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PAVEL: Decorative Patterns with Packed Volumetric Elements
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Fig. 1. Three examples of objects decorated with packed volumetric elements generated by PAVEL. On the left, the decoration of the Fertility digital model,

in the center, a bracelet, and on the right, a plague doctor masque, inspired by the Venetian carnival tradition. In PAVEL, decorations are placed on a surface

in an overlapped configuration. We then deform the decorative elements in a manner that mimics the plastic deformations of real-world artworks. For each

model, we show the base shape, in blue, with the positions for the decorative elements. The placement of decorations is automatic in the first two examples

and can also be done manually for better artistic control, as shown in the latter example.

Many real-world hand-crafted objects are decorated with elements that are

packed onto the object’s surface and deformed to cover it as much as pos-

sible. Examples are artisanal ceramics and metal jewelry. Inspired by these

objects, we present a method to enrich surfaces with packed volumetric

decorations. Our algorithm works by first determining the locations in

which to add the decorative elements and then removing the non-physical

overlap between them while preserving the decoration volume. For the

placement, we support several strategies depending on the desired over-

all motif. To remove the overlap, we use an approach based on implicit

deformable models creating the qualitative effect of plastic warping while

avoiding expensive and hard-to-control physical simulations. Our decora-

tive elements can be used to enhance virtual surfaces, as well as 3D-printed

pieces, by assembling the decorations onto real surfaces to obtain tangible

reproductions.
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1 INTRODUCTION

The quest for representing reality is one of the main goals of com-

puter graphics since its origins. Due to the advances in modeling,

rendering, and AI, it is often possible to virtually reproduce the

look of real-world objects, characters, and scenes in a manner that

is indistinguishable from reality. Recent advances in digital man-

ufacturing allow us to physically reproduce realistic objects that

were initially modeled as digital shapes. This is becoming an im-

portant field of application for 3D geometry processing algorithms

and techniques.

The difference between a model that appears realistic and one

that does not is often the complex surface details typical of real-

world objects. In graphics, surfaces are often enriched by vary-

ing their material properties, texture maps, or generating relief

patterns. As pointed out in a recent survey [Zhang et al. 2019],

most of the current methods used to generate reliefs patterns work

in image-space, are applied mainly on planar objects, and cannot
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Fig. 2. Left: An artist creating volumetric decoration on a surface by adding

plastic elements over a base surface. Center and right: Examples of hand-

made pottery created with such a method (Courtesy of Heather Knight).

reproduce details coming from 3D decorative elements placed onto

the surface.

In this work, we present PAVEL, a method for decorating sur-

faces with packed volumetric elements. Our method is inspired

by hand-crafted artworks, shown in Figure 2, that are decorated

by manually packing elements onto objects. Each decoration is

deformed to better cover the surfaces. These decorations are of-

ten found in hand-made ceramic, metal jewelry, and Murano’s

glass. Figure 1 shows examples of surfaces decorated with PAVEL

to mimic these styles.

Current methods cannot reproduce these decorations. Tech-

niques based on surface displacement, such as procedural meth-

ods and digital sculpting, cannot do it, since they do not model

local surface topology changes. Element-based textures cannot be

used either, since they are generally defined in Euclidean spaces,

while we model decorations on manifolds, and since they do not

support deformation that maintains the elements volumes, which

is required to achieve realism.

PAVEL works in two stages. We first place decorations onto the

surfaces with considerable overlap between them. In our imple-

mentation, we support both the manual placement of the elements

that mimics exactly the real-world process and the automatic gen-

eration of different kinds of patterns of overlapped elements. Dec-

orations overlap to cover the surface as much as desired by the

user. We then deform the decoration to remove the overlap be-

tween them. In doing so, we preserve the volume while deform-

ing to simulate real-world behavior. These two stages produce re-

sults that are visually similar to real-world decorations, as shown

throughout the article. In PAVEL, we make two critical choices to

make computation feasible.

First, we use point sampling to place the decorations’ centroids

instead of using packing algorithms. In general, packing algo-

rithms are just heuristics, since packing is NP-hard in the Eu-

clidean domain and just as hard on the manifold. Point sampling

is significantly more efficient, by a couple of orders of magnitudes,

and just as reliable in our domain. This choice favors objects hav-

ing a radial symmetry but does not entirely exclude other entities,

as we show in the results.

Second, we simulate the plastic deformation of the elements

pushed over the shape with an efficient implicit method inspired

by Gascuel [1993]. We start by removing the overlapped parts of

the elements and then make them grow in the free space around

until the original volume is recovered. By using a specifically de-

signed propagation field and a fast marching approach it is possible

to obtain deformations resembling those appearing in real plastic

elements. A similar effect cannot be obtained easily with a physics

simulator, as it is necessary to avoid initial overlaps, for numerical

robustness, apply precise forces, to control the deformation, and

set non-trivial parameters and constraints, to customize the simu-

lator to our needs (see Section 8).

The main contributions of our work are:

• an overall method for decorating surfaces with packed vol-

umetric elements supporting automatic and manual element

decorations, and automatic removal of decoration overlap; to

the best of our knowledge, this is the first packing method

that works on 2-manifold directly; to the best of our knowl-

edge, the decorated surfaces could not be created with any

other automatic method and would require hours of manual

work if sculpted manually [Santoni et al. 2016];

• an efficient procedure to remove intersections and recover el-

ements’ volume that provides a visually effective, even if not

physically exact, simulation of a plastic, volume-preserving

deformation;

• a user evaluation showing that the designed shapes are really

similar to the hand-crafted artworks and can be realized in an

efficient manner;

• a practical demonstration of a decorative shell for an existing

3D object designed with PAVEL, decomposed into printable

parts, manufactured and attached to the base shape.

2 RELATED WORKS

In this section, wemention themore relevant and influential works

in the literature related to the different aspects of PAVEL design

and implementation.

Point sampling. Our basic idea is to use a point sampling ap-

proach to place decorations with circular symmetry over the sur-

face of an object. Blue noise point distributions and their variations

can undoubtedly be used to roughly pack a surface with circular

shapes. Bridson [2007] proposes a simple and efficient algorithm

to generate a blue noise distribution. Due to its greedy nature, it

tends to leave significant gaps, particularly undesirable for artis-

tic purposes. A more uniform distribution is given by a Centroidal

Voronoi Diagram, which can be computed over arbitrary surfaces

as described in Xin et al. [2016]. Centroidal Voronoi Tessellation

could, in principle, be used also to place non-symmetric elements

by using the variant described in Lévy and Liu [2010].

Knöppel and colleagues [2015] introduce a special kind of entity

distribution over a surface putting regular striped patterns that can

adapt to the local characteristics of the shape, curvature included.

This method is useful guidance for scattering points on the surface

of the form only onto the stripes. We make use of the latter two

methods to place seeds for decorative elements in our pipeline.

Packing. PAVEL can be naturally considered a packing tech-

nique. Packing 3D shapes in an arbitrary volume is a well-studied

problem, and it is known to be NP-complete. It is relevant in graph-

ics, engineering, operational research, and many other fields. Re-

cent works such as Egeblad et al. [2009], Liu et al. [2015], and

Romanova et al. [2018] achieve an excellent volume coverage.

Still, they are heavily limited in the orientation of objects, are

significantly time-consuming, and can only deal with a limited

number of items with few facets. Overcoming these limitations,
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Ma and colleagues [2018] propose an algorithmic approach well

suited to complex models typically used in graphics. Their algo-

rithm initially scales down all the objects to avoid intersections,

then iteratively increases their size, optimizes rotations, and tries

some object swapping to arrange local solutions. The algorithm

can obtain good results but can take up to an hour to finish the

computation to place less than 100 objects. Our approach differs

from both, since we pack elements on surfaces, and since we de-

cide element sizes upfront, which makes the problem generally

harder.

The packing of 2D shapes is a relevant field of research for visu-

alization and illustration purposes. Reinert and colleagues [2013]

proposes an algorithm based on Centroidal Voronoi Diagram re-

laxation to fill an arbitrary-shaped planar domain with multiple

shapes. Saputra and colleagues [2019] also describe an algorithm

to pack shapes in a planar domain, with a greater focus on leaving

as little space as possible. To achieve their results, they allow de-

formations of the decorative shapes and add small ones, in the end,

to obtain better coverage and reduce space. For similar purposes,

Kwan and colleagues [2016] propose a new shape descriptor and

use it to measure the touching shapes’ quality. Another relevant

method, by Chen and colleagues [2017], packs tiles on top of a

curved surface for fabrication and decorative purposes. They de-

scribe an attract-and-repulse algorithm in which tiles are allowed

to move and rotate, but not to deform, which can take up to 15 min-

utes to place more or less 150 tiles. Two works focusing on decora-

tions are Lu et al. [2015] and Chen et al. [2016], which investigate

the possibility of transforming surface carving holes following a

pattern. In Lu et al. [2015] a texture guides the building of a pat-

tern of connected stripes taking into account the structural prob-

lems that can arise when fabricating the final object. In Chen et al.

[2016], the pattern generates filigrees using the skeletal representa-

tions of simple starting elements. The described pipeline can then

place them on a surface, greedily refine their position, and slightly

modify them to ensure contact between close elements without

overlaps.

Compared to PAVEL, most of this literature focuses on 2D

element placement, and our approach focuses on obtaining the

packing effect by deforming the 3D elements keeping the spatial

distribution fixed.

Implicit deformable models. Elements’ deformation is therefore

a fundamental step in our pipeline. Algorithms to control de-

formable surfaces based on level set formulation are popular in

Visual Computing after the seminal works by Osher, Sethian, and

Malladi [1995; 1988]. Using implicit formulations, it is possible to

model complex interface behaviors, including elastic and plastic

deformations, but with huge computational complexity and stabil-

ity issues [Barton et al. 2011]. A simplified approach is represented

by the fast marching algorithm [Sethian 1996], which allows a

fast estimation of the evolution of closed surfaces as a function of

an underlying velocity field assuming unidirectional front prop-

agation along the surface normals. By controlling the underlying

speed, it is possible to drive the surface evolution towards the

desired position. Simplified implicit deformable models have been

used in Computer Graphics to simulate soft bodies’ contact and the

resulting deformation [Gascuel 1993] and to animate deformable

shapes [Desbrun and Cani 1998]. A similar approach has also been

recently exploited in a generalized framework to interactively

control the blending of two shapes represented by signed dis-

tance fields (SDF) on regular grids [Angles et al. 2017]. We adapt

the fast marching approach to creating the effect of plastic-like

volume-preserving deformation of multiple objects efficiently in

our work. A recent work by Fang and colleagues [Fang et al. 2021]

proposes a pipeline for the modelling of plastically deformable

objects. Their approach combines ideas of geometry processing

and physically based modelling, which make it very effective and

flexible but, for these reasons, slower than our approach.

Surface extraction. The implicit formulation requires then a sub-

sequent surface extraction to provide an output for rendering and

3D printing. The most common approach to extract a mesh repre-

sentation from a discrete scalar field is the Marching Cubes algo-

rithm [Lorensen and Cline 1987]. When the scalar field is Boolean,

an additional smoothing step is often necessary. Coeurjolly and

colleagues [2018] propose an optimization-based approach to ex-

tract a smooth manifold from a voxel representation to avoid this.

This method works directly on the voxel field’s boundary quads,

moving the vertices to optimize fidelity, fairness, and smoothness.

We do not use this method in our reconstruction, since it is un-

acceptably slow for resolving our voxel grids. It produces overly

smoothed results, which removes details in small decorative ele-

ments. We instead use marching cubes and a smoothing remesher

to convert the deformed decorations back to a surface.

3D textures. PAVEL is also related to generic methods to gener-

ate 3D textures over manifolds. The generation of 3D textures for

meshes is an active research topic with many approaches taken for

different applications. One of the simplest approaches is shell map-

ping, introduced in Porumbescu et al. [2005], which generalizes

classical texturing to work with thin tetrahedral shells enclosing

the manifold. This allows the creation of fully 3D textures but also

shares the classical texturing drawbacks, such as warping, defor-

mations, and stitching. To reduce these issues, Zhou et al. [2006]

introduce a low-distortion parametrization of shell space and a

matching step to improve the texture tiling. A different approach

is to work directly on the surface, as described by Fleischer et al.

[1995], thus avoiding the parametrization problems. This method

is based on a simulation that places spheres over the manifold

and replaces them with the desired shape after the simulation has

ended, offering no guarantees on mesh intersections, which are

indeed bound to happen when replacing spheres with anisotropic

shapes. Bhat et al. [2004] and Ma et al. [2011a] describe two differ-

ent approaches for 3D texturing by example, focusing, respectively,

on surface and volume textures. While the results are remarkable,

and in the case of Bhat et al. [2004] even close to our goal, these

methods are limited by the fact that an example, which would have

to be sculpted manually, the pattern structure is not controllable,

and the examples’ shapes are drastically deformed. While it may

be possible to adapt some of these works for our case, especially

Zhou et al. [2006] and Fleischer et al. [1995], they are all signifi-

cantly slower than point sampling and none of them can handle

soft body deformations.

An important aspect in the texture generation with PAVEL that

is not found in other methods is that the element-based approach
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Fig. 3. The proposed pipeline of PAVEL. Seeds can be placed on the base

manifold manually, isotropically, or in striped or gridded patterns to cre-

ate an initial configuration of elements over the base shape with partial

overlap between the elements. Elements’ rotation, scaling, and types can

be changed with specific options. The deformation step creates the final

shape simulating packing of plastic, volume preserving elements, with

some control on the material behavior obtained with the volume recovery

function. The final result can be exported as a novel shape or as a collection

of printable shell elements.

allows an exact characterization of textures with quantitative at-

tributes related to the elements’ distribution (density, orientations,

grid, etc.) that can be used to control the pattern design.

3 OVERVIEW

Our goal is to easily create element-based relief patterns over arbi-

trary surfaces. Our algorithm takes as input a base mesh, a mesh

for each decorative element, and a small set of parameters, defined

in the later sections, that control the elements’ distribution and de-

formations. Our method, shown in Figure 3, works in two stages.

We first generate a point distribution over the base surface such

that the decorative elements cover the surface well. In the second

step, elements are placed in the location previously defined, and

our algorithm computes the elements’ deformations to eliminate

the overlaps among them.

To achieve realism and mimic real-world objects, we position

the decorative elements so they are partially overlapping, and

then transform the elements’ shapes. They are non-overlapping

at the end while preserving their volume. This approach simulates

the plastic deformations that artisans perform on their creations.

While, at first sight, using a physical simulator seems the proper

method to address the second step, we have found that they do

not work in our case. The first concern is that simulators are very

slow at our resolution and number of collisions. More importantly,

though, the simulation does not necessarily converge to a mean-

ingful state, since we start with significant overlaps with a non-

physical nature. Instead, we propose a new method based on an

implicit representation of the elements and the Fast Marching

Method (FMM) [Sethian 1996], which can generate physically

plausible plastic deformations with bulges near the contact sur-

faces. We discuss this algorithm in Section 4.

We propose two strategies for the automatic placement phase

that enable users to create both isotropic and anisotropic

distributions with simple control parameters. These are, respec-

tively, based on the constrained Voronoi algorithm proposed by

Xin et al. [2016] and the equidistant stripe patterns from Knöppel

et al. [2015]. In case artists want direct control over the decoration

placements, they may manually do it. Additionally, in the case of

base surfaces with high-curvature regions and decorations with

dimensions in the same order of magnitude of the base curvature

radius, we allow the user to sample an isosurface at offset o to pro-

duce a more even distribution. We then use these points to center

the decorations on them and produce intersections among adja-

cent elements. This step, and all its parameters, are discussed in

Section 5.

As the pipeline aims to generate object design both for render-

ing and manufacturing purposes, we discuss in Section 6 how to

extract smooth meshes from the voxelized elements’ sets and how

to generate printable shells for the decoration of real objects. A

gallery of examples of decorations obtained with PAVEL is shown

in Section 7 with an analysis of the system performance, while

Section 9 evaluates limitations and possible improvements of the

approach.

4 DEFORMATION OF PACKED DECORATIONS

In this section, we describe how to compute the final deforma-

tions. Our algorithm takes as input a set of overlapping element

decorations placed onto an object’s surface. Our goal is to remove

the overlap by computing each decorative element’s deformation

while maintaining its volume to simulate the plastic deformations

performed in real-life by artists.

To achieve this goal, we propose a novel method based on an

implicit formulation, inspired by works on interactive visual simu-

lation of volumetric object contact [Gascuel 1993]. We rely on fast

marching [Sethian 1996] using a specifically designed parametric

function for the propagation field that determines the deformed

shape appearance and enforce volume preservation. This allows us

to obtain a final result that is close to the one obtained in the real

artistic procedure without the need to perform a complex phys-

ical simulation. This simulation would require initializing objects

without intersections, controlling the forces used by artists to place

and deform the elements, and simulating the plastic behavior ac-

curately. As far as we know, it is not possible to obtain an accurate

simulation of the whole artistic procedure, even if it is possible

to create procedures aimed at creating automatic deformations of

multiple elements. As shown in Section 8, it is, however, difficult to

tune the large number of simulators’ parameters; there are stabil-

ity issues and the computational time is significantly higher than

ours.

We voxelize each decoration di in its own dense grid дi that

is 50% larger than the decoration’s dimension to ensure that the

computed deformation will fit in the grid. Compared to the whole

surface, this is a sparse discretization that keeps memory con-

sumption relatively low, since we are effectively discretizing a slab

around the surface. While each decoration has its own representa-

tion, we ensure that the voxel dimension and the grid rotation are

consistent across all voxelizations. As a consequence, we can per-

form Boolean operations just by keeping into account their mutual

offsets. Additionally, separate voxelizations, instead of one global
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labeled grid, allow for simple handling of the overlaps and compat-

ibility with the fast marching algorithm.

Given as input a set of voxelized decorations D = {d0,d1, . . . ,

dn }, our first step is to resolve the overlaps.We do this by detecting

the voxels shared by multiple decorations and removing these vox-

els from all the decorations but the one with the shortest distance

from the decorative element center. Furthermore, we remove all

the voxels of the decorations shared with the base objects as well.

These removals generate a new set of decorations D ′, where each

decoration has associated a measured volume loss vi , equal to the

sum of the voxels removed in the previous steps. We then ensure

that each element recovers its original volume by expanding it in

a way that simulates a plastic deformation.

Fast marching approach. To compute the expansion, we use a

fast marching approach [Sethian 1996] to grow each element in the

empty regions until they recover the original volume. To simulate a

plastic deformation, which typically generates bulges near the soft

bodies’ contact points, we use a non-constant velocity field to drive

the fast marching algorithm. For each shape Sn , we find the con-

tact surfaces with the other shapes, and from them, we build the

respective distance fields. The distance fields are then converted in

velocity fields Fn through a parametric formula, the volume recov-

ery function, which can be adapted to obtain the desired behavior.

The recovery function is a piece-wise polynomial, obtained by con-

necting three second-degree polynomials and enforcing C1 conti-

nuity and defined by:

fa,b (x ) =





0 x ≤ 0

− x
2

a2
+ 2 xa x > 0,x < a

−
2(x−a)2

(b−a)2
− 1 x > a,x ≤ a+b

2
2(x−a)2

(b−a)2
+ b (x − a) + 2 x > a+b

2 ,x ≤ b

0 x > b .

(1)

In the inset, we show an

example plot of the func-

tion. We keep the veloc-

ity null in contact points

to simulate the constraints

related to the attachment

of surfaces. We then have

two control points a,b

used to define the distance

for maximal bulging and the maximal distance reached by the

plastic wave. This allows effective control of “material behavior”

driven by the amount and locality of the deformation.

The velocity fields are then weighted proportionally to the vol-

ume losses to simulate a faster growth of the elements more

“squeezed” by the neighboring ones and used to compute the new

arrival times for each decoration. To recover the volume lost by

each decoration, we evolve the front of each decoration with the

fast marching method. For each elements’ sub-grid дn , a set of ac-

tive front voxels is initialized, taking those adjacent to the initial

voxelization border. In contrast, we set all voxels belonging to ei-

ther the initial shape, the base shape, or other elements to inactive.

Each decoration can recover its volume only by occupying empty

voxels.

The front propagation is estimated based on the solution of the

Eikonal equation:

|∇T | = F , (2)

linking the velocity function F to the arrival time of the front T .

Given the discretization of the spatial derivatives

D+xT = T (i + 1, j,k ) −T (i, j,k ),

D−xT = T (i, j,k ) −T (i − 1, j,k ),

D+yT = T (i + 1, j,k ) −T (i, j,k ),

D−yT = T (i, j,k ) −T (i, j − 1,k ),

D+zT = T (i, j,k + 1) −T (i, j,k ),

D−zT = T (i, j,k ) −T (i, j,k − 1), (3)

the first-order solution for the arrival times is obtained by estimat-

ing the arrival time for all the active front voxelsT (i, j,k ) with the

discretized Eikonal equation:

[max (D−x (i, j,k )T (i, j,k ),D+xT (i, j,k ), 0) + (4)

max (D−y (i, j,k )T (i, j,k ),D+yT (i, j,k ), 0) +

max (D−z (i, j,k )T (i, j,k ),D+zT (i, j,k ), 0)]
1
2 =

1

Fi jk
,

where

Fi jk =
∑

c

ωc fa,b (r/d )

is the space-varying speed function depending on the distances

rc from the initial contact surfaces with the neighboring volumes,

evaluated at each voxel location, and ωc is a weight proportional

to the volume lost in the intersection. The scaling parameter d is

computed as the cubic root of the element volume.

The algorithm evaluates the arrival time for all the voxels of the

active front. It selects the voxel with a minimal arrival time ac-

cording to the Eikonal equation’s solution estimated on the base

of the velocity field defined in the corresponding grid. The selected

voxel is then assigned to the element, and the active front is finally

updated, removing the selected voxel from it and adding to it the

voxel’s free neighbors. The procedure is repeated until all the orig-

inal volume of the element is recovered.

It is theoretically possible that the algorithm could not find

enough voxels to recover the volume when the evolution of neigh-

boring elements occludes the front, but this is not likely to happen

for a layer of small decorations over a base surface and never hap-

pened in our experiments.

While fast marching can be parallelized [Yang and Stern 2017],

it comes with additional complexity and overhead. Instead, we use

the classic serial implementation that we run concurrently on mul-

tiple decorations. To avoid race conditions, we precompute the fast

marching in parallel for each decoration independently, and then

we sequentially assign the voxel using the precomputed arrival

times. Collisions between evolving fronts are handled by setting

the voxels reached by one front as not usable by the other elements.

Themethod ensures by construction that the volume is correctly

maintained while deforming the decorations.

Our implementation is based on the fast marching functions

of Scikit FMM [2020] and handles IO and voxelization with

Trimesh [2020].
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Fig. 4. The effect of different values for surface coverage on the final dec-

oration. Top: initial placement. Bottom: packed elements.

Surface coverage control. The method described above can sim-

ulate the elements’ plastic deformation if the decorative elements

are initialized with a reasonable overlap. To understand what is a

“reasonable” overlap, we performed several tests to define control

parameters for the point distribution. To control the decorations’

overlap, we choose to use the surface coverage, that is, the ratio be-

tween the sum of the surface areas of the decorations’ footprints

and the base object area to be decorated. Figure 4 show results of

packing small spheres on a base sphere with different surface cov-

erage values. As we can see, a ratio of 1.2 is barely enough to cause

some deformation, while a ratio of 1.6 produces excessive and un-

realistic distortions of the elements’ shape.

Volume recovery parameters. We also performed extensive tests

to choose the parameters of the volume recovery function (Equa-

tion (1)). Figure 5 shows the results obtained with the same over-

lapping spheres but different choices for the values of the a and b

parameters. By shifting the control parameters, it is possible to sim-

ulate different plastic behaviors. All the results shown in the article,

but Figure 5, are obtained with the same settings (a = 0.1,b = 0.3).

As it is possible to see, for example, in Figure 6, this choice

provides results that are visually quite close to real plastic

deformation.

5 PLACEMENT OF DECORATIONS

The deformation step is enough to obtain the final result if the

user places the decorations manually on the base object’s surface,

as shown in Figure 6. In this manner, the user directly controls

the decorations’ location and the surface coverage, while PAVEL

controls the material behavior using the deformation parameters

described above. In the system, we supply the automatic placement

methods described in the following.

Automatic placement by Point Sampling. While manual place-

ment provides complete artistic control, the decoration of

complex surfaces with small decorative elements would be very

time-consuming, just like in real-world crafts. To simplify creating

Fig. 5. The effect of different choices for the volume recovery function pa-

rameters on the deformation of a couple of spheres isolated from Figure 4.

complex decorations, we also support the automatic placement of

decorative elements using two procedural methods.

Our placement methods are based on point sampling algorithms.

We support the placement of objects with approximate 2D radial

symmetry, with the symmetry axis aligned to the base surface’s

local normal. We also assume that the decorations are small com-

pared to the base surface’s curvature to ignore the variations in

the local volume extruded from the base surface. Both of these are

reasonable assumptions found in the hand-crafted models that in-

spired our work.

Instead of a packing algorithm, our use of point sampling is

motivated by a tradeoff between speed and packing quality. It is

worth reminding that optimal packing is NP-hard in the Euclidean

domain and just as hard in the intrinsic manifold metric. This

means that all published packing algorithms are approximations

that trade off element shapes, packing quality, and computation

time. In general, it is well known in both the literature and the

practice that most packing algorithms fail or are not optimal for all

but the simplest shapes. Note also that we do not allow to change

the decoration size, which is the most used approximation for soft

packing in graphics. For all these reasons, our point sampling ap-

proaches are just another heuristic within their stated constraints.

If better placement heuristics are available, thenwe could integrate

them into our pipeline with ease.

Isotropic seeding. Our first automatic placement method pro-

duces isotropic distributions that work well for decorations with

cylindrical symmetry. The user controls the density of decorations

by setting the desired surface coverage, and the algorithm instan-

tiates the correct number of seeds to guarantee the target density.

To ensure a high-quality distribution, we rely on optimization

using a method based on the Centroidal Voronoi Tessellation

(CVT) and its efficient implementation described in Yan et al.

[2009] and available in the Geogram library [Levy 2020]. We gen-

erate the base surface’s tessellation with the desired number of

vertexes and use them as the centers of the decorations. When
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Fig. 6. Example of decoration obtained by manually placing elements and

having PAVEL resolve the overlap. Here each petal is a separate decorative

element and the deformation is computed to simulate sculpting clay. Note

from the back view how PAVEL can resolve the overlap in a very complex

case with many self-intersecting, non-symmetric, elements.

converged, this iterative approach produces a point distribution

with good statistical properties, resulting in a high-quality deco-

rated surface. To obtain a more “hand-made” look, we allow users

to reduce the number of iterations. Figure 7 shows results obtained

with this method that closely resembles the hand-made objects

shown in Figure 2.

Offset surface. The previous method works well if the decora-

tive elements are small compared to the surface curvature. If that

assumption is not valid, then the decorated surface has visible ar-

tifacts, shown in Figure 8. The main problem is that our method

generates equally spaced seeds that represent the bottom of the

decorations but does not take into account decorations’ volume

and surface curvature. Decorations overlap more in concave re-

gions than convex ones. The volume above the surface is smaller

in the former case and can result in heavily compressed areas

in concave zones and non-contacting in convex regions. When

Fig. 7. Isotropic seeding with CVT on a vase.

decorations are small compared to the surface curvature, this ef-

fect is negligible. But it becomes more noticeable as the decora-

tions’ size increases.

For this reason, we also provide a method that considers the

volume of the elements when point sampling their locations. The

basic idea is to extract an isosurface at a signed distance d from

the base mesh, perform the sampling on it, and then map back the

seed points on the original base surface, projecting them on the

local normal direction.

An appropriate choice of d is the height of the element’s

z-section with the maximal area. In this way, we can handle large

decoration sizes even on surfaceswith varying curvature.We show

a clear example of this in Figure 8. Here, the bunny features gulfs

and bulges. They are handled without problems by sampling the

offset surface. Conversely, sampling on the surface reveals signifi-

cant artifacts. Since decorations are small in general, and the mod-

ified sampling has a non-negligible computational cost (see Sec-

tion 7), we leave the choice of whether to use the offset surface to

the user.

Stripe-based, anisotropic seeding. To support the automatic gen-

eration of anisotropic element patterns, we also provide a stripe-

based sampling approach. This method can create gridded patterns

of decorations with approximate cylindrical symmetry and even

with elongated shapes.

Our method is based on Knöppel et al. [2015], which allows us to

generate patterns of evenly spaced stripes over a generic base sur-

face. The method is based on a simple optimization problem and

approximately maintains a user-specified orientation and spacing

of the lines by automatically inserting branch points where neces-

sary. Furthermore, the generated patterns are globally continuous,

which avoids visible seams after the applications of our decorative

elements and with frequencies not depending on the mesh resolu-

tion. We exploit the stripe-based method by generating two cross-

ing stripe patternswith a user-defined crossing angle and sampling

seed points at the line crossings. In this manner, we obtain lines

with points sampled at constant distances and with a controlled

offset among the decorative elements of two adjacent stripes.
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Fig. 8. Comparison between sampling on the surface (top) or on an iso-

surface at distance d (middle). Using the isosurface allows for more even

packing and deformations.

Figure 9 shows an example with crossing stripes creating an an-

gle of 60 degrees and elements placed with a constant orientation

concerning the main stripe.

Since we can independently set the sample spacing on the main

stripes and the distance between adjacent stripes, we are no longer

forced to pack objects with approximate radial symmetry, but

we can insert elements with arbitrary elongation. Furthermore,

since the stripes encode a local directional field, we can use non-

isotropic decorative elements oriented in a controlled way with

respect to the stripes’ directions. Figure 10 shows an example with

perpendicular stripes-based sampling and non-isotropic elements

with main directions aligned with the stripes fields.

In our stripe-based algorithm, we create the sampling points

and estimate and store the point connectivity of the sample along

with the two stripe directions. In this way, we can develop decora-

tions alternating different elements and elements’ orientations, as

shown in Figure 11.

Elements’ perturbation. Aside from placement, we can easily in-

tegrate controls for decorations’ rotations and filling different ar-

eas with different decorations. The rotation for each element can

be set randomly or aligned to a field defined over the object sur-

face, giving the possibility to create different artistic effects that

work particularly well when placing elongated objects over a grid-

ded seed distribution. Figure 11 shows an example of an artistic

pattern obtained with alternate rotations of 180 degrees of the ele-

ments along the principal stripe field direction.

The average elements’ size is chosen to guarantee the desired

decorative effect, and the number of elements can be tuned to guar-

antee the desired amount of initial overlap. However, we leave the

Fig. 9. Non-isotropic elements’ sampling on non-perpendicular stripes’

directions.

Fig. 10. Using the stripe-based sampling, we can pack on a generic shape

like the teapot non-isotropic decorations aligned with a directional field.

possibility of applying a further random perturbation to the size

of each decoration to increase the number of design options. We

allow variations up to ±10%, as larger ones would lead to inconsis-

tent overlaps and too many empty spaces.

Last, it is possible to load more than one decoration and ran-

domly select one of those for each seed. We can exploit this to

increase the final results’ variety loading a multitude of slightly

different decorations (e.g., stones of various types, flowers).

Figure 12 shows an example of decoration mimicking the

one in Figure 2 obtained by using three different elements

shapes and random rotations with respect to the main field

direction.

6 OUTPUT GENERATION

The last step we need to perform is to convert the process results

into high-quality meshes for visualization or printable shells to

decorate real-world objects.

ACM Transactions on Graphics, Vol. 41, No. 2, Article 19. Publication date: January 2022.



PAVEL: Decorative Patterns with Packed Volumetric Elements • 19:9

Fig. 11. Example of alternate elements’ orientation along the main field

direction.

Fig. 12. Usingmultiple elements’ shapes and random orientations it is pos-

sible to create a variety of artistic designs.

High-quality meshes. To generate a 3Dmesh of the whole object,

we first independently create meshes for each deformed decorative

element using the Marching Cubes algorithm [Lorensen and Cline

1987]. Then, we merge the elements and the base object into a sin-

glemodel and remesh the result using the Central Voronoi Tessella-

tion approach [Yan et al. 2009], which provides feature-preserving

results and is robust and efficient for large meshes.

Printable shells. It is possible to use our pipeline also to create

decorative shells for real-world objects. To decorate an object, we

first scan it to obtain an accurate digital model and then create a

PAVEL decoration for it. This produces a mesh representing all the

decorative elements fused together. We then decompose this final

mesh into printable parts and wrap it around the original object.

Figure 13 shows the whole process of decorating an object.

For objects with a simple topology, the decomposition works as

follows: First, we segment the base object. Any mesh partitioning

can be used for this purpose. In the example shown, we cut the

object with two mutually perpendicular planes passing through

the model’s symmetry axis. Given the base segmentation, we clus-

ter the deformed elements placed on each patch and remesh them

into single shell elements to be 3D separately printed. One can use

a more appropriate decomposition for more complex base objects

while the rest of the pipeline remains the same.

We obtained the final tangible result shown in Figure 13 by glu-

ing the shell parts created from the design over the base object. In

this case, the object was a mug for which we produced the cor-

responding digital model, scanning it with a LMI Gocator 3210

scanner. We decorated it with an isotropic distribution of elements

with different shapes and randomized orientation, and we finally

printed the shell elements with a DWS XPRO S 3D printer.

7 RESULTS

Reproducing real-world decorations. Using PAVEL, we can create

a variety of decorations that mimic real-world artworks. Figure 14

shows side-by-side views of original artworks, courtesy of Heather

Knight, and objects generated with our pipeline and rendered with

clay-like material properties.

At the same time PAVEL is a tool applicable to any base form,

from the simplest (like the sphere in Figure 15) to the more varied

in curvature (like the cactus in Figure 15 or the fertility statuette

in Figure 1). But PAVEL gives its best in designing artistic decora-

tions, which are not limited to the replicas of clay pieces but can

be used to generate various artworks of different kinds. Figures 16

and 17 show a few examples, demonstrating potential uses in jew-

elry and pottery, exploiting manual elements positioning and au-

tomatic pattern creation.

To evaluate the advantages of the computer-assisted procedure

with respect to a manual artistic one, we performed a simple user

test asking a designer trained to use the PAVEL framework to re-

produce two simple artworks of Heather Knight, the vase and the

tile shown in Figure 14, top left. The time required was limited

to a few minutes for the choices of the options and the element,

with a subsequent overall computing time for the automatic place-

ment and elements’ deformation of about 1 minute (see Tables 1

and 2). According to the artist, the time required to create the clay

artworks is about 2 hours for the tile and 8 hours for the vase.

Validation. Since PAVEL does not perform a real physical sim-

ulation, there is no ground truth to compare with. Instead, since

the goal of our work is to design patterns resembling hand-made

artistic creations, we designed and conducted a user study aimed at

understanding if the generated patterns mimic real artworks well.

In the user study, the subjects had to choose for each image in a

set, whether they were photos of actual artwork or PAVEL gener-

ated models. Figure 18 shows the test images that include cropped

photos of artworks by Heather Knight (H1–H4), rendered images

of PAVEL decorations (P1–P3), or photos of a printed PAVEL shape

(P4). Sixty-two subjects participated in the experiment. Twenty-

two had no specific background, 32 declared to be experts in com-

puter science, and 8 claimed to be experts in computer science and

digital design. Subjects had to compile a web form with the photos

presented with a corresponding radio button to select the desired

option.
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Fig. 13. Design and fabrication of tangible decorative shell for a real object. The whole production pipeline is depicted: From the real object, we want to

decorate to the final tangible result obtained by applying the fabricated decomposed shell over the surface.

We summarize the results of the experiment in Figure 19. The

percentage of subjects considering the pattern hand-crafted is

higher than 30% for all the patterns generated with PAVEL. This is a

very good result considering that even though the question asked

explicitly to consider the geometric pattern and not the material

reflectance and that we added some noise to the synthetic render-

ing, there was probably a bias penalizing the renderings. This is

confirmed by the fact that the only photo of a printed PAVEL pat-

tern (P4) was believed hand-crafted by more than half the subjects.

Moreover, the percentage is significantly higher than those of ac-

tual hand-crafted patterns (H3, p-value in 1-tailed 2-populations

z-test 0.014). It is also worth noting that statistical tests also show

that the proportions of hand-crafted votes for the two rendered

PAVEL-generated patterns P2, P3 are not significantly different 2-

populations z-test from those of the real artworks H3, H4. P2 and

P4 were also considered handcrafted by more than half of the sub-

jects hat declared themselves experts in Computer Science andDig-

ital Design.

We are also proud to report what Heather Knight, the artist that

inspired the methods we developed, commented when we showed

her some renderings of the generated artifacts. She was blown

away and appreciated much the possibility offered by our system.

Performance. To understand if PAVEL could be a useful design

tool, it is necessary to evaluate the time required by the different

steps and the global effort required to create the decorated mod-

els. We obtain all our results on a 12-core Ryzen 3900x with 32 GB

of RAM. Table 1 shows the time required by the automatic seed-

ing procedure. All the times for the non-curvature adaptive meth-

ods range between 0.6 and 1.5 seconds, with minimal differences

between CVT and striped seeding. The most computationally ex-

pensive sampling strategy is, as expected, the curvature-dependent

one. We used this method to sample the fertility and the bunny

model, respectively, shown in Figures 1 and 8, which took between

30 and 60 seconds to extract the isosurface and only a couple of

seconds to sample it. This speed allows a reasonably fast interac-

tive design procedure. The digital artist can quickly test different

object choices and seeding options visualizing the seeded configu-

rations superimposed on the base model.

Table 2 shows the times required by the volume recovery and

mesh generation. While the whole procedure is clearly not inter-

active, the time required is reasonable for an offline rendering pro-

cedure. The time required by the volume recovery step is directly

dependent on both the number of decorations and their resolution.

The times range from 20 to 360 seconds for all but one mesh, with

the faster times achieved by the models with around 50 decorative

elements. The slowest time is reached by fertility, which stays just

under 10 minutes, because of its 2,000 decorations and the 130 mil-

lions of voxels used to represent them. Another critical factor in

performances is the resolution, which is also crucial to maintain-

ing the decoration’s details. Our results show how the method can

handle millions of voxels to represent the decorations, even in in-

tersections up to 33% of the volume. Last, another time-consuming

step is CVT smoothing. While it ranges from 10 to 200 seconds to

remeshmost of our test models, it is worth noticing that themarch-

ing cubesmeshes’ resolution reaches up to 60million triangles, and

we output smooth meshes with up to 5 million triangles.

8 COMPARISON TO PHYSICAL SIMULATORS

The use of existing commercial or publicly available physics sim-

ulators might appear to be the obvious choice to produce results

similar to our own. In fact, we initially explored three different al-

ternatives using them, but with no practical results.

The first possibility would be to simulate exactly what artists do

to create decorations. In the real world, decorations are placed one-

by-one and deformed during placement tomatch the overall design

constructed so far. To do this, we would need to be able to simulate

the material accurately and generate the exact forces that artists

apply manually, which are different for each decoration. While an
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Fig. 14. Comparison of element-based clay hand-crafts created by an

artist (left column, courtesy of Heather Knight) and the corresponding ren-

dered models created by PAVEL using automatic seeds placement (right

column).

Fig. 15. We show here how PAVEL can deal with both regular base shapes

(the sphere on the right) and shapes with sharp curvature changes and

creases (the cactus on the left).

accurate material simulation is possible, the control with the exact

forces applied by artists is not easy to formalize algorithmically.

As an alternative, we can attempt to use physics simulators to

produce results similar to our own, but without respecting real-

world physics. Essentially, we can attempt to use physics simu-

lators as black-box algorithms that solve specific computational

problems, such as collision avoidance and constraint solving.

Fig. 16. Some jewels designed with PAVEL. On top: a decoration made of

seven pink gold roses with a pearl in themiddle; we use two different metal

polishing for the final rendering. On the bottom part, there are two rings.

We show details of the decorations and, for one of the rose decorations

and the golden ring, also the packing of the decorations on the back, over

the surface, visible removing the base shape.

Fig. 17. Two vases designed with PAVEL. For the jade one, we show also

the back of one of the parts that could be used for fabrication.

The simplest possibility is to set up a configuration like our own,

namely, place a set of overlapping objects and ask the physics sim-

ulator to resolve the overlap and generate a final configuration

that is overlap-free and looks like plastic deformation. In this case,

the simulators start from a non-physical configuration that has sig-

nificantly large overlap to produce packed decorations. We tested

several simulators, namely, Houdini’s FEM solver [SideFX 2020],

Houdini’s XPDB solver [Bender et al. 2014; Macklin et al. 2016],

Blender’s solver [Blender 2020], and a projective dynamics solver
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Fig. 18. Images proposed to the subjects in our user study. H1–H4 are

cropped photos of real artworks (Courtesy of Heather Knight). P1–P3 are

renderings of patterns generated with PAVEL, while P4 is a cropped photo

of a 3D print of a pattern generated with PAVEL.

Fig. 19. Percentages of subjects that considered the images proposed in

the user study representing handcrafted patterns.

[Fratarcangeli et al. 2016]. In all cases, we either could not remove

the overlap or converged to a configuration with significant arti-

facts on all decorations. Themain reason for this is that the starting

configuration has too much overlap, which is non-physical, while

simulators are built to evolve from a valid configuration to another.

The last alternativewe tested is to start the simulations in a phys-

ically correct configuration by scaling down all decorations around

their center until there are no overlaps. We then inflate the decora-

tions to recover their volume, while the simulator ensures that no

overlap occurs by applying collision detection and response. If the

inflation is performed unconstrained, then the original decoration

shape is entirely lost. Instead, we apply constraints to maintain

the decoration shapes approximately. We perform this test using

only the Houdini XPDB solver [Bender et al. 2014; Macklin et al.

2016], since a position-based dynamics formulation makes it easy

to combine constraints to obtain specific effects, and the particular

implementation we chose has flexibility in constraint manipula-

tion, good numerical stability, and it is used extensively in the en-

tertainment industry to guide simulations for artists effects. Note

once again that we are combining constraints in a non-physical

manner, since we want the decoration to inflate like air balloons

while converging in a configuration similar to clay.

In our XPDB setup, we use a shell-based simulation with three

constraints to control the inflatable object, in addition to the

Table 1. Sampling Parameters for the Results Obtained Via Automatic

Decoration Placement

Model
Number of Surface

Time
decorations coverage

Amphora, Figure 9 358 1.42 0.59 s

Bunny (adaptive), Figure 8 middle 1,720 1.23 2.68 s

Cactus, Figure 15 left 1,244 1.18 0.42 s

Fertility, Figure 1 left 2,002 1.23 1.8 s

Mug, Figure 12 410 1.42 0.68 s

Mug, Figure 13 297 1.44 0.92 s

Ring, Figure 1 middle 529 1.30 1.00 s

Sphere, Figure 15 right 400 1.43 0.69 s

Teapot, Figure 10 642 1.26 1.82 s

Tile, Figure 14 middle 48 1.49 0.80 s

Tile, Figure 14 bottom 65 1.32 1.30 s

Vase, Figure 7 450 1.49 0.70 s

Vase, Figure 11 953 1.27 0.91 s

Vase, Figure 14 top 182 1.48 1.43 s

Vase, Figure 17 right 604 1.38 0.79 s

Vase, Figure 17 left 555 1.44 0.77 s

The reported times for fertility and the bunny are not inclusive of the isosurface
generation, respectively, 33.7 s and 54.2 s.

collision constraints to avoid overlap. We combine an edge pre-

serving constraint, a bending constraint and a pressure constraint,

described in Bender et al. [2014], as suggested by the solver vendor.

We set up the solver and constraint parameters by running sev-

eral instances of the experiment and pick the best results. We also

tested shape- and volume-preserving constraints, which would

seem to better preserve shape, and obtained worst results, since

they interact badly with collision-handling constraints.

Figure 20 shows a comparison between an element-based deco-

ration generated with PAVEL and the corresponding best result we

obtained by inflating non-intersecting elements with the simulator,

adding the shape constraints. We match the resolutions of the two

results by remeshing the edges of the simulator’s triangles to have

the same edge lengths of PAVEL’s voxel edge length. The simula-

tor is significantly slower than PAVEL: Here, the execution time

is 5 hours and 56 minutes while our system takes only 8 minutes.

We also believe that our results are qualitatively superior, since the

packing is more pronounced, resulting in a better coverage of the

surface.

The superior quality of PAVEL results is even more evident in

Figure 21, showing another example of decorative elements’ defor-

mation obtained with the previously described simulator setting,

compared with PAVEL results and also with a similar real-world

object. Here the simulator takes 2 hours and 14 minutes for the

computation (PAVEL time is 1.5 minutes). The closeup in Figure 21

shows that our result better matches the behavior of real clay. In

Table 3, we report the speedup provided by our method, as well

with the number of voxels and triangles handled by, respectively,

PAVEL and the physics engine.

As with all simulators, it is possible that a different setup based

on XPDB may obtain better results, for example using tetrahedral

meshes with volumetric constraints. However, the computational

complexity would be even higher, making these setups not com-

petitive with our system for our specific task.
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Table 2. We Report the Execution Times (in Seconds) for the Two Most Expensive Pipeline Steps, Deformation and Output Generation,

for the Set of Models We Discuss

Model
Deformation Marching cubes Voxelization Decorations Overlapping Base Marching Cubes Final

time and Smoothing avg. diagonal voxels voxels voxels triangles triangles

Amphora, Figure 9 112.5 s 58.6s 154.5 31.68M 30.2% 64.71M 12340K 716K

Bunny (adaptive), Figure 8 middle 357.8s 138.6 s 123.9 96.24M 13.7% 204.00M 38487K 1745K

Cactus, Figure 15 left 239.3 s 185.2 s 139.8 50.37M 22.3% 78.31M 25714K 2856K

Fertility, Figure 1 left 574.4 s 409.7 s 140.0 130.74M 13.9% 154.60M 57909K 4890K

Mask, Figure 1 right 322.1 s 74.7 s 150.9 32.26M 16.6% 13.64M 8518K 472K

Mug, Figure 12 121.7 s 59.8 s 154.3 43.23M 17.0% 200.23M 14305K 850K

Mug, Figure 13 108.9 s 47.2 s 170.4 41.38M 18.6% 78.61M 12755 624K

Ring, Figure 1 middle 158.0 s 83.3 s 154.9 48.89M 21.8% 61.40M 17877K 1095K

Ring, Figure 16 middle 50.7 s 19.4 s 200.4 10.70M 21.1% 10.35M 4675K 287K

Roses, Figure 16 top 68.2 s 19.0 s 158.4 5.61M 24.6% 1.64M 3405K 325K

Sphere, Figure 15 right 163.2 s 124.3 s 192.3 49.41M 12.8% 41.39M 17862K 2484K

Teapot, Figure 10 202.4 s 101.6 s 154.7 54.27M 32.3% 414.82M 22296K 1386K

Tile, Figure 14 middle 68.2 s 19.0 s 199.6 5.71M 13.5% 6.68M 2156K 295K

Tile, Figure 14 bottom 23.7 s 13.7 s 199.7 5.27M 11.8% 11.14M 2331K 260K

Vase, Figure 7 198.1 s 158.7 s 184.4 67.72M 18.4% 94.80M 22616K 2878K

Vase, Figure 11 208.6 s 135.4 s 139.5 68.29M 16.7% 418.13M 25564K 1985K

Vase, Figure 14 top 68.6 s 41.8 s 184.4 25.87M 17.4% 7.08M 7960K 788K

Vase, Figure 17 right 200.6 s 98.2 s 162.0 72.94M 16.9% 79.91M 23445K 1249K

Vase, Figure 17 left 287.5 s 204.2 s 170.1 64.90M 17.1% 61.49M 23437K 3755K

For each model, we list the average diagonal of the voxelizations representing the decorations, assuming the voxel’s edges unitary, the number of voxels of the base shape
and the decorations (in millions), the number of overlapping voxels in the decorations, for which our system solves and deform, the number of triangles of the marching
cubes’ extracted mesh (in thousands), and the size of the final mesh of the decorations alone (in thousand triangles, excluding the base).

Finally, when using physics simulators, we also found the

need to perform significant parameter tuning. Indeed, the two ex-

amples presented above required different constraint values set

through dozens of hours of trial-and-error. Moreover the behav-

ior is geometry-dependent, and using a different level of detail

changes the simulation result. As a consequence, the trial-and-

error to set the parameters must be done on the final resolution,

and each attempt takes hours. This process is tedious, but must

be done thoroughly to avoid poor configuration that can lead to

wrong material behavior, such as the one shown in Figure 22 in

which the decorations lose their shape after the inflation phase.

Furthermore, while the domain of possible parameters is wide,

many configurations are not stable. In Figure 22, we show a sim-

ulation stopped half way through, after a failure of the simulator.

Interestingly enough, using the same parameters and mesh reso-

lution, but changing the number of decorations, can result in a

successful simulation. However, PAVEL does not require parame-

ter tuning and while it is possible to alter the material behavior

changing Equation (1), all the results presented in the article use

the same parameters.

In conclusion, we found that the physics simulators tested are

not easily adapted to produce results similar to our own, are sig-

nificantly slower, and require extensive parameter tuning.

9 DISCUSSION

To the best of our knowledge, PAVEL is the first attempt to propose

a method to create packed volumetric decorations on 3D models.

This allows us to create complex handmade-like surface patterns

without time-consuming procedures such as sculpting or simulat-

Fig. 20. Comparison of results obtained with PAVEL and a XPBD physics

simulator [Macklin et al. 2016] for the same decorations placement used

in Figure 17.

ing in detail the artistic procedure, keeping user control on the

properties of the distribution of the elements on the surface.

Throughout the article, we demonstrate that we can visually

simulate real-world hand-crafted objects. We do so by placing dec-

orative elements with point-sampled uniform or stripe-align dis-

tributions and packing elements with a volume-preserving defor-

mation. The decorated models can be used for virtual applications

of 3D printed for tangible reproductions.
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Table 3. Performance Comparison between PAVEl and an XPDB Physics

Simulator [Macklin et al. 2016]

Model
PAVEL Simulator Performance PAVEL Simulator

time time improvement voxels triangles

Vase, Figure 20 8 mins 356 mins 45× 64.9M 8.9M

Tile, Figure 21 1.5 mins 134 mins 89× 5.71M 847K

Fig. 21. Comparison of our results and the one obtained with a XPBD

physics simulator [Macklin et al. 2016] when reproducing a real-world

hand-made artifact.

Limitations and future work. Our method has two main limita-

tions. First, the automatic placement of decorations is limited to

approximately isotropic elements or elongated shapes placed on

stripes. As stated in Section 1, this is a design choice to simplify

the packing procedure, which is in general NP-hard, leaving to the

deformation step to fill the gaps between elements.

However, we plan in future work to improve the initial packing

step with novel options, as many other initialization choices can

be adopted. Elements with constant anisotropy could be, for exam-

ple, placed using the CVT variant described in Lévy and Liu [2010].

The placement could also modified optimizing elements’ position

and orientation after the initial placement to enhance the quality

of the packing of non-radially symmetric elements. Elements with

specific shapes could be also placed based on examples using op-

timization procedures forcing neighborhood similarity, as done in

Ma et al. [2011b].

The addition of many different initialization methods would

make the system complex, while our goal is to create a design tool

allowing an easy control with a few parameters. For this reason, we

plan to investigate on a possible semantic description of element-

based textures [Godi et al. 2019] to find a few control parameters

related to elements and spatial distributions.

The second limitation is our use of fast marching, which limits

the complexity of the deformed objects’ details, since the number

of voxels quickly grows with respect to surface details. In the fu-

ture, we plan to explore sparse representations based on spatial

Fig. 22. Physics simulators [Macklin et al. 2016] require significant param-

eter tuning for our configurations to avoid artifacts. Top: A proper ratio

between constraints strength is needed to maintain decorations’ shapes

while inflating. Bottom: Artifacts due to the interaction between collision

handling and shape preservation.

hashing and wide-branching trees that are of common use in 3D

animation.

In addition to the improvements listed above, we plan to im-

prove the pipeline by adding more options to control the design,

namely, the possibility of performing automatic seeding for spe-

cific decorations on different parts of the mesh.

Another planned work is the optimization of the shell decompo-

sition for printing. We plan to develop methods for the automatic

decomposition of the PAVEL decoration in printer-friendly patches

of controlled size. We will also investigate the possibility of adding

printability constraints in the fast marching evolution.

Last, we also plan to work on sparse element representation, e.g.,

OpenVDB. This would allow us to dramatically increase the reso-

lution of the decorative elements, while keeping the memory foot-

print, and potentially the execution times, low.
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