and then we apply the preprocessing specified in the original implementa-
tions of the models. Following the experimental setup in Brendel et al. (2020), we
use a subset of 1000 test samples to evaluate the considered attacks and defenses.

Models. We use a diverse selection of models to thoroughly evaluate attacks under
different conditions. For MNIST, we consider the following four models:

• M1, the 9-layer network used as the undefended baseline model by Papernot
et al. (2016b); Carlini and Wagner (2017b);

• M2, the robust model by Madry et al. (2018), trained on `∞ attacks (robustness
claim: 89.6% accuracy with ‖δ‖∞ ≤ 0.3, current best evaluation: 88.0%);
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• M3, the robust model by Rony et al. (2019), trained on `2 attacks (robustness
claim: 87.6% accuracy with ‖δ‖2 ≤ 1.5); and

• M4, the IBP Large Model by Zhang et al. (2020) (robustness claim: 94.3%
accuracy with ‖δ‖∞ ≤ 0.3).

For CIFAR10, we consider three state-of-the-art robust models from Robust-
Bench (Croce et al., 2020):

• C1, the robust model by Madry et al. (2018), trained on `∞ attacks (robustness
claim: 44.7% accuracy with ‖δ‖∞ ≤ 8/255, current best evaluation: 44.0%);

• C2, the defended model by Carmon et al. (2019) (top-5 in RobustBench),
trained on `∞ attacks and additional unsupervised data (robustness claim:
62.5% accuracy with ‖δ‖∞ ≤ 8/255, current best evaluation: 59.5%); and

• C3, the robust model by Rony et al. (2019), trained on `2 attacks (robustness
claim: 67.9% accuracy with ‖δ‖2 ≤ 0.5, current best evaluation: 66.4%).

Attacks. We compare our algorithm against different state-of-the-art attacks for
finding minimum-norm adversarial perturbations across different norms: the Carlini
& Wagner (CW) attack (Carlini and Wagner, 2017a), the Decoupling Direction and
Norm (DDN) attack (Rony et al., 2019), the Brendel & Bethge (BB) attack (Brendel
et al., 2020), and the Fast Adaptive Boundary (FAB) attack (Croce and Hein,
2020a). We use the implementation of FAB from Ding et al. (2019), while for all the
remaining attacks we use the implementation available in Foolbox (Rauber et al.,
2017, 2020), in which we also implemented ours. All these attacks are defined on
the `2 norm. BB and FAB are also defined on the `1 and `∞ norms, and only BB is
defined on the `0 norm. We consider both untargeted and targeted attack scenarios,
as defined in Sect. 4.2, except for FAB, which is only evaluated in the untargeted
case.1.

Hyperparameters. To ensure a fair comparison, we perform an extensive hy-
perparameter search for each of the considered attacks. We consider two main
scenarios: tuning the hyperparameters at the sample-level and at the dataset-level.
In the sample-level scenario, we select the optimal hyperparameters separately for
each input sample by running each attack 10 to 16 times per sample, with a differ-
ent hyperparameter configuration or random initialization point each time. In the
dataset-level scenario, we choose the same hyperparameters for all samples, select-
ing the configuration that yields the best attack performance. While sample-level

1The reason is that FAB implements a substantially different attack in the targeted case. The
targeted version of FAB aims to find a closer untargeted misclassification by running the attack
a number of times, each time targeting a different candidate class, and then selecting the best
solution (Croce and Hein, 2020a,b)
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tuning provides a fairer comparison across attacks, it is more computationally de-
manding and less practical than dataset-level tuning. In addition, the latter allows
us to understand how robust attacks are to suboptimal hyperparameter choices. We
select the hyperparameters to be optimized for each attack as recommended by the
corresponding authors (Brendel et al., 2020; Carlini and Wagner, 2017b; Croce and
Hein, 2020a; Rony et al., 2019). The hyperparameter configurations considered for
each attack are detailed below. For attacks that are claimed to be robust to hy-
perparameter changes, like BB and FAB, we follow the recommendation of using
a larger number of random restarts rather than increasing the number of hyperpa-
rameter configurations to be tested. In addition, as BB requires being initialized
from an adversarial starting point, we initialize it by randomly selecting a sample
either from a different class (in the untargeted case) or from the target class (in
the targeted case). Finally, as each attack performs operations with different levels
of complexity within each iteration, possibly querying the model multiple times,
we set the number of steps for each attack such that at least 1, 000 forward passes
(i.e., queries) are performed. This ensures a fairer comparison also in terms of the
computational time and resources required to execute each attack.
In the experiments, we will use the following attacks, introduced in Sect. 3.1.1:

• CW. We set the number of binary-search steps to 9, and the maximum number
of iterations to 250, to ensure that at least 1, 000 queries are performed. We
also set different values for c, η ∈ {10−3, 10−2, 10−1, 1}.

• DDN. We consider initial values of ε0 ∈ {0.03, 0.1, 0.3, 1, 3}, and run the attack
with a different number of iterations K ∈ {200, 1000}, as this affects the size
of each update on δ.

• BB. We consider different values for ρ ∈ {10−3, 10−2, 10−1, 1}, while we fix the
number of steps to 1000. We run the attack 3 times by considering different
initialization points and eventually retain the best solution.

• FAB. As suggested by Croce and Hein (2020a), we tune αmax ∈ {0.1, 0.05}
and η ∈ {1.05, 1, 3}. We consider 3 different random initialization points, and
run the attack for 500 steps each time, eventually selecting the best solution.

• FMN. We run FMN for K = 1000 steps, using γ0 ∈ {0.05, 0.3}, γK = 10−4,
and αK = 10−5. For `0, `1, and `2, we set α0 ∈ {1, 5, 10}. For `∞, we set
α0 ∈ {101, 102, 103}, as the normalized `2 step yields much smaller updates
in the `∞ norm. For each hyperparameter setting we run the attack twice,
starting from (i) the input sample and (ii) an adversarial point.

Evaluation criteria. We evaluate the attacks with four different criteria: (i) per-
turbation size and (ii) robustness to hyperparameter selection, measured as the me-
dian ‖δ?‖p on the test set (for a fixed budget of Q queries and for sample- and
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dataset-level hyperparameter tuning); (iii) execution time, measured as the average
time spent per query (in milliseconds); and (iv) convergence speed, measured as the
average number of queries required to converge to a good-enough solution (within
10% of the best value found at Q = 1000). When computing the median, we follow
the evaluation in Brendel et al. (2020): the perturbation size is set to 0 if a clean
sample is misclassified, while it is set to ∞ when the attack fails (no adversarial is
found). The median perturbation size thus represents the value for which 50% of
the samples evade a particular model.

5.1.2 Experimental Results

Query-distortion (QD) curves. To evaluate each attack in terms of perturbation
size under the same query budget Q, we use the so-called QD curves introduced
by Brendel et al. (2020). These curves report, for each attack, the median value of
δ? as a function of the number of queries Q. For each given Q value, the optimal δ?

for each point is selected among the different attack executions (i.e., using different
hyperparameters and/or initialization points, as described before).
In Fig. 5.1-5.4, we report the QD curves for the MNIST and CIFAR10 models, in
both targeted and untargeted scenarios.
On the MNIST dataset, our attacks generally reach smaller norms with fewer queries,
with the exception of M2 (Figs. 5.1-5.2), where it seems to reach convergence more
slowly than BB in `0 and `∞. In `2, the CW attack is the slowest to converge, due
to the need to carefully tune the weighting term.
On the CIFAR10 dataset (Figs. 5.3-5.4), our attack always rivals or outperforms the
others, with the notable exception of DDN for the `2 norm, which sometimes finds
smaller perturbations more quickly, as also shown in Table 5.3.
It is worth noting that our attack attains comparable results in terms of perturbation
size across all norms, while significantly outperforming FAB and BB in the `1 case.
It typically requires also fewer iterations than the other attacks to converge. While
the QD curves show the complete behavior of each attack as Q increases, a more
compact and thorough summary of our evaluation is reported below, according to
the four evaluation criteria described in Sect. 5.1.1.

Perturbation size. Table 5.1 reports the median value of ‖δ?‖ at Q = 1000
queries (i.e., the last value from the query-distortion curve), for all models, attacks
and norms. The values obtained with sample-level hyperparameter tuning confirm
that our attack can find smaller or comparable perturbations with those found by
the competing attacks, in most of the untargeted and targeted cases, and that the
biggest margin is achieved in the `1 case. FMN is only slightly worse than DDN and
BB in a few cases, including `2-DDN on M4 and `∞-BB on M2 and M4. The reason
may be that these robust models exhibit noisy gradients and flat regions around the
clean input samples, hindering the initial optimization steps of the FMN attack.

Robustness to hyperparameter selection. The values reported in the lower
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Figure 5.1: Query-distortion curves for untargeted (U ) attacks on the M1, M2, M3,
and M4 MNIST models.
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Figure 5.2: Query-distortion curves for targeted (T ) attacks on the M1, M2, M3,
and M4 MNIST models.
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Figure 5.3: Query-distortion curves for untargeted (U ) attacks on the C1 (top), C2
(middle), and C3 (bottom) CIFAR10 models.

part of Table 5.1 show that, when using dataset-level hyperparameter tuning, FMN
outperforms the other attacks in a much larger number of cases. This shows that
FMN is more robust to hyperparameter changes, while other attacks like `0- and
`1-BB suffer when using the same hyperparameters for all samples.

Execution time. The average runtime per query for each attack-model pair, mea-
sured on a workstation with an NVIDIA GeForce RTX 2080 Ti GPU with 11GB of
RAM, can be found in Table 5.2. The results show that our attack is up to 2-3 times
faster, with the exception of DDN in the `2 case. This is however compensated by
the fact that FMN finds better solutions. The advantage is that our attack avoids
costly inner projections as in BB and FAB. FMN is slightly less time-efficient than
DDN and CW, as it simultaneously updates the adversarial point and the norm con-
straint. In particular, the update on the constraint may initially require computing
the norm of the gradient g (line 6 in Algorithm 2), which increases the runtime
of our attack. FAB computes a similar step, but for all the output classes, which
hinders its scalability to problems with many classes.

Convergence speed. To get an estimate of the convergence speed, we measure the
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Figure 5.4: Query-distortion curves for targeted (T ) attacks on the C1 (top), C2
(middle), and C3 (bottom) CIFAR10 models.
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Table 5.1: Median ‖δ?‖p value at Q = 1000 queries for targeted and untargeted
attacks, with sample-level and dataset-level hyperparameter tuning.

MNIST CIFAR10

Untargeted Targeted Untargeted Targeted
Model M1 M2 M3 M4 M1 M2 M3 M4 C1 C2 C3 C1 C2 C3

Sample-level Hyperparameter Tuning

`0 BB 7 8 15 94 14 27 24 93 8 12 13 19 32 25
Ours 7 9 15 5 14 20 24 23 8 11 14 19 32 27

`1 FAB 6.60 3.08 14.23 109.4 - - - - 4.79 5.17 8.79 - - -
BB 6.26 5.81 13.16 5.44 12.42 10.38 20.41 6.25 3.75 4.29 8.62 8.04 10.93 15.71

Ours 5.57 2.95 12.04 1.96 12.20 6.75 18.79 7.31 3.04 3.43 8.26 7.07 9.40 15.24

`2 FAB 1.45 1.36 2.62 2.97 - - - - 0.66 0.72 0.94 - - -
CW 1.49 4.22 2.78 - 2.33 6.97 3.54 - 0.67 0.74 0.91 1.08 1.27 1.38
BB 1.43 1.34 2.61 1.61 2.27 2.04 3.23 1.79 0.63 0.70 0.91 1.07 1.26 1.38

DDN 1.46 1.71 2.56 0.79 2.29 2.20 3.27 1.33 0.64 0.73 0.91 1.09 1.29 1.39
Ours 1.41 1.23 2.50 0.94 2.28 1.89 3.19 1.85 0.61 0.69 0.91 1.03 1.21 1.38

`∞ FAB .138 .337 .233 .421 - - - - .033 .043 .025 - - -
BB .138 .330 .227 .402 .202 .355 .271 .403 .032 .041 .024 .055 .064 .037

Ours .134 .339 .226 .404 .201 .389 .272 .406 .032 .040 .024 .055 .063 .037

Dataset-level Hyperparameter Tuning

`0 BB 12 152 52 145 20 179 39 183 28 44 32 29 65 33
Ours 9 33 18 15 16 48 28 55 11 17 16 25 38 32

`1 FAB 8.66 225.7 163.9 312.3 - - - - - - 20.48 - - -
BB 10.60 49.83 17.57 46.99 16.60 53.11 29.89 54.31 7.02 10.20 17.13 11.41 15.26 23.37

Ours 7.13 4.18 13.66 4.99 13.18 8.33 21.37 12.16 4.28 4.82 9.52 8.51 10.40 17.32

`2 FAB 1.54 1.59 2.81 16.30 - - - - 0.77 1.11 1.06 - - -
CW 1.63 5.15 3.71 - 2.50 - 4.72 - 0.86 1.00 0.99 1.36 2.90 1.55
BB 1.75 1.82 3.02 4.57 2.64 2.59 3.52 5.31 0.86 0.95 1.10 1.25 1.45 1.73

DDN 1.47 2.01 2.62 1.15 2.31 2.72 3.36 1.96 0.66 0.77 0.91 1.11 1.31 1.40
Ours 1.61 1.42 2.61 1.56 2.30 2.13 3.24 2.41 0.67 0.74 0.91 1.09 1.28 1.38

`∞ FAB .148 .365 .248 .900 - - - - .038 .052 .029 - - -
BB .159 .336 .243 .409 .223 .361 .280 .477 .044 .054 .029 .059 .074 .042

Ours .140 .357 .233 .408 .206 .426 .277 .434 .034 .042 .024 .057 .066 .037

number of queries required by each attack to reach a perturbation size that is within
10% of the value found at Q = 1000 queries (the lower the better). Results are shown
in Table 5.3. Our attack converges on par with or faster than all other attacks for
almost all models, often requiring only half or a fifth as many queries as the state of
the art. Exceptions are MNIST and CIFAR10 challenge models (M2 and C1) for `2

and `∞, where BB and DDN occasionally converge faster. FMN rarely needs more
than 100 steps, reaching the minimal perturbation after only 10-30 queries on many
datasets, models, and norms.
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Table 5.2: Average execution time (milliseconds / query) for each attack-model pair.

MNIST CIFAR10

Untargeted Targeted Untargeted Targeted
Model M1 M2 M3 M4 M1 M2 M3 M4 C1 C2 C3 C1 C2 C3

`0 BB 10.76 11.85 10.19 12.02 60.88 62.17 62.31 57.74 46.51 50.31 50.43 99.71 105.28 103.53
Ours 5.15 4.87 5.87 9.70 5.14 4.75 5.85 9.71 26.26 30.54 30.89 26.13 30.26 30.81

`1 FAB 9.38 8.88 12.61 36.00 - - - - 84.04 108.91 108.64 - - -
BB 6.73 7.03 7.31 12.50 43.25 43.54 43.69 43.86 32.56 37.40 37.59 68.99 73.33 74.03

Ours 5.43 5.14 6.10 9.35 5.44 5.10 6.09 9.35 27.34 31.17 31.18 26.00 30.98 31.03

`2 FAB 10.22 10.13 13.45 36.72 - - - - 84.27 109.43 108.87 - - -
CW 4.22 4.09 5.17 10.07 4.23 4.14 5.15 10.06 25.90 31.32 31.31 25.78 31.32 31.30
BB 4.44 4.15 5.03 12.38 26.20 26.76 27.24 31.00 26.64 31.82 31.90 48.74 54.35 54.07

DDN 3.42 3.33 4.30 8.59 3.42 3.35 4.32 8.60 24.14 29.62 29.48 23.61 29.61 29.52
Ours 4.46 4.42 5.48 9.15 4.50 4.44 5.47 9.09 24.88 30.22 30.08 25.39 30.21 30.04

`∞ FAB 10.85 10.61 14.05 36.23 - - - - 84.62 109.83 109.57 - - -
BB 14.26 16.36 13.51 15.44 38.61 38.87 36.39 34.85 61.34 62.36 62.63 83.70 87.64 88.90

Ours 4.25 4.33 5.30 9.17 4.33 4.23 5.31 9.10 24.84 30.15 30.01 24.78 30.19 30.03

Table 5.4: Success rate (%) of FMN against PGD on ImageNet models.

ResNet18 VGG

`1 (ε = 1.0)
PGD 31.4 30.4
FMN 38.4 39.8

`2 (ε = 0.15)
PGD 61.7 61.4
FMN 65.8 66.2

`∞ (ε = 4 · 10−4)
PGD 51.0 49.0
FMN 55.2 49.0

Robust accuracy. Despite our attack being not tailored to target specific defenses,
and our evaluation restricted to a subset of the testing samples, it is worth remarking
that the robust accuracies of the models against our attack are aligned with that
reported in current evaluations, with the notable exception of C3, where our attack
can decrease robust accuracy from 67.9% to 65.5%.

Experiments on ImageNet. We conclude our experiments by running an ad-
ditional comparison between FMN and a widely-used maximum-confidence attack,
i.e., the Projected Gradient Descent (PGD) attack (Madry et al., 2018), on two
pre-trained ImageNet models (i.e., ResNet18 and VGG16), considering `1, `2 and
`∞ norms. The hyperparameters are tuned at the dataset-level using 20 validation
samples. For FMN, we fix the hyperparameters as discussed before, and only tune
α0 ∈ {0.1, 1, 2, 8}, without using adversarial initialization. For PGD, we tune the
step size α ∈ {0.001, 0.01, 0.1, 1, 2, 8}. We run both attacks for Q = 1, 000 queries
on a separate set of 1, 000 samples. The success rates of both attacks at fixed ε
values are reported in Table 5.4. The results show that FMN outperforms or equals
PGD in all norms.
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Table 5.3: Number of queries required by each attack to reach a perturbation size
that is within 10% of the value obtained at Q = 1000.

MNIST CIFAR10

Untargeted Targeted Untargeted Targeted
Model M1 M2 M3 M4 M1 M2 M3 M4 C1 C2 C3 C1 C2 C3

`0 BB 22 43 68 114 30 443 71 376 497 372 58 384 500 85
Ours 22 82 38 182 27 165 46 145 48 71 37 271 146 70

`1 FAB 44 242 152 569 - - - - 124 220 72 - - -
BB 24 314 83 391 45 614 233 722 674 570 34 526 464 206

Ours 21 363 34 631 25 243 37 336 48 85 31 89 130 38

`2 FAB 14 60 40 532 - - - - 18 28 14 - - -
CW 110 799 335 - 100 913 469 - 67 39 33 56 144 42
BB 20 24 20 337 21 61 20 692 22 23 22 26 27 29

DDN 12 136 15 474 12 149 26 670 13 20 4 18 19 18
Ours 16 94 16 190 11 136 16 188 28 23 7 25 29 13

`∞ FAB 36 50 44 11 - - - - 50 50 54 - - -
BB 19 17 20 5 24 17 22 5 20 24 21 27 33 29

Ours 9 10 22 5 27 8 26 5 22 15 14 20 29 34

In this section, we first show adversarial examples obtained by different `p attacks
on MNIST and CIFAR10 data for visual comparison. These examples highlight the
different behavior exhibited by each attack. We then report the query-distortion
curves for all datasets, models, and attacks used in this paper, showing that our
attack outperforms current attacks on the `1 norm and rivals their performance on
other norms, while typically converging with much fewer queries.

Adversarial examples. In Figs. 5.5-5.6, we report adversarial examples generated
by all attacks against model M2 and C2, respectively, on MNIST and CIFAR10
datasets, in the untargeted scenario. As expected, for each metric we find different
levels of sparsity in the applied perturbation. The clean samples and the original
label are displayed in the first row of each figure. In the remaining rows, we show
the perturbed sample along with the predicted class and the corresponding norm of
perturbation ‖δ?‖p. It is worth noting that the output class for different untargeted
attacks is not always the same, which might sometimes explain differences in the
perturbation sizes. An example is given in Fig. 5.6b, where the sample in the fourth
column, labeled as “ship”, is perturbed by most of the attacks towards the class
“airplane”, while in our case it outputs the class “dog” with a much smaller distance.
The presence of so many different local optima provides an additional indication that
many blind spots exist especially in high-dimensional spaces, and that improving
adversarial robustness in this setting remains thus a very challenging problem. On
the other hand, the observation that different attacks find different local optima
also points out that using a diverse set of attacks can help obtain more reliable
adversarial robustness evaluations. For this reason, we firmly believe that FMN can
be a valuable, complementary addition to the current arsenal of attacks towards
improving the evaluation of adversarial robustness.
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Figure 5.5: Adversarial examples on MNIST dataset.
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Figure 5.6: Adversarial examples on the CIFAR10 dataset.
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5.2 Indicators of Attack Failures

In Sect. 4.3 we presented the Indicators of Attack Failure (IoAF), useful tools for
debugging adversarial robustness evaluations. We now exhibit the results of our
experiments, by showing the correlation between the feedback of our indicators, and
the false sense of security given by badly-evaluated defenses.

Experimental setup. We run our attacks on an Intel® Xeon® CPU E5-2670
v3, with 48 cores, 126 GB of RAM, and equipped with an Nvidia Quadro M6000
with 24 GB of memory. All the attacks and models have been wrapped and run
by using the SecML library (Melis et al., 2019). We select four defenses that have
been reported as failing, and we show that our indicators would have detected such
evaluation errors. For each of them, we set the hyperparameters for the attack as
done in the original evaluation, in order to collect similar results, and we compute
the robust accuracy (as defined in Sect 2.3) for the given threat model.

• k-Winners-Take-All (kWTA), the defense proposed by Xiao et al. (2020)
uses only the top-k outputs from each layer, generating many discontinuities
in the loss landscape, and hence resulting in the non-converging failure due
to noisy gradients (F2). We use the implementation provided by Tramer
et al. (2020), trained on CIFAR10, and we test its robustness by attacking it
with `∞-PGD (Madry et al., 2018) with a step size of α = 0.003, maximum
perturbation ε = 8/255 and 50 iterations, with 5 restarts for each attack,
scoring a robust accuracy of 58% on 100 samples.

• Distillation, the defense proposed by Papernot et al. (2016b), works by
training a model to have zero gradients around the training points, leading
gradient-based attacks towards bad local optimum (F3). We re-implemented
such defense, by training a distilled classifier on the MNIST dataset to mimic
the original evaluation. Then, we apply `∞-PGD (Madry et al., 2018), with
step size α = 0.01, maximum perturbation ε = 0.3 for 50 iterations on 100
samples, resulting in a robust accuracy of 94,2%.

• Ensemble diversity, the defense proposed by Pang et al. (2019) is composed of
different neural networks, trained with a regularizer that encourages diversity.
We adopt the implementation provided by Tramer et al. (2020). Then,
following its original evaluation, we apply `∞-PGD (Madry et al., 2018), with
step size α = 0.001, maximum perturbation ε = 0.01 for 10 iterations on 100
samples, resulting in a robust accuracy of 38%.
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• Turning a Weakness into a Strenght (TWS), the defense proposed by Yu et al.
(2019), applies a mechanism for detecting the presence of adversarial exam-
ples on top of an undefended model, measuring how much the decision changes
locally around a sample. Even if the authors also apply other rejection mech-
anisms, we take into account only the described one, as we wish to show that
attacks optimized neglecting such term will trigger the non-adaptive attack
failure (F4).

We apply this defended on a WideResNet model trained on CIFAR10, provided by
RobustBench (Croce et al., 2020). We attack this model with `∞-PGD (Madry et al.,
2018), with step size α = 0.1, maximum perturbation ε = 0.3 for 50 iterations on 100
samples, and then we query the defended model with all the computed adversarial
examples. While the attacks work against the standard model, some of them are
rejected by the defense, resulting in a robust accuracy of 35%, highlighted by the
trigger of the I5 indicator. In this case, we consider an attack unsuccessful if the
original sample is not misclassified and the adversarial point is either belonging to
the same class or is labeled as rejected.
Each of these attacks has been executed with 5 random restarts. We also attack
all these models with the version of AutoPGD (APGD) (Croce and Hein, 2020b)
that uses the difference of logit (DLR) as a loss to optimize. This strategy will take
care to automatically tune its hyperparameters while optimizing, reducing possible
errors that occur while deciding the values of step size, and iterations. Lastly, we
compute attacks that take into account all the mitigations we prescribed, and they
will be analyzed further in the paper.

Identifying failures. We want now to understand if our indicators are correlated
with faults of the security evaluations of defenses. We collect the results of all the
attacks against the selected targets, and we compute our indicators, by listing their
values in Table 5.5, along with their mean score. With a glance, it is possible to
grasp that our hypothesis is right: the detection of a failure is linked with higher
values for the robust accuracy, and also the opposite. Each original evaluation is
characterized by high values of one or more indicators, while the opposite happens
for stronger attacks. For instance, APGD automatically tunes its hyperparameter
while optimizing, hence it is able to apply some mitigations directly during the
attack. To gain a quantitative evaluation of our hypothesis, we compute both the p-
value and the correlation between the average score of the indicators and the robust
accuracy, depicting this result in Fig. 5.7. Both p-value and correlation suggest a
strong connection between these analyzed quantities, confirming our initial belief.

Mitigating failures. We can now use our indicators to improve the quality of the
security evaluations, and we apply the following pipeline: (i) we test the defense
with a set of points with the original attack strategy proposed by the author of the
defense; (ii) we select the failure cases and inspect the feedback of our indicators
per-sample; (iii) for each cause of failure, we apply the specific remediation suggested
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Model Attack I1 I2 I3 I4 I5 Ī RA
PGD 0.33 0.43 0.77 - - 0.306 58%

k-WTA (Xiao et al., 2020) APGD - 0.31 0.33 - - 0.128 36%
PGD? 0.07 0.48 0.55 - - 0.220 6%
PGD - 0.98 - 0.97 - 0.39 94%

Distillation (Papernot et al., 2016b) APGD - 0.40 0.21 - - 0.122 0%
PGD? - 0.04 - - - 0.008 0%
PGD - 0.76 - - - 0.152 38%

Ensemble Div. (Pang et al., 2019) APGD - 0.37 0.14 - - 0.102 0%
PGD? 0.08 0.17 0.15 - - 0.080 9%
PGD - 0.49 0.07 - 0.37 0.186 35%

TWS (Yu et al., 2019) APGD - 0.41 0.09 - - 0.100 0%
PGD? - 0.37 0.10 - - 0.094 0%

Table 5.5: Values of the Indicators of Attack Failures, computed for all the at-
tacks against all the evaluated models. We denote the attacks that apply also the
mitigations as PGD?.

by the metric; and (iv) we show that the attack now succeeds, thus reducing the
robust accuracy of the target model, and also the values of the indicators.
We report all the results of this process in Table 5.6, where each row shows the
original robust accuracy, and how it is decreased, mitigation after mitigation. Also,
all the individual values of each indicator computed on these patched attacks can
be found in Table 5.5, marked as PGD?.

• Mitigating k-WTA failures. For many failing attacks, the I1 indicator triggers,
implying that the attack found an adversarial example inside the path. We
then apply mitigation M1, and we lower accordingly the robust accuracy of
the model to 36,4%. We then analyze the feedback of the I3 indicator, the one
that detects the presence of noisy gradients. We apply mitigation M3, and we
change the loss of the attack as described by Tramer et al. (2020). This loss
is computed by averaging the gradient of every single point of the attack path
with the information of the surrounding ones. The resulting direction is then
able to correctly descent toward a minimum. We run `∞-PGD with the same
parameters, but smoothing the gradients by averaging 100 neighboring points
from a normal distribution N (µ = xi, σ = 0.031), where xi is a point in the
attack path. After such mitigation, the robust accuracy drops to 6, 4%, and
so follows the indicator (Fig. 5.8a).

• Mitigating Distillation failures. All the attacks fail because of the absence of
gradient information, leading the attack to a bad local optimum (F3), and
such is highlighted by the feedback of the I3 indicator. We apply mitigation
M3, and we change the loss optimized during the attack, following the strategy
applied by Carlini and Wagner (2016), that computes the loss of the attack
on the logit of the model rather than the final softmax layer. We repeat the
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PGD attack with such fix, and the robust accuracy drops to 0%, along with
the indicator I3 (Fig. 5.8b).

• Mitigating Ensemble diversity failures. Firstly, the I1 indicator highlighted the
presence of F1, implying that some failing attacks are due to the implemen-
tation itself. We apply mitigation M1, and the robust accuracy decreases to
36%. Also, I2 indicator is active, implying that the loss of failing attacks could
be optimized more. For this reason, we apply mitigation M2, and we increase
the step size to 0.05 and the iterations to 50. This patch is enough for lowering
the robust accuracy to 9%. (Fig. 5.8c).

• Mitigating TWS failures. The detector is rejecting adversarial attacks success-
fully computed on the undefended model, triggering the I5 indicator. Hence
we apply mitigation M5, and we adapt the attack to consider also the rejection
class. This version of PGD minimizes the usual loss function of the attacker,
but it also minimizes the score of the rejection class when encountered, allow-
ing it to evade the rejection. We run such an attack, and we obtain a new
robust accuracy of 0% (Fig. 5.8d).

Model Initial M1 M2 M3 M4 M5 Final

k-WTA (Xiao et al., 2020) 58.2% 36.4% 36.4% 6.4% 6.4% 6.4% 6.4%
Distillation (Papernot et al., 2016b) 94.2% 94.2% 94.2% 0.4% 0.4% 0.4% 0.4%

Ensemble Diversity (Pang et al., 2019) 38.0% 38.0% 9.0% 9.0% 9.0% 9.0% 9.0%
TWS (Yu et al., 2019) 35.0% 35.0% 35.0% 35.0% 35.0% 0.0% 0.0%

Table 5.6: Robust accuracies (%) after patching the security evaluations with the
prescribed mitigations.
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5.2.1 Measuring Gradient Obfuscation With Slope

From the results presented in the previous section, it is clear that some of the used
models produce gradient obfuscation in the loss function used by the attacks. We
now show how our metric Slope, which measures gradient obfuscation, is correlated
with the ease or difficulty of optimizing the loss of an `p PGD attack, against a
target model.

Target models We select four models, two of them are already presented in the
previous evaluation and trained using particular techniques that are known to cause
gradient obfuscation (Tramer et al., 2020), one is a standard-trained model, and the
last one is an adversarially-trained one.

• k-Winners Take All (k-WTA) (Xiao et al., 2020): the model already described
in Sect. 5.2, that causes many discontinuities in the loss surface, as shown in
Figure 5.9a, and known to be affected by noisy descent (Tramer et al., 2020);

• Distillation (Papernot et al., 2016b): the model already described in Sect. 5.2,
that causes zero gradients and instabilities in most of the loss landscape, as
shown in Fig. 5.9b. The attack proposed by Athalye et al. (2018) discards the
last softmax layer, using only the logits as the output of the classifier. This
trick smooths the loss function, as shown in Fig. 5.9c, successfully removing
the effect of the defense. We test such a model by computing the gradients
of the Cross-Entropy loss (obfuscated) and on the pre-softmax scores (not
obfuscated).

• Standard training : we use the implementation provided by Robust-
Bench (Croce et al., 2020), which is a WideResNet (Zagoruyko and Komodakis,
2016) model trained on CIFAR10. Since it is not trained with any defenses,
the loss landscape is smooth, but it contains many local minima and maxima,
as shown in Fig. 5.9d. Hence, all classes are very close one to another, and
adversarial examples are very easy to be found.

• Adversarial training (Madry et al., 2018): the model is trained with both
normal and adversarial examples, computed with an attack of choice, and
such process is repeated until a desired robust accuracy is reached. As a
result, the loss landscape becomes smoother, reducing the blind-spot areas
where adversarial examples lay, as shown in Fig. 5.9e. For our work, we use
the ResNet (He et al., 2016) model trained by Madry et al. (2018) on CIFAR10.

Results We report the results of our experimental analysis, by taking into account
the correlation between our metric P̄ and the robust accuracy of each target. For
computing P̄ , we use η ∈ [0.01, 0.1] when using the `2 norm (Fig. 5.11a), and
η ∈ [0.001, 0.01] when using the `∞ norm (Fig. 5.11b). The security evaluation
is computed by attacking all the targets with PGD `∞. For the model trained on
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(a) (b) (c) (d) (e)

Figure 5.9: Loss landscape visualizations on the bi-dimensional space spanned by the
`∞ adversarial direction (v1) and a random direction (v2) for the models used in our
experiments: (a) K-WTA, (b) Distillation with Cross Entropy loss, (c) Distillation
with logits loss, (d) Standard model, and (e) Adversarial training. Note that P (x) ≤
0 only for models (a) and (b), which present obfuscated gradients.

CIFAR10, we set the maximum perturbation ε ∈ [0, 0.1] (Fig. 5.10b), where 0 implies
the accuracy in absence of the attack, while we use ε ∈ [0, 0.5] for the attacks against
the models trained on MNIST (Fig.5.10a).
By looking at the output of P̄ , we notice that models trained with obfuscated
gradients are characterized by values that are less than or equal to zero, implying
difficulty in detecting the right direction to follow during the attack. For instance,
the Distillation model with Cross-Entropy loss has null gradients, while k-WTA is
characterized by noisy gradients that lead the loss to a decrement rather than an
increment.
The other models’ scores are positive, meaning that their gradients are informative
for the attack and aligned with the loss to increase, hence converging to adversarial
points. These effects are very similar for both `2 and `∞ norms, implying that such
trend is characteristic of the model itself rather than the norm used for computing
one step of PGD.
These results are confirmed by the security evaluations in Fig. 5.10: all the defended
obfuscated models are less stressed by the adversarial attacks performed with PGD.
The fact that the robust accuracy does not fall even with a high perturbation budget,
i.e. in the rightmost part of the security evaluation plots, confirms the hypothesis
that the attack strategy is not suitable for those models. Also, the smoother models
are affected by our attacks when the perturbation budges increases, as also predicted
by P̄ . Hence, Slope is a good proxy for detecting the presence of gradient obfuscation
inside the model, allowing the attacker to rethink their strategy, and land successful
evasion attacks.



5.2. INDICATORS OF ATTACK FAILURES 85

0.05 0.15 0.30 0.40 0.50
ε

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

Security Evaluation Curve

(a) MNIST models.

0.015 0.031 0.050 0.070 0.100
ε

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

Security Evaluation Curve

(b) CIFAR models.

k-WTA

distillation CE Loss

distillation Logits

standard training

adversarial training

Figure 5.10: Security evaluations of the four models. On the x-axis, the values for
the perturbation budget ε used for the evaluation, while on the y axis the robust
accuracy.
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Figure 5.11: The values of the mean Slope P̄ , computed for both the `2 (a) and the
`∞ (b) norms. On the x-axis, the step sizes η used for computing the approximation,
while on the y axis we report the values of P̄ .
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5.3 Transferability of Adversarial Examples

In this section, we evaluate the transferability of evasion attacks across a range of
ML models. We highlight some interesting findings on transferability, based on the
three metrics developed in Sect. 4.4. In particular, we analyze attack transferability
in terms of its connection to the size of the input gradients of the loss function,
and the gradient alignment between surrogate and target classifiers. We provide
recommendations on how to choose the most effective surrogate models to craft
transferable evasion attacks in the black-box setting.

Experimental setup. The MNIST89 data includes the MNIST handwritten dig-
its from classes 8 and 9. Each digit image consists of 784 pixels ranging from 0 to
255, normalized in [0, 1] by dividing such values by 255. We run 10 independent
repetitions to average the results on different training-test splits. In each repetition,
we run white-box and black-box attacks, using 5, 900 samples to train the target
classifier, 5, 900 distinct samples to train the surrogate classifier (without even rela-
beling the surrogate data with labels predicted by the target classifier; i.e., we do not
perform any query on the target), and 1, 000 test samples. We modified test digits
in both classes using Algorithm 1 under the `2 distance constraint ‖x − x′‖2 ≤ ε,
with ε ∈ [0, 5].
For each of the following learning algorithms, we train a high-complexity (H) and a
low-complexity (L) model, by changing its hyperparameters: (i) SVMs with linear
kernel (SVMH with C = 100 and SVML with C = 0.01); (ii) SVMs with RBF kernel
(SVM-RBFH with C = 100 and SVM-RBFL with C = 1, both with γ = 0.01);
(iii) logistic classifiers (logisticH with C = 10 and logisticL with C = 1); (iv) ridge
classifiers (ridgeH with α = 1 and ridgeL with α = 10);2 (v) fully-connected neural
networks with two hidden layers including 50 neurons each, and ReLU activations
(NNH with no regularization, i.e., weight decay set to 0, and NNL with weight decay
set to 0.01), trained via cross-entropy loss minimization; and (vi) random forests
consisting of 30 trees (RFH with no limit on the depth of the trees and RFL with a
maximum depth of 8). These configurations are chosen to evaluate the robustness
of classifiers that exhibit similar test accuracies but different levels of complexity.

Model complexity analysis in white-box settings. The results for white-box
evasion attacks are reported for all classifiers that fall under our framework and can
be tested for evasion with gradient-based attacks (SVM, Logistic, Ridge, and NN).
This excludes random forests, as they are not differentiable. We report the complete
security evaluation curves Biggio and Roli (2018) in Fig. 5.12, showing the mean
test error (over 10 runs) against an increasing maximum admissible distortion ε. In
Fig. 5.13a we report the mean test error at ε = 1 for each target model against the
size of its input gradients (S, averaged on the test samples and on the 10 runs).
The results show that, for each learning algorithm, the low-complexity model has
smaller input gradients, and it is less vulnerable to evasion than its high-complexity

2Recall that the level of regularization increases as α increases, and as C decreases.
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Figure 5.12: White-box evasion attacks on MNIST89. Test error against increasing
maximum perturbation ε.

counterpart, confirming our theoretical analysis. Recall that these results hold only
when comparing models trained using the same learning algorithm. This means
that we can compare, e.g., the S value of SVMH against SVML, but not that of
SVMH against logisticH. In fact, even though logisticH exhibits the largest S value,
it is not the most vulnerable classifier. Another interesting finding is that nonlinear
classifiers tend to be less vulnerable than linear ones.

Transferability of evasion attacks. In Fig. 5.14 we report the results for black-
box evasion attacks, in which the attacks against surrogate models (in rows) are
transferred to the target models (in columns). The top row shows results for sur-
rogates trained using only 20% of the surrogate training data, while in the bottom
row surrogates are trained using all surrogate data, i.e., a training set of the same
size as that of the target. The three columns report results for ε ∈ {1, 2, 5}.
It can be noted that lower-complexity models (with stronger regularization) provide
better surrogate models, on average. In particular, this can be seen best in the
middle column for a medium level of perturbation, in which the lower-complexity
models (SVML, logisticL, ridgeL, and SVM-RBFL) provide on average higher error
when transferred to other models. The reason is that they learn smoother and
stabler functions, that are capable of better approximating the target function.
Surprisingly, this holds also when using only 20% of training data, as the black-
box attacks relying on such low-complexity models still transfer with similar test
errors. This means that most classifiers can be attacked in this black-box setting
with almost no knowledge of the model, no query access, but provided that one can
get a small amount of data similar to that used to train the target model.
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Figure 5.13: Evaluation of our metrics for evasion attacks on MNIST89. (a) Test
error under attack vs average size of input gradients (S) for low- (denoted with ‘×’)
and high-complexity (denoted with ‘◦’) classifiers. (b) Pearson correlation coefficient
ρ(δ̂, δ) between black-box (δ̂) and white-box (δ) perturbations (values in Fig. 5.15,
right) vs gradient alignment (R, values in Fig. 5.15, left) for each target-surrogate
pair. Pearson (P) and Kendall (K) correlations between ρ and R are also reported
along with the p-values obtained from a permutation test to assess statistical signif-
icance.

Gradient alignment and transferability. In Fig. 5.15, we report on the left
the gradient alignment computed between surrogate and target models, and on the
right the Pearson correlation coefficient ρ(δ̂, δ) between the perturbation optimized
against the surrogate (i.e., the black-box perturbation δ̂) and that optimized against
the target (i.e., the white-box perturbation δ). We observe immediately that gra-
dient alignment provides an accurate measure of transferability: the higher the
cosine similarity, the higher the correlation (meaning that the adversarial examples
crafted against the two models are similar). We correlate these two measures in
Fig. 5.13b, and show that such correlation is statistically significant for both Pear-
son and Kendall coefficients. In Fig. 5.13c we also correlate gradient alignment with
the ratio between the test error of the target model in the black- and white-box
setting (extrapolated from the matrix corresponding to ε = 1 in the bottom row of
Fig. 5.14), as suggested by our theoretical derivation. The corresponding permuta-
tion tests confirm statistical significance. We finally remark that gradient alignment
is extremely fast to evaluate, as it does not require simulating any attack, but it is
only a relative measure of the attack transferability, as the latter also depends on
the complexity of the target model; i.e., on the size of its input gradients.

5.3.1 Summary of Transferability Evaluation

We summarize the results of transferability for evasion and poisoning attacks below.
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Figure 5.14: Black-box (transfer) evasion attacks on MNIST89. Each cell contains
the test error of the target classifier (in columns) computed on the attack samples
crafted against the surrogate (in rows). Matrices in the top (bottom) row correspond
to attacks crafted against surrogate models trained with 20% (100%) of the surro-
gate training data, for ε ∈ {1, 2, 5}. The test error of each target classifier in the
absence of an attack (target error) and under (white-box) attack are also reported
for comparison, along with the mean transfer rate of each surrogate across targets.
Darker colors mean higher test error, i.e., better transferability.

(1) Size of input gradients. Low-complexity target classifiers are less vulnera-
ble to evasion and poisoning attacks than high-complexity target classifiers trained
with the same learning algorithm, due to the reduced size of their input gradients.
In general, nonlinear models are more robust than linear models to both types of
attacks.

(2) Gradient alignment. Gradient alignment is correlated with transferability.
Even though it cannot be directly measured in black-box scenarios, some useful
guidelines can be derived from our analysis. For evasion attacks, low-complexity
surrogate classifiers provide stabler gradients that are better aligned, on average,
with those of the target models; thus, it is generally preferable to use strongly-
regularized surrogates.

To summarize, for evasion attacks, decreasing the complexity of the surrogate model
by properly adjusting the hyperparameters of its learning algorithm provides adver-
sarial examples that transfer better to a range of models.
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Figure 5.15: Gradient alignment and perturbation correlation for evasion attacks
on MNIST89. Left: Gradient alignment R (Eq. 4.16) between surrogate (rows) and
target (columns) classifiers, averaged on the unmodified test samples. Right: Pear-
son correlation coefficient ρ(δ, δ̂) between white-box and black-box perturbations
for ε = 5.

Understanding attack transferability has two main implications. First, even when
attackers do not know the target classifier, our findings suggest that low-complexity
surrogates have a better chance of transferring to other models. Our recommenda-
tion to perform black-box evasion attacks is to choose surrogates with low complex-
ity (e.g., by using strong regularization and reducing model variance). Second, our
analysis also provides recommendations to defenders on how to design more robust
models against evasion and poisoning attacks. In particular, lower-complexity mod-
els tend to have more resilience compared to more complex models. Of course, we
need to take into account the bias-variance trade-off and choose models that still
perform relatively well on the original prediction tasks.
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Conclusions

We now summarize the main contributions of this thesis, along with the main results
found with the analysis, and draw future plans for extending the topics of this
research to new directions.

6.1 Summary of the Main Achievements

This work introduces improvements over the security evaluation of machine learn-
ing models. Our big picture is to automate, systematize, and raise awareness on
the complicated and unforgiving process of proactively evaluating machine learning
defenses.

We introduced a novel minimum-norm attack that combines all desirable traits
to help improve current adversarial evaluations: (i) finding smaller or comparable
minimum-norm perturbations across a range of models and datasets; (ii) being less
sensitive to hyperparameter choices; (iii) reducing runtime up to 3 times per query
with respect to competing attacks and (iv) converging within fewer iterations. FMN
also works with different `p norms (p = 0, 1, 2,∞) and it does not necessarily require
being initialized from an adversarial starting point. Our experiments have shown
that FMN rivals or surpasses other attacks in speed, reliability, efficacy, and versa-
tility. We firmly believe that FMN will establish itself as a useful tool in the arsenal
of robustness evaluation. By facilitating more reliable robustness evaluations, we
expect that FMN will foster advancements in the development of machine-learning
models with improved robustness guarantees.

We proposed the Indicators of Attack Failures (IoAF), quantitative tests that help
the debugging of faulty-conducted security evaluations. Using these indicators, we
then designed a pipeline for mitigating their issues, leading to a fairer evaluation.
We selected defenses that have been previously shown to be weak against adver-
sarial attacks, and we evaluated them with the lens of our indicators, showing that
we could have detected their misconduct in advance. We empirically proved that
these tests are correlated with wrongly high robust accuracy, while they drop when
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attacks are successful. We hope that future work will include our indicators during
the evaluation phase of new methods, in order to identify when attacks are failing
for known reasons, and thus contributing to the creation of better defense mecha-
nisms. Also, this work poses a preliminary step towards the creation of interactive
dashboards that can be inspected as web applications.

We proposed a metric for detecting the presence of gradients obfuscation, matching
them with the ease of increasing the loss of the attack with PGD. Such metric is
based on the intuition that obfuscated gradients can not be approximated during
a step of PGD attacks, hence the computed loss is not representative of the real
loss of the model. We tested the metric against four models, where two of them
are defended with obfuscated gradients, showing that the output of our metric is
correlated with the inability of decreasing the loss of the obfuscated ones. Hence,
our metric can be used as a tool for detecting such defense, helping the attacker
devise a strategy against the target.

We have conducted an analysis of the transferability of evasion attacks. Our theoret-
ical transferability formalization sheds light on various factors impacting the transfer
success rates. In particular, we have defined two metrics that impact the transfer-
ability of an attack, namely the complexity of the target model and the gradient
alignment between the surrogate and target models. The lesson to system design-
ers is to evaluate their classifiers against these criteria and select lower-complexity,
stronger regularized models that tend to provide higher robustness to evasion at-
tacks.

Despite the improvements brought by this thesis, we are still far from having a fully-
automated, completely-trustworthy process. In the next section, we will list, for each
of the contributions presented, limitations and possible future research directions to
further extend and enhance this work.

6.2 Limitations and Future Directions

While FMN is able to find smaller perturbations consistently when compared against
`0 and `1 attacks, it only rivals the performance of other attacks for `2 and `∞ norms,
especially when tested against robust models which may present obfuscated gradi-
ents. To overcome this limitation, FMN may be extended using smoothing strategies
that help find better descent directions, e.g., by averaging gradients on randomly-
perturbed inputs. This can be regarded as an interesting extension of FMN towards
attacking robust models. In this respect, we also believe that FMN may facilitate
minimum-norm adaptive evaluations in a more general sense. Adaptive evaluations,
where the attack is modified to be maximally effective against a new defense, are
the key element towards properly evaluating adversarial robustness (Carlini et al.,
2019; Tramer et al., 2020). PGD attacks are popular because they can be easily



6.3. CONCLUDING REMARKS 93

adapted to new defenses. Since FMN combines PGD with a dynamic minimiza-
tion of the perturbation size, we argue that our attack can also be easily adapted
to new defenses, thereby facilitating adaptive evaluations. FMN may also benefit
from other improvements that have been suggested for PGD, including momentum,
cyclical step sizes or restarts. We leave such improvements to future work.

The indicators presented are helpful tools for finding problems in the optimization of
gradient-based adversarial attacks. However, our analysis is not yet fully-automated
since an operator must manually decide how to turn an attack into its adaptive
version against a particular defense. Our quantitative tools for helping an informed
decision among all the possible solutions that the attacker could choose. Another
limitation lurks in the choice of the attack itself since some unknown-and-adaptive
attack could behave very differently than a standard one, triggering some indicator
in the process. However, these tests can be patched accordingly to take care of
these newly-proposed patched attacks, and are still being helpful as debugging tools.
Lastly, as already discussed in Sect. 4.3.2, if the evaluated defense is not triggering
any indicators it does not imply it is secure, but rather it forces the application of
other sanity checks Carlini et al. (2019). We believe some part of this last process
can be automatized with additional indicators, however, we leave this as future work.
Finally, it would be insightful to attach our pipeline of indicators and mitigations
to already-available benchmarks (i.e. RobustBench Croce et al. (2020)), possibly
detecting other failures in security evaluations we did not cover in our experiments.

On the transferability perspective, we believe interesting avenues for future work
include extending our analysis to multi-class classification settings and considering
a range of gray-box models in which attackers might have additional knowledge of the
machine learning system (as in Suciu et al. (2018)). Application-dependent scenarios
such as cybersecurity might provide additional constraints on threat models and
attack scenarios and could impact transferability in interesting ways.

6.3 Concluding Remarks

To conclude, all these directions suggest that obtaining reliable machine learning
models is still an open problem, where progress can be obtained only with small and
careful steps. Knowing how to evaluate adversarial robustness is one big obstacle
that slows down the advancements in proposing new defenses. This thesis provides
concrete improvements in the overall security evaluation process by proposing an
efficient attack, debugging strategies for the optimization of adversarial examples,
and an analysis of the effects of transferability. We believe that this work provides
useful tools and guidelines with the hope that this will improve, in the future, the
state of research in this field and the trustworthiness of machine-learning models,
especially in security-critical scenarios.
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chi c’è stato, che è la vera cosa che dà valore alla vittoria. Desidero ringraziare tutte
le persone che mi hanno aiutato nella ricerca e nella scrittura di questa tesi e nel
mio percorso di dottorato.

Ringrazio Battista e Fabio, che hanno seguito con me questo percorso guidandomi e
incoraggiandomi a fare sempre il meglio, sapendo che poi i risultati arrivano. Grazie
per tutta la conoscenza che mi avete trasmesso in questi anni. Ho ancora tanto
da imparare, ma la vostra naturalezza nell’insegnamento e la vostra passione per la
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difficoltà più insidiose. Grazie per non essere mai mancata, nei momenti difficili e in
quelli dove si festeggia. Grazie per avermi sempre ricordato che quando siamo più
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più grandi tifosi.

Ringrazio Luca (Rinaldo) che ha sempre assicurato cibo, conversazioni e diverti-



mento in ogni serata passata in compagnia. Se qualcuno mi ha insegnato a godersi
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