

Università degli Studi di Cagliari

Ph.D. DEGREE
ELECTRONIC AND COMPUTER ENGINEERING

Cycle XXXIV

TITLE OF THE Ph.D. THESIS

ADAPTIVE COGNITIVE SENSOR NODES FOR THE INTERNET OF

MEDICAL THINGS

Scientific Disciplinary Sector(s)

ING-INF/01

Ph.D. Student: MATTEO ANTONIO SCRUGLI

Supervisor PAOLO MELONI

 Final exam. Academic Year 2020/2021

Thesis defence: April 2022 Session

Università degli Studi di Cagliari
Department of Electrical and Electronic Engineering (DIEE)

Ph.D. degree, XXXIV cycle

Adaptive cognitive sensor nodes for
the internet of medical things

Matteo Antonio Scrugli
December 2021

Advisor: Prof. Paolo Meloni

“One of my most productive days was throwing away 1,000 lines of code.”
Ken Thompson

Acknowledgements

This work was supported by EU Commission for funding ALOHA Project (H2020)
under Grant Agreement n. 780788. This work was also supported by the joint re-
search and development project F/050395/01-02/X32, INSIEME: INtelligent Sys-
tems for Integrated hEalth ManagEment, CUP:B28I17000060008, funded by Ital-
ian MISE (Ministero dello Sviluppo Economico), D.M. 01/06/2016, Axis 1, action
1.1.3. of the National Operative Program «Imprese e Competitività»2014-2020
FESR, Horizon 2020 – PON I&C 2014-20.

ii

Abstract

The Internet of Medical Things (IoMT) paradigm is becoming mainstream in
multiple clinical trials and healthcare procedures. It relies on novel, very accurate
and compact sensing devices, network and communication infrastructures, opening
previously unmatched possibilities of implementing data collection and continuous
patient monitoring. Nevertheless, to fully exploit the potential of IoMT, some
steps forward are needed. First, the edge-computing paradigm must be added to
the picture. A certain level of near-sensor processing has to be enabled, to im-
prove the scalability, portability, reliability and responsiveness of the IoMT nodes.
Second, novel, increasingly accurate data analysis algorithms, such as those based
on artificial intelligence and deep learning, must be exploited. To reach these
objectives, designers, and programmers of IoMT nodes, have to face challenging
optimization tasks, in order to execute fairly complex computing processes on
low-power wearable and portable processing systems, with tight power and bat-
tery lifetime budgets. In this thesis, the implementation on resource-constrained
computing platforms of a cognitive data analysis algorithm based on a convolu-
tional neural network was explored. The treatment of cardiovascular disease and
fitness tracking were chosen as use cases within the IoMT context to validate our
approach. To minimize power consumption, an adaptivity layer has been added,
the latter dynamically manages the hardware and software configuration of the
device to adapt it at runtime to the required operating mode. The experimental
results show that adapting the node setup to the workload at runtime can save up
to 60% power consumption. The optimized and quantized neural network reaches
an accuracy value higher than 97% for arrhythmia disorders detection and more
than 97% for detecting some specific physical exercises on a wobble board.

iii

Contents

1 Introduction 1

2 State of the art 5
2.1 IoT for healthcare solutions . 6

2.1.1 Integration of cognitive processing on IoMT devices 6
2.2 Sensory nodes for cardiovascular disease treatment 7

2.2.1 Cognitive approach for cardiovascular disease detection . . . 8
2.3 Cognitive IoMT node for sensorimotor exercise detection 10
2.4 Edge-computing paradigm & runtime adaptivity on nodes with low

or high computational capabilities 12
2.4.1 Runtime adaptivity . 13
2.4.2 CNN workload partitioning and mapping 15
2.4.3 Dynamic Voltage and Frequency Scaling 15

2.5 Current scenario summary and proposed novelties 17

3 Methodologies, techniques and architectures 19
3.1 Hardware platform . 21

3.1.1 SensorTile . 21
3.1.2 Orlando . 24

3.2 Middleware & Operating System 27
3.2.1 Common Microcontroller Software Interface Standard . . . 27
3.2.2 FreeRTOS . 36
3.2.3 Orlando middleware . 38

3.3 PyTorch framework & quantization 40
3.4 Electrocardiogram configuration . 41

3.4.1 MIT−BIH Arrhythmia Database 43
3.5 Application model & ADAptive runtime Manager 44

3.5.1 ADAptive runtime Manager algorithm 47

iv

4 Cardiovascular disease detection on electrocardiogram 52
4.1 Operating modes . 53

4.1.1 Operating mode: Raw data 53
4.1.2 Operating mode: Peak detection 55
4.1.3 Operating mode: CNN processing 55

4.2 The peak detection algorithm . 56
4.3 Designing the CNN: training and optimization 58

4.3.1 Model exploration . 61
4.3.2 Post-deployment degradation and refinement with Augmen-

tation . 66
4.4 Experimental results . 67

4.4.1 Pre-deployment CNN accuracy 67
4.4.2 Post-deployment CNN accuracy 69
4.4.3 Power consumption measures 72
4.4.4 Power model & operating mode power consumption estimation 74

4.5 Work comparison . 77

5 Sensorimotor exercise detection using a wobble board 79
5.1 Operating modes . 80

5.1.1 Operating mode: raw data 80
5.1.2 Operating mode: basic balance 82
5.1.3 Operating mode: CNN . 82

5.2 Neural network design . 83
5.2.1 Data augmentation & generalization 86

5.3 Experimental results . 87
5.3.1 Neural network accuracy . 87
5.3.2 Power consumption measures 87
5.3.3 Power model & operating mode power consumption estimation 89

6 Runtime reconfiguration on multi-core platforms 91
6.1 Adaptivity in Advanced Multi-core Hardware Platforms 92

6.1.1 ADAM for Multi-Cores . 92
6.2 Splitting policies . 94

6.2.1 Splitting model on Orlando 95
6.3 Operating mode . 98
6.4 Experimental results . 101

6.4.1 Experimental setup . 101
6.4.2 Single Channel . 103
6.4.3 Multi-Channel . 105

7 Conclusion 108

Repositories 110

Bibliography 111

Figures

3.1 General overview of the proposed system. 20
3.2 IoMT node architecture overview. 21
3.3 SensorTile. 22
3.4 Block diagram of the SensorTile board. 24
3.5 Additional board. 25
3.6 SoC top-level block diagram. 25
3.7 Vdd measurement and approximation for each system frequency. . . 27
3.8 Example of im2col on a 2D image with a 3x3 kernel, padding size

of 1 and stride size of 2 [1]. 28
3.9 Convolution of three-dimensional (height, width, and channel) data

[1]. 29
3.10 Experiment with different data layouts, CHW and HWC. The matrix-

multiplication runtime is the same for both data layout styles. HWC
has a shorter im2col runtime [1]. 30

3.11 Einthoven Triangle. 43
3.12 Electrodes placement according to the modified limb lead method [2]. 44
3.13 10-second ECG trace, recording number 108 in the MIT−BIH Ar-

rhythmia dataset. In the upper part is present the MLLII trace, in
the middle part the notes and in the lower part the modified lead
V1 trace. 45

3.14 Simple task chain. 45
3.15 Two possible configurations of a generic system. 47

4.1 Frequency response of the circuit configuration chosen for the AD8232. 53
4.2 ECG application model. 54
4.3 Filtering block diagram. 57
4.4 Raw signal and filtered one from two different recordings. 57
4.5 CNN structure and two possible classes of labels. 62

vii

4.6 Exploration of the chosen neural network model, the name comes
from labels_ conv1OutputFeatures_ conv2OutputFeatures_ fc1Outputs. 63

4.7 Results obtained from the training of the model having: 20 output
features for Conv1, 20 output features for Conv2 and 100 output
for Fc1. 64

4.8 For the most accurate models, the energy consumption for a single
CNN task call is shown. The dotted line represents the maximum
allowable drop in accuracy (0.5% with respect to the most accurate
model) for NLRAV (red line) and NSVFQ (blue line) classes. The
models marked with an “×” do not respect the constraints imposed
on the minimum necessary accuracy value. 65

4.9 Qualitative example of augmentation. 67
4.10 ROC curve and AUC value for NLRAV_4_4_100 and NSVFQ_4_4_100

models with augmentation support. 68
4.11 Confusion matrix for NLRAV_4_4_100 and NSVFQ_4_4_100. . 69
4.12 False positives and false negatives cases resulting from the peak

detection algorithm and classification with remaining true positive
cases for NLRAV and NSVFQ classes using CNNs trained with
augmentation techniques. 70

4.13 Taking into consideration the true positive peaks obtained with a
tolerance equal to 50 samples, the statistical distribution of the
accuracy values for each ECG recording, obtained from the clas-
sification on the validation set, is represented. The floating-point
and fixed point models are tested, inference with centered and non-
centered peaks is also tested. In orange, the median value. 71

4.14 Circuit used to measure power consumption. 72
4.15 The graph summarizes the energy consumption for different heart-

beat rates, when data sending is enabled (Tx) or not (No Tx). Raw
OM does not depend on heartbeat nor on the threshold settings and
the threshold task is disabled, so only one value is shown. 73

4.16 Estimation of energy consumption for each task of each operating
modes at 60 bpm. 76

5.1 Wobble board used to validate our approach. 80
5.2 Application model. Top raw OM, middle balance OM, bottom CNN

OM. 81

5.3 The four common wobble board exercises recommended by physio-
therapist Anders Heckmann [3]. (a) Balance while keeping as steady
as possible. (b) Move the board back and forth. (c) Move the board
from sideto side. (d) Clockwise and counterclockwise circular move-
ment. The Figure was extracted from Nilsson et al. [4]. 82

5.4 CNN structure and classes description. 85
5.5 Example graph of single acquisition of the “two leg tilts” exercise.

The two axes in the lower plane represent the raw data acquired by
the sensor. The vertical axis represents time in milliseconds. 86

5.6 Validation set confusion matrix, to the left the model with floating
point weights and to the right fixed point weights. 88

5.7 Power consumption for each OM. 89
5.8 Estimation of energy consumption for each task of each OM. 90

6.1 One core for each convolutional layer. 92
6.2 Subdivision of the workload given by the blocks into several cores. 93
6.3 Example of balanced pipeline (grey shadows show the potential ex-

ecution of successive pipelined computations of the same application). 95
6.4 Example of redistribution of the workload over multiple cores (grey

shadows show the potential execution of successive pipelined com-
putations of the same application). 97

6.5 ECG application model for the CNN processing operating mode [5] 99
6.6 Neural network structure. 100
6.7 The baseline setup for the selected use case on Orlando. 101
6.8 Dataflow on cores with a balanced pipeline and medium workload

(ADAM-IF with maximum 100 bpm). 103
6.9 Comparison of power consumption considering different adaptation

policies (with or without ADAM) and different workloads. 104
6.10 Comparison of power consumption in different ADAM configura-

tions with high workloads (processing of six ECG streams). 106

Tables

2.1 Structure of some devices proposed in literature. 11
2.2 Qualitative comparison with CNN workload partitioning and map-

ping studies. 16
2.3 Qualitative comparison of some works in literature using DVFS

techniques. 17

3.1 SensorTile current consumption in different operating states. 23
3.2 Core activation and deactivation functions. 39
3.3 Synchronization functions, which are mainly used to read/write on

the same FIFO in a mutually exclusive way. 39
3.4 Call functions, used by the ADAM system to manage the execution

of tasks on the cores. 39

4.1 True positives, false positives, and false negatives of our peak detec-
tion algorithm with a tolerance of 50 samples for each ECG record-
ing on MIT−BIH arrhythmia database. 59

4.2 Classes distribution over the dataset or the false negative subset. . . 60
4.3 Hyperparameters used during the training phase. 61
4.4 Parameters used for NLRAV_4_4_100 and NSVFQ_4_4_100 train-

ing phase. 68
4.5 Summary of consumption and execution time for each task. 75
4.6 Summary of consumption of peripherals. 75
4.7 Results in terms of accuracy value on MIT-BIH dataset (see classes

names in Figure 5.4). 78

5.1 Hyperparameters used during the training phase. 84
5.2 Model parameters. 85
5.3 Augmentation parameters. 87
5.4 Summary of consumption and execution time for each task. 89
5.5 Summary of consumption of peripherals. 90

x

6.1 rpc_call(...) function arguments. 98

Listings

3.1 arm_nn_mat_mult_kernel_q7_q15() source code with our modi-
fication. 31

3.2 arm_convolve_HWC_q7_basic_nonsquare() source code with our
modification. 32

3.3 arm_fully_connected_q7_opt() source code with our modification. 33
3.4 arm_maxpool_q7_HWC_1D() source code with our modification. 34
3.5 compare_and_replace_if_larger_q7() source code with our modi-

fication. 36
3.6 FreeRTOSConfig.h file. FreeRTOS original source code. 37
3.7 port.c file. FreeRTOS original source code. 37

xii

Algorithms

3.1 ADAM algorithm. 51

6.1 ADAM-FF policy algorithm. 96
6.2 ADAM-IF policy algorithm . 96

xiii

Acronyms

1D 1-Dimensional 30
2D 2-Dimensional 29
3D 3-Dimensional 22, 29
5G 5th Generation 5

AAMI Association for the Advancement of Medical
Instrumentation 109

ACAP Adaptive Compute Acceleration Platform 12
ACC Accuracy 61
ADAM ADAptive runtime Manager ix, x, 3, 14, 19,

21, 26, 39, 46–49, 77, 91–95, 97–99, 101–108
ADC Analog to Digital Converter 52, 55
AI Artificial Intelligence 2, 6, 7, 12, 13, 91
ANN Artificial Neural Network 7
ANSI American National Standards Institute 109
API Application Programming Interface 20, 23, 27,

38, 77, 91
AR Augmented Reality 22
ASIC Application Specific Integrated Circuit 7, 16
AUC Area Under Curve 67

BHD British Hypertension Society 109
BIH Beth Israel Hospital 9, 11, 43, 44, 52, 56, 58,

108
BLE Bluetooth Low Energy 19, 22, 49, 75, 79, 90
BSD Berkeley Software Distribution 40

xiv

CHW Channel-Width-Height 29
CMSIS Common Microcontroller Software Interface

Standard 12, 27–30, 36, 60, 77, 83, 84
CNN Convolutional Neural Network vii–x, 3, 8–11,

14–17, 27, 54, 56, 57, 60–62, 65–67, 69, 70, 72,
74, 75, 77, 82–84, 89, 92, 94, 97, 99, 101, 102,
108

CPU Central Processing Unit 7, 11, 16, 28
CS Compressive Sensing 8
CVD Cardiovascular Diseases 1, 2, 8

DBN Deep Belief Network 11
DC Direct Current 57
DFSDM Digital Filters for external Sigma-Delta Mod-

ulators 22
DL Deep Learning 2, 17
DNN Deep Neural Network 11, 16
DSP Digital Signal Processor 26, 38, 39, 95, 97, 103
DVFS Dynamic Voltage and Frequency Scaling x,

14–17

ECG Electrocardiogram viii, ix, 2–5, 7–10, 18, 42–
44, 52, 53, 55, 56, 58, 66, 69–71, 74, 75, 98,
99, 105, 106, 108, 109

EIS Electronic Image Stabilization 22
ES Early Stopping 61, 84
ESD ElectroStatic Discharge 24

FAIR Facebook’s Artificial Intelligence Research 40
FF Frequency First xiii, 94–96, 102–106
FIFO First In First Out x, 3, 38, 39, 44, 46–51, 92,

93
FN False Negative 58–61
FP False Positive 58, 59, 61
FPGA Field Programmable Gate Array 8, 10, 12
FPU Floating-Point Unit 22

FreeRTOS Free Real-Time Operating System xii, 36–38,
79

FT Fixed Topology 102–104, 106

GPIO General Purpose Input/Output 23
GPU Graphics Processing Unit 7, 12, 16

HWC Height-Width-Channel 29, 32, 34

I2C Inter Integrated Circuit 24
IBM International Business Machines 13
IF Idle First ix, xiii, 94–96, 102–106
IMU Inertial Measurement Unit 22
IO Input/Output 26
IoMT Internet of Medical Things 1, 3, 6, 108
IoT Internet of Things 1–3, 5, 6, 8, 9, 13, 91

KNN K-Nearest Neighbors 8, 9

LA Left Arm 42
LCD Liquid Crystal Display 22
LDA Linear Discriminant Analysis 7
LDO Low-DropOut 24
LL Left Leg 42
LP Low Pass 57
LSA Latent Semantic Analysis 9, 11

MCT Medtronic SEEQ Mobile Cardiac Telemetry 6
MCU MicroController Unit 22
MEMS Micro Electro-Mechanical Systems 22
microSD micro Secure Digital 24
MIT Massachusetts Institute of Technology 8, 9, 11,

43, 52, 56, 58, 108
MLL Modified Limb Lead 43
MLLII Modified Limb Lead II 43, 44, 52

NN Neural Network 2, 12, 28, 36, 60, 83, 84

OIS Optical Image Stabilization 22
OM Operating Mode viii, ix, 3, 56, 57, 72–75, 77,

80–82, 87–90
OS Operating System 20, 37, 91
OTG On-The-Go 22

PCA Principal Component Analysis 7
PPV Positive Predictive Value 58

RA Right Arm 42
RAM Random Access Memory 7, 26, 36
RBM Restricted Boltzmann Machine 11
ReLU Rectified Linear Unit 30, 99
RF Random Forest 9
ROC Receiver Operating Characteristic 67
RPC Remote Procedure Call 38, 97
RTOS Real-Time Operating System 14, 36–38

SIMD Single Instruction Multiple Data 29, 36, 77
SoC System on a Chip 12, 48, 49, 51
SoM Systems on a Module 12
SPI Serial Peripheral Interface 49
SQA Signal Quality Assessment 8
SRAM Static Random Access Memory 26, 38, 97
SSF Static System Frequency 102–106
SVM Support-Vector Machine 8
SWD Serial Wire Debug 23, 24

TN True Negative 58, 61
TP True Positive 58, 59, 61
TPR True Positive Rate 58

USB Universal Serial Bus 22, 24

VR Virtual Reality 22

WBAN Wireless Body Area Network 9, 10
WHO World Health Organization 2, 10

1
Introduction

T he Internet of Things (IoT) paradigm, declined in the so-called Internet
of Medical Things (IoMT), enables seamless collection of a wide range of
data streams, that can be analyzed to extract relevant information about

the patient’s condition. However, in order to make IoMT really ubiquitous and
effective, a step forward is needed to improve scalability, responsiveness, security
and privacy. Most of the efforts aiming in this direction focus on the adoption
of an edge-computing approach. Data streams, acquired by sensors, can be pro-
cessed, at least partially, at the edge, before being sent to the cloud, on adequate
portable/wearable processing platform. This provides several advantages. First,
it reduces bandwidth requirements. Near-sensor processing can extract from raw
data more compact information. In this way, less communication bandwidth is
required to the centralized server, and, at the same time, the energy consumption
related to wireless data transmission is drastically reduced. Second, near-sensor
processing can improve reliability. Monitoring must not rely necessarily on connec-
tion availability and, if immediate feedback to the user and/or local actuation is
needed, the delays through the network can be avoided. Moreover, pre-processed
information can be delivered to the cloud, preserving user privacy avoiding the
propagation of sensitive data.

An extremely important field of application of IoMT is related to the treat-
ment of Cardiovascular Diseases (CVD), a major public health problem that gen-
erates millions of deaths yearly and impacts significantly on health-related pub-

1

Introduction 2

lic costs. As an example, in 2016, ≈ 17.6 million (95% CI, 17.3−18.1 million)
deaths were attributed to CVD globally, representing an increase of 14.5% (95%
CI, 12.1%–17.1%) since 2006 [6]. In Europe, the CVD impact on the economy is
estimated to be around €210 billion [7]. It is commonly accepted that machine
learning and IoT are important for creating a novel assisted living methodology
[8], this is also true for CVD monitoring. In Maskeliūnas et al. [8], many aspects
regarding assisted living and how to improve the quality of this category of de-
vices are discussed, some of them are: the introduction of machine learning can
allow the device to adapt autonomously to the environment and reduces manual
interventions by an operator; the combination of Artificial Intelligence (AI) and
IoT leads to improvements from the point of view of comfort and energy saving,
allows constant monitoring of the environment and learning from its behavior.
CVD treatment with remote monitoring involves in most cases analysis of Elec-
trocardiogram (ECG) signals.

The World Health Organization (WHO) 2010 guidelines state that, excluding
special cases, an average adult should engage in moderate-intensity physical ac-
tivity for at least 150 minutes per week and high-intensity physical activity for
75 minutes per week. Due to their ease of use, accuracy, and portability, fitness
tracker devices have grown in popularity in recent years. In addition to the choice
of CVD treatment as the main use case, physical activity tracking is one of the
use cases chosen in this work to support our thesis.

Creating embedded platforms implementing such kind of analysis is promising,
but, at the same time, very challenging, for several reasons:

• Requires edge computing at low energy/cost budget: Sensor nodes
must be wearable and affordable to implement ubiquitous patient monitor-
ing. Given the high data rate produced by the sensors, wireless raw data
transmission requires an energy budget that cannot be negligible when the
task is implemented in a portable and inexpensive computing device.

• Requires cognitive computing: state-of-the-art events detection/track-
ing tasks are often based on the analysis of manually designed features with
are hard to craft and extract online from the original signal. Thus the com-
munity is shifting focus to techniques based on Neural Networks (NNs) and
Deep Learning (DL), that rely on automatically learned features. However,
existing approaches that use DL for the events recognition, rarely pay atten-
tion to energy consumption to be deployed on low-power processing systems.
Thus, pretty often do not take into account workload reduction and post-
deployment accuracy evaluation.

• Requires adaptivity: Intensity of the processing workload is very depen-

Introduction 3

dent on the needed level of detail and also intrinsically data-dependent. For
example, in the case of ECG analysis, the information to be analyzed is usu-
ally contained in waveform shape of peaks, thus the rate of sample frames to
be analyzed is directly dependent on the patient’s heartbeat rate. This paves
the way to energy consumption reduction by means of an adaptive manage-
ment of the system, that reconfigures itself on the basis of the detected data
and on the chosen Operating Mode (OM).

In this thesis, the implementation of a system for at-the-edge cognitive pro-
cessing of ECG data and fitness activity was explored. A hardware/software setup
for the processing system inside the IoMT node has been designed. Two ref-
erence platforms were selected in order to validate the implemented system on
both a single-core and a multi-core platform. For the single-core case SensorTile
platform was used, a compact processing microcontroller-based device developed
by STMicroelectronics. As a multi-core platform, Orlando board was chosen,
also developed by STMicroelectronics. The implemented system makes use of
a quantized Convolutional Neural Network (CNN), that has been validated in
post-deployment and recovers accuracy drops that arise in real online utilization.
Moreover, a step further in hardware/software optimization using adaptivity has
been taken, allowing the system to reconfigure itself, to suit different operating
modes and data processing rates. To this aim, besides executing the tasks that
implement sensor monitoring and on-board processing, the system includes a com-
ponent called ADAptive runtime Manager (ADAM), able to dynamically manage
the hardware/software configuration of the device optimizing power consumption
and performance. ADAM creates and manages a network of processes that com-
municate with each other via First In First Outs (FIFOs) queues. The morphology
of the process network varies to match the needs of the operating mode in execu-
tion. ADAM can be triggered by re-configuration messages sent by the external
environment or by specific workload-related variables in the sampled streams (e.g.
patient’s heartbeat pace). When triggered, ADAM changes the morphology of the
process network, switching on or off processes, and reconfigures the inter-process
FIFOs. Moreover, depending on the new configuration it changes the hardware
setup of the processing platform, adapting power-relevant settings such as clock
frequency, supply voltage, peripheral gating.

The remainder of this thesis is as follows: Chapter 2 shows what the current
IoT challenges are as applied to continuous monitoring devices in the health care
domain; in Chapter 3 the hardware platforms used and the tools exploited and
implemented to support our thesis are described. Additionally, the ADAM com-
ponent developed, capable of dynamically managing the device configuration, is

Introduction 4

explained; Chapter 4 presents the implementation case related to the detection of
anomalies in ECG trace, shows how the application model was adapted to this
use case, the techniques exploited and how the cognitive analysis was designed.
Finally, it is shown how the system handles post-deployment non-idealities; Chap-
ter 5 discusses how the system was designed to be able to identify the execution
of some simple sensorimotor exercises on a common wobble board; in Chapter 6
design changes are described to adapt the system seen in Chapter 4 to run on a
multi-core platform. A multi-core platform provides greater computational capac-
ity, but the ability of such devices to handle parallel computing and pipelining
capabilities must be managed; finally, Chapter 7 outlines our conclusions.

2
State of the art

T he IoT consists of a network containing a huge number of interconnected
devices, as a result, devices are becoming smarter and the quality of in-
formation available from the network is increasingly high. On the other

hand, the IoT network is still trying to take its own shape, however, its technolog-
ical development has already started to take giant steps. The real expansion will
presumably take place with the advent of the 5th Generation (5G) network, the
standards of this network allow the IoT to develop throughout the territory in a
widespread manner. In order to design a reference platform with the purpose of
exploiting it as an IoT node, it is necessary to study what the current technology
makes available, understand what are the advantages but also the limitations. This
chapter will mention some of the works proposed in literature that offer IoT solu-
tions for health care. Many of these solutions involve collecting and analyzing data
only on the cloud. The cognitive edge-computing paradigm on the other hand in-
troduces many advantages in terms of responsiveness, accuracy and data security.
We will focus on works dealing with ECG monitoring and anomalies detection but
also on sensorimotor exercise detection, showing how deep learning-based analysis
achieves detection accuracy values equal to or better than more traditional meth-
ods. Finally, we compare methodologies used in the literature to manage workload
and energy consumption in high computational capabilities edge-devices.

5

State of the art 6

2.1 IoT for healthcare solutions
Multiple solutions involving the use of sensor networks in hospitals or at home and
the IoMT are proposed in literature [9, 10, 11]. Most of these studies exploit a
cloud-based analysis: data is usually encapsulated in standard formats and sent to
remote servers for data mining. Most research work takes into account wearability
and portability as main objectives when developing IoMT-based data sensing ar-
chitectures, thus devices available on the market can guarantee autonomy for days
or weeks [12, 13].

Commercial devices such as Medtronic SEEQ Mobile Cardiac Telemetry (MCT)
System and ViSi Mobile System have been designed to fit non-invasively into the
skin and body, both devices allow vital sign monitoring, in particular, the first
one, focuses on cardiac activity. These devices provide for raw data streaming to
the cloud and arrhythmias recognition, however, power consumptions in different
operating modes are not specified, and no data relating to the detection accuracy
are available.

2.1.1 Integration of cognitive processing on IoMT devices
Cognitive IoT for domestic and hospital scenarios are adaptive, interactive and
contextual. Adaptive describes a system that can learn and adapt to diverse con-
texts without user involvement, since a home environment, user requests and needs
fluctuate in real time. Interactive references a system that can interact with hu-
mans, services, tools and devices; the system can also ask a user questions, if a
situation under analysis is still unclear. A contextual system can recognize time,
temperature, pollution, noise, human body language, requests and needs [8]. Al-
though AI is not a new concept, its application still has critical issues [14]. This
is due to the extremely dynamic nature of smart environments, as well as the
massive amounts of hard real-time data generated by residents and the environ-
ment itself [15]. On the other hand, IoT technologies provide a solid foundation
for distributed data collection and environment control via various actuators and
appliances. The combination of AI and IoT opens up new possibilities, allowing
for new types of intelligent pervasive systems and platforms [16, 17], providing the
highest level of comfort, energy savings, and new personalized services for residents
of intelligent environments. To really use cognitive computing at the edge, more
complex and accurate algorithms, such as those exploiting artificial intelligence or
deep learning, must be targeted. Their efficiency has been widely demonstrated on
high-performance computing platforms in medical and health care fields. Some ex-
amples are [18], where an NVIDIA GeForce GTX 1080 Ti (11 GB) is used [19], that

State of the art 7

uses a 3.5 GHz Intel Core i7-7800X CPU, RAM 32 GB, and a GPU NVIDIA Titan
X (Pascal, 12 GB), or [20], based on an i7-4790 CPU at 3.60 GHz. However, how
to map state-of-the-art cognitive computing on resource-constrained platforms is
still an open question. There is an ever-increasing number of approaches focusing
on machine learning and artificial intelligence to identify specific events in physi-
ological data. In Tabal et al. [21] and Magno et al. [22] authors exploit Artificial
Neural Network (ANN) to detect specific conditions from the proposed data. In
Magno et al. [22], an ANN is used to identify the emotional states (happiness or
sadness) of the patient. However, network topologies are still very basic, highly
tuned and customized to fit on the target device.

2.2 Sensory nodes for cardiovascular disease treat-
ment

As already described in Chapter 1, cardiovascular diseases are one of the most
frequent causes of death worldwide, which is why there is also a strong interest
among the scientific community to address this issue. There are several works that
implement ECG monitoring on customized chips, it is shown that with low energy
consumption it is possible to classify cardiac anomalies in real-time even using
AI methods. In Lee et al. [23] wavelet theory was adopted to perform features
extraction and classification, an accuracy of 97.25% was achieved on arrhythmias
recognition. In Chen et al. [24] an excellent job of researching the compromise
between complexity and performance on different classifiers with different lead
configurations was made. In particular, they obtained good results with a Linear
Discriminant Analysis (LDA) using the spectral energy of the PQRST complexes
as features. In Bayasi et al. [25] a Naive Bayes classifier is exploited, they ob-
tained an accuracy equal to 86% on arrhythmias recognition using the PQRST
points detected with a Pan-Tompkins algorithm as features. In Ince et al. [26] a
wavelet-based algorithm is used to extrapolate morphological and temporal fea-
tures, a Principal Component Analysis (PCA) is used to reduce the dimensionality
and redundancy of the features. An accuracy of 97.4% was obtained with an evo-
lutionary ANN. In Amirshahi and Hashemi [27] and Kolağasioğlu [28] possible
implementations of arrhythmia classification algorithms based on spiking neural
networks are shown.

Despite the choice of using Application Specific Integrated Circuits (ASICs)
leads to the development of ultra low-power devices, but is not a very versatile
solution. A large number of works focus on implementing efficient off-the-shelf

State of the art 8

commercial devices to facilitate easier community adoption of these techniques.
Several target technologies have been used in the literature, such as Field Pro-
grammable Gate Array (FPGA) or microcontroller-based boards. A substantial
number of research works are dedicated to studying IoT devices in the medical
field, in particular ECG monitoring and anomalies detection. In Deshmukh and
Chaskar [29] and Arun et al. [30], authors deal with simple ECG monitoring on
wearable devices. In Satija et al. [31] and Xu [32], authors treat with particular
attention the aspect of Signal Quality Assessment (SQA), identifying the signal
quality level is useful for knowing when to ignore the input data or even when to
put the device into a sleep state. In Natarajan and Vyas [33] a system that uses
Compressive Sensing (CS) to compress bio-signals in a power-efficient way is pro-
posed. In Spanò et al. [34], authors propose a monitoring device with a particular
focus on low energy consumption.

2.2.1 Cognitive approach for cardiovascular disease detec-
tion

In some works proposed in the literature dealing with ECG signal monitoring,
local processing is used only for implementing easy checks on raw data and/or
marshaling tasks for wrapping the sensed data inside standard communication
protocols [35, 36, 37, 38]. On the other hand, there are numerous works in the
literature that exploit cognitive computing for CVD detection, even at the edge. To
really use cognitive computing at the edge, more complex and accurate algorithms,
such as those exploiting artificial intelligence or deep learning, must be targeted.

The cognitive approach that involves the use of CNNs shows promise in terms
of accuracy in detecting ECG signal arrhythmias compared to other traditional
strategies based or not on artificial intelligence algorithms [39, 40], Moreover, in
most cases, the use of CNNs allows to classify an ECG signal even if not pre-
processed. The most common strategies present in many state-of-the-art works
that allow to improve the efficiency of these IoT nodes are: moving the inference
operations at the edge, choosing a low-power devic and quantization techniques to
speed up the network execution of the inference stage.

In Deshmane and Madhe [41] it’s shown how with CNNs approach it’s possible
to obtain higher accuracy values for patient ECG-based authentication (81.33%,
96.95%, 94.73% and 92.85% on MIT, FANTASIA, NSRDB and QT database re-
spectively) if compared with other traditional methods such as K-Nearest Neigh-
bors (KNN) and Support-Vector Machines (SVMs). Unlike our work, In Deshmane
and Madhe [41] signal filtering techniques are used to clean up noise and features
extraction, these techniques require a considerable amount of resources and lead

State of the art 9

to a consequent increase in power consumption. The CNN input signal we are
considering is a raw signal without any pre-processing.

In Walinjkar and Woods [42] the importance of real-time monitoring is dis-
cussed, they propose a system capable of recognizing anomalies on ECG, testing
their methodology with various machine learning techniques.

Another interesting work was presented In Rani Roopha Devi et al. [39], in
addition to the comparison with other techniques used to analyze the ECG trace,
Latent Semantic Analysis (LSA) techniques were used to improve the accuracy of
the network. Both training and inference take place on the cloud side, our aim is
to move the inference to the edge of a low-power device in order to reduce latency
times and reduce energy consumption due to wireless communication.

In Xitong et al. [43] excellent results were obtained for ventricular arrhythmias
and supraventricular arrhythmias classification: 99.6% and 99.3% for accuracy
value, 98.4% and 90.1% for sensitivity value, 99.2% and 94.7% for positive predic-
tive value, respectively. In Xitong et al. [43] a double CNN is used, one of them
takes as input the frequency domain information of the ECG signal (a fast Fourier
transform is performed). This methodology, despite the excellent results in terms
of accuracy, was not taken into consideration in our case because it’s particularly
expensive to perform on a microcontroller.

In Naz et al. [44], the authors obtain excellent results in terms of accuracy, they
used a method similar to the one used In Ma et al. [45] to combine the output
features of three independent neural networks (VGG19, AlexNet, and Inception-
v3) and then classify them as a single output. The methodology used allows a
significant increase in terms of accuracy (97.6%) compared to the use of neural
networks chosen individually, however, this method is too resource-expensive in
terms of memory and computational load to be executed in a microcontroller such
as the one we selected. In Sakib et al. [40], again, there is proof of how neural
networks obtain good results if compared with methods such as KNN and Random
Forest (RF) (95.98% on MIT-BIH Supraventricular Arrhythmia Database) and the
inference occurs directly from the IoT node but the power consumption remain
relatively high once again, they are used in fact non-low power devices such as
Raspberry Pi 4 or Jetson Nano. Always In Sakib et al. [40], a good job of research
has been done on the morphology of the CNN network that was more suitable for
inference on ECG signals, the network we used provides a structure very similar
to the one chosen In Sakib et al. [40].

In Azimi et al. [46], good results are obtained in terms of accuracy for arrhyth-
mia classification using the MIT Arrhythmia dataset (96% using MIT Arrhythmia
dataset), the inference does not occur on the cloud side, nor on the sensorial de-
vice at the edge, but from a device located within the same Wireless Body Area

State of the art 10

Network (WBAN) network. The sensory device, therefore, remains in constant
communication with the outside to send the raw data of the signal. An approach
similar to [47] was chosen, an embedded device was chosen that is able to perform
the inference directly on the node. In Burger et al. [47], a study was made on
the variation of accuracy as a function of different quantization levels, they choose
a precision of 12-bit with an accuracy of 97%, but it’s visible that already from
6-bit upwards the accuracy levels exceed the 90%. Power consumption is around
200 mW during computation and the node is based on FPGA technology.

In Yeh et al. [48] ResNet, AlexNet, and SqueezeNet neural network are used,
an accuracy of 97% is achieved. In addition to the use of much more expensive
computational neural networks, there is an overhead due to encoding the raw ECG
signal into a JPEG image. The platforms chosen are Arduino UNO for signal
acquisition and Raspberry Pi 3B+ to process the raw signal, making the power
consumption considerably higher than a solution based only on microcontroller.

Other works with which we are confronted are [49, 50, 51, 52]. Table 2.1 lists
and describes the main works we were confronted with.

2.3 Cognitive IoMT node for sensorimotor exer-
cise detection

The guidelines of the WHO in 2010 document state that an average adult should
engage in physical activity of moderate intensity for at least 150 minutes per week
and 75 minutes per week at high intensity, excluding special cases [53]. Tracking
and encouraging good levels of physical activity can improve people’s health [54].
Fitness tracker devices have had a rapid development in recent years, due to their
ease of use, accuracy, and portability. Events in a trackable signal, although
seemingly simple, can be difficult to identify and recognise within the data stream.

In our use case, a CNN is used to identify and recognize simple physical exer-
cises performed on a wobble board. In Nilsson et al. [4] and Blažica and Krivec [55],
the authors propose the use of a wobble board in creative way, to entice people to
its use, as it is very important in ankle rehabilitation. In a review of the concept of
patient motivation [56], the authors describe how motivation has been considered
in relation to rehabilitation associated with strokes, fractures, rheumatic disease,
aging, and cardiac and neurological issues. The limited motivation of some individ-
uals may, at least in part, be ascribed to the tedious nature of the ankle exercises
and the inability to monitor one’s improvement throughout the course of the train-

State of the art 11

Reference Node technology Processing
placement

Power con-
sumption

Accuracy and Dataset Classification
method

Xitong
et al. [43]

− − − MIT-BIH ventricular arrhythmias and
supraventricular arrhythmias classification:
99.6% and 99.3% for accuracy value, 98.4%
and 90.1% for sensitivity value, 99.2% and

94.7% for precision value, respectively

CNN

Rani
Roopha

Devi
et al. [39]

− training
and

inference
on cloud

− 94% for sensitivity vale, 99,3% for accuracy
value on custom dataset

CNN +
LSA

method

Mathews
et al. [49]

− − − accuracies of 93.63% for ventricular ectopic
beats and 95.57% for supraventricular

ectopic beats on MIT Arrhythmia dataset

RBM and
DBN

Sannino and
De

Pietro [50]

− − − MIT-BIH dataset, NSVFQ classes: 99,09%,
98,55% and 99,52% for accuracy, sensitivity

and specificity value, respectively

DNN

Naz
et al. [44]

− − − 97.6% accuracy on MIT-BIH dataset for
ventricular tachyarrhythmia desease

CNN

Kiranyaz
et al. [51]

Intel I7-4700MQ
at 2.4 GHz (eight

CPUs) and
16-Gb memory,
but designed to
run on cheaper

and less powerful
architectures

inference
on edge

− accuracy up to 99% for ventricular ectopic
beats and up to 97.6% for supraventricular
ectopic beats on MIT Arrhythmia dataset

adaptive
implemen-
tation of

1-D CNNs

Azimi
et al. [46]

hierarchical
structure

training on
cloud,

inference
on edge

− 96% for accuracy value on MIT Arrhythmia
dataset

CNN

Burger
et al. [47]

FPGA inference
on edge

200 mW I 97% accuracy value for NLRAV classes on
MIT Arrhythmia dataset

quantized
CNN

Sakib
et al. [40]

Jetson Nano
(Quad-core ARM
A57 @ 1.43GHz),

Raspberry Pi 4
(Quad-core

CortexA72 @
1.5GHz),

Raspberry Pi 3
(Quad-core

Cortex-A53 @
1.4GHz)

inference
on edge

− 95.27% accuracy value for NSVF classes on
MIT-BIH Supraventricular Arrhythmia

Database

CNN

Yeh
et al. [48]

Arduino UNO
and Raspberry Pi

3B+

inference
on edge

− 97% for accuracy value for: rhythm, QRS
widening, ST depression, and ST elevation

categories for detecting arrhythmia
disorders on MIT Arrhythmia dataset

DNN

Hou
et al. [52]

Raspberry Pi 3 training on
cloud,

inference
on edge

− 98% for accuracy value for: normal(NOR),
Left Bundle Brunch Block(LBB), Right

Bundle Brunch Block (RBB), Paced
beat(PAB), Premature Ventricular

Contraction(PVC), Atrial Premature
Contraction(APC), Ventricular Flutter

Wave(VFW) and Ventricular Escape
Beat(VEB) beats for detecting arrhythmia

disorders on MIT Arrhythmia dataset

CNN

Our work ST SensorTile inference
on edge

9 mW II MIT-BIH dataset, NLRAV and NSVFQ
classes: 97.42% and 96.98% for accuracy
value, 98.26% and 98.22% for sensitivity
value, 98.28% and 98.52% for precision

value, respectively

quantized
CNN

IWhen fully active.
IIThe device adapts itself to the workload and operating mode, the worst case is reported.

Table 2.1: Structure of some devices proposed in literature.

State of the art 12

ing process [3]. A similar approach is considered in our work, the implemented
system detects and identifies some simple sensorimotor exercises performed on the
wobble board, giving a percentage of correct execution at the end of the exer-
cise. As far as we know, our system is the only one that applies state-of-the-art
deep learning-based techniques to recognize some specific movements on a wobble
board, managing hardware and software dynamically in order to minimize power
consumption.

2.4 Edge-computing paradigm & runtime adap-
tivity on nodes with low or high computa-
tional capabilities

On the one hand, the community is working on the design of low-power devices ca-
pable of supporting processing that exploits artificial intelligence techniques, these
types of devices include accelerators, parallelization elements, and flexible power
management. In the market or in the literature there are devices based on System
on a Chip (SoC) or Systems on a Module (SoM) [57, 58, 59], embedded GPUs [60],
or FPGA-based accelerators [61]. Among the different solutions regarding hard-
ware accelerators, Adaptive Compute Acceleration Platform (ACAP) produced by
Xilinx [62] combines the potential of three types of engines: Arm cores (scalar en-
gines), the programmable logic (Adaptable Engines), and the new vector processor
cores (AI engines). This tightly coupled hybrid architecture allows more dramatic
customization and performance increase than any one implementation alone. In
Przybył [63], the author presents a new type of architecture based on fixed-point
arithmetic. The substantial difference compared to traditional solutions is the
choice of the representation scale, which in this case occurs during compilation,
while in the case of floating-point arithmetic it is done during execution. Other
distinctive features of the proposed method are universal superscalar architecture
and asymmetric structure of working registers.

On the other hand, there is a remarkable work of software development that
tries to optimize firmware, middleware or libraries that optimize the mathematical
tools used to implement solutions that exploit AI, some of them specifically cre-
ated to run on specific platforms. Among these, we find: CUDNN [64] for GPUs
ARM-NN for microcontrollers based on ARM Cortex processors [65]; Common Mi-
crocontroller Software Interface Standard (CMSIS). Other important techniques
are pruning and quantization, widely discussed in the literature and which lead

State of the art 13

to significant improvements in terms of energy efficiency. In Liang et al. [66], the
authors discuss very thoroughly both the pruning and quantization compression
techniques by testing them individually or simultaneously with different frame-
works that support them. They analyze their strengths and weaknesses and pro-
vide practical guidance for compressing networks. Google Brain has proposed a
new data format called Brain Float 16, it has gained wide adoption in AI acceler-
ators from Google, Intel, Arm, and many others. The purpose is to minimize the
prediction accuracy degradation due to a lowering of the data precision, with a
consequent increase in throughput. The main difference comes from truncating the
Floating Point 32 mantissa field from 23 bits to 7 bits [67]. In Dziwiński et al. [68],
the authors propose a hardware implementation method of MRBF-TS systems.

2.4.1 Runtime adaptivity
An embedded system is defined as reconfigurable if it has the ability to change
its software or hardware behaviour at runtime, this change may derive from an
autonomous decision of the system or an external imposition. Software component
reconfiguration corresponds to adding, removing or updating software tasks that
implement the system. An example may be the addition of data processing task
due to a user decision. Hardware reconfiguration, on the other hand, corresponds
to adding, removing or updating physical components of the system. An example
of this could be the variation of the system frequency imposed by an internal de-
cision, due to the variation of the workload and therefore the real time constraints
to be respected. In Boukhanoufa [69] the authors state that real-time systems
can be distributed and operate in a dynamic environment. Therefore, to ensure its
operation and maintainability, different operating modes and reliability techniques
must be introduced. According to Wang et al. [70], new generations of embedded
control systems are addressing new criteria such as flexibility and agility.

Introduced with International Business Machines (IBM)’s vision of autonomic
computing, dynamic adaptation has been a very active area since the late 1990s
and early 2000s [71]. Many of the existing techniques focus on adapting nodes
with high computational capabilities. Adaptation of low-power, low-capacity de-
vices has received less attention. With few resources available, the use of standard
operating systems, middleware and frameworks is more complicated, making it dif-
ficult to design adaptive software. Low-level programming languages and ad-hoc
manual solutions are often used. While this might be acceptable for building static
and dedicated applications, this is not an ideal solution for IoT or data-dependent
systems. One area where there is extensive study of runtime reconfiguration is cer-
tainly that of distributed systems. A distributed system is a collection of processes

State of the art 14

working together to accomplish some task. Each process is a deterministic program
unit able to execute separately from, and concurrently with, other processes [72].
In Fouquet et al. [73] the authors present a version of Kevoree called µ-Kevoree
aimed at use on microcontroller-based devices. Kevoree is an open source project
that aims at enabling the development of reconfigurable distributed systems [74].
Some points of Kevoree framework present in the authors implementation and of
inspiration to our methodologies are:

• Parametric adaptation. Dynamic update of parameter values, e.g. change
of sampling rate in a component that wraps a physical sensor (adaptation of
instance properties).

• Architectural adaptation. Dynamic addition or removal of bindings or com-
ponents, e.g. replication of software components and channels on different
nodes to perform load balancing (adaptation of instances graph).

As far as we know, our proposed reconfiguration component called ADAM is the
only one that deals with the above microcontroller reconfiguration aspects that can
simultaneously interact with an Real-Time Operating System (RTOS) in terms of
thread management and Dynamic Voltage and Frequency Scaling (DVFS). All the
functionalities of this component will be described later in Section 3.5.

Regarding high-capacity devices, there are many works in the literature on ar-
chitectural adaptation and specifically in the load balancing in multi-core devices.
In Tuveri et al. [75], authors present a runtime approach to reconfigure core-to-task
mapping and degree of parallelism of the application when the available resources
or the application workload change, targeting shared-memory platforms. This
work, however, focuses on fault tolerance and not on dynamically changing work-
load. Moreover, it’s not tested on a dynamically manageable processing chip. In
Jahn and Henkel [76], authors present an approach for workload self-organization
on multi-cores. However, differently from our approach, computing tasks are seen
as indivisible and only their mapping to the different cores is changed. In Choi
et al. [77], tasks can be duplicated on multiple cores in order to have more freedom
in pipeline organization, however, this is not tested on data-dependent workload
and on cognitive computing.

Section 2.4.2 and 2.4.3 summarise the main approaches in literature about
CNN workload partitioning and mapping and about dynamic voltage and fre-
quency scaling in CNN-based designs. To the best of our knowledge, our work is
complementary to both these kinds of strategies, being the first attempt to bring
together dynamic remapping of CNN operators and consequent dynamic man-
agement of the hardware setup. Both these aspects are managed by the ADAM
component.

State of the art 15

2.4.2 CNN workload partitioning and mapping
There are different ways of distributing the workload (convolutional layers) on
multiple cores, one of the possible strategies is called the “kernel-level”, it involves
the distribution of the kernels of a layer-nth, and therefore the output features
calculation of the layer-nth, in a balanced way across all cores. Many state-of-
the-art libraries adopt this solution, for example ARM-CL [78], tengine [79] or
NCNN [80]. In Wang et al. [81], the authors indicate two approaches for work-
load partitioning in CNNs: layer-level and kernel-level strategy. The “layer-level”
strategy involves assigning each layer to a group of cores, the number of cores
per group is variable and, since not all cores are used for the layer-ith, pipelining
techniques are used in order to maximize the throughput. The authors present
Pipe-it, a framework capable of estimating the computational load of all layers
and, using a layer-level strategy, very efficiently distributes the workload on the
available cores in heterogeneous multi-core platforms. The layer-level strategy is
equivalent to the method that we use in this work, however, In Wang et al. [81] it’s
not applied at runtime, but only during design time, design space exploration. In
Wu et al. [82], the authors exploit the layer-level strategy obtaining good results
as already demonstrated with the Pipe-it framework, in addition, they show the
importance of taking into account the cache resources per core. Distribution of the
workload that takes this fact into account minimizes the inter-core feature-map
data movement overhead, finally demonstrating how, in the use case they consid-
ered, there is a 73% performance improvement. Also In Wu et al. [82], strategies
are chosen only at design time. The reference platform that we used, Orlando
board, lends itself well to the optimizations proposed In Wu et al. [82], due to
the presence of intra-core memories that can reduce the features transfer, but the
complexity of a generic neural network may require a quantity of memory for fea-
tures that often exceed what is usually made available by data caches. In Table
2.2 the main features of the most important works in the literature concerning
CNN workload partitioning and mapping are shown.

2.4.3 Dynamic Voltage and Frequency Scaling
Another aspect dealt with in our work and already widely discussed in the lit-
erature, concerns Dynamic Voltage and Frequency Scaling (DVFS). It has been
discussed in the literature how to use the DVFS in order to better manage the
temperatures of the processing units. In Huang et al. [83], they tackle the prob-
lem of overheating in different ways: by judiciously selecting tasks with different
thermal characteristics as well as alternating the processor’s active/sleep mode or

State of the art 16

Work /
Framework

CNN workload partitioning and mapping Runtime

Kernel-level Layer-level

ARM-CL, Arm [78] ✓

tengine, OAID [79] ✓

NCNN, Tencent [80] ✓

Pipe-it, Wang et al. [81] ✓ ✓

Wu et al. [82] ✓ ✓

Our work ✓ ✓ ✓

Table 2.2: Qualitative comparison with CNN workload partitioning and mapping
studies.

by exploiting the DVFS potential offered by the platform. In Yu et al. [84] and Yu
et al. [85], the authors show how they dynamically choose the system output qual-
ity under temperature constraints, in the use cases they considered, the system
output quality is highly dependent on the application of DVFS. In Ma et al. [86],
on the other hand, the authors deepen the aspect linked to the reliability, the use
of DVFS takes into account the minimization of the thermal cycles that stress the
chip. In Weissel and Bellosa [87] and Vogeleer et al. [88], the authors exploit DVFS
techniques with the sole purpose of maximizing energy efficiency. In particular, the
first ones refer to general-purpose CPU systems while the second work focuses on
the CPUs of commercial smartphones and how much the system frequency plays
a fundamental role in them in terms of energy minimization.

Similarly to Weissel and Bellosa [87] and Vogeleer et al. [88], in our work DVFS
techniques will be used to maximize energy efficiency, furthermore, techniques to
respond to CNN-based workload variations by the use of task-mapping techniques
at runtime on a multi-core platform will be discussed. There are other works that
combine CNN applications with DVFS techniques on ASIC, CPU, or GPU based
devices. In Nabavinejad et al. [89], the authors show how through the DVFS
techniques and the choice of the precision of the Deep Neural Network (DNN) it
is possible to reach a certain level of inference accuracy and power consumption
under latency constraints. In Motamedi et al. [90], the authors develop a principled
approach and a data-driven analytical model to optimize the granularity of threads
during CNN software synthesis. In Bong et al. [91], the authors propose a CNN-
based low-power facial recognition system, the DVFS mechanism is the basis of

State of the art 17

Work DVFS constraints DVFS on CNN Dynamic partitioning
and mapping

Temperature Energy

Huang et al. [83] ✓

Yu et al. [84] ✓

Yu et al. [85] ✓

Ma et al. [86] ✓

Weissel and Bellosa [87] ✓

Vogeleer et al. [88] ✓

Nabavinejad et al. [89] ✓ ✓

Motamedi et al. [90] ✓ ✓

Bong et al. [91] ✓ ✓

Santoro et al. [92] ✓ ✓

Our work ✓ ✓ ✓

Table 2.3: Qualitative comparison of some works in literature using DVFS tech-
niques.

their method to increase energy efficiency. In Santoro et al. [92], authors use a
performance-power analytical model fitted on a parametrized implementation of a
DL accelerator in a 28-nm FDSOI technology to explore a large design space and
to obtain the Pareto points that maximize the effectiveness of DVFS in the sub-
space of throughput and energy efficiency. Finally, in Table 2.3 some of the main
works in the literature dealing with the dynamic voltage and frequency scaling and
our work are shown.

2.5 Current scenario summary and proposed nov-
elties

Of the aforementioned devices on the market that are proposed as health monitor-
ing solutions, the majority only provide data transmission to the cloud, thus not ex-
ploiting the potential of the edge-computing paradigm. However, edge-computing
is not a simple application solution from a design point of view, especially when a

State of the art 18

cognitive analysis is introduced. For example, the power consumption of resource-
limited devices performing on-edge analysis may be high compared to the same
system producing the data for cloud-side analysis. Or, moving the analysis on-edge
may lead to an unacceptable drop in the quality and performance of the analysis.
Therefore, it becomes important to exploit a model that better integrates with
the resources used both from a software and hardware point of view. Cognitive
analysis has been extensively validated in the literature by exploiting the com-
putational potential of high-capacity devices based on floating-point architecture
without often considering power consumption. In the previous sections, several
examples are given of models based on artificial intelligence able to detect anoma-
lies in the patient’s ECG but evaluated on high-performance hardware. Today,
there are few devices able to efficiently analyze patient’s data by exploiting deep
learning techniques on portable devices with limited resources. In this context,
the term efficiency refers to a device capable of achieving high detection accuracy
through deep learning techniques while maintaining low power consumption. To
remedy some of these shortcomings, this thesis proposes:

• The definition of a hardware/software/firmware architectural template for
the implementation of a remotely-controlled sensory node, allowing for near-
sensor cognitive data processing for cardiac anomalies detection and physical
exercises.

• Its validation on a state-of-the-art data analysis based on a Convolutional
Neural Network.

• The evaluation of the effectiveness of in-place computing and operating mode
dynamic optimization on ARM microcontroller platform and multi-core plat-
form, as a method to reduce the power consumption of the node.

3
Methodologies, techniques and

architectures

A n overview of the system architecture as provided in this thesis is shown in
Figure 3.1, it is divided into three levels. The lower level is composed of the
sensor nodes, which acquire information from the environment. They are

connected to the upper level using Bluetooth Low Energy (BLE) technology. The
nodes are capable of reacting, reconfiguring their operating mode, to commands
sent from higher levels, or to workload changes that can be detected near-sensor,
thanks to the internal component called ADAM which will be described later. The
intermediate level consists of several gateways, in charge of collecting the data from
the sensor nodes and send them to the upper level. To test the approach presented
in this work, the gateway was implemented with a Raspberry Pi 3 running a Linux
operating system. For the same purpose, the cloud-based infrastructure, on top of
the stack, has been implemented using Google App Engine. Data is stored securely
on the cloud, and can be used for analysis or simply visualized by a healthcare
professional. Such kind of user, accessing a web-based interface, can also send
downstream commands to the nodes, to communicate a required change of the
operating mode, e.g. changing the needed detail of acquisition of the patient’s

19

Methodologies, techniques and architectures 20

Network of
remotely-controlled

sensory nodes

IoT
gateway

Cloud
infrastructure

Figure 3.1: General overview of the proposed system.

parameters. In this thesis, attention will be focused only on the sensor node. The
sensor node architecture itself can be seen as a layered structure, schematized in
Figure 3.2. In the following sections, a description of each level and of the main
instruments and methodologies used is provided.

The bottom layer is the hardware platform, which may be any kind of pro-
grammable microcontroller, that integrates sensors to take care of data acquisition,
one or more processing elements, to manage housekeeping and pre-processing, and
an adequate set of communication peripherals, implementing transmission to the
gateway.

The hardware platform is managed at runtime by a firmware/middleware level,
potentially including some Operating System (OS) support, to enable the man-
agement and scheduling of software threads. Moreover, this level must expose a
set of low-level primitives to control hardware architecture details (e.g. access to
peripherals, frequency, power operating mode, performance counting, etc.), and a
set of monitoring Application Programming Interfaces (APIs) to continuously con-
trol the status of the hardware platform (e.g. energy and power status, remaining
battery lifetime) and to characterize the performance of the different application
tasks on it.

At the top of the node structure, there is the software application level, which
executes tasks designed according to an adequate application model based on pro-
cess networks, to be easily characterized and dynamically changed at runtime. To
implement adaptivity, we add to the application an additional software agent, that

Methodologies, techniques and architectures 21

Task 0 … Task n ADAM

Middleware and OS support

Hardware platform
Vdd

System
frequency

Clock
gating

Figure 3.2: IoMT node architecture overview.

we call ADAM, which is in charge of monitoring all the events that may trigger
operating mode changes (workload changes, battery status, commands from the
cloud) and reconfigures the process network accordingly, to minimize power/energy
consumption. Reconfiguration actions may involve changes in the processes net-
work topology (activation/deactivation of tasks and restructuring of the inter-task
connectivity) and play with the power-relevant knobs exposed by the architecture
(e.g. clock frequency, power supply, supply voltage).

3.1 Hardware platform
As mentioned, to assess the feasibility of our approach based on dynamic reconfigu-
ration, we have used a single-core microcontroller, namely an off-the-shelf platform
designed by STMicroelectronics named SensorTile and a muli-core platform de-
signed by STMicroelectronics named Orlando as node with higher computational
capabilities. In the following, we will describe the main features of such platforms,
exploited in this work.

3.1.1 SensorTile
The SensorTile measures 13.5× 13.5mm and is shown in Figure 3.3. It’s equipped
with an ARM Cortex-M4 32-bit low-power microcontroller. The small size and
low power consumption allow the device to be powered also by the battery and to
obtain good results in terms of autonomy without having to give up portability.
The components included in the SensorTile are:

Methodologies, techniques and architectures 22

Figure 3.3: SensorTile.

• MP34DT05-A: Micro Electro-Mechanical Systems (MEMS) audio sensor
omnidirectional stereo digital microphone;

• LD39115J18R: 150 mA low quiescent current low noise voltage regulator;

• STM32L476: Ultra-low-power with Floating-Point Unit (FPU) Arm Cortex-
M4 MCU 80 MHz with 1 Mbyte of Flash memory, Liquid Crystal Display
(LCD) controller, Universal Serial Bus (USB) On-The-Go (OTG), Digital
Filters for external Sigma-Delta Modulators (DFSDM);

• LSM6DSM: iNEMO 6DoF Inertial Measurement Unit (IMU), for smart
phones with Optical Image Stabilization (OIS)/Electronic Image Stabiliza-
tion (EIS) and Augmented Reality (AR)/Virtual Reality (VR) systems.
Ultra-low power, high accuracy and stability;

• LSM303AGR: Ultra-compact high-performance eCompass module: ultra-
low power 3D accelerometer and 3D magnetometer;

• LPS22HB: MEMS nano pressure sensor: 260-1260 hPa absolute digital
output barometer;

• BlueNRG-MS: BLE Network Processor supporting Bluetooth 4.2 core
specification;

• BALF-NRG-02D3: 50 Ω / conjugate match balun to BlueNRG transceiver,
with integrated harmonic filter.

https://www.st.com/en/product/mp34dt05-a
https://www.st.com/en/product/ld39115j
https://www.st.com/en/product/stm32l476jg
https://www.st.com/en/product/lsm6dsm
https://www.st.com/en/product/lsm303agr
https://www.st.com/en/product/lps22hb
https://www.st.com/en/product/bluenrg-ms
https://www.st.com/en/product/balf-nrg-02d3

Methodologies, techniques and architectures 23

Several architectural knobs can be used to adapt the platform to different
conditions. SensorTile can work in two main modalities: run mode and sleep mode,
in which different subsets of the hardware components are active. Moreover, in
each mode, the chip can be set to a different system frequency (from 0.1 MHz
to 80 MHz). Depending on the chosen system frequency and operating state, the
device uses different voltage regulators to power the chip. In Table 3.1, we list
some mode configurations, and associated current consumption, selectable using
the mode-management APIs offered by the platform vendor. For our experiments,

RUN (Range 1) at 80 MHz 120 µA/ MHz

RUN (Range 2) at 26 MHz 100 µA/ MHz

LPRUN at 2 MHz 112 µA/ MHz

SLEEP at 26 MHz 35 µA/ MHz

LPSLEEP at 2 MHz 48 µA/ MHz

Table 3.1: SensorTile current consumption in different operating states.

we have chosen to use two approaches to dynamically reduce power consumption:

• to change system frequency (and consequently voltage regulator settings)
over time according to the workload.

• to use the sleep mode of the microcontroller whenever possible. The operat-
ing system automatically sets a sleep state when there are no computational
tasks queued to be performed and a timer-based awakening can be used to
restart the run mode when needed.

The block diagram of the SensorTile board is shown in Figure 3.4. SensorTile is
also equipped with programming/debugging circuitry. In fact, two of the microcon-
troller’s General Purpose Input/Output (GPIO) pins can be used to implement the
Serial Wire Debug (SWD) interface commonly adopted to program/debug ARM
processors. The SWD interface is connected to a programmer, which in this case
is STM32 Nucleo board and through the software System Workbench for STM32
it was possible to write the source code and program the board.

Together with the SensorTile, STMicroelectronics provides a solderable inter-
face base to allocate the chip (Figure 3.5). The latter also provides:

• STBC08PMR: 800mA STANDALONE LINEAR Li-Ion Battery charger
with thermal regulation;

https://www.st.com/en/evaluation-tools/stm32-mcu-nucleo.html?querycriteria=productId=LN1847
http://www.openstm32.org/System+Workbench+for+STM32
http://www.st.com/en/product/stbc08

Methodologies, techniques and architectures 24

Figure 3.4: Block diagram of the SensorTile board.

• HTS221: Capacitive digital sensor for relative humidity and temperature;

• LDK120M-R: 200 mA low quiescent current very low noise Low-DropOut
(LDO) regulator;

• STC3115: Gas gauge Inter Integrated Circuit (I2C) with alarm output for
handheld applications;

• USBLC6-2P6: ElectroStatic Discharge (ESD) Protection for USB 2.0 High
Speed;

• Mini-B USB connector for power and communication;

• micro Secure Digital (microSD) card slot;

• SWD connectors for programming and debugging.

3.1.2 Orlando
The hardware architecture of the Orlando chip is represented in Figure 3.6. The
chip is very flexible and it integrates:

• An on-chip reconfigurable data-transfer fabric to improve data reuse and
reduce on-chip and off-chip memory traffic.

http://www.st.com/en/product/hts221
http://www.st.com/en/product/ldk120
http://www.st.com/en/product/stc3115
http://www.st.com/en/product/usblc6-2

Methodologies, techniques and architectures 25

Figure 3.5: Additional board.

Figure 3.6: SoC top-level block diagram.

Methodologies, techniques and architectures 26

• An ARM-based host subsystem with peripherals.

• A range of high-speed Input/Output (IO) interfaces for imaging and other
types of sensors.

• A chip-to-chip multi-link to pair multiple devices together.

• A power-efficient array of Digital Signal Processors (DSPs) to support com-
plete real-world computer vision applications. Eight DSP clusters are present,
each composed by 2 DSPs, 4-way 16 kB instruction caches, 64 kB local RAMs
and a 64 kB shared DSP.

• 4× 1 MB Static Random Access Memory (SRAM) banks.

As far as our work is concerned, attention will be focused on DSP cores. As archi-
tecture knobs available for dynamically changing the platform setup, we consider
activation and de-activation of processing elements (DSP cores), and changes to
system frequency and supply voltage. Being still in the prototyping phase, the
Orlando board has not been subjected to normal post-production testing. There-
fore, under the guidance of the manufacturer, we made an empirical investigation
to characterize the device. Several experimental tests have been made to charac-
terize the relationship between the supply voltage of the chip Vdd and the system
frequency. Therefore, a lookup table has been obtained that can be consulted
at any time by the ADAM, in order to correctly set the minimum power supply
voltage necessary for the required system frequency. The characterisation process
therefore involves finding the minimum voltage for each selected system frequency
during an intense and prolonged workload. Figure 3.7 shows the output of the
characterization process, for illustration purposes, the curve that approximates
the trend of the supply voltage in relation to the system frequency is also shown.

Methodologies, techniques and architectures 27

655

705

755

805

855

0 100 200 300 400 500 600 700 800 900

M
in

im
um

 s
up

pl
y

vo
lt
ag

e
(m

V
)

System frequency (MHz)

Experimental results

Approximation

Figure 3.7: Vdd measurement and approximation for each system frequency.

3.2 Middleware & Operating System
In addition to the APIs offered by the manufacturer, we used other middleware
components to manage multiple computation tasks at runtime and to execute
CNN-based near-sensor processing with an adequate performance level.

3.2.1 Common Microcontroller Software Interface Stan-
dard

In order to be capable of executing in-place processing of the sensed data, we have
exploited the CMSIS libreries, an optimized library specifically targeting Cortex-
M processor cores1. It includes several modules having many libraries capable

1https://github.com/ARM-software/CMSIS_5

https://github.com/ARM-software/CMSIS_5

Methodologies, techniques and architectures 28

4.3 Convolution

A convolution layer extracts a new feature map by computing a dot product between filter weights
and a small receptive field in the input feature map. Typically, a CPU-based implementation of
convolution is decomposed into input reordering and expanding (i.e. im2col, image-to-column)
and matrix multiplication operations. im2col is a process of transforming the image-like input into
columns that represent the data required by each convolution filter. An example of im2col is shown
in Fig.8.

Figure 8: Example of im2col on a 2D image with a 3x3 kernel, padding size of 1 and stride size of 2.

One of the main challenges with im2col is the increased memory footprint, since the pixels in the
input image are repeated in the im2col output matrix. To alleviate the memory footprint issue while
retaining the performance benefits from im2col, we implemented a partial im2col for our convolution
kernels. The kernel will only expand a limited number of columns (e.g. 2), sufficient to get the
maximum performance boost from the matrix-multiplication kernels while keeping memory overhead
minimal.

The image data format can also affect the performance of convolution, especially im2col effi-
ciency [10]. With a batch size of one, the convolution operation is a 2D convolution (i.e. the
convolution window can move in two directions) on 3D data, as shown in Fig. 9. The two most
common image data formats are Channel-Width-Height (CHW), i.e. channel last, and Height-Width-
Channel (HWC), i.e. channel first. The dimension ordering is the same as that of the data stride. In
an HWC format, the data along the channel is stored with a stride of 1, data along the width is stored
with a stride of the channel count, and data along the height is stored with a stride of (channel count
× image width).

Height

Width

Channel

*

Kernel size

1st Stride

2nd Stride

Figure 9: Convolution on 3D data. The image has three dimensions: height, width and channel.

The data layout has no impact on the matrix-multiplication operations, as long as the dimension order
of both weights and images is the same. The im2col operations are performed along the width and
height dimensions only. The HWC-style layout enables efficient data movement, as data for each

6

Figure 3.8: Example of im2col on a 2D image with a 3x3 kernel, padding size of 1
and stride size of 2 [1].

of optimizing mathematical functions based on the type of architecture used. Of
particular interest is the CMSIS-NN module, inside there are various optimized
functions that allow cognitive computational implementations.

NN models are traditionally trained using 32-bit floating point data representa-
tion. However, such precision is not usually required during inference. According
to research, NNs perform well even with low-precision fixed-point representation
[93, 94]. Quantization greatly reduces both network execution time and memory
footprint, which is very important when the network is executed on resource-
constrained devices.

A CPU-based convolution implementation is typically decomposed into input
reordering and expanding (i.e. im2col, image-to-column) and matrix multiplica-
tion operations. im2col is a method for converting image-like input into columns
that represent the data required by each convolution filter. Figure 3.8 shows an
example. Since the pixels in the input image are repeated in the im2col output
matrix, one of the main challenges with im2col is the increased memory footprint.
CMSIS implement a partial im2col for convolution kernels to alleviate the memory
footprint issue while retaining the performance benefits of im2col. The kernel will
only expand a limited number of columns (e.g. 2), which is sufficient to obtain the
maximum performance boost from matrix-multiplication kernels while minimizing
memory overhead.

The image data format can also have an impact on convolution performance,

Methodologies, techniques and architectures 29

4.3 Convolution

A convolution layer extracts a new feature map by computing a dot product between filter weights
and a small receptive field in the input feature map. Typically, a CPU-based implementation of
convolution is decomposed into input reordering and expanding (i.e. im2col, image-to-column)
and matrix multiplication operations. im2col is a process of transforming the image-like input into
columns that represent the data required by each convolution filter. An example of im2col is shown
in Fig.8.

Figure 8: Example of im2col on a 2D image with a 3x3 kernel, padding size of 1 and stride size of 2.

One of the main challenges with im2col is the increased memory footprint, since the pixels in the
input image are repeated in the im2col output matrix. To alleviate the memory footprint issue while
retaining the performance benefits from im2col, we implemented a partial im2col for our convolution
kernels. The kernel will only expand a limited number of columns (e.g. 2), sufficient to get the
maximum performance boost from the matrix-multiplication kernels while keeping memory overhead
minimal.

The image data format can also affect the performance of convolution, especially im2col effi-
ciency [10]. With a batch size of one, the convolution operation is a 2D convolution (i.e. the
convolution window can move in two directions) on 3D data, as shown in Fig. 9. The two most
common image data formats are Channel-Width-Height (CHW), i.e. channel last, and Height-Width-
Channel (HWC), i.e. channel first. The dimension ordering is the same as that of the data stride. In
an HWC format, the data along the channel is stored with a stride of 1, data along the width is stored
with a stride of the channel count, and data along the height is stored with a stride of (channel count
× image width).

Height

Width

Channel

*

Kernel size

1st Stride

2nd Stride

Figure 9: Convolution on 3D data. The image has three dimensions: height, width and channel.

The data layout has no impact on the matrix-multiplication operations, as long as the dimension order
of both weights and images is the same. The im2col operations are performed along the width and
height dimensions only. The HWC-style layout enables efficient data movement, as data for each

6

Figure 3.9: Convolution of three-dimensional (height, width, and channel) data
[1].

particularly im2col efficiency [95]. The convolution operation is a 2-Dimensional
(2D) convolution on 3-Dimensional (3D) data with a batch size of one, as shown in
Figure 3.9. Channel-Width-Height (CHW), which means channel last, and Height-
Width-Channel (HWC), which means channel first, are the two most common im-
age data formats. The dimension ordering is the same as the data stride ordering.
The data along the channel is stored with a stride of 1, the data along the width
with a stride of the channel count, and the data along the height with a stride of
(channel count × image width). As long as the dimension order of both weights
and images is the same, the data layout has no effect on matrix-multiplication
operations. Only the width and height dimensions are used for im2col operations.
Because data for each pixel is stored contiguously and can be copied efficiently
with Single Instruction Multiple Data (SIMD) support, the HWC-style layout al-
lows for efficient data movement. In Lai et al. [1], the authors implement both
CHW and HWC versions and compare the runtime on a Cortex-M7 processor-core
to validate this. The results are shown in Figure 3.10, where the HWC input was
fixed at 16 × 16 × 16 and the number of output channels was swept. When the
output channel value is zero, the software performs only im2col operations and
no matrix-multiplication operations. In comparison to the CHW layout, HWC
has a shorter im2col runtime while maintaining the same matrix-multiplication
performance. With this result, the authors justify the choice of integrating the
HWC-style into the CMSIS libraries.

In addition to optimizations concerning convolutional layers, In Lai et al. [1]
the authors show software optimizations in CMSIS that are implemented for ma-

Methodologies, techniques and architectures 30

pixel (i.e. at the same x,y location) is stored contiguously and can be copied efficiently with SIMD
instructions. To validate this, we implemented both CHW and HWC versions and compared the
runtime on a Cortex-M7. The results are highlighted in Fig. 10, where we fixed the HWC input to be
16x16x16 and swept the number of output channels. When the output channel value is zero, it means
that the software performs only im2col and no matrix-multiplication operation. Compared to CHW
layout, HWC has less im2col runtime with the same matrix-multiplication performance. Therefore,
we implement the convolution kernels assuming that the data layout is in HWC format.

0

5

10

15

20

25

30

0 4 8 12 16

R
u
n
ti
m

e
 (

m
s
)

Output channel count

CHW HWC

Figure 10: Experiment results with CHW and HWC data layout. Both data layout styles have the
same matrix-multiplication runtime. HWC has less im2col runtime.

Recently, MobileNets using depthwise separable convolution have been proposed as an efficient
alternative to the standard 3D convolution operation [11]. Depthwise separable convolution has been
used to achieve compact network architectures, which are particularly useful for resource-constrained
devices [12]. CMSIS-NN kernels also include support for a depthwise separable convolution layer.

4.4 Pooling

Pooling layers are typically inserted in between convolution layers to reduce the feature dimensions
and thus the number of parameters and computations in the network. Similar to convolution, pooling
is a window-based operation with a given kernel size, stride and padding. Unlike convolution, pooling
typically operates within the same channel, and is independent of data in the other channels. Pooling
is usually performed with a stride size greater than 1, so the output features will have smaller width
and height.

There are two common types of pooling layers: average pooling, which calculates the average value
of all pixels within the window, and max pooling, which calculates the maximum value. Pooling
can be implemented as a nested for-loop over each window, e.g. pooling layers in Caffe [13]. One
efficient alternative is to split the pooling operation into x-pooling (i.e. along the width) and then
y-pooling (i.e. along the height). This way, the max/average operations along the x-direction can
be reused along the y-direction, allowing the total number of operations to be reduced. We call this
approach split x-y pooling. One potential issue with split x-y pooling is the data arrangement, as
additional memory may be required to store the intermediate results after x-pooling.

Our pooling kernels are implemented with split x-y pooling as, based on our experiments, the split x-y
pooling is significantly faster than the window-based pooling. To eliminate the need for additional
memory, the kernels perform the pooling operations in situ. This makes the pooling layer a destructive
operation on the input. An example of an in situ max pooling implementation on a 1D array is
illustrated in Fig. 11. The same operation can be extended for high dimensional data where each
element can represent an array. For example, when performing x-pooling with HWC image data,
each element block in Fig. 11 can represent an array of size equal to the number of channels, i.e.
all the channel data for one pixel. If each block represents an entire image row, this will effectively
perform y-pooling. Compared to window-based pooling, the in situ split x-y pooling achieves 4.5X
speed-up with no additional memory overhead.

7

Figure 3.10: Experiment with different data layouts, CHW and HWC. The matrix-
multiplication runtime is the same for both data layout styles. HWC has a shorter
im2col runtime [1].

trix multiplication, layer pooling and the Rectified Linear Unit (ReLU) activation
function. While CMSIS provides quite extensive support for neural network exe-
cution, we had to add some changes to support the use cases that are described
in the following, namely to enable 1-Dimensional (1D) convolutions on 1D sensor
data streams.

3.2.1.1 CMSIS modifications

This shows in detail the software modifications made to the CMSIS libraries in
order to use them correctly with our system. In particular, four functions were
modified, the function that multiplies inputs with kernels, the convolution layer,
the fully connected layer and the max pooling layer. The first three functions have
been modified, given the lack of support for scaling the output of the layers by any
floating number. CMSIS in fact supports output calculation with a shift of n bits,
in other words, the division of the output by 2n. The max pooling layer has been
modified as it is impossible to manage non-square kernels and therefore unusable
in the case of one-dimensional input. Regarding the support of one-dimensional
inputs, no modification was necessary for the matrix calculation, convolution and
fully connected functions since one of the two input dimensions can be fixed at a
value of 1.

Methodologies, techniques and architectures 31

arm_nn_mat_mult_kernel_q7_q15(). This function executes a matrix
calculation between the inputs and the kernels. The original source code can be
found at the link2. The parts of the code we have rewritten are shown in Listing
3.1.

51 q7_t ∗arm_nn_mat_mult_kernel_q7_q15_div (const q7_t ∗ pA,
52 const q15_t ∗ pInBuffer ,
53 const uint16_t ch_im_out ,
54 const uint16_t numCol_A,
55 const uint16_t b ia s_sh i f t ,
56 const f l o a t out_div ,
57 const q7_t ∗ bias ,
58 q7_t ∗ pOut)

. . .
77 q31_t sum = (q31_t) (∗ pBias) << b i a s _ s h i f t ;
78 q31_t sum2 = (q31_t) (∗ pBias++) << b i a s _ s h i f t ;
79 q31_t sum3 = (q31_t) (∗ pBias) << b i a s _ s h i f t ;
80 q31_t sum4 = (q31_t) (∗ pBias++) << b i a s _ s h i f t ;

. . .
122 ∗pOut++ = (q7_t) __SSAT((sum / out_div) + 0 . 5 , 8) ;
123 ∗pOut++ = (q7_t) __SSAT((sum3 / out_div) + 0 . 5 , 8) ;
124 ∗pOut2++ = (q7_t) __SSAT((sum2 / out_div) + 0 . 5 , 8) ;
125 ∗pOut2++ = (q7_t) __SSAT((sum4 / out_div) + 0 . 5 , 8) ;

. . .
140 q31_t sum = ((q31_t) (∗ pBias) << b i a s _ s h i f t) ;
141 q31_t sum2 = ((q31_t) (∗ pBias++) << b i a s _ s h i f t)

. . .
174 ∗pOut++ = (q7_t) __SSAT((sum / out_div) + 0 . 5 , 8) ;
175 ∗pOut2++ = (q7_t) __SSAT((sum2 / out_div) + 0 . 5 , 8) ;

Listing 3.1: arm_nn_mat_mult_kernel_q7_q15() source code with our
modification.

In Listing 3.1, the changes described below have been made.
In Line 56 the input out_div of type const float has been added, replacing

the old input out_shift of type const uint16_t (16-bit unsigned constant). This
new input represents the scaling to be applied to the output.

Form Line 77 to 80 and from Line 140 to 141, the NN_ROUND(out_shift)
2https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b344

3f5295cf95ec9c0b15d/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mul
t_kernel_q7_q15.c#L51-L187

https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b3443f5295cf95ec9c0b15d/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15.c#L51-L187
https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b3443f5295cf95ec9c0b15d/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15.c#L51-L187
https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b3443f5295cf95ec9c0b15d/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15.c#L51-L187

Methodologies, techniques and architectures 32

operand has been removed from the sum, its task is to compensate for the error
due to the n-bit shifting of the output. The compensation value is equal to 2n−1

and is added to the sum(i) variable which is of type q31_t (32-bit signed). sum(i)
accumulates the results of the multiplications between input and kernel that occur
during convolution and, after each individual kernel overlap, represents a single
output not yet scaled.

Form Line 122 to 125 and from Line 174 to 175, the shifting operation equal
to the out_shift-bit was replaced and a division equal to the out_div value
was introduced. The __SSAT function has the task of avoiding any overflow
or underflow phenomena, possibly saturating the value at −128 in the case of
underflow or 127 in the case of an overflow. The value of *pOut (8-bit signed)
corresponds to the single scaled quantized output.

arm_status arm_convolve_HWC_q7_basic_nonsquare() It is an op-
timized two-dimensional convolutional layer, the input is HWC-style, as discussed
in the previous paragraphs, is the best choice in Cortex-M processors in terms of
execution time. The original source code can be found at the link3. The parts of
the code we have rewritten are shown in Listing 3.2.

67 arm_status arm_convolve_HWC_q7_basic_nonsquare (const q7_t ∗ Im_in ,
. . .

71 const q7_t ∗ wt ,
. . .

79 const q7_t ∗ bias ,
. . .

81 const f l o a t out_div ,

. . .
86 q7_t ∗ buf ferB)

. . .
128 pOut =
129 arm_nn_mat_mult_kernel_q7_q15 (wt , bufferA ,
130 ch_im_out ,
131 ch_im_in ∗
132 dim_kernel_y ∗

dim_kernel_x , b i a s_sh i f t , out_div , b ias , pOut) ;

3https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b344
3f5295cf95ec9c0b15d/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_H
WC_q7_basic_nonsquare.c#L67-L224

https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b3443f5295cf95ec9c0b15d/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic_nonsquare.c#L67-L224
https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b3443f5295cf95ec9c0b15d/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic_nonsquare.c#L67-L224
https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b3443f5295cf95ec9c0b15d/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic_nonsquare.c#L67-L224

Methodologies, techniques and architectures 33

. . .
149 q31_t sum = (q31_t) b i a s [i] << b i a s _ s h i f t ;

. . .
179 ∗pOut++ = (q7_t) __SSAT((sum / out_div) + 0 . 5 , 8) ;

Listing 3.2: arm_convolve_HWC_q7_basic_nonsquare() source code with our
modification.

In Listing 3.2, the changes described below have been made.
In Line 132 the previously modified arm_nn_mat_mult_kernel_q7_q15() func-

tion is called up and the input out_shift is changed to out_div as well.
Modifications have been made in Lines 81, 149 and 179 similar to those seen

for the arm_nn_mat_mult_kernel_q7_q15() function.

arm_fully_connected_q7_opt() It is a fully connected layer, the original
source code can be found at the link4. The parts of the code we have rewritten
are shown in Listing 3.3.

128 arm_status
129 arm_fully_connected_q7_opt (const q7_t ∗ pV,
130 const q7_t ∗ pM,

. . .
134 const f l o a t out_div ,
135 const q7_t ∗ bias ,

. . .
154 q31_t sum = (q31_t) (∗ pBias++) << b i a s _ s h i f t ;
155 q31_t sum2 = (q31_t) (∗ pBias++) << b i a s _ s h i f t ;
156 q31_t sum3 = (q31_t) (∗ pBias++) << b i a s _ s h i f t ;
157 q31_t sum4 = (q31_t) (∗ pBias++) << b i a s _ s h i f t ;

. . .
323 ∗pO++ = (q7_t) (__SSAT((sum / out_div) + 0 . 5 , 8)) ;
324 ∗pO++ = (q7_t) (__SSAT((sum2 / out_div) + 0 . 5 , 8)) ;
325 ∗pO++ = (q7_t) (__SSAT((sum3 / out_div) + 0 . 5 , 8)) ;
326 ∗pO++ = (q7_t) (__SSAT((sum4 / out_div) + 0 . 5 , 8)) ;

. . .
337 q31_t sum = (q31_t) (∗ pBias++) << b i a s _ s h i f t ;

. . .

4https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b344
3f5295cf95ec9c0b15d/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_c
onnected_q7_opt.c#L128-L480

https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b3443f5295cf95ec9c0b15d/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7_opt.c#L128-L480
https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b3443f5295cf95ec9c0b15d/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7_opt.c#L128-L480
https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b3443f5295cf95ec9c0b15d/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7_opt.c#L128-L480

Methodologies, techniques and architectures 34

367 ∗pO++ = (q7_t) (__SSAT((sum / out_div) + 0 . 5 , 8)) ;

Listing 3.3: arm_fully_connected_q7_opt() source code with our modification.

In Listing 3.3, the changes described below have been made.
Modifications have been made in Lines 134, 154−157, 323−326, 337 and 367

similar to those seen for the arm_nn_mat_mult_kernel_q7_q15() function.

arm_maxpool_q7_HWC() This is a max pooling function, the original
source code can be found at the link5. For consistency, an HWC-style input has
also been chosen here. The parts of the code we have rewritten are shown in
Listing 3.4.

163 void
164 arm_maxpool_q7_HWC_1D(q7_t ∗ Im_in ,
165 const uint16_t dim_im_in ,
166 const uint16_t ch_im_in ,
167 const uint16_t dim_kernel ,
168 const uint16_t padding ,
169 const uint16_t s t r i d e , const uint16_t dim_im_out)

170 {

172 /∗ Run the f o l l o w i n g code f o r Cortex−M4 and Cortex−M7 ∗/

174 int16_t i_x ;

176 f o r (i_x = 0 ; i_x < dim_im_out ; i_x++)
177 {
178 /∗ f o r each output p i x e l ∗/
179 q7_t ∗ t a r g e t = Im_in + i_x ∗ ch_im_in ;
180 q7_t ∗ win_start ;
181 q7_t ∗win_stop ;

183 i f (i_x ∗ s t r i d e − padding < 0)
184 {
185 win_start = t a r g e t ;
186 } e l s e

5https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b344
3f5295cf95ec9c0b15d/Drivers/CMSIS/NN/Source/PoolingFunctions/arm_pool_q7_HWC.c
#L163-L314

https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b3443f5295cf95ec9c0b15d/Drivers/CMSIS/NN/Source/PoolingFunctions/arm_pool_q7_HWC.c#L163-L314
https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b3443f5295cf95ec9c0b15d/Drivers/CMSIS/NN/Source/PoolingFunctions/arm_pool_q7_HWC.c#L163-L314
https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b3443f5295cf95ec9c0b15d/Drivers/CMSIS/NN/Source/PoolingFunctions/arm_pool_q7_HWC.c#L163-L314

Methodologies, techniques and architectures 35

187 {
188 win_start = Im_in + (i_x ∗ s t r i d e − padding) ∗ ch_im_in ;

189 }

191 i f (i_x ∗ s t r i d e − padding + dim_kernel >= dim_im_in)
192 {
193 win_stop = Im_in + dim_im_in ∗ ch_im_in ;
194 } e l s e
195 {
196 win_stop = Im_in + (i_x ∗ s t r i d e − padding + dim_kernel)

∗ ch_im_in ;

197 }

199 memmove(target , win_start , ch_im_in) ;

201 /∗ s t a r t the max opera t i on from the second part ∗/
202 win_start += ch_im_in ;
203 f o r (; win_start < win_stop ; win_start += ch_im_in)
204 {
205 compare_and_replace_if_larger_q7_fixed (target , win_start ,

ch_im_in) ;

206 }
207 }
208 }

Listing 3.4: arm_maxpool_q7_HWC_1D() source code with our modification.

The code in Listing 3.4 has been almost completely rewritten to support one-
dimensional input.

In Line 205 the function compare_and_replace_if_larger_q7_fixed(), it is
a modified version of function compare_and_replace_if_larger_q7(), the source
code of the original function can be found at the following link6. For example, if
an input vector has a size of 6 and the max pooling kernel size is 2, the original
function will only parse the first four elements of the vector and not all 6 and the
output will have a size of 2 elements instead of 3. The code in Listing 3.5 has

6https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b344
3f5295cf95ec9c0b15d/Drivers/CMSIS/NN/Source/PoolingFunctions/arm_pool_q7_HWC.c
#L52-L82

https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b3443f5295cf95ec9c0b15d/Drivers/CMSIS/NN/Source/PoolingFunctions/arm_pool_q7_HWC.c#L52-L82
https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b3443f5295cf95ec9c0b15d/Drivers/CMSIS/NN/Source/PoolingFunctions/arm_pool_q7_HWC.c#L52-L82
https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b3443f5295cf95ec9c0b15d/Drivers/CMSIS/NN/Source/PoolingFunctions/arm_pool_q7_HWC.c#L52-L82

Methodologies, techniques and architectures 36

been added to the end of the original function to solve the problem, in this way
the whole input vector can be filtered.

83 cnt = length & 0b11 ;

85 whi le (cnt > 0u)
86 {
87 i f (t a r g e t [l ength − cnt] > base [l ength − cnt])
88 base [l ength − cnt] = ta r g e t [l ength − cnt] ;
89 cnt −−;
90 }

Listing 3.5: compare_and_replace_if_larger_q7() source code with our
modification.

Given the optimisation on Cortex M processors, the implementation of CMSIS-NN
functions leads to considerable benefits in terms of performance. These libraries
exploit the SIMD capabilities of the microcontroller in the best possible way with a
little impact on memory resources. However, a very important aspect to be taken
into accountis the attention to the management of RAM or flash memory resources,
that the target device makes, available according to the chosen convolutional neural
network model.

3.2.2 FreeRTOS
SensorTile runs Free Real-Time Operating System (FreeRTOS) as Real-Time Op-
erating System (RTOS). This firmware component is aimed at developers who
intend to have a real-time operating system without too much impact on the mem-
ory footprint of the application. The size of the operating system is between 4 kB

and 9 kB. Some features offered by the operating system are real-time scheduling
functionality, communication between processes, synchronization, time measure-
ments. One of the most important aspects that led us to choose FreeRTOS is that
of having the possibility to enable thread-level abstraction to represent processing
tasks to be executed on the platform and to timely manage their scheduling at
runtime. FreeRTOS creates a system task called idle task, which is set with the
lowest possible execution priority. When this task is executed, the system tick
counter is deactivated and the microcontroller is put in a sleep state. Due to the
priority setting, the idle task is only executed if there are no other tasks waiting
to be called by the scheduler.

Methodologies, techniques and architectures 37

3.2.2.1 FreeRTOS modifications

FreeRTOS does not support a change of system frequency at runtime. Changing
the operating frequency at runtime results in the incorrect operation of timers
used, for example, to wake up the system from a sleep period or to execute a
previously scheduled task. For example, if the frequency is doubled at runtime,
the duration time of a timer is halved. Before sleeping, an RTOS task will specify a
time after which it requires “waking”. The FreeRTOS kernel measures time using
a tick count variable. A timer interrupt (the RTOS tick interrupt) increments the
tick count with strict temporal accuracy, allowing the real time kernel to measure
time to a resolution that derives from the chosen timer interrupt frequency. The
tick frequency of the FreeRTOS system is set at operating system start-up through
the define in Listing 3.6, the original code can be seen at the following link7.

62 #d e f i n e configTICK_RATE_HZ ((TickType_t) 1000)

Listing 3.6: FreeRTOSConfig.h file. FreeRTOS original source code.

The tick duration depends on the operating frequency of the system and is set at
the start of the operating system.

We had to modify part of the OS in order to enable system frequency changes
without impact on the rest of the functionality. To support dynamic frequency scal-
ing, we added a dynamic update of the variable which expresses the duration of a
single tick. When frequency changes dynamically, this parameter must be adapted
according to any new value of clock cycle time. The variable in question is called
ulTimerCountsForOneTick, the source code that manages the timings based on
this variable can be found at this link8. Listing 3.7 shows the original source code,
only the lines relating to the operation of variable ulTimerCountsForOneTick will
be shown and commented.

151 #i f (configUSE_TICKLESS_IDLE == 1)
152 s t a t i c uint32_t ulTimerCountsForOneTick = 0 ;
153 #e n d i f /∗ configUSE_TICKLESS_IDLE ∗/

. . .
530 ulReloadValue = portNVIC_SYSTICK_CURRENT_VALUE_REG + (

ulTimerCountsForOneTick ∗ (xExpectedIdleTime − 1UL)) ;

7https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b344
3f5295cf95ec9c0b15d/Middlewares/Third_Party/FreeRTOS/Source/include/FreeRTOSCon
fig_template.h#L62

8https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b344
3f5295cf95ec9c0b15d/Middlewares/Third_Party/FreeRTOS/Source/portable/GCC/ARM_C
M4F/port.c

https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b3443f5295cf95ec9c0b15d/Middlewares/Third_Party/FreeRTOS/Source/include/FreeRTOSConfig_template.h#L62
https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b3443f5295cf95ec9c0b15d/Middlewares/Third_Party/FreeRTOS/Source/include/FreeRTOSConfig_template.h#L62
https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b3443f5295cf95ec9c0b15d/Middlewares/Third_Party/FreeRTOS/Source/include/FreeRTOSConfig_template.h#L62
https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b3443f5295cf95ec9c0b15d/Middlewares/Third_Party/FreeRTOS/Source/portable/GCC/ARM_CM4F/port.c
https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b3443f5295cf95ec9c0b15d/Middlewares/Third_Party/FreeRTOS/Source/portable/GCC/ARM_CM4F/port.c
https://github.com/STMicroelectronics/STM32CubeL4/blob/f6877af03b5c8b666b3443f5295cf95ec9c0b15d/Middlewares/Third_Party/FreeRTOS/Source/portable/GCC/ARM_CM4F/port.c

Methodologies, techniques and architectures 38

. . .
684 ulTimerCountsForOneTick = (configSYSTICK_CLOCK_HZ /

configTICK_RATE_HZ) ;

Listing 3.7: port.c file. FreeRTOS original source code.

The following comments will refer to the lines of code in Listing 3.7. In Line 152 the
variable ulTimerCountsForOneTick is declared. In Line 530 there is an example of
the use of the variable ulTimerCountsForOneTick. ulReloadValue is calculated,
which corresponds to the time a task or the system goes into sleep before being
woken up by an interrupt. xExpectedIdleTime corresponds to the number of idle
ticks. In Line 684 shows how the ulTimerCountsForOneTick variable is set when
the operating system starts up.

3.2.3 Orlando middleware
With the selected hardware platform it’s not currently possible to exploit the sup-
port of a RTOS. We need to consider tasks in the same chain to be prospectively
executed by independent hardware cores communicating through a set/hierarchy of
shared memories. The overall management is implemented using platform-specific
low-level primitives provided by STMicroelectronics, named Remote Procedure
Call (RPC) APIs. We have used them to manage communication and synchro-
nization between the DSPs in the platform and to manage the operating state of
the processing elements, setting to sleep mode those that are stalled on input (no
input data from FIFO) or output channels (the output FIFO is full), or that are
not assigned with a task. We present the RPC APIs that we have used in Ta-
ble 3.2, concerning functions to turn on and off DSPs, and Table 3.3, concerning
functions adopted for synchronizing DSPs while accessing FIFOs in a mutually
exclusive way.

When idle, a DSP executes a rpc_serve() function. In this way, the core
waits from an activation message from other cores, and it is set into a sleep state
(through sleep() function) until a request is received, activating it again (through
wakeup() function). The requests are stored in a queue, one per DSPs, stored in
the main shared memory (4× 1 MB SRAM banks) and served with a round-robin
priority scheme.

In Table 3.4, we show the functions usable to send activation messages and to
check the execution of the assigned tasks on a remote DSPs.

Methodologies, techniques and architectures 39

Function name Description

sleep()
It’s invoked by the DSP that intends to go to sleep, once invoked the DSP is placed
in a low-power state and will remain in this state until it receives a wake-up signal.

wakeup(...) Once this function is invoked, a wake-up signal is sent to the specified core.

Table 3.2: Core activation and deactivation functions.

Function name Description

mutex_init(...) Initialization of the mutual exclusion.

mutex_lock(...) Request mutual exclusion.

mutex_unlock(...) Release mutual exclusion.

Table 3.3: Synchronization functions, which are mainly used to read/write on the
same FIFO in a mutually exclusive way.

Function name Description

rpc_call(...)
Execute a function passed as an input on a remote processor. From the
inputs, it’s possible to choose whether rpc_call is blocking or non-blocking.

rpc_check(...) Check the execution status of a certain function call on a specific core (non-blocking).

rpc_wait(...) Wait for the conclusion of a function on a specific core (blocking).

Table 3.4: Call functions, used by the ADAM system to manage the execution of
tasks on the cores.

Methodologies, techniques and architectures 40

3.3 PyTorch framework & quantization
PyTorch is an open source machine learning library based on the Torch library,
primarily developed by Facebook’s Artificial Intelligence Research (FAIR) labs for
applications such as computer vision and natural language processing. It is open-
source software distributed under the Modified Berkeley Software Distribution
(BSD) license. PyTorch offers various quantization tools, which, as we have seen
in Section 2.2.1, 2.4 and 3.2.1, lead to advantages in terms of execution time and
memory footprint.

Compared to typical Floating-Point 32 models, PyTorch supports Integer 8
quantization, which allows for a 4x reduction in model size and a 4x reduction in
memory bandwidth requirements. When compared to FP32 computations, hard-
ware support for INT8 computations is typically 2 to 4 times faster. PyTorch
supports a variety of methods for quantizing a deep learning model. In most
cases, the model is trained in Floating-Point 32 before being converted to Inte-
ger 8 (quantization post-training). Furthermore, PyTorch supports quantization
aware-training, which uses fake-quantization modules to model quantization errors
in both forward and backward passes9.

The method we have chosen is a post-training quantization called static quanti-
zation10. Post-training static quantization entails not only converting the weights
from float to int, as in dynamic quantization, but also running batches of data
through the network and computing the resulting distributions of the various acti-
vations (specifically, this is done by inserting observer modules at different points
that record this data). These distributions are then used to determine how the
various activations should be quantized at inference time. We have chosen to in-
sert a MinMax observer11. This observer uses the min/max statistics of the tensor
for each layer to calculate scale and zero-point values, used for weights and bias
conversion from float to int precision. the quantization parameters, minimum/-
maximum xmin/max is computed in Equation 3.1 where X is the observed tensor.

9https://pytorch.org/docs/stable/quantization.html
10https://pytorch.org/tutorials/advanced/static_quantization_tutorial.html
11https://github.com/pytorch/pytorch/blob/master/torch/ao/quantization/observe

r.py#334

https://pytorch.org/docs/stable/quantization.html
https://pytorch.org/tutorials/advanced/static_quantization_tutorial.html
https://github.com/pytorch/pytorch/blob/master/torch/ao/quantization/observer.py#334
https://github.com/pytorch/pytorch/blob/master/torch/ao/quantization/observer.py#334

Methodologies, techniques and architectures 41

xmin =

min(X) if xmin = None
min (xmin, min(X)) otherwise

xmax =

max(X) if xmax = None
max (xmax, max(X)) otherwise

(3.1)

Once the X value is calculated, scale and zero point values are computed in Equa-
tion 3.2 where Qmin and Qmax are the minimum and maximum of the quantized
data type. The symmetrical case has been chosen, so the zero point value is forced
to zero.

scale = 2 max(|xmin|, xmax)/ (Qmax −Qmin)

zero point =

0 if dtype is qint8
128 if dtype is quint8

(3.2)

In addition, activations were also forced to zero during the procedure.
Referring to the Listing 3.2 shown in Section 3.2.1.1, in Line 71 wt are the

quantized weights, in Line 79 bias is equivalent to a vector of zeros since the
activations are all null and in Line 81 out_div is equivalent to a scale value.

Referring to the Listing 3.3 shown in Section 3.2.1.1, in Line 130 *pM is the
pointer to quantized weights, in Line 134 out_div is equivalent to a scale value
and in Line 135 bias is equivalent to a vector of zeros since the activations are all
null.

3.4 Electrocardiogram configuration
The heart is actually two separate pumps: a right heart that circulates blood
through the lungs and a left heart that circulates blood through the peripheral
organs. Each of these hearts, in turn, is a pulsatile two-chamber pump made up
of an atrium and a ventricle. Each atrium functions as a weak primer pump for
the ventricle, assisting in the movement of blood into the ventricle. The ventricles
then provide the primary pumping force that propels blood either through the
pulmonary circulation (right ventricle) or through the peripheral circulation (left
ventricle). Special mechanisms in the heart cause a continuous succession of heart
contractions known as cardiac rhythmicity, which is caused by action potentials
transmitted throughout the cardiac muscle and results in the heart’s rhythmical
beat. When the cardiac impulse passes through the heart, an electrical current also
spreads from the heart into the adjacent tissues surrounding the heart. A small

Methodologies, techniques and architectures 42

portion of the current spreads all the way to the surface of the body. If electrodes
are placed on the skin on opposite sides of the heart, electrical potentials generated
by the current can be recorded; the recording is known as an ECG [96].

The electrocardiogram is a special graph that represents the electrical activity
of the heart from one instant to the next. Thus, the ECG provides a time-voltage
chart of the heartbeat. For many patients, this test is a key component of clinical
diagnosis and management in both inpatient and outpatient settings. The device
used to obtain and display the conventional ECG is called the electrocardiograph,
or ECG machine. It records cardiac electrical currents (voltages or potentials)
by means of conductive electrodes selectively positioned on the surface of the
body. For the standard ECG recording, electrodes are placed on the arms, legs,
and chest wall (precordium). In certain settings (emergency departments, cardiac
and intensive care units, and ambulatory monitoring), only one or two “rhythm
strip” leads may be recorded, usually by means of a few chest electrodes. The
12 standard ECG leads (connections or derivations) are commonly used to record
these voltages from the heart. The leads actually show the differences in voltage
(potential) between electrodes placed on the body’s surface [97].

The leads are divided into two groups: limb (extremity) leads and chest (pre-
cordial) leads. The six limb leads I, II, III, aVR, aVL, and aVF use electrodes on
the extremities to record voltage differences. Based on their evolutionary history,
they can be divided into two subgroups: three standard bipolar limb leads (I, II,
and III) and three augmented unipolar limb leads (aVR, aVL, and aVF). The six
chest leads V1, V2, V3, V4, V5, and V6 use electrodes placed at various locations
on the chest wall to record voltage differences [97].

Named after the theorist and father of modern electrocardiography, the Einthoven
Triangle (shown in Figure 3.1112) is based on the imaginary arrangement of an in-
verted equilateral triangle on the patient’s chest, the center of which coincides
with the heart. Each corner of the geometric figure is electrically coincident with
a point on a specific limb which is given a name: Right Arm (RA), Left Arm (LA)
and Left Leg (LL). The calculation of leads I, II and III is shown in Equations 3.3,
3.4 and 3.5 respectively.

Lead I = LA− RA , (3.3)
Lead II = LL− RA , (3.4)

Lead III = LL− LA . (3.5)

There are different types of electrode placement, the method we have chosen
12https://www.nottingham.ac.uk/nursing/practice/resources/cardiology/function/

bipolar_leads.php

https://www.nottingham.ac.uk/nursing/practice/resources/cardiology/function/bipolar_leads.php
https://www.nottingham.ac.uk/nursing/practice/resources/cardiology/function/bipolar_leads.php

Methodologies, techniques and architectures 43

Figure 3.11: Einthoven Triangle.

is called Modified Limb Lead (MLL), Figure 3.12 shows the consistent placement
of electrodes according to this method. As we will see later, only lead II will be
taken into consideration in the thesis work and we will call it Modified Limb Lead
II (MLLII). This lead is the same one used to generate the signals contained in
the dataset we have chosen for our studies, Section 3.4.1 will describe the dataset
in more detail.

3.4.1 MIT−BIH Arrhythmia Database
Since 1975, research on arrhythmia analysis and related subjects has been con-
ducted in the laboratories at Beth Israel Hospital (BIH) in Boston (now Beth Is-
rael Deaconess Medical Center) and Massachusetts Institute of Technology (MIT).
The MIT−BIH Arrhythmia Database [98], which was completed and distributed
in 1980, was one of the first major products of this effort. The database was the
first widely available set of standardized test material for evaluating arrhythmia
detectors, and it has been used for this purpose, as well as basic cardiac dynamics
research, at over 500 sites around the world. The ECGs in the MIT−BIH Ar-
rhythmia Database were obtained from a collection of over 4000 long-term Holter
recordings obtained by the Beth Israel Hospital Arrhythmia Laboratory between
1975 and 1979. Around 60% of these recordings were obtained from inpatients.
The database includes 23 records (numbered 100 to 124 inclusive, with some num-
bers missing) chosen at random from this set, as well as 25 records (numbered

Methodologies, techniques and architectures 44

Figure 3.12: Electrodes placement according to the modified limb lead method [2].

200 to 234 inclusive, with some numbers missing) chosen from the same set to
include a variety of rare but clinically important phenomena that would not be
well-represented by a small random sample of Holter recordings. Figure 3.13 shows
an example of an ECG trace taken from the dataset. Each of the 48 records lasts
slightly more than 30 minutes. The full database has been available since February
2005 on PhysioNet [99].

The subjects were 25 men aged 32 to 89 years, and 22 women aged 23 to
89 years. In most records, the upper signal is a MLLII, obtained by placing the
electrodes on the chest. The lower signal is usually a modified lead V1 (occasionally
V2 or V5, and in one instance V4); as for the upper signal, the electrodes are also
placed on the chest. This configuration is routinely used by the BIH Arrhythmia
Laboratory.

3.5 Application model & ADAptive runtime Man-
ager

We selected an application structure based on process networks. Tasks are repre-
sented as independent processes, communicating with each other via FIFO struc-
tures, using blocking read and write communication primitives to avoid data loss
in case of busy pipeline stages. Processes may be potentially executed in parallel,
in case of available processing resources, potentially improving performance using

Methodologies, techniques and architectures 45

09/12/2021, 23:43 LW: .../1.0.0/108

https://physionet.org/lightwave/?db=mitdb/1.0.0 1/2

☰

 SearchPhysioNet 

Go to:
 00:00:04
 ↴
|◁
 ◁
 ◀
 ▶
 ▷
 ▷|

◁ Search
 Find...
 Search ▷

.../1.0.0/108

00:00:04.888

00:00:05 00:00:10

atr • • • • • • • V x • • •

MLII

V1

▲
 =
 ▼ Window duration:
 10 seconds

Choose input View/edit Tables Settings Help

Figure 3.13: 10-second ECG trace, recording number 108 in the MIT−BIH Ar-
rhythmia dataset. In the upper part is present the MLLII trace, in the middle
part the notes and in the lower part the modified lead V1 trace.

a software pipeline.
In particular, for each sensed variable to be monitored, we build a chain of

tasks that operate on the sensed data (Figure 3.14).

Get data Process Threshold Send

Figure 3.14: Simple task chain.

A chain of processes is generated for each sensor node, so that, if required by
changes in the operating mode, it’s possible to dynamically turn on and off the
useful and non-useful components.

For each sensor, we envision four types of general tasks:

• Get data task: takes care of taking data from the sensing hardware integrated
into the node.

• Process task: it’s possible to have multiple tasks of this type, representing
multiple stages of in-place data analysis algorithm. Having more than one

Methodologies, techniques and architectures 46

task of this type allows a prospective user to select, for example, a certain
depth of analysis, which determines an impact on the required communi-
cation bandwidth, detail of the extracted information, and power/energy
consumption.

• Threshold task: this task allows to filter data depending on the results of the
in-place analysis. For example, a threshold task may be used to send data
to the cloud only when specific events or alert conditions are detected. Its
purpose is to limit data transfers from the node.

• Send task: is the task in charge of outwards communication to the gateway.

Considering the selected process network model, activation/deactivation of
tasks or entire chains corresponding to sensors can be implemented by:

• enabling/stopping the periodic execution of the involved task;

• reconfiguring the FIFOs to reshape the process chain accordingly.

In this way, it’s possible to select multiple application configurations, correspond-
ing to operating modes characterized by different levels of in-place computing
effort, bandwidth requirements, monitoring precision.

Within the process network, a task was exclusively dedicated to the manage-
ment of dynamic hardware and software reconfiguration of the platform. We have
implemented such reconfiguration in a software agent called ADAptive runtime
Manager. ADAM can be activated periodically by means of an internal timer. It
evaluates the status of the system, monitoring:

• reconfiguration commands from the gateway;

• changes in the workload, e.g. rate of events to be processed. For example,
a task may have to be executed periodically, with a rate that depends on
the frequency of certain events in the sensor data. This poses real-time
constraints that may be varying over time in a data-dependent manner.

• other relevant variables (e.g. battery status).

Depending on such input, ADAM can react to change the platform settings,
performing different operations:

• Enable or disable the individual tasks of the sensor task chain or the entire
chain;

Methodologies, techniques and architectures 47

Get data Process Threshold Send

Get data Process Threshold Send

Figure 3.15: Two possible configurations of a generic system.

• Choose whether to set the microcontroller in a sleep mode or not;

• Set the operating frequency of the microcontroller to increase/reduce perfor-
mance level;

• Reroute the data-flow managed by the FIFOs according to the active tasks.

Figure 3.15 shows an example of the reconfiguration of the system that may be
applied by ADAM, deactivating a process task, to switch from an operating mode
that sends pre-processed information to the cloud to another sending raw data.

This proposed application model can be easily declined in different use cases
and application domains involving sensor monitoring and near-sensor processing.
Adapting to new scenarios could require for example to add different or additional
process data tasks and/or connecting them in a different order. Nevertheless,
the possibility of switching between different configurations by reconfiguring the
process network would be preserved.

3.5.1 ADAptive runtime Manager algorithm
This section will describe in detail what the ADAptive runtime Manager algorithm
does during its execution. Algorithm 3.1 is easily adaptable to single-core devices
such as the one we use. In Chapter 6 we will explain how ADAM features have
been integrated in order to better manage workloads based on neural network
processing on multi-core platforms.

Methodologies, techniques and architectures 48

initialise & suspend all threads, Line 1. All the threads associated with the
different tasks at the operating system level are defined. The main parameters to
be set for each thread during this phase are: assigning a job, giving a higher or
lower execution priority and allocating a certain amount of stack memory. Once
all the threads have been initialised, ADAM preventively blocks the execution of
all the threads while waiting for a configuration message. It is executed only once
at system start-up.

send message (parameters setup), Line 2. As described above, all threads
have a dedicated input FIFO and are in a phase of waiting for data to be processed.
With this command, ADAM sends a message to itself regarding the configuration
of generic components. This configuration is carried out only once at system start-
up and is predefined by the user.

send message (task), Line 3. Similar to Line 2, ADAM sends a message to
itself with regard to the configuration of the threads. The configuration is strictly
dependent on the operating mode decided at run time by the user, either directly
or, as in this case, indirectly. In fact, the user establishes an initial configuration
determining which operating mode is to be executed at start-up. Obviously, a
possible configuration is equivalent to a quiescent system, which does not perform
any work but waits for an external reconfiguration message.

This configuration is carried out only once at system start-up and is predefined
by the user.

wait internal or external message, Line 5. At this point, the system has
entered an infinite loop in order to handle internal or external messages. The
first action that ADAM takes once it has entered the loop is to remain dormant,
waiting for a reconfiguration message to be input to its FIFO.

The first time this command is reached there are already two incoming mes-
sages, namely those described in Lines 2 and 3.

switch message, Line 6. The system sorts incoming messages and makes re-
lated decisions. Messages can have three different labels: parameters setup, task
setup and periodic check.

A “parameters setup” message involves updating the tabulated configurations,
for all operating mode/sensor pair, of SoC peripherals, sensor configuration, general-
purpose timers timing and thread wake-up timers timing if present.

Methodologies, techniques and architectures 49

A “task setup” message involves reading the tabulated configurations, for the
operating mode (specified in the reconfiguration message) of the ith sensor. The
reconfiguration concerns the SoC peripherals, the sensor configuration, the timing
of the general purpose timers and those that wake up the threads if present. On
the basis of the tabulated configuration read, the system is correctly reconfigured
and the operating mode is changed.

A “periodic check” message is a message that the ADAM system receives pe-
riodically through the use of one of the general purpose timers set at Line 9. This
message allows the ADAM system to monitor the status of the system and possibly
make changes to it.

SoC peripherals setup, Line 8 and 20. Reading/writing parameters of a
generic nature regarding the devices integrated in the SoC, e.g. changing specifi-
cations of the BLE stack.

timers setup, Line 9, 21, 14 and 26. Reading/writing the timing parameters
of general purpose timers (Line 9, 21), e.g. the timer that manages the periodic
wake-up of ADAM or the timer that wakes up the BLE routine that manages the
service. Or, reading/writing the timing parameters of threads timers (Line 14,
26), e.g. the timer that periodically runs the thread dealing with the sampling of
ith sensor data.

sensors setup, Line 11 and 24. Reading/writing of sensor parameters. This
function initiates user-specified routines, such as an Serial Peripheral Interface
(SPI) read/write to the configuration registers of the nth sensor according to the
user or operating mode requirements.

check operating mode, Line 22. Check whether a change of operating mode
has been requested. If not, do not proceed with the case statement. However, if
the operating mode change is requested, an “operating mode index” is specified
for each sensor involved.

threads setup, Line 27. Consistent with the initialization in Line 1, this func-
tion enables or disables threads as required by the operating mode of the ith
sensor.

FIFOs setup, Line 28. Once the topology of the process network has been
changed, the data exchanged between the various threads must be routed. That

Methodologies, techniques and architectures 50

is, each thread has to route the produced data to the right FIFO of the next
thread, according to the selected operating mode of the ith sensor.

custom action, Line 34. If defined, custom actions are executed under custom
conditions.

check workload, Line 40. The workload is calculated as a percentage. When
the system starts up, two timers are triggered, the first timer advances uncondi-
tionally, the second timer advances only if the system is not in sleep mode. Based
on a user-defined time window, the workload percentage is calculated as the ratio
of the second timer to the first one.

frequency & voltage regulator, Line 41. The system frequency and power
supply voltage change depends on the workload and real time constraints. The
real time constraints are set so as to avoid overlapping tasks during a succession of
events that trigger the process chain, even though FIFOs would be able to handle
these cases without data loss. The possible values of frequency and voltage are
tabulated and their variation is sensitive to ranges of workload and not to any
minimum variation of it. This is done for two reasons: firstly, to avoid overloads
due to numerous system demands related to changing system frequency/supply
voltage; secondly, not all devices support fine-grained operating frequency tuning.
In addition to the workload ranges, the user must also set a parameter called pa-
tience, which determines how long the system will not accept any further requests
for frequency and voltage changes after it has just received one. It will again be
at the user’s discretion to choose intervals that are first of all usable and do not
create constant, short-term changes in the system configuration.

Methodologies, techniques and architectures 51

1 initialise & suspend all threads;
2 send message (parameters setup);
3 send message (task setup);
4 while true do
5 wait internal or external message;
6 switch message do
7 case parameters setup
8 SoC peripherals setup;
9 timers setup;

10 for s← 1 to number of sensors do
11 sensors setup [s];
12 for o← 1 to number of operating mode do
13 for t← 1 to number of threads do
14 timers setup [s][o][t];
15 end for
16 end for
17 end for
18 end case
19 case task setup
20 SoC peripherals setup;
21 timers setup;
22 check operating mode;
23 for s← 1 to number of sensors do
24 sensors setup [s][operating mode index];
25 for t← 1 to number of threads do
26 timers setup [s][operating mode index][t];
27 threads setup [s][operating mode index][t];
28 FIFOs setup [s][operating mode index][t];
29 end for
30 end for
31 end case
32 case periodic check
33 if custom condition then
34 custom action;
35 end if
36 check battery level;
37 if battery level < threshold then
38 send message (task setup)
39 end if
40 check workload;
41 frequency & voltage regulator [workload range (workload)];
42 end case
43 end switch
44 end while

Algorithm 3.1: ADAM algorithm.

4
Cardiovascular disease detection on

electrocardiogram

T o implement detection of cardiac abnormalities on ECGs, we have ap-
plied the previously described application model to deploy an adequate
waveform analysis application on SensorTile. A single-lead configuration

was chosen due to the practical convenience of not having too many electrodes
attached to the skin. Lead II is often read individually and therefore adequate in
case that as little data as possible needs to be processed. In particular, the ML-
LII configuration was chosen, the same configuration present in the records of the
MIT−BIH arrhythmia database, these recordings will be taken into consideration
during the training. We built a prototype using an AD82321 sensor module from
Analog Devices, connected to the Analog to Digital Converter (ADC) integrated
into the reference platform. The device supports a single-lead configuration, with
two or three electrodes. The official documentation proposes different solutions to
manage the signal noise, the compromise is between signal distortion and rejection
of motion artifacts. The chosen configuration assumes that the patient remains
relatively still during the measurement, and therefore, motion artifacts are less of
an issue. The AD8232 is configured with a 0.5 Hz two-pole high-pass filter fol-

1https://www.analog.com/media/en/technical-documentation/data-sheets/ad8232.p
df

52

https://www.analog.com/media/en/technical-documentation/data-sheets/ad8232.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ad8232.pdf

Cardiovascular disease detection on electrocardiogram 53

AD8232 Data Sheet

Rev. D | Page 28 of 32

The overall narrow-band nature of this filter combination
distorts the ECG waveform significantly. Therefore, it is only
suitable to determine the heart rate, and not to analyze the ECG
signal characteristics.

The low-pass filter stage also includes a gain of 11, to bring the
total system gain close to 1100 (note that the filter roll off
prevents the maximum gain from reaching this value). Because
the ECG signal is measured at the hands, it is weaker than when
measured closer to the heart.

The RLD circuit drives to the third electrode, which can also be
located at the hands, to cancel common-mode interference.

CARDIAC MONITOR CONFIGURATION
This configuration is designed for monitoring the shape of the
ECG waveform. It assumes that the patient remains relatively
still during the measurement, and therefore, motion artifacts
are less of an issue.

RL

RA

LA

+VS

+VS

+VS

+IN

–IN

HPDRIVE

+VS

HPSENSE

IAOUT

REFIN

GND

FR

AC/DC

SDN

LO+

LO–

RLD

RLDFB

OUT

OPAMP+

OPAMP–

REFOUT

SW
AD8232

10nF

1MΩ

1MΩ

100kΩ
1.5nF

180kΩ

180kΩ

1MΩ

10MΩ
10MΩ 0.1µF

1nF

10MΩ

10MΩ

0.1µF360kΩ

0.33µF

0.33µF

REFOUT

10MΩ 1.4MΩ

TO DIGITAL
INTERFACE

SIGNAL OUTPUT 10
86

6-
26

6

10MΩ

Figure 66. Circuit for ECG Waveform Monitoring

To obtain an ECG waveform with minimal distortion, the
AD8232 is configured with a 0.5 Hz two-pole high-pass filter
followed by a two-pole, 40 Hz, low-pass filter. A third electrode
is driven for optimum common-mode rejection.

70

0
0.01 1k

M
AG

NI
TU

DE
 (d

B)

FREQUENCY (Hz) 10
86

6-
06

1

10

20

30

40

50

60

0.1 1 10 100

Figure 67. Frequency Response of Cardiac Monitor Circuit

In addition to 40 Hz filtering, the op amp stage is configured
for a gain of 11, resulting in a total system gain of 1100. To
optimize the dynamic range of the system, the gain level is
adjustable, depending on the input signal amplitude (which
may vary with electrode placement) and ADC input range.

PORTABLE CARDIAC MONITOR WITH ELIMINA-
TION OF MOTION ARTIFACTS
The circuit in Figure 68 shows an implementation of a battery-
powered embedded system for monitoring heart rate in
applications where the patient engages in moderate activity,
such as with a Holter monitor. The AD8232 uses a three-
electrode patient interface and implements a two-pole high-
pass filter with a cutoff at 0.3 Hz, and a two-pole low-pass filter
with a cutoff frequency of 37 Hz. The total signal gain in the
pass band is 400. The fully conditioned signal is sampled by the
sigma-delta ADC integrated on the low power microcontroller,
ADuCM360. The wide dynamic range of this ADC provides
flexibility to reduce the signal gain to avoid saturation, depending
on electrode placement.

Because the pass band is relatively wide for ambulatory applica-
tions, the ADXL346 accelerometer signal can be used to further
minimize the noise introduced by the motion of the patient.
Moreover, the microcontroller can use the motion information
to monitor inactivity and to issue a system shutdown to save
battery power.

The low dropout regulator ensures that the maximum of 3 V is
not exceeded, especially during charge cycles of the battery,
which can be a lithium-ion cell.

In this application, the ADuCM360 uses its Port 0 to perform
DMA transfers to the host communication interface or to an
on-board memory, if recording the waveform for later transfer.
However, in any particular application, this port should be used
for the busiest interface to minimize CPU cycles and maintain
low power operation.

Note that this circuit is shown to demonstrate the capabilities
of AD8232 and other system components. It is not a complete
system design and additional effort must be made to ensure
compliance with medical safety guidelines from regulatory
agencies.

Figure 4.1: Frequency response of the circuit configuration chosen for the AD8232.

lowed by a two-pole, 40 Hz, low-pass filter. A third electrode is driven for optimum
common-mode rejection.

In this section, we describe the supported operating modes, that can be selected
at runtime, and the processing tasks coexisting in the different operating modes.
It is also possible to find the original project in the repository2.

4.1 Operating modes
We have enabled three different operating modes to be selectable by the user, by
sending adequate commands from the cloud. Operating modes are shown in Figure
4.2.

4.1.1 Operating mode: Raw data
The first operating mode envisions sending the entire data stream acquired by
the sensor node to the gateway. There is therefore no near-sensor data analysis
enabled, and it poses fairly high requirements in terms of bandwidth. In this
operating mode are:

• Multiple samples are been grouped and inserted into a packet of 20 Bytes (8
ECG data 16 bit, 1 timestamp 32 bit).

2https://github.com/matteoscrugli/adam-iot-node-on-stm32l4

https://github.com/matteoscrugli/adam-iot-node-on-stm32l4

Cardiovascular disease detection on electrocardiogram 54

Get data Peak CNN Threshold Send

Operating mode: Raw data.

Get data Peak CNN Threshold Send

Operating mode: Peak detection.

Get data Peak CNN Threshold Send

Operating mode: CNN processing.

Figure 4.2: ECG application model.

Cardiovascular disease detection on electrocardiogram 55

• The sample rate of the ADC is set to 330 Hz, considering sending multiple
samples at a time, one Bluetooth packet is sent every 24 ms.

4.1.2 Operating mode: Peak detection
This operating mode does not provide visual access to the whole ECG wave-
form. A healthcare practitioner, when selecting this mode when accessing the
data, can select to monitor only heartbeat rate, requiring a lower level of detail in
the information sent to the cloud. As a common technique to reduce the power
consumption related to communication when sampled values are not interesting,
a healthcare practitioner could also set thresholds and receive a notification only
when thresholds are exceeded. In this operating mode, four tasks are active:

• Get data task

• Process data (peak detection)

• Threshold task (alert heartbeat rate evaluation)

• Send task

This operating mode processes samples to search for signal peaks and consequently
computes the heartbeat rate. The first task (Figure 4.2) collects data from the
sensor (as in raw data operating mode), the second analyzes the signal analysis and
calculates the heart rate, and the fourth allows data transmission. The threshold
task is used to determine if data must be sent to the cloud. For example, no data
is sent if the heartbeat rate is controlled between two high and low alert values.
The peak detection algorithm it’s not very critical in terms of time and power
consumption, it will be better discussed in Section 4.2. The size of the package
sent is 5 Bytes packet (1 heartbeat rate value, represented on 8 bit, 1 time-stamp
32 bit). The transmission rate is given dependent, in the worst case a package is
sent for each peak detected. Thanks to the threshold task, the communication-
related power consumption is heartbeat-dependent, since the execution of the send
task is triggered only when the heartbeat exceeds the preset threshold defined by
the medical staff.

4.1.3 Operating mode: CNN processing
In the latter operating mode, a further level of analysis is introduced. An additional
task implements a convolutional neural network, classifying the ECG waveform to
recognize physically relevant conditions. Using such classification technique, the

Cardiovascular disease detection on electrocardiogram 56

practitioner can monitor the morphology of the signal without the need of sending
the entire data stream to the cloud, saving transmission-related power/energy
consumption. The neural network implemented recognizes anomalous occurrences
in the ECG tracing, in this case, communications with the gateway occur only in
case of anomaly detection. The enabled tasks are:

• Get data task

• Process data 1 task (peak detection)

• Process data 2 task (CNN)

• Threshold task (anomalous shapes in the ECG waveform)

• Send task

The required communication bandwidth is more similar to peak detection OM
than raw data OM, however, with respect to peak detection OM, computing effort
is higher. The node executes the 1D convolution neural network similar to the
one described in [100]. We have designed the system to be capable of classifying
ECG peaks according to alternative sets of categories, each composed by 5 classes,
named NLRAV and NSVFQ (see Figure 4.5). The design process used to select,
train and deploy the specific neural network topology is explained in Section 4.3.

The size of the data transferred to the cloud is 6 Bytes (1 heartbeat data 8
bit, 1 label data 8 bit, 1 timestamp 32 bit). The CNN, threshold and send tasks
are executed only if a peak is detected, the activation frequency of these tasks,
therefore, depends directly on the heart rate value.

4.2 The peak detection algorithm
The processing of the ECG signal is activated in peak detection and CNN OM, in
both operating modes it’s necessary to identify the R peaks in the signal, therefore
a simplified version of the Pan Tompkins algorithm was used in order to obtain
the position of the R peaks during data acquisition from the sensor. The reference
study to implement the R peak recognition algorithm is [101].

An exploration was made with different combinations of filters and mathemat-
ical functions blocks in order to reduce the computational load as much as possible
and at the same time obtain a good level of peak detection accuracy. The accuracy
on the MIT−BIH Arrhythmia dataset was validated for each step of the explo-
ration. The Figure 4.3 shows the block diagram representing the signal processing

Cardiovascular disease detection on electrocardiogram 57

DC filter LP filter Derivative Squared

Raw
signal

Filtered
signal

Figure 4.3: Filtering block diagram.

Figure 4.4: Raw signal and filtered one from two different recordings.

algorithm chosen after the exploration, composed by: Direct Current (DC) filter,
Low Pass (LP) filter (fc = 11Hz), derivative and squared block. If CNN OM is
enabled, the signal is segmented, a number of samples equal to the input size of
the neural network are considered to generate a frame and the detected peak is
centered in it.

Figure 4.4 shows the raw signal in blue color and the filtered one in red from two
different recordings. A peak is detected when a filtered signal exceeds a predefined
threshold, then returns to a local minimum point and the delay introduced by
the filter is taken into account, the threshold value may be set differently for each
recording.

A detected peak is considered a true positive when it is associated with a
dataset peak in a neighborhood of 50 samples within the track under analysis.

Cardiovascular disease detection on electrocardiogram 58

Equation 4.1 and 4.2 shows the sensitivity/True Positive Rate (TPR) and preci-
sion/Positive Predictive Value (PPV) data of the peak detection algorithm on the
MIT−BIH arrhythmia database. In Equation 4.1, Equation 4.2 and in successive
equations, the following operands are used: True Positive (TP), True Negative
(TN), False Positive (FP) and False Negative (FN)

TPR = TP
TP + FN = 0.99674 , (4.1)

PPV = TP
TP + FP = 0.99421 . (4.2)

Table 4.1 shows true positive, false positive, false negative of the peak detection
algorithm with a tolerance of 50 samples.

False positives are the peaks detected by the algorithm that cannot be matched
to any in the dataset. False negatives are the peaks in the dataset that are not
detected by the detection algorithm. We report in Table 4.2 the distribution of the
type of peaks present in the dataset and in the false positives subset, the NSVFQ
labels are reported since they cover all useful types of classes present in the dataset.
The extreme case corresponds to analyze an ECG trace containing only V peaks, in
this case, 0.97% of peaks are not detected. In literature, there are more advanced
real-time algorithms that obtain sensitivity and precision values similar or higher
than those obtained with our algorithm, such as in Gupta et al. [102] and Laitala
et al. [103]. In Laitala et al. [103], more offline algorithms are shown with higher
sensitivity and precision values, the authors state that it is easy to address the same
results in the real-time case for their method. Our aim is to find an algorithm that
achieves high sensitivity and accuracy values and, at the same time, provided a
low computational load and easy integration on the microcontroller.

4.3 Designing the CNN: training and optimiza-
tion

As seen in Chapter 2, introducing deep learning into this type of device brings
numerous benefits. Beyond that, we chose the neural network described in this
section for its high accuracy, low computational load, latency, and power consump-
tion. These results will be better described in the dedicated Section 4.4.

We have exploited a training procedure using and comprising a static quan-

Cardiovascular disease detection on electrocardiogram 59

File TP FP FN File TP FP FN

100 2273 0 0 201 1957 5 6
101 1865 7 0 202 2135 3 1
102 2187 0 0 203 2929 75 51
103 2084 0 0 205 2653 0 3
104 2219 27 11 207 1832 192 28
105 2559 61 14 208 2936 47 19
106 2025 6 2 209 3003 9 2
107 2134 1 3 210 2639 24 11
108 1639 30 118 212 2746 0 2
109 2531 5 1 213 3248 1 3
111 2123 3 1 214 2256 6 6
112 2538 4 1 215 3363 2 0
113 1794 0 1 217 2202 2 6
114 1877 2 2 219 2153 0 1
115 1953 0 0 220 2048 0 0
116 2391 7 21 221 2426 4 1
117 1535 6 0 222 2482 3 1
118 2278 6 0 223 2605 6 0
119 1987 1 0 228 2033 53 21
121 1861 2 2 230 2256 3 0
122 2476 1 0 231 1571 0 0
123 1518 3 0 232 1778 4 2
124 1619 0 0 233 3072 1 7
200 2599 10 2 234 2753 0 0

Table 4.1: True positives, false positives, and false negatives of our peak detection
algorithm with a tolerance of 50 samples for each ECG recording on MIT−BIH
arrhythmia database.

Cardiovascular disease detection on electrocardiogram 60

Classes Classes distribution

Dataset FN subset FN subset / Dataset

N 90369 255 0,28 %
S 2781 8 0,29 %
V 7230 70 0,97 %
F 803 4 0,5 %
Q 3895 7 0,18 %

Table 4.2: Classes distribution over the dataset or the false negative subset.

tization3 step, the source code is available at our public repository4. This pro-
cess enables the conversion of weights and activations from floating-point to in-
tegers and allows to implementation of the CNN using the CMSIS-NN optimized
function library, which expects inputs represented with 8-bit precision. In static
quantization2, which takes place right after quantization, float values are converted
to qint8 format. We set the procedure to force bias values to be null, while, to
quantize weights, MinMax observers5 are inserted inside the network to detect the
output values dynamics in each layer. On the basis of the reported distribution,
scale and zero-point values are selected and used to convert effectively and prevent
data saturation.

The functions implementing convolution and fully connected layers in the CM-
SIS-NN library provide for output shifting operations to apply the scale factor on
the outputs, allowing for scaling values ranging from -128 to 127. The quantization
procedure in PyTorch, on the other hand, requires a scale value that is not neces-
sarily a power of 2. For this reason, we slightly modified the CMSIS functions to
support arbitrary scale values. Such modifications have led to a limited increase in
the inference execution time. As an example of such performance degradation, we
report here the execution time increase for two examples CNN topologies, named
20_20_100 and 4_4_100 networks (network name indicates the main topology
parameters as conv1OutputFeatures_ conv2OutputFeatures_ fc1Outputs), corre-
sponding to respectively 2,87% and 10.52%.

3https://pytorch.org/tutorials/advanced/static_quantization_tutorial.html
4https://github.com/matteoscrugli/ecg-classification-quantized-cnn
5https://pytorch.org/docs/stable/_modules/torch/quantization/observer.html

https://pytorch.org/tutorials/advanced/static_quantization_tutorial.html
https://github.com/matteoscrugli/ecg-classification-quantized-cnn
https://pytorch.org/docs/stable/_modules/torch/quantization/observer.html

Cardiovascular disease detection on electrocardiogram 61

Hyperparameter Value Hyperparameter Value

Epochs 200 Optimizer SGD
Batch size 32 Learning rate 0.01

Loss criterion Cross Entropy Momentum 0.9
ES patience 5 ES evaluation Every epoch

Table 4.3: Hyperparameters used during the training phase.

4.3.1 Model exploration
In order to select an optimized CNN topology implementing the classification task
required for the system, we have carried out a design space exploration process,
comparing tens of neural network topologies in terms of accuracy reached after
training and in terms of computing workload associated with executing the infer-
ence task on SensorTile. We have explored multiple topologies composed by two
convolution layers, two down-sampling layers, and two fully connected layers, as
represented in Figure 4.5, the size of the input sample frame is equal to 198.

Explored topologies feature different numbers of output channels from each
layer. The results are reported in Figure 4.6, showing the most interesting re-
sults for both the NLRAV and NSVFQ classes. Models NLRAV_20_20_100
and NSVFQ_20_20_100 achieve the highest Accuracy (ACC) value as shown in
Equation 4.3 and 4.4. The training set is composed by 70% of the elements of the
entire dataset and they are chosen randomly. Figure 4.7 shows the trend of the
accuracy value during the training stage. As shown in Table 4.3, a maximum num-
ber of epochs has been set equal to 200 and, to avoid overfitting effects, the Early
Stopping (ES) algorithm was chosen. This algorithm stops the training phase if
it detects an increase in the loss value [104], the loss is evaluated every epoch and
a patience value of 5 is chosen, i.e. the training stops only if a loss increment
is detected for 5 consecutive epochs. The loss values for each epoch during the
training phase are reported in Figure 4.7.

ACCNLRAV_20_20_100 = TP + TN
TP + TN + FP + FN = 0.9922, (4.3)

ACCNSVFQ_20_20_100 = TP + TN
TP + TN + FP + FN = 0.9889. (4.4)

Figure 4.8 shows a Pareto plot representing accuracy and energy consumption
for the most accurate topologies identified by the exploration.

Cardiovascular disease detection on electrocardiogram 62

19
8

1 19
2

Conv 1

96 20 90

Conv 2

45

1 10
0

Fc 1

1

Fc 2

5

Input
Convolution
+ ReLU

Max
pooling

Fully con-
nected
+ ReLU

Softmax

(N) Normal beats (N) Normal beats
(L) Left bundle branch block (S) Superventricular ectopic beats
(R) Right bundle branch block (V) Ventricular premature contraction
(A) Atrial premature contraction (F) Fusion beats
(V) Ventricular premature contraction (Q) Unclassificable beat

Figure 4.5: CNN structure and two possible classes of labels.

Cardiovascular disease detection on electrocardiogram 63

Figure 4.6: Exploration of the chosen neural network model, the name comes from
labels_ conv1OutputFeatures_ conv2OutputFeatures_ fc1Outputs.

Cardiovascular disease detection on electrocardiogram 64

(a) NLRAV classes training results.

(b) NSVFQ classes training results.

Figure 4.7: Results obtained from the training of the model having: 20 output
features for Conv1, 20 output features for Conv2 and 100 output for Fc1.

Cardiovascular disease detection on electrocardiogram 65

Figure 4.8: For the most accurate models, the energy consumption for a single
CNN task call is shown. The dotted line represents the maximum allowable drop
in accuracy (0.5% with respect to the most accurate model) for NLRAV (red line)
and NSVFQ (blue line) classes. The models marked with an “×” do not respect
the constraints imposed on the minimum necessary accuracy value.

For both classes NLRAV and NSVFQ, only one neural network model must
be selected which allows to reduce power consumption as much as possible but,
at the same time, does not lead to an excessive drop in accuracy. A maximum
accuracy drop equal to 0.5% with respect to the most accurate model (represented
in Figure 4.8 by the dotted lines) was chosen. The reported energy consumption is
associated with a single CNN inference task execution on SensorTile. Models that
are above the 0.5% threshold are considered to be valid, and, for each set of labels,
the valid model that consumes less energy is chosen to be refined in the next steps
and deployed on the board. Eventually, we have selected NLRAV_4_4_100 and
NSVFQ_4_4_100. The accuracy values are reported in Equation 4.5 and 4.6.

ACCNLRAV = 0.9908 , (4.5)
ACCNSVFQ = 0.9869 . (4.6)

Cardiovascular disease detection on electrocardiogram 66

4.3.2 Post-deployment degradation and refinement with
Augmentation

The ECG peaks in the reference dataset are perfectly centered in the frame of
samples that is received in input by the CNN during the training stage. As a
consequence, the network is trained to recognize the chosen classes as long as
the peak is centered in the signal frame. The peak detection algorithm on the
SensorTile, on the other hand, operates online on the incoming signals and would
not always detect the peak in the same position specified in the dataset.

To assess the accuracy degradation after the deployment, we calculated post-
deployment accuracy values by:

• considering false positive and false negative peaks produced by the peak
detection algorithm, which need to be accounted for in Equation 4.5 and
4.6.

• using a post-deployment validation dataset, composed by the same samples
in the original one, but modified to be centered as dictated by the peak
detection algorithm during online analysis.

In these conditions, there is a degradation in accuracy, the results will be shown
and discussed in Section 4.4. Pre-deployment accuracy, therefore, does not consider
the aforementioned non-idealities.

To overcome the deriving inaccuracy, the chosen networks have been retrained
for refining their precision in case of imperfectly centered input frames. We have
used a data augmentation technique to create a larger dataset that contains not
only perfectly centered peaks in the frame but also off-center ones. Operations
like translating the training signal for a few samples in each direction can often
greatly improve generalization [104]. We have chosen to create a dataset that
contained peaks translated (with respect to those contained in the starting dataset)
to the left or to the right by a number of samples multiple of 3, with a maximum
translation of 48 samples. Figure 4.9 shows qualitatively how the peak translation
technique was applied as augmentation technique. Once the dataset augmentation
has been generated (larger than the one initially used), during the training phase,
a number of elements equal to the size of the dataset initially used are taken into
consideration, these elements are chosen randomly for each epoch.

Cardiovascular disease detection on electrocardiogram 67

Figure 4.9: Qualitative example of augmentation.

4.4 Experimental results
In this section, we show our main experimental results. We first show a detailed
accuracy evaluation to show the effectiveness of the data augmentation procedure
and the class-level classification capabilities of the designed CNNs. Moreover, we
present measures of the energy consumption of the entire system and we highlight
the energy contributions of each task. To estimate power consumption in each op-
erating mode, we have performed a thorough set of experiments measuring energy
consumption in different setup conditions. The results were used to create a model
highlighting the contribution of each task to the energy consumption of the node.

4.4.1 Pre-deployment CNN accuracy
As anticipated in Section 4.3.1, after the topological exploration on neural net-
works, we selected the NLRAV_4_4_100 and NSVFQ_4_4_100 models. A pre-
deployment accuracy of 99.08% and 98.69% was obtained for classes NLRAV and
NSVFQ respectively. Table 4.4 summarizes the layer parameters used during the
training phase. Figure 4.10a and 4.10b, show the Receiver Operating Charac-
teristic (ROC) curve and Area Under Curve (AUC) value for NLRAV_4_4_100
and NSVFQ_4_4_100 with augmentation. Eventually, Figure 4.11 shows the
confusion matrix for the two selected networks.

Cardiovascular disease detection on electrocardiogram 68

Layer Input
dimension

Output
dimension

Input
features

Output
features

Kernel
size

Convolutional 198 192 1 4 7
Max pooling 192 96 4 4 2

Convolutional 96 90 4 4 7
Max pooling 90 45 4 4 2

Fully connected 180 100 − − −
Fully connected 100 5 − − −

Table 4.4: Parameters used for NLRAV_4_4_100 and NSVFQ_4_4_100 train-
ing phase.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve (AUC = 0.99541)

(a) NLRAV

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve (AUC = 0.98972)

(b) NSVFQ

Figure 4.10: ROC curve and AUC value for NLRAV_4_4_100 and
NSVFQ_4_4_100 models with augmentation support.

Cardiovascular disease detection on electrocardiogram 69

N L R A V
True label

N
L

R
A

V
Pr

ed
ict

ed
 la

be
l

22237 19 10 63 50

20 2460 0 1 18

51 0 2090 32 3

145 3 11 620 2

52 7 1 1 2117
0
2500
5000
7500
10000
12500
15000
17500
20000

N S V F Q
True label

N
S

V
F

Q
Pr

ed
ict

ed
 la

be
l

27019 63 63 13 11

308 512 16 0 3

95 13 2033 15 3

61 0 13 167 2

49 2 5 0 2412
0

5000

10000

15000

20000

25000

Figure 4.11: Confusion matrix for NLRAV_4_4_100 and NSVFQ_4_4_100.

4.4.2 Post-deployment CNN accuracy
As mentioned above, when considering the ideally centered samples in the dataset,
the selected CNNs are very accurate. The precision of the classification, however,
decreases significantly when peaks are detected online and imperfectly centered. In
fact, for the selected neural network models, a post-deployment accuracy equals to
94.52% and 94.09% for NLRAV_4_4_100 and NSVFQ_4_4_100 respectively is
obtained. As a solution to such accuracy degradation, we have enriched the train-
ing set with samples derived from the original ones by applying some artificial
shifting as described in Section 4.3.2. Data augmentation techniques reduce the
specialization of the CNN on the perfectly centered validation set, sightly drop-
ping the accuracy to a value of 98.37% and 97.76% for NLRAV and NSVFQ
respectively. On the other hand, ECG recordings with anomalous peaks, that are
difficult to be perfectly centered by the peak detection algorithm, are expected
to be classified much more accurately. To prove the obtained improvements, we
report a detailed classification analysis. In Figure 4.12, we report the number of
false positives and false negatives cases resulting from the peak detection algo-
rithm, and we classify the remaining cases, true positives, with the neural network
selected for NLRAV and NSVFQ classes. Such classification is executed on the
post-deployment validation set mentioned in Section 4.3.
The improvement in post-deployment accuracy after data augmentation is shown
in Equations 4.7 and 4.8.

ACCNLRAV_post = 0.9742 , (4.7)
ACCNSVFQ_post = 0.9698 . (4.8)

Data augmentation techniques allow recovering most (around 2.9%) of the

Cardiovascular disease detection on electrocardiogram 70

Peak detection false positive Peak detection false negative
189 107

N L R A V
True label

N
L

R
A

V
Pr

ed
ict

ed
 la

be
l

22174 8 5 59 51

41 2431 1 0 23

52 0 2098 24 2

135 2 12 626 7

57 2 2 1 2094
0
2500
5000
7500
10000
12500
15000
17500
20000

N S V F Q
True label

N
S

V
F

Q
Pr

ed
ict

ed
 la

be
l

26949 60 64 7 12

307 509 19 0 3

87 10 2027 13 3

57 2 14 169 1

36 2 6 0 2419
0

5000

10000

15000

20000

25000

Figure 4.12: False positives and false negatives cases resulting from the peak de-
tection algorithm and classification with remaining true positive cases for NLRAV
and NSVFQ classes using CNNs trained with augmentation techniques.

drop due to imperfect centering of the input ECG peaks. Data augmentation has
obviously no effect on the drop due to misdetections, which still determine 1.7%
degradation with respect to the pre-deployment phase.

Figure 4.13 shows a more detailed view of the effects of the quantization proce-
dure and of the augmentation on the accuracy, focusing on the classification of the
peaks detected online. The two leftmost plots represent the accuracy levels when
no augmentation is exploited. The accuracy, as can be noticed in the leftmost bar
of each plot is very high, with small variability over the different tracks, and is
only slightly decreased when quantization is applied to obtain a fixed-point imple-
mentation. However, when considering the positioning of the peak as identified
by the online detection, as shown in the two rightmost bars of each plot, precision
degrades on some of the tracks, as can be noticed by the presence of multiple out-
lier tracks with very bad classification accuracy. This happens independently on
the data representation format since the behavior is similar for both the fixed- and
floating-point implementations. The two graphs on the right show the impact of
data augmentation. As may be noticed by the rightmost bars in these two plots,
general accuracy is significantly improved: classification works correctly for all the
tracks and even the outliers show an accuracy higher than 90%.

Cardiovascular disease detection on electrocardiogram 71

Figure 4.13: Taking into consideration the true positive peaks obtained with a
tolerance equal to 50 samples, the statistical distribution of the accuracy values
for each ECG recording, obtained from the classification on the validation set, is
represented. The floating-point and fixed point models are tested, inference with
centered and non-centered peaks is also tested. In orange, the median value.

Cardiovascular disease detection on electrocardiogram 72

+

−

VUSB

IR1
R1 10 Ω

S

V
+ −

VR1

IN

EN

OUT

GNDGND

LD39115J18

+

−

VDD

Figure 4.14: Circuit used to measure power consumption.

4.4.3 Power consumption measures
With the purpose of measuring the power consumption of our reference platform,
the SensorTile board, we monitored the current absorption through an oscilloscope
and a Shunt resistor. We used ANALOG Discovery 2 to measure the voltage on
the shunt resistor, Figure 4.14 shows the circuit schematic used to measure the
power consumption, in particular: VUSB is equal to 5V , R1 is the shunt resistor,
LD39115J186 (SensorTile component) is a voltage regulator, VDD is the power
supply voltage of the entire chip. The voltage regulator holds VDD at a stable
voltage of 1.8V . As input, it accepts a voltage between 1.5 and 5.5V , then voltage
drops on R1 are expected. The Figure 4.15 shows some data on power consumption
experimental results for different operating modes at different heart beats per
minute (bpm), the individual cases will then be taken and discussed.

4.4.3.1 Case: 50 bpm

With low heart rates values, considerable energy savings are obtained even without
adapting the system frequency to the workload. In fact, peak detection OM and
CNN processing OM are workload-dependent, which in this case is low. For the
latter reason, they consume less than the raw data OM, which constantly sends
data to the cloud. There is a further energy saving given by the reduction of the
system frequency according to the workload, in this case, the peak detection OM
is set to 2 MHz and the CNN processing OM is set to 4 MHz. The raw data OM,
the worst case, works always at 8 MHz. The Figure 4.15 also shows the power
consumption values if data transmission to the cloud is present or not (Tx, No tx),

6https://www.st.com/resource/en/datasheet/ld39115j.pdf

https://www.st.com/resource/en/datasheet/ld39115j.pdf

Cardiovascular disease detection on electrocardiogram 73

Raw

Po
we

r
co

ns
um

pt
io

n
(m

W
)

N
o

tx Tx
N

o
tx Tx

N
o

tx Tx
N

o
tx Tx

N
o

tx Tx
N

o
tx Tx

0

2

4

6

8

10

Peak Peak PeakCNN CNN CNN
50 bpm 100 bpm 200 bpm

Op. mode
Heartbeat

With frequency optimization
Without frequency optimization

Figure 4.15: The graph summarizes the energy consumption for different heartbeat
rates, when data sending is enabled (Tx) or not (No Tx). Raw OM does not depend
on heartbeat nor on the threshold settings and the threshold task is disabled, so
only one value is shown.

Cardiovascular disease detection on electrocardiogram 74

as already said, the decision is up to the threshold task.

4.4.3.2 Case: 100 bpm

Peak detection OM and CNN processing OM keep the same operating frequency
of the previous case. Thus there is a slight increase in power consumption for
such modes, only due to the more intense data-dependent workload. Obviously,
no change in raw data OM in terms of power consumption.

4.4.3.3 Case: 200 bpm

Compared to the previous cases, again, there are no changes in the raw data OM.
An increase of the working frequency to 8 MHz is required to sustain the CNN
processing OM. The role of the threshold task, that implies the difference between
the Tx and the No Tx bar for the CNN processing OM, is more important. Even
with this very high rate, the CNN-based monitoring is still convenient with respect
to the raw data OM, confirming the usefulness of near-sensor processing.

4.4.4 Power model & operating mode power consumption
estimation

We have performed a thorough set of experiments measuring energy consumption
in different setup conditions. The results were used to create a model highlighting
the contribution of each task to the energy consumption of the node. By inter-
polating the experimental results on power consumption in the different use cases
and knowing the duration of each task, we were able to build a model capable
of estimating the energy consumption of the device under each possible use case.
Table 4.5 shows the energy values for each task in the process network. Table
4.6 instead shows the power consumption of the platform in idle state and ECG
sensor.

At this point it’s possible to easily estimate the power consumption relative to
each operating mode, the Equations 4.9, 4.10 and 4.11 the power consumption for
each operating mode are calculated.

Praw data OM = (Eg + αEs) · fs + Pidle + Psensor , (4.9)
Ppeak detection OM = Egp · fs + (Et + Es) · fp + Pidle + Psensor , (4.10)
Pcnn processing OM = Egp · fs + (Ec + Et + Es) · fhr + Pidle + Psensor . (4.11)

In Equations 4.9, 4.10 and 4.11, the following operators are used:

Cardiovascular disease detection on electrocardiogram 75

Task type Number of cycle Execution time
(8 MHz)

Energy
contribution

Get data 841 105 µs Eg = 2.96 µJ

Get data + peak 1 550 + 841 300 µs Egp = 3.76 µJ

CNN 4_4_100 361 360 45 ms Ec = 148.78 µJ

CNN 20_20_100 1 719 582 215 ms Ec = 660.37 µJ

Threshold 910 114 µs Et = 2.73 µJ

Send data ∼ 25 000 ∼ 3 ms Es = 83.96 µJ

Table 4.5: Summary of consumption and execution time for each task.

Device Power consumption

2 MHz 4 MHz 8 MHz

Platform in idle state 2.609 mW 3.101 mW 4.546 mW

ECG sensor 237 uW 237 uW 237 uW

Table 4.6: Summary of consumption of peripherals.

• fs is the sampling frequency,

• fhr is the heart rate,

• fp is the peak data sanding frequency,

• α−1 it’s the number of samples inserted in a BLE package,

• Pidle power consumption of the platform in idle state, depends on the system
frequency,

• Psensor energy consumption of the ECG sensor.

Figure 4.16 shows the estimate of the power consumption of the device and the
contributions of each task in case the heart rate is around 60 bpm. The purpose
of Figure 4.16 is to graphically show the power consumption contributions of the
tasks for each operating mode.

The following list shows the estimated battery life (600 mAh, 3.7 V Li-Ion) for
each operating mode:

• Raw data OM: 10.29 days

Cardiovascular disease detection on electrocardiogram 76

Figure 4.16: Estimation of energy consumption for each task of each operating
modes at 60 bpm.

Cardiovascular disease detection on electrocardiogram 77

• Peak detection OM: 23.49 days

• CNN processing OM: 20.20 days

Considering the results in terms of battery life just reported, it is possible to
assert that the different optimizations have made possible higher energy efficiency
for enabling on-edge processing OMs compared to raw OM. To summarize, the in-
crease in efficiency is mainly due to the introduction of the ADAM component and
various optimizations in the design and development phase. ADAM, to this aim,
sets the microcontroller in sleep/active mode and selects, at runtime, optimal clock
frequency, and power supply to respect the real-time constraints. These hardware-
related settings are also optimized at runtime to exploit the data-dependent nature
of the workload (based on the heart rate). Finally, we have considered power opti-
mization as the main objective when taking all the design and development choices.
We have used a simplified peak detection algorithm. Moreover, we have explored
a large number of neural network models to obtain good results in terms of ac-
curacy values with smaller computational resources, with respect to those used in
literature. Thanks to quantization and CMSIS APIs, the SIMD microcontroller’s
capabilities have been exploited as much as possible, significantly increasing the
performance of neural network inference and reducing the memory footprint.

4.5 Work comparison
In this section we compare to the works discussed in Section ?? that deals with
inference at-the-edge. Table 4.7 summarizes the results in terms of neural network
accuracy on MIT-BIH dataset. As may be noticed, our system gets results higher
or very close compared to the alternatives, despite being, to the best of our knowl-
edge, the only work actually evaluating post-deployment accuracy, and considering
all the contributions to errors deriving by all the steps in the online processing sys-
tem. Only for the precision metric, there are works that report higher values, but
exploiting platforms with much higher computational capabilities than those of a
microcontroller and more complex neural networks.

In Sakib et al. [40] a good results in terms of accuracy and precision is ob-
tained, the F-score value is not reported and was therefore calculated from the
reported confusion matrix. Power consumption is not provided but a higher value
is expected compared to our as their methodology is tested on platforms such as
Jetson Nano and RaspberryPi.

Cardiovascular disease detection on electrocardiogram 78

In Azimi et al. [46] the inference does not occur in the Cloud side but from an
intermediate device placed in the same WBAN network as the sensory node, the
latter will have the task of transmitting all the data acquired in raw format thus
leading to a possible excessive power consumption of the node. Also in this case
the F-score parameter was calculated from the results proposed within the paper.

In Burger et al. [47], a good result in terms of accuracy has been obtained,
however, they report far higher power consumption than our methodology. The
higher consumption is due to the fact that they used an FPGA-based platform
and their system is capable of classifying 335 beats per second.

In Hou et al. [52] they obtain good results in terms of accuracy, although in the
work there are not many references to how they were calculated and there are no
supporting confusing matrix, making the calculation of the remaining parameters
not possible. Here too, a Raspberry is used as a reference platform, which leads
to a significantly increasing of power consumption if compared to those obtained
in our work.

Work Accuracy Sensitivity Precision F-score Diseases

Sakib et al. [40] 95.98% − 95.9% 93.5% NSVF
Azimi et al. [46] 96% 76.18% 44, 51% 61, 6% NSVFQ
Burger et al. [47] 97% − − − NLRAV

Hou et al. [52] 98% − − − [1]
Our work 99.08% 98% 96, 31% 98, 12% NLRAV
Our work 98.69% 95, 52% 92, 6% 96, 16% NSVFQ

Post-deployment results

Our work 97.42% 96, 92% 91, 50% 94, 89% NLRAV
Our work 96.98% 95, 35% 85, 17% 91, 12% NSVFQ

[1] Normal (NOR), Left Bundle Brunch Block (LBB), Right Bundle Brunch Block (RBB),
Paced beat (PAB), Premature Ventricular Contraction(PVC), Atrial Premature Contraction

(APC), Ventricular Flutter Wave (VFW) and Ventricular Escape Beat (VEB).

Table 4.7: Results in terms of accuracy value on MIT-BIH dataset (see classes
names in Figure 5.4).

5
Sensorimotor exercise detection using a

wobble board

W e used a wobble board capable of 360° rotation (Figure 5.1), the sen-
sory node is fixed in the upper-middle part. Since the device is bat-
tery powered and communication is via a BLE module, no cable is

used to interface with the sensor node. We chose STMicroelectronics SensorTile
microcontroller-based platform, which is equipped with an ARM Cortex-M4 32-bit
low-power microcontroller. It takes advantage of the LSM303AGR1 accelerometer
sensor integrated into the Sensortile, only the two axes X and Y parallel to the
floor are taken into account. It was chosen to run FreeRTOS on the node, to
have more control over the running tasks due to its ability to create a thread-level
abstraction.

This chapter describes the implementation of a system able to recognize typi-
cal movements in exercises that involve the use of a conventional wobble board or,
more simply, the wireless transmission of raw data acquired from the sensor.

1https://www.st.com/resource/en/datasheet/lsm303agr.pdf

79

https://www.st.com/resource/en/datasheet/lsm303agr.pdf

Sensorimotor exercise detection using a wobble board 80

Figure 5.1: Wobble board used to validate our approach.

5.1 Operating modes
The application model chosen for this use case provides two possible levels of
processing able to evaluate the nature of the movement. The OMs chosen for the
selected use case are shown in Figure 5.2 and described below.

5.1.1 Operating mode: raw data
This is the simplest OM, using only two tasks. It is possible to acquire data from
the sensor and send it via Bluetooth, with a sampling frequency of 100 Hz. In
order to reduce the power consumption related to the transmission, it was decided
to encapsulate four samples taken from the sensor in a single low energy Bluetooth
packet. The Bluetooth packet has a size of 20 bytes, 4 bytes the timestamp, and
four pairs of data taken from the sensor at different instants of time, the data pair
is formed by the values relative to the accelerometer’s X and Y axis, each with a
size of 2 bytes.

Sensorimotor exercise detection using a wobble board 81

Get data Balance CNN Threshold Send

Operating mode: Raw data.

Get data Balance CNN Threshold Send

Operating mode: basic balance.

Get data Balance CNN Threshold Send

Operating mode: CNN.

Figure 5.2: Application model. Top raw OM, middle balance OM, bottom CNN
OM.

Sensorimotor exercise detection using a wobble board 82

5.1.2 Operating mode: basic balance
This OM enables the first level of processing. The sampling rate is lowered to 100/7
Hz, which is more than sufficient to perform the analysis in this OM. A simple
algorithm calculates how much, in percentage, the wobble board is in a balanced
position. The extreme cases, the analysis returns a value of 100% if the board
remains horizontal within a certain tolerance and 0% when the board remains in
constant contact with the ground. The result of the analysis is transmitted every
second, this leads to a significant energy saving due to the decrease of information
that has to be sent via Bluetooth, which is no longer used to transmit raw data.

5.1.3 Operating mode: CNN
Some exercises were selected which were not too complicated to be recognized by
deep learning techniques. Also in this case, a frequency of 100/7 Hz is ideal to
obtain good results with the neural network and have a not excessive workload.
The raw data related to the two X and Y axes of the accelerometer are used as two
different input features as input to the neural network. The balance task remains
active so that if a total stop of the table is detected, no CNN is executed. Again,
the result of the analysis is transmitted every second. Some typical exercises
recommended by Anders Heckmann [3] are those shown in Figure 5.3.

(a) (b) (c) (d)

Figure 5.3: The four common wobble board exercises recommended by physiother-
apist Anders Heckmann [3]. (a) Balance while keeping as steady as possible. (b)
Move the board back and forth. (c) Move the board from sideto side. (d) Clockwise
and counterclockwise circular movement. The Figure was extracted from Nilsson
et al. [4].

The correct execution of the exercise involves:

• Basic stance balance (Figure 5.3.a): Stand on the board with the edges
of your feet on the outer edges of the board. Maintain a neutral spine and
keep your torso upright. Balance on the board by shifting your weight to

Sensorimotor exercise detection using a wobble board 83

prevent any of the board’s edges from touching the floor. The goal is to
maintain the balance for 60 seconds.

• Forward/backward tilt (Figure 5.3.b): Stand on the wobble board with
your feet on the outer edges. Stand upright in a neutral spine position. Tilt
the board to the front to touch the floor. Tilt it back onto the heels to touch
the floor behind you. Continue tilting forward and back in a slow, steady,
controlled motion for 60 seconds.

• Side tilt (Figure 5.3.c): Stand on the wobble board with your feet on the
outer edges. Stand upright in a neutral spine position. Tilt the board from
left to right by transferring your weight from your left leg to your right leg.
Moving in a slow and controlled manner, keeping an upright torso and tight
core. The duration of the exercise is 60 seconds.

• Two leg tilts (Figure 5.3.d): Stand on the wobble board with your feet on
the outer edges. Stand upright in a neutral spine position. In a combination
of the two previous exercises, you will roll the board in a 360-degree motion.
Begin by tilting the board to the left. When the board touches the ground
on the left, transfer your weight to the front to touch the floor. Now transfer
your weight to touch the floor to the right side. Complete the revolution
by tilting the board to the floor behind you. Keep your body centralized
throughout. You may need to balance with your arms as you get used to the
movement. Reverse the motion to move in the other direction. Continue for
60 seconds.

• Other: there is a fifth class that represents everything that is not foreseen
by the previous exercises, for example, the fall from the table or the absolute
absence of movement.

5.2 Neural network design
We used a training procedure that included a static quantization2 step, the source
code is available in our public repository3. This process converts floating-point
weights and activations to integers, allowing the CNN to be implemented using
the CMSIS-NN optimized function library, which expects inputs with 8-bit preci-
sion. We have chosen to force the value of the bias to zero, while for the conversion

2https://pytorch.org/tutorials/advanced/static_quantization_tutorial.html
3https://github.com/matteoscrugli/deepwobbleboard

https://pytorch.org/tutorials/advanced/static_quantization_tutorial.html
https://github.com/matteoscrugli/deepwobbleboard

Sensorimotor exercise detection using a wobble board 84

Hyperparameter Value Hyperparameter Value

Epochs 30 Optimizer Adadelta
Batch size 32 Learning rate 1.0

Loss criterion Cross Entropy Rho 0.9
ES patience 5 ES evaluation Every epoch

Table 5.1: Hyperparameters used during the training phase.
of the weights we have inserted MinMax observers4, who have the task of study-
ing the outputs of each layer. Evaluating the distribution of the output values of
each layer allows the observer to establish a value of scale and zero-point in order
not to saturate these values using a quantized network. The CMSIS-NN library’s
functions for implementing convolution and fully connected layers include output
shifting operations for applying the Scale factor to the outputs, with scaling values
ranging from -128 to 127. In PyTorch, however, the quantization procedure re-
quires a Scale value that is not always a power of two. As a result, we modified the
CMSIS functions slightly to support arbitrary scale values. This change resulted
in a minor increase in inference execution time. After testing inference with and
without this modification, we calculated an increase in execution time of 2.87%.

We used a design space exploration process to compare tens of neural network
topologies in terms of accuracy achieved after training and computing workload
associated with executing the inference task on SensorTile. Figure 5.4 shows the
selected convolutional network and the five selected output classes.
All exercises are one minute in length, each movement performed during the four
different exercises has a different duration. Generally, the longest exercise is the
two leg tilts. CNN does not analyze the exercise for its entire duration (60 seconds)
at once, the signal is divided into windows of 15 seconds duration, a good com-
promise between temporal precision and distinction between the movements to be
evaluated. The maximum number of epochs was set to 30 and the ES algorithm
was chosen to avoid overfitting effects. This algorithm terminates the training
phase if it detects an increase in the loss value [104]; the loss is evaluated every
epoch, and a Patience value of 5 is selected, implying that the training terminates
only if a loss increment is detected for 5 consecutive epochs. Table 5.1 summarizes
the parameters chosen for training, while Table 5.2, shows the dimensions of the
various layers chosen.

4https://pytorch.org/docs/stable/_modules/torch/quantization/observer.html

https://pytorch.org/docs/stable/_modules/torch/quantization/observer.html

Sensorimotor exercise detection using a wobble board 85

21
5

X
-a
xi
s

Y
-a
xi
s

2 20
7

Conv 1

10
3

20 95

Conv 2

47

20 10
0

Fc 1

1

Fc 2

5

Input
Convolution
+ ReLU

Max
pooling

Fully con-
nected
+ ReLU

Softmax

(B) Basic stance balance (FB) Forward/backward tilt
(S) Side tilt (R) Two leg tilts
(G) Other

Figure 5.4: CNN structure and classes description.

Layer Input
dimension

Output
dimension

Input
features

Output
features

Kernel
size

Convolutional 215 207 2 20 9
Max pooling 207 103 20 20 2

Convolutional 103 95 20 20 9
Max pooling 95 47 20 20 2

Fully connected 940 100 − − −
Fully connected 100 5 − − −

Table 5.2: Model parameters.

Sensorimotor exercise detection using a wobble board 86

300
200

100
0

100
200

300 400
300

200
100

0
100

200
300

0

1000

2000

3000

4000

5000

Figure 5.5: Example graph of single acquisition of the “two leg tilts” exercise. The
two axes in the lower plane represent the raw data acquired by the sensor. The
vertical axis represents time in milliseconds.

5.2.1 Data augmentation & generalization
Unfortunately, no datasets already used in the literature containing the selected
exercises were found. Therefore, a dataset was created with 12 one-minute record-
ings for each type of exercise (including class “other”), Figure 5.5 shows an example
graph of single acquisition of the “two leg tilts” exercise. A random split of the
dataset was chosen in order to use 0.8% of the data for the training set and 0.2%
for the validation set. Operations such as translation, rotation and time dilation
of the signal in each direction can often greatly improve generalization [104].

In more detail, augmentation techniques are (also summarized in Table 5.3):

• Translation: During training, the window to the entire signal is shifted by
0.25 s per frame. For example, a 60-second recording with a translation of
0.25 generates a number of frames of (60− 15)/0.25 + 1 = 181.

• Rotation: A rotation transformation was applied to the X and Y axes of

Sensorimotor exercise detection using a wobble board 87

Parameter Value

Traslation, temporal distance between frames 0.25 s
Rotation, X and Y axis rotation ∠−4, ∠0, ∠4

Time dilation, downsampling 6, 7, 8

Table 5.3: Augmentation parameters.

the sensor data, in our case we chose two rotations of ∠−4 and ∠4 degrees.
For each record, two more are then generated.

• Dilation: The sampling frequency of the signals in the dataset is 100 Hz,
but the neural network is trained with 100/7 Hz signals. The size of the
input signal is therefore equal to ⌊(15×100+7−1)/7⌋ = 215. Time dilation
can be obtained by increasing or decreasing the downsampling while keeping
the input size to the neural network constant, in this case, two additional
downsampling values of 6 and 8 were chosen. For each recording, two more
are generated with different time dilations.

5.3 Experimental results
In this section, we will show the results obtained after the neural network training
and we will make a detailed analysis of the power consumption for each OMs.

5.3.1 Neural network accuracy
After the training phase, an accuracy of 97.652% was measured on the validation
set. Figure 5.6 shows the results of the training, showing how the windows ex-
tracted from the validation set are classified. It is possible to notice that the major
difficulty for the network is to recognize in a correct way when the wobble board
is used with movements that do not match the four proposed ones.

5.3.2 Power consumption measures
We measured the power consumption for each OMs, for this purpose the digital
oscilloscope ANALOG Discovery 2 was used to measure the voltage on the shunt

Sensorimotor exercise detection using a wobble board 88

B FB S R G
True label

B
FB

S
R

G
Pr

ed
ict

ed
 la

be
l

180 0 0 0 0

0 512 0 0 0

0 26 362 0 8

0 0 0 543 0

1 5 0 0 535
0

100

200

300

400

500

B FB S R G
True label

B
FB

S
R

G
Pr

ed
ict

ed
 la

be
l

181 0 0 0 29

0 525 0 0 0

0 14 362 0 4

0 0 0 543 0

0 4 0 0 510
0

100

200

300

400

500

Figure 5.6: Validation set confusion matrix, to the left the model with floating
point weights and to the right fixed point weights.

resistor placed in series to the power cable of the SensorTile node. Figure 5.7
shows the result of the measurement.

5.3.2.1 Operating mode raw

This is the OM with the highest amount of data to be sent via Bluetooth, the mini-
mum system frequency to handle data traffic with the Bluetooth module present in
the SensorTile module is 8 MHz. In order to optimize data sending via Bluetooth,
four sensor acquisitions are merged for each packet, reducing the data sending
frequency from 100 Hz to 25 Hz.

5.3.2.2 Operating mode balance

In contrast to the previous one, this is the OM where there is less data transmission,
in fact, the evaluation of the exercise is done every one second, invoking Bluetooth
transmission at the same frequency. It has been tested that a system frequency of
2 MHz is sufficient to meet the real-time constraints, Figure 5.7 shows the savings
due to dynamic optimization of the system frequency.

5.3.2.3 Operating mode CNN

It was chosen to send the information about the classification result of the exercise
every time the neural network inference is performed. In order to correctly execute
the neural network and at the same time respect the real-time constraints, a system
frequency of 4 MHz has been set. The length of the input frame is obviously
the same as that used during training, while the distance between frames in this
evaluation phase, as for operating mode Balance, is one second. For this reason, the

Sensorimotor exercise detection using a wobble board 89

0 1 2 3 4 5 6 7 8 9
Power consumption in mW

Operating mode Raw

Operating mode Balance

Operating mode CNN
Base
With trasmission
Without frequency
optimization

Figure 5.7: Power consumption for each OM.

power consumption is data-dependent and the worst case will thus be taken into
account for the calculation of power consumption. The maximum number of times
a single data item is sent via the Bluetooth module is equal to (60−15)/1+1 = 46.

5.3.3 Power model & operating mode power consumption
estimation

We conducted a comprehensive set of experiments measuring energy consump-
tion in various setup conditions. The results were used to create a model that
highlighted the contribution of each task to the node’s energy consumption. The
energy values for each task in the process network are shown in Table 5.4, Table 5.5
instead shows the power consumption of the platform as a function of the chosen
system frequency

Task type Number of
cycles

Execution time
(8 MHz)

Energy
contribution

Get data 841 105 µs Eg = 2.96 µJ

Get data + balance 1 550 + 841 300 µs Egb = 3.76 µJ

CNN 2 219 582 277 ms Ec = 852.38 µJ

Threshold 910 114 µs Et = 2.73 µJ

Send data ∼ 25 000 ∼ 3 ms Es = 83.96 µJ

Table 5.4: Summary of consumption and execution time for each task.

At this point, Equations 5.1, 5.2 and 5.3 representing the estimated power

Sensorimotor exercise detection using a wobble board 90

Device Power consumption

2 MHz 4 MHz 8 MHz

Platform in idle state 2.609 mW 3.101 mW 4.546 mW

Table 5.5: Summary of consumption of peripherals.

 4.55 mW

 2.10 mW

 0.30 mW

Operating mode Raw

 2.61 mW

 0.08 mW

Operating mode Balance

 3.10 mW

 0.85 mW

 0.08 mW

Operating mode CNN

Idle
Raw
Balance
CNN
Threshold
Send

Figure 5.8: Estimation of energy consumption for each task of each OM.

consumption for each OMs have been obtained:

Praw data OM = (Eg + αEs) · fs + Pidle , (5.1)
Pbasic balance OM = Egb · fs + (Et + Es) · fb + Pidle , (5.2)

Pcnn processing OM = Egb · fs + (Ec + Et + Es) · fc + Pidle . (5.3)

In Equations 5.1, 5.2 and 5.3, the following operators are used:

• fs is the sampling frequency,

• fc frequency of convolutional neural network activation,

• fb is the basic balance data sanding frequency,

• α−1 is the number of samples inserted in a BLE package,

• Pidle power consumption of the platform in idle state, depends on the system
frequency.

Figure 5.8 shows graphically the contribution of each task to the power consump-
tion of each OMs.

6
Runtime reconfiguration on multi-core

platforms

I n this chapter we extend ADAptive runtime Manager to target multi-core ad-
vanced IoT platforms capable of executing more complex applications, thus
enhancing near-sensor processing possibilities. This exposes additional chal-

lenges when it comes to the dynamic runtime management of the platform. First
aspect, modern multi-processor IoT nodes, especially the plethora of prototype
solutions currently designed by the community to support AI-related workloads
and optimized for low-power, have limited OS support. To try our approach on
Orlando, we had to implement adaptivity on a bare-metal system, exploiting the
platform-specific set of APIs to manage the application model, the process net-
work, and the related operating modes. As a second aspect, the availability of
more cores requires, when switching operating mode, the adaptation of the par-
allelism level exploitable within the application structure. The workload imposed
by a given mode must be optimally partitioned between the available processing
elements, using splitting/merging and pipeline methods.

91

Runtime reconfiguration on multi-core platforms 92

6.1 Adaptivity in Advanced Multi-core Hardware
Platforms

Modern data analysis algorithms, such as those relying on neural networks and
deep learning, are characterized by critical demands in terms of computing power.
They are composed of multiple layers and each layer is usually processing tensors.
Thus, such algorithms intrinsically expose additional parallelism to be exploited
when more processing elements are available.

To comply with this complexity, we extended the application model described
in Section 3.5, enabling representation of lower-level building components of the
Process tasks. For example, individual layers composing a Process task represent-
ing a CNN, can be represented themselves as single tasks and communicate with
each other through FIFOs. In this way, tasks can be independently mapped to
physical cores and throughput can be improved.

Figure 6.1 shows an example where each layer in a CNN is mapped to an
independent core. The lower part of the figure shows a legend explaining how
layers, cores, and FIFOs are represented. In this case, the throughput is obviously
determined by the layer with a longer execution time, which limits the pipeline
rate.

Layer 1

Core 1

Layer 2

Core 2

Layer 3

Core 3

Layer nLegend:

Core n FIFO

Figure 6.1: One core for each convolutional layer.

6.1.1 ADAM for Multi-Cores
When multi-core platforms are enabled, ADAM can act to change the mapping
and partitioning of the software tasks, to create a software pipeline configuration

Runtime reconfiguration on multi-core platforms 93

that optimally fits with the required workload. The objective is to balance pipeline
stages and to set up an optimal frequency-voltage operating point for the platform.

We have defined a workload-partitioning mechanism, called splitting, that en-
ables to divide a single task to be executed in parallel on several cores, as depicted
in Figure 6.2, to reduce the duration of a limiting pipeline stage and to improve
the overall throughput. In this case, ADAM, depending on a selected optimization
policy, is in charge to activate, when needed, a set of supporting cores sharing the
initial workload, called helpers. ADAM activates and deactivates the core helpers
in total autonomy, so it knows at all times how many cores are available and how
many are occupied. The lower part of the figure shows a legend explaining how
blocks, cores, and FIFOs are represented.

Block 1

Core 1

Block 2

Core 2

Block helper

Core 4

Block 3

Core 3

Block 1

Core 1

Block 2

Core 2

Block helper

Core 4

Block 3

Core 3

Block nLegend:

Core n FIFO

Figure 6.2: Subdivision of the workload given by the blocks into several cores.

At the moment, we have tested the splitting technique on Orlando, referring
to the typical structure of neural network layers as a specific application use case.
The splitting of a layer with one or more helpers is operated asking the helpers to
compute part (half in case of one single helper) of the layer’s output features.

Runtime reconfiguration on multi-core platforms 94

6.2 Splitting policies
ADAM can implement different policies that may be used to combine splitting and
frequency/voltage scaling to dynamically adapt to changing workloads.

In this work, we have implemented two policies:

• a first policy, that we call ADAM Frequency First (FF), which tries to min-
imize the working system frequency as the main objective,

• a second policy, that we call ADAM Idle First (IF), which is more indicated
for systems that have less reactive frequency management, which tries to set
as many processing elements as possible in sleep mode.

Both policies envision the system to be set, at the start-up, in a mapping config-
uration, called hereafter baseline setup, that balances pipeline stages as much as
possible. To this aim, we merge tasks (layers in our CNN-related experiments)
in blocks, until we obtain groups that are as similar as possible to each other in
terms of execution time. The merging of the operators in one single block is done
at design time. The merged block is represented as a single process network, thus
there is no performance degradation due to the scheduling of multiple nodes on
the same processing element. Figure 6.3 shows an example of a balanced pipeline:
the first and second layers are processed by core 1, the third layer is processed
by core 2, and core 3 instead processes layers 4 and 5, merged together in one
single block. As can be seen from Figure 6.3 and for all subsequent figures, the
first layer, belonging to the first block, is not clearly visible on core 1, due to the
computational complexity, the execution time is extremely reduced compared to
the other layers. Again, Figure 6.3 and the figures representing the timing of the
pipeline, highlight the first stage of the pipeline of each core. What each core does
after the first pipeline stage is nothing more than the same work repeated for all
the other stages. In Figure 6.3 (and similar ones) the pipeline stages following the
first one are shown in grey, in order to make the graph more readable, while the
empty spaces indicate the sleep state of the cores.

We envision the definition of the baseline setup to be identified offline, at design
time, by manual profiling or using adequate existing system-level design tools, such
as those described in Pimentel [105] and Meloni et al. [106].

At this point, thanks to the splitting mechanism, it’s possible to divide the
workload of each task (being an independently mapped layer or a block) between
several cores, activating one or more helpers. Figure 6.4 shows an example of how
this is used to reduce the execution time of the three stages of the pipeline (the
first stage is shared by three cores, the second and third stages by two cores each).

Runtime reconfiguration on multi-core platforms 95

0 25 50 75 100 125

Core 1

Core 2

Core 3

Core 4

Core 5

Core 6

Core 7

Unit of time
C

o
re

 #

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 6.3: Example of balanced pipeline (grey shadows show the potential exe-
cution of successive pipelined computations of the same application).

Reducing the limiting length of the stages the pipeline can switch at a higher rate,
thus the throughput is improved.

ADAM-FF policy is outlined in Algorithm 6.1. In this policy, the system
starts from the baseline setup and, independently from the actual workload to
be supported, applies splitting iteratively to throughput-limiting tasks until all
available processing elements are used as helpers. After this phase ADAM enters
in a routine, that may be triggered by a timer (as in the pseudo-code) or by other
external events. It monitors the workload and increases the system frequency
(adapting the voltage accordingly) when a higher performance level is required to
support real-time constraints or reduces it when constraints are more relaxed.

ADAM-IF is outlined in Algorithm 6.2. Again, the system starts from the base-
line. It sets the system frequency to be capable of respecting worst-case real-time
constraints, corresponding to the highest workload, when the maximum splitting
of the tasks is applied. At this point, ADAM keeps monitoring the workload and
adds or removes helpers to meet the needs posed by real-time at any monitoring
step. When constraints are relaxed, the system uses the minimum number of cores,
leaving the others to wait when to be activated as helpers, moving them from idle
to active state only when more performance is needed.

6.2.1 Splitting model on Orlando
As already described in the Section 3.1.2 and as visible in Figure 3.6, Orlando
chip mounts 8 clusters containing: 2 DSPs, 2 instruction cache memories (each

Runtime reconfiguration on multi-core platforms 96

1 setup baseline;
2 while there are cores available do
3 locate the bottleneck;
4 apply the splitting mechanism on the bottleneck;
5 end while
6 while true do
7 wait trigger from periodic timer;
8 check workload;
9 if real-time constraints are not respected then

10 Increase system frequency;
11 Increase supply voltage;
12 else
13 Decrease system frequency;
14 Decrease supply voltage;
15 end if
16 end while

Algorithm 6.1: ADAM-FF policy algorithm.

1 setup baseline;
2 set system frequency and supply voltage in worst-case;
3 while true do
4 wait trigger from periodic timer;
5 check workload;
6 if real-time constraints are not respected then
7 enable helper cores;
8 else
9 disable helper cores;

10 end if
11 end while

Algorithm 6.2: ADAM-IF policy algorithm

Runtime reconfiguration on multi-core platforms 97

0 25 50 75 100 125

Core 1

Core 2

Core 3

Core 4

Core 5

Core 6

Core 7

Unit of time
C

o
re

 #

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 6.4: Example of redistribution of the workload over multiple cores (grey
shadows show the potential execution of successive pipelined computations of the
same application).

of 16 kB) 2 local 64 kB memories, and a memory of 64 kB shared between the
two DSPs. In general, it’s possible to exploit these local cluster memories in order
to optimize access to memory using the layer-level strategy mentioned in Wang
et al. [81]. This optimization has not been possible in this case due to the size of
data (CNN weights) which forces the adoption of the 4× 1 MB SRAM banks.

In order to better explain the splitting method adopted on Orlando, the func-
tion rpc_call() seen in the Table 3.4 will be better described. The Table 6.1
describes the input parameters associated with the aforementioned function.

Each block is associated with one or more rpc_call() functions, generally
one for each layer of the neural network. For example, in *func a convolutional
function pointer is specified. In varargs the structure containing all the data
pointers useful for the convolution is provided. If the n-th core is in a sleep state,
once an RPC function is executed, by assigning the value n to the core_helper
variable, the n-th core is awakened from the sleep state and performs the function
specified in *func.

The steps to enable core helper activation and workload splitting will be de-
scribed in the following list:

1. The ADAM system constantly calculates how many helper cores must be
enabled for each i-th block.

2. The core dedicated to the i-th block is constantly informed by the ADAM

Runtime reconfiguration on multi-core platforms 98

Input parameter Description

int flags

The first parameter specifies how the function is executed. Between the
two mainpossibilities we find:
- RPC_SYNC, request will be blocking until completion.
- RPC_ASYNC, request will be executing asynchronously.

void *func It’s the pointer to the function to be executed on the specified core.

int core_caller Indication of the core that executed the rpc_call function.

int core_helper Core on which the pointed function will be executed.

int n_parameters Number of parameters that the pointed function takes as input.

int *ret Pointer to the return variable of the specified function.

varargs Input parameters to the previously specified function.

Table 6.1: rpc_call(...) function arguments.

system on how many helper cores are assigned to its block. Within this
core, as many rpc_call() functions are performed as there are helper cores
specified by ADAM on the i-th block.

3. Furthermore, the core dedicated to the i-th block will take care of pass-
ing data in a coherent way to the helper core. For example, if two helper
cores are assigned for the i-th block, the convolutional kernel pointer of each
rpc_call() function that awakens a core helper will be changed, in par-
ticular, a third of the kernels will be associated with each core helper (so
that each core helper calculates one-third of the output features) and the
remaining third is used within the calling core.

6.3 Operating mode
In order to test the effectiveness of our system, we propose an architecture that
allows constant monitoring of a patient’s ECG signal, capable of detecting cardiac
anomalies, by exploiting artificial intelligence techniques. Connected to the ADC
of the reference platform, Orlando, there is the AD82321 sensor module developed
by Analog Devices. For the considered application model, several operating modes

1https://www.analog.com/en/products/ad8232.html

https://www.analog.com/en/products/ad8232.html

Runtime reconfiguration on multi-core platforms 99

have been originally envisioned [5]. In this work, besides targeting an advanced
multi-core hardware platform, for which ADAM has been extended, we focus on
the CNN processing operating mode.

Get data Peak CNN Threshold Send

Figure 6.5: ECG application model for the CNN processing operating mode [5]

We identified five different task types with respect to the selected use case:

• Get data: takes care of acquiring the signal from the AD8232 module.

• Peak: analyzes the ECG signal to detect peaks and calculate the heart rate,
the amount of information sent to the server is greatly reduced.

• CNN: using cognitive analysis based on concurrent neural networks, cardiac
abnormalities are detected in the ECG tracing. Signal frames around the
peaks detected by the previous processing task are considered. Also in this
case, the amount of information sent to the server is greatly reduced.

• Threshold: decides whether or not the results from the enabled processing
levels should be sent to the cloud, for example, if the heart rate is within a
normal range there is no need to transmit the data.

• Send: packages and sends the data to the server.

The Process data tasks, according to the application model presented in Sec-
tion 3.5, are two: Peak and CNN. The peak detection algorithm on the ECG signal
is based on a derivative filter, it was chosen for its simplicity of implementation and
the low computational capacity it requires. The adopted CNN recognizes anoma-
lies on the ECG signal with an accuracy of 88%, and the inference process leads
to 3 different output classes: Normal Sinus Rhythm, Atrial Fibrillation, or Other
Rhythm [107]. The neural network is shown in Figure 6.6 and consists of 13 layers,
each involving a one-dimensional convolution, a batch normalization, a ReLU, and
a dropout stage. Only 3 layers have also a max pooling stage with a pooling size
of 2 between ReLU and dropout. The overall size of the data transferred to the
cloud is 6 Bytes (1 heartbeat data represented with 8 bit, 1 classification label
data represented with 8 bit, 1 timestamp represented with 32 bit). This network

Runtime reconfiguration on multi-core platforms 100

Figure 6.6: Neural network structure.

Runtime reconfiguration on multi-core platforms 101

Core 1

Core 2

Core 3

Core 4

Core 5

Mcycles

C
or

e
#

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12 Layer 13

0 25 2252001751501251007550

36 MHz 50 bpm

System frequency Heartbeat

Figure 6.7: The baseline setup for the selected use case on Orlando.

requires a huge computational power, thus deeply stressing the capabilities of the
adopted hardware platform. It constitutes a proper test bench for the proposed
approach, which adapts the exploited level of parallelism to changing workload
and operating conditions.

6.4 Experimental results
In this section, we are going to show the results obtained with the proposed ex-
tension of ADAM for multi-core platforms considering the Orlando board from
STMicroelectronics [58]. To show the potential of the proposed approach, we eval-
uated on the target hardware platform two different conditions: single channel,
considering one sensor connected to the sensing node and whose results are shown
in Section 6.4.2, and multi-channel, where multiple sensors are connected to the
sensing node and whose results are shown in Section 6.4.3.

6.4.1 Experimental setup
We have executed the CNN described in Section 6.3 on the Orlando multi-core
platform, adopting ADAM for the dynamic adaptation of the processing, as dis-
cussed in Section 6.1.1. The baseline has been chosen manually at design time and
is shown in Figure 6.7. Two layers are mapped on core 1, core 2, 3 and 4 execute
one layer each, while in core 5 eight layers have been merged and mapped together.
The Orlando prototyping board provides pins to measure all the device current
supply, was therefore used a digital oscilloscope and a hall effect probe to evaluate

Runtime reconfiguration on multi-core platforms 102

power consumption corresponding to different workload conditions. We forced the
system to sustain three different workloads in order to show how the system reacts
and dynamically adapts itself to this variation. For this purpose, we have adopted
three workload conditions by fixing the average heart rate respectively to 50, 100,
200 bpm. Such values are chosen to represent the low, moderate, and high cardiac
activity of a healthy individual. We have considered 200 bpm as the overall maxi-
mum workload to be supported by the system. For testing purposes, dummy data
has been adopted in order to activate the CNN, evaluate the execution times and
measure the related power consumption.

To assess the benefits of the proposed splitting technique and of its combi-
nation with dynamic voltage and frequency scaling, we have compared ADAM
solutions with two more static policies, namely Fixed Topology (FT) and Static
System Frequency (SSF). Overall, four policies are then considered in the reported
experiments:

• FT: splitting support is not available, the application is split according to
the baseline setup and, to meet real-time constraints for the maximum heart
rate (200 bpm) a starting system frequency is also selected. The resulting
mapping is kept equal during execution, while the frequency can be tuned
to optimize consumption.

• SSF: no frequency scaling neither splitting support are available. The base-
line setup is used for splitting application and the system frequency is then
selected in order to meet real-time constraints for the given maximum heart
rate (200 bpm). The resulting mapping and frequency are kept equal during
execution.

• ADAM-FF: the proposed ADAM approach for runtime adaptation is enabled
and the frequency-first policy is considered, with the main goal of minimizing
the system operating frequency while meeting real-time constraints.

• ADAM-IF: the proposed ADAM approach for runtime adaptation is enabled
and the idle-first policy is considered, with the main goal of minimizing the
number of idle cores while meeting real-time constraints.

Please consider that the supply voltage Vdd is not directly considered by the
proposed approach, rather it is set according to the adopted frequency, as resulting
from the preliminary study shown in Section 3.1.2 which led to the frequency-
voltage pairing depicted in Figure 3.7.

Runtime reconfiguration on multi-core platforms 103

6.4.2 Single Channel
In ADAM-FF, splitting is used at the start-up to balance the pipeline as much as
possible using all cores. At 50 bpm, ADAM-FF minimizes the system frequency
and, to comply with real-time constraints in this condition, it is settled around
9 MHz2. When the workload increases to 100 bpm, ADAM-FF compensates by
increasing the frequency, doubling it to around 18 MHz. The same happens when
moving to 200 bpm, requiring a frequency increase to 36 MHz.

Thus, 36 MHz corresponds to the frequency required to support the worst-case
workload with complete splitting. When using ADAM-IF, this value is set for
all the workload levels. At 50 bpm the system uses the baseline mapping setup
represented in Figure 6.7. 5 out of 16 processors (DSPs) are in active mode while
the others are in idle state. When passing to 100 bpm, 6 helpers are activated,
to create the pipeline configuration represented in Figure 6.8. Obviously, for 200
bpm, all cores are activated.

Core 1

Core 2

Core 3

Core 4

Core 5

Core 6

Core 7

Core 8

Core 9

Core10

Core 11

Mcycles

C
or

e
#

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12 Layer 13

0 25 2252001751501251007550

36 MHz 100 bpm

System frequency Heartbeat

Figure 6.8: Dataflow on cores with a balanced pipeline and medium workload
(ADAM-IF with maximum 100 bpm).

In FT, frequency is the only knob usable to comply with varying workloads.
Five cores are always used, while frequency is set to 33 MHz for 50 bpm, 66 MHz
for 100 bpm, and 132 MHz for the worst case.

Finally, in SSF, the system uses five cores and is always clocked to 132 MHz.
2Frequency numbers are rounded to consider that available precision in clock generation is 1

MHz.

Runtime reconfiguration on multi-core platforms 104

16 core, 9 MHz, 675 mV

16 core, 18 MHz, 675 mV

16 core, 36 MHz, 675 mV

5 core, 36 MHz, 675 mV

10 core, 36 MHz, 675 mV

16 core, 36 MHz, 675 mV

5 core, 33 MHz, 675 mV

5 core, 66 MHz, 675 mV

5 core, 132 MHz, 675 mV

5 core, 132 MHz, 675 mV

5 core, 132 MHz, 675 mV

5 core, 132 MHz, 675 mV

0 10 20 30 40 50 60 70 80 90 100

50 bpm

100 bpm

200 bpm

Power consumption (%)

SSF FT ADAM-IF ADAM-FF

Figure 6.9: Comparison of power consumption considering different adaptation
policies (with or without ADAM) and different workloads.

The results for single-channel power consumption are presented in Figure 6.9.
For 50 bpm, ADAM-IF consumes slightly more than FT. In fact, the two policies
lead, for a different system frequency, which in the ADAM-IF case is higher, to
the use of the same number of cores. As may be noticed, in Orlando, in this
case, ADAM-FF is the best solution for every workload condition. It saves around
5% on average when compared with ADAM-IF and up to 15% with respect to
more static policies (SSF, FT). This is basically due to the amount of power that
depends on the system frequency: by dividing the workload into several cores it’s
possible to achieve a significant system frequency reduction. In devices where some
components cannot be completely shut down, this method can be very effective

Runtime reconfiguration on multi-core platforms 105

for energy saving. When targeting devices that do not provide effective support
for rapid and low-overhead frequency adaptation, changing the system frequency
at runtime can be impossible. In this case, ADAM-IF can still be a good policy
to save power consumption. It’s possible to save up to 15% power with respect
to SSF, by changing the partitioning and using splitting instead of frequency to
improve performance.

Savings appear to be overall limited in the proposed experimental results. This
is mainly due to the fact that for the considered use case Orlando works in a
frequency region that is lower than 300 MHz. In this region, Vdd is always set to
675 mV , as depicted in Figure 3.7. Lower frequencies do not enable to use lower
voltages, thus using splitting instead of increasing clock speed does not provide
maximum benefits.

6.4.3 Multi-Channel
In order to explore the full potential of the proposed approach, we compare the
proposed ADAM adaptation policies on a prospective benchmark that requires
heavier workloads to be supported. For example, we can envision using Orlando
to implement an embedded microserver analyzing multiple ECG channels (e.g. a
single data collector in a hospital room, performing in-place analysis for all the
patients). For this purpose, 6 different signals coming from 6 AD8232, each mon-
itoring a different patient, are considered. These signals are computed by the
hardware platform concurrently, stressing the available 16 cores and forcing the
system to move to frequencies that imply a modification of the supply voltage. In
this case, always considering the baseline setup depicted in Figure 6.7 as initial
splitting for the application, the starting frequency necessary to meet real-time
constraints with the maximum workload (200 bpm) is 789 MHz, which requires
increasing Vdd to 843 mV with respect to the 675 mV of the single-channel experi-
ments. This baseline setup and 789 MHz operating frequency are, as occurred for
single-channel, the configuration adopted with the SSF policy for all the tests.

Figure 6.10 shows the results for the multi-channel experiments. ADAM-FF
resulting frequencies are now equal to 52 MHz for 50 bpm, 108 MHz for 100 bpm,
and 216 MHz for 50 bpm, all requiring the minimum supply voltage (675 mV) and
employing the whole 16 available cores. This is, again, the best policy for power
consumption, reaching a saving which is more than 80% with respect to SSF in
the 50 bpm case.

ADAM-IF, instead of minimizing frequency aims at minimizing active cores.
For this reason, it employs only 5 cores for 50 bpm, 10 cores for 100 bpm, and all
the 16 cores for 200 bpm, with an operating frequency equal to 216 MHz, requiring

Runtime reconfiguration on multi-core platforms 106

16 core, 9 MHz, 675 mV

16 core, 18 MHz, 675 mV

16 core, 36 MHz, 675 mV

5 core, 36 MHz, 675 mV

10 core, 36 MHz, 675 mV

16 core, 36 MHz, 675 mV

5 core, 33 MHz, 675 mV

5 core, 66 MHz, 675 mV

5 core, 132 MHz, 675 mV

5 core, 132 MHz, 675 mV

5 core, 132 MHz, 675 mV

5 core, 132 MHz, 675 mV

0 10 20 30 40 50 60 70 80 90 100

Low

Medium

High

Power consumption (%)

SSF FT ADAM-IF ADAM-FF

Figure 6.10: Comparison of power consumption in different ADAM configurations
with high workloads (processing of six ECG streams).

the minimum supply voltage (675 mV). The overall power saving of the ADAM-IF
policy with respect to SSF is slightly lower than ADAM-FF, but still consistent
and close to 80% in the best case. By using always the same amount of cores,
5, the FT policy is instead adopting a frequency which is 198, 395, and 789 MHz
respectively for 50, 100, and 200 bpm, and requiring in turn a Vdd equal to 675 mV ,
767 mV , and 843 mV . This, again, leads to a saving of the FT policy with respect
to the ADAM-IF one for 50 bpm due to the overhead of running the same ADAM
task. In any case, with higher workloads (100 and 200 bpm) ADAM-IF saves
always more than 50% power with respect to FT.

Increasing the overall computing load within the hardware platform, for all the

Runtime reconfiguration on multi-core platforms 107

considered workloads (50, 100, and 200 bpm), both ADAM-based policies provide
much more significant savings with respect to non-splitting policies. This is true
especially considering the highest workload cases: up to 60% power reduction is
achieved when higher performance is required.

7
Conclusion

A hardware/software template for the development of a dynamically man-
ageable IoMT node has been defined. It has been designed to execute
in-place analysis of the sensed physiological and sensorimotor data. Its

implementation has been tested on a low-power platform, able to exploit a CNN-
based data analysis to recognize anomalies on ECG traces and to detect some
specific physical exercises on a wobble board. The device is able to reconfigure
itself according to the required operating modes and workload. The ADAM com-
ponent, able to manage the reconfiguration of the device, plays a substantial role in
energy saving. A quantized neural network reaches an accuracy value higher than
97% on MIT-BIH Arrhythmia dataset for NLRAV and NSVFQ diseases classifi-
cation. An energy-saving up to 50% was measured by activating in-place analysis
and managing the hardware and software components of the device. Very similar
results were also obtained using fitness tracking on a wobble board. On a custom
dataset, the quantized neural network achieves an accuracy value equal to 97.652%.
Also in this case, in-place analysis and runtime reconfiguration leads to good re-
sults in terms of energy consumption, saving up to 60%. This approach has also
been validated in multi-core platforms, dynamic workload management is based on
pipelining techniques and parallelization of computation across the available cores.
Once again, runtime management of reconfiguration leads to energy-saving bene-
fits of at least 15%. In this thesis a proof of concept systems are presented. One
of the main limitations of our system comes from the movement artifacts, since

108

Conclusion 109

we have chosen an acquisition configuration having a filtering that allows a low
distortion of the signal, our system is therefore addressable in a hospital environ-
ment, where the patient remains relatively still during monitoring. An interesting
future work is to make the most of the capabilities of the neural network to be
able to recognize motion artifacts in the signal without having to manually search
for the features that need to be monitored. Another step forward can be the
validation our methodology with that provided by the ANSI/AAMI EC57:2012
or BHD standards for recognition of arrhythmias on ECGs. In conclusion, this
thesis demonstrates how to increase battery life with near-sensor processing and
highlights the importance of runtime management on data-dependent systems.

Repositories

Firmware integrating ADAM component for arrhythmias detection:
https://github.com/matteoscrugli/adam-iot-node-on-stm32l4

CNN training using static quantization for arrhythmias detection:
https://github.com/matteoscrugli/ecg-classification-quantized-cnn

CNN training using static quantization for sensorimotor exercises detection:
https://github.com/matteoscrugli/deepwobbleboard

110

https://github.com/matteoscrugli/adam-iot-node-on-stm32l4
https://github.com/matteoscrugli/ecg-classification-quantized-cnn
https://github.com/matteoscrugli/deepwobbleboard

Bibliography

[1] L. Lai, N. Suda, and V. Chandra, “CMSIS-NN: efficient neural network
kernels for arm cortex-m cpus,” CoRR, vol. abs/1801.06601, 2018. [Online].
Available: http://arxiv.org/abs/1801.06601 (Cited on pages vii, 28, 29,
and 30)

[2] S. Jayaraman, V. Sangareddi, R. Periyasamy, and J. Joseph, “Modified limb
lead ecg system effects on electrocardiographic wave amplitudes and frontal
plane axis in sinus rhythm subjects,” The Anatolian Journal of Cardiology,
vol. 17, pp. 46–54, 01 2017. (Cited on pages vii and 44)

[3] S. E. Asp, K. Halldòrsdòttir, C. Hägg, M. L. Møller, B. P. Mickelsson,
L. Boldt, and D. Skaarup, Eds., WobbleActive, 2007. (Cited on pages ix, 12,
and 82)

[4] N. Nilsson, S. Serafin, and R. Nordahl, “Gameplay as a source of intrinsic
motivation for individuals in need of ankle training or rehabilitation,” Tele-
operators and Virtual Environments - Presence, vol. 21, pp. 69–84, 02 2012.
(Cited on pages ix, 10, and 82)

[5] M. A. Scrugli, D. Loi, L. Raffo, and P. Meloni, “A runtime-adaptive cognitive
iot node for healthcare monitoring,” 04 2019, pp. 350–357. (Cited on pages ix
and 99)

[6] E. J. Benjamin, P. Muntner, A. Alonso, M. S. Bittencourt, C. W. Callaway,
A. P. Carson, A. M. Chamberlain, A. R. Chang, S. Cheng, S. R. Das et al.,
“Heart disease and stroke statistics—2019 update: a report from the amer-
ican heart association,” Circulation, vol. 139, no. 10, pp. e56–e528, 2019.
(Cited on page 2)

[7] E. Wilkins, L. Wilson, K. Wickramasinghe, P. Bhatnagar, J. Leal,
R. Luengo-Fernandez, R. Burns, M. Rayner, and N. Townsend, “European
cardiovascular disease statistics 2017,” 2017. (Cited on page 2)

111

http://arxiv.org/abs/1801.06601

BIBLIOGRAPHY 112

[8] R. Maskeliūnas, R. Damaševičius, and S. Segal, “A review of
internet of things technologies for ambient assisted living environments,”
Future Internet, vol. 11, no. 12, 2019. [Online]. Available: https:
//www.mdpi.com/1999-5903/11/12/259 (Cited on pages 2 and 6)

[9] Z. Yang, Q. Zhou, L. Lei, K. Zheng, and W. Xiang, “An iot-cloud
based wearable ecg monitoring system for smart healthcare,” Journal of
Medical Systems, vol. 40, no. 12, p. 286, Oct 2016. [Online]. Available:
https://doi.org/10.1007/s10916-016-0644-9 (Cited on page 6)

[10] L. Roberts, P. Michalák, S. Heaps, M. Trenell, D. Wilkinson, and P. Watson,
“Automating the placement of time series models for iot healthcare applica-
tions,” in 2018 IEEE 14th International Conference on e-Science (e-Science),
Oct 2018, pp. 290–291. (Cited on page 6)

[11] S. Macis, D. Loi, D. Pani, L. Raffo, S. L. Manna, V. Cestone, and D. Guerri,
“Home telemonitoring of vital signs through a tv-based application for el-
derly patients,” in 2015 IEEE International Symposium on Medical Mea-
surements and Applications (MeMeA) Proceedings, May 2015, pp. 169–174.
(Cited on page 6)

[12] K. Kaewkannate and S. Kim, The Comparison of Wearable Fitness Devices,
10 2018. (Cited on page 6)

[13] K. Kaewkannate and S.-C. Kim, “A comparison of wearable fitness devices,”
BMC Public Health, vol. 16, pp. 1–16, 2016. (Cited on page 6)

[14] R. S. Romaniuk, “Iot – review of critical issues,” International Journal of
Electronics and Telecommunications, vol. vol. 64, no. No 1, 2018. [Online].
Available: http://journals.pan.pl/Content/102764/PDF/IJET_1_2018_1
5_1210.pdf (Cited on page 6)

[15] H. Sun, V. D. Florio, N. Gui, and C. Blondia, “Towards building virtual
community for ambient assisted living,” in 16th Euromicro Conference on
Parallel, Distributed and Network-Based Processing (PDP 2008), 2008, pp.
556–561. (Cited on page 6)

[16] H. Ajami, H. Mcheick, and K. Mustapha, “A pervasive healthcare system
for copd patients,” Diagnostics, vol. 9, no. 4, 2019. [Online]. Available:
https://www.mdpi.com/2075-4418/9/4/135 (Cited on page 6)

https://www.mdpi.com/1999-5903/11/12/259
https://www.mdpi.com/1999-5903/11/12/259
https://doi.org/10.1007/s10916-016-0644-9
http://journals.pan.pl/Content/102764/PDF/IJET_1_2018_15_1210.pdf
http://journals.pan.pl/Content/102764/PDF/IJET_1_2018_15_1210.pdf
https://www.mdpi.com/2075-4418/9/4/135

BIBLIOGRAPHY 113

[17] J. N. S. Rubí and P. R. L. Gondim, “Iomt platform for pervasive
healthcare data aggregation, processing, and sharing based on onem2m
and openehr,” Sensors, vol. 19, no. 19, 2019. [Online]. Available:
https://www.mdpi.com/1424-8220/19/19/4283 (Cited on page 6)

[18] U. B. Baloglu, M. Talo, O. Yildirim, R. S. Tan, and U. R. Acharya,
“Classification of myocardial infarction with multi-lead ecg signals and deep
cnn,” Pattern Recognition Letters, vol. 122, pp. 23 – 30, 2019. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S01678655193
0056X (Cited on page 6)

[19] R. D. Labati, E. Muñoz, V. Piuri, R. Sassi, and F. Scotti, “Deep-ecg:
Convolutional neural networks for ecg biometric recognition,” Pattern
Recognition Letters, 2018. [Online]. Available: http://www.sciencedirect.co
m/science/article/pii/S0167865518301077 (Cited on page 6)

[20] Y. Li, Y. Pang, J. Wang, and X. Li, “Patient-specific ecg classification by
deeper cnn from generic to dedicated,” Neurocomputing, vol. 314, pp. 336 –
346, 2018. [Online]. Available: http://www.sciencedirect.com/science/articl
e/pii/S0925231218308063 (Cited on page 7)

[21] K. M. R. Tabal, F. S. Caluyo, and J. B. G. Ibarra, “Microcontroller-
implemented artificial neural network for electrooculography-based wearable
drowsiness detection system,” in Advanced Computer and Communication
Engineering Technology, H. A. Sulaiman, M. A. Othman, M. F. I. Othman,
Y. A. Rahim, and N. C. Pee, Eds. Cham: Springer International Publishing,
2016, pp. 461–472. (Cited on page 7)

[22] M. Magno, M. Pritz, P. Mayer, and L. Benini, “Deepemote: Towards multi-
layer neural networks in a low power wearable multi-sensors bracelet,” in
2017 7th IEEE International Workshop on Advances in Sensors and Inter-
faces (IWASI), June 2017, pp. 32–37. (Cited on page 7)

[23] S. Lee, J. Hong, C. Hsieh, M. Liang, S. Chang Chien, and K. Lin, “Low-power
wireless ecg acquisition and classification system for body sensor networks,”
IEEE Journal of Biomedical and Health Informatics, vol. 19, no. 1, pp. 236–
246, 2015. (Cited on page 7)

[24] T. Chen, E. B. Mazomenos, K. Maharatna, S. Dasmahapatra, and M. Niran-
jan, “Design of a low-power on-body ecg classifier for remote cardiovascular
monitoring systems,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, vol. 3, no. 1, pp. 75–85, 2013. (Cited on page 7)

https://www.mdpi.com/1424-8220/19/19/4283
http://www.sciencedirect.com/science/article/pii/S016786551930056X
http://www.sciencedirect.com/science/article/pii/S016786551930056X
http://www.sciencedirect.com/science/article/pii/S0167865518301077
http://www.sciencedirect.com/science/article/pii/S0167865518301077
http://www.sciencedirect.com/science/article/pii/S0925231218308063
http://www.sciencedirect.com/science/article/pii/S0925231218308063

BIBLIOGRAPHY 114

[25] N. Bayasi, T. Tekeste, H. Saleh, B. Mohammad, A. Khandoker, and M. Is-
mail, “Low-power ecg-based processor for predicting ventricular arrhyth-
mia,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 24, no. 5, pp. 1962–1974, 2016. (Cited on page 7)

[26] T. Ince, S. Kiranyaz, and M. Gabbouj, “A generic and robust system for
automated patient-specific classification of ecg signals,” IEEE Transactions
on Biomedical Engineering, vol. 56, no. 5, pp. 1415–1426, 2009. (Cited on
page 7)

[27] A. Amirshahi and M. Hashemi, “Ecg classification algorithm based on stdp
and r-stdp neural networks for real-time monitoring on ultra low-power per-
sonal wearable devices,” IEEE Transactions on Biomedical Circuits and Sys-
tems, vol. 13, no. 6, pp. 1483–1493, 2019. (Cited on page 7)

[28] E. Kolağasioğlu, “Energy efficient feature extraction for single-lead ecg clas-
sification based on spiking neural networks,” 2018. (Cited on page 7)

[29] G. R. Deshmukh and U. M. Chaskar, “Iot enabled system design for real-
time monitoring of ecg signals using tiva c-series microcontroller,” in 2018
Second International Conference on Intelligent Computing and Control Sys-
tems (ICICCS), 2018, pp. 976–979. (Cited on page 8)

[30] U. Arun, S. Natarajan, and R. R. Rajanna, “A novel iot cloud-based real-
time cardiac monitoring approach using ni myrio-1900 for telemedicine ap-
plications,” in 2018 3rd International Conference on Circuits, Control, Com-
munication and Computing (I4C), 2018, pp. 1–4. (Cited on page 8)

[31] U. Satija, B. Ramkumar, and M. Sabarimalai Manikandan, “Real-time signal
quality-aware ecg telemetry system for iot-based health care monitoring,”
IEEE Internet of Things Journal, vol. 4, no. 3, pp. 815–823, 2017. (Cited
on page 8)

[32] G. Xu, “Iot-assisted ecg monitoring framework with secure data transmission
for health care applications,” IEEE Access, vol. 8, pp. 74 586–74 594, 2020.
(Cited on page 8)

[33] V. Natarajan and A. Vyas, “Power efficient compressive sensing for contin-
uous monitoring of ecg and ppg in a wearable system,” in 2016 IEEE 3rd
World Forum on Internet of Things (WF-IoT), 2016, pp. 336–341. (Cited
on page 8)

BIBLIOGRAPHY 115

[34] E. Spanò, S. Di Pascoli, and G. Iannaccone, “Low-power wearable ecg moni-
toring system for multiple-patient remote monitoring,” IEEE Sensors Jour-
nal, vol. 16, no. 13, pp. 5452–5462, 2016. (Cited on page 8)

[35] H. Ghasemzadeh and R. Jafari, “Ultra low-power signal processing
in wearable monitoring systems: A tiered screening architecture
with optimal bit resolution,” ACM Trans. Embed. Comput. Syst.,
vol. 13, no. 1, pp. 9:1–9:23, Sep. 2013. [Online]. Available: http:
//doi.acm.org/10.1145/2501626.2501636 (Cited on page 8)

[36] T. Tekeste, H. Saleh, B. Mohammad, and M. Ismail, “Ultra-low power qrs
detection and ecg compression architecture for iot healthcare devices,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 2, pp.
669–679, Feb 2019. (Cited on page 8)

[37] C. Wang, Y. Qin, H. Jin, I. Kim, J. D. Granados Vergara, C. Dong, Y. Jiang,
Q. Zhou, J. Li, Z. He, Z. Zou, L. Zheng, X. Wu, and Y. Wang, “A low power
cardiovascular healthcare system with cross-layer optimization from sensing
patch to cloud platform,” IEEE Transactions on Biomedical Circuits and
Systems, pp. 1–1, 2019. (Cited on page 8)

[38] M. K. Adimulam and M. B. Srinivas, “Ultra low power programmable wire-
less exg soc design for iot healthcare system,” in Wireless Mobile Commu-
nication and Healthcare, P. Perego, A. M. Rahmani, and N. TaheriNejad,
Eds. Cham: Springer International Publishing, 2018, pp. 41–49. (Cited on
page 8)

[39] K. G. Rani Roopha Devi, R. Mahendra Chozhan, and R. Murugesan, “Cogni-
tive iot integration for smart healthcare: Case study for heart disease detec-
tion and monitoring,” in 2019 International Conference on Recent Advances
in Energy-efficient Computing and Communication (ICRAECC), 2019, pp.
1–6. (Cited on pages 8, 9, and 11)

[40] S. Sakib, M. M. Fouda, Z. M. Fadlullah, and N. Nasser, “Migrating intelli-
gence from cloud to ultra-edge smart iot sensor based on deep learning: An
arrhythmia monitoring use-case,” in 2020 International Wireless Commu-
nications and Mobile Computing (IWCMC), 2020, pp. 595–600. (Cited on
pages 8, 9, 11, 77, and 78)

[41] M. Deshmane and S. Madhe, “Ecg based biometric human identification
using convolutional neural network in smart health applications,” in 2018

http://doi.acm.org/10.1145/2501626.2501636
http://doi.acm.org/10.1145/2501626.2501636

BIBLIOGRAPHY 116

Fourth International Conference on Computing Communication Control and
Automation (ICCUBEA), 2018, pp. 1–6. (Cited on page 8)

[42] A. Walinjkar and J. Woods, “Personalized wearable systems for real-time
ecg classification and healthcare interoperability: Real-time ecg classification
and fhir interoperability,” in 2017 Internet Technologies and Applications
(ITA), 2017, pp. 9–14. (Cited on page 9)

[43] Y. Xitong, D. Yu, and Z. Jianxun, “A real - time ecg signal classification
algorithm,” in 2020 39th Chinese Control Conference (CCC), 2020, pp. 7356–
7361. (Cited on pages 9 and 11)

[44] M. Naz, J. Shah, M. Khan, M. Sharif, M. Raza, and R. Damasevicius, “From
ecg signals to images: a transformation based approach for deep learning,”
PeerJ Computer Science, vol. 7, 02 2021. (Cited on pages 9 and 11)

[45] C. Ma, X. Mu, and D. Sha, “Multi-layers feature fusion of convolutional neu-
ral network for scene classification of remote sensing,” IEEE Access, vol. 7,
pp. 121 685–121 694, 2019. (Cited on page 9)

[46] I. Azimi, J. Takalo-Mattila, A. Anzanpour, A. M. Rahmani, J. Soininen,
and P. Liljeberg, “Empowering healthcare iot systems with hierarchical
edge-based deep learning,” in 2018 IEEE/ACM International Conference
on Connected Health: Applications, Systems and Engineering Technologies
(CHASE), 2018, pp. 63–68. (Cited on pages 9, 11, and 78)

[47] A. Burger, C. Qian, G. Schiele, and D. Helms, “An embedded cnn implemen-
tation for on-device ecg analysis,” in 2020 IEEE International Conference
on Pervasive Computing and Communications Workshops (PerCom Work-
shops), 2020, pp. 1–6. (Cited on pages 10, 11, and 78)

[48] L.-R. Yeh, W.-C. Chen, H.-Y. Chan, N.-H. Lu, C.-Y. Wang, W.-
H. Twan, W.-C. Du, Y.-H. Huang, S.-Y. Hsu, and T.-B. Chen,
“Integrating ecg monitoring and classification via iot and deep neural
networks,” Biosensors, vol. 11, no. 6, 2021. [Online]. Available:
https://www.mdpi.com/2079-6374/11/6/188 (Cited on pages 10 and 11)

[49] S. M. Mathews, C. Kambhamettu, and K. E. Barner, “A novel
application of deep learning for single-lead ecg classification,” Computers
in Biology and Medicine, vol. 99, pp. 53–62, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0010482518301264
(Cited on pages 10 and 11)

https://www.mdpi.com/2079-6374/11/6/188
https://www.sciencedirect.com/science/article/pii/S0010482518301264

BIBLIOGRAPHY 117

[50] G. Sannino and G. De Pietro, “A deep learning approach for ecg-based
heartbeat classification for arrhythmia detection,” Future Generation
Computer Systems, vol. 86, pp. 446–455, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X17324548
(Cited on pages 10 and 11)

[51] S. Kiranyaz, T. Ince, and M. Gabbouj, “Real-time patient-specific ecg clas-
sification by 1-d convolutional neural networks,” IEEE Transactions on
Biomedical Engineering, vol. 63, no. 3, pp. 664–675, 2016. (Cited on pages 10
and 11)

[52] D. Hou, M. Raymond Hou, and J. Hou, “Ecg beat classification on edge
device,” in 2020 IEEE International Conference on Consumer Electronics
(ICCE), 2020, pp. 1–4. (Cited on pages 10, 11, and 78)

[53] World Health Organization (WHO). Global recommendations on physical
activity for health. Accessed: 2021-11-11. [Online]. Available: https:
//www.who.int/dietphysicalactivity/global-PA-recs-2010.pdf (Cited on
page 10)

[54] H. Abedtash and R. J. Holden, “Systematic review of the effectiveness
of health-related behavioral interventions using portable activity sensing
devices (PASDs),” Journal of the American Medical Informatics Association,
vol. 24, no. 5, pp. 1002–1013, 02 2017. [Online]. Available: https:
//doi.org/10.1093/jamia/ocx006 (Cited on page 10)

[55] B. Blažica and P. Krivec, “Olok boardy – gamified sensorimotor
training with affordable smart balance board,” in 3rd Annual Scientific
and Professional International Conference “Health of Children and
Adolescent”, September 2019, p. 185. [Online]. Available: https:
//www.hippocampus.si/ISBN/978-961-7055-73-3.pdf (Cited on page 10)

[56] N. Maclean and P. Pound, “A critical review of the concept of patient moti-
vation in the literature on physical rehabilitation.” Social science & medicine,
vol. 50 4, pp. 495–506, 2000. (Cited on page 10)

[57] E. Flamand, D. Rossi, F. Conti, I. Loi, A. Pullini, F. Rotenberg, and
L. Benini, “Gap-8: A risc-v soc for ai at the edge of the iot,” in 2018 IEEE
29th International Conference on Application-specific Systems, Architectures
and Processors (ASAP), July 2018, pp. 1–4. (Cited on page 12)

https://www.sciencedirect.com/science/article/pii/S0167739X17324548
https://www.who.int/dietphysicalactivity/global-PA-recs-2010.pdf
https://www.who.int/dietphysicalactivity/global-PA-recs-2010.pdf
https://doi.org/10.1093/jamia/ocx006
https://doi.org/10.1093/jamia/ocx006
https://www.hippocampus.si/ISBN/978-961-7055-73-3.pdf
https://www.hippocampus.si/ISBN/978-961-7055-73-3.pdf

BIBLIOGRAPHY 118

[58] G. Desoli, N. Chawla, T. Boesch, S. Singh, E. Guidetti, F. De Ambroggi,
T. Majo, P. Zambotti, M. Ayodhyawasi, H. Singh, and N. Aggarwal, “14.1
a 2.9tops/w deep convolutional neural network soc in fd-soi 28nm for intel-
ligent embedded systems,” in 2017 IEEE International Solid-State Circuits
Conference (ISSCC), Feb 2017, pp. 238–239. (Cited on pages 12 and 101)

[59] Google®. (2020) Google tpu. [Online]. Available: https://cloud.google.com
/tpu (Cited on page 12)

[60] NVIDIA®. (2019) Embedded systems for next-generation autonomous
machines. [Online]. Available: https://www.nvidia.com/en-us/autonomous-
machines/embedded-systems/ (Cited on page 12)

[61] P. Meloni, A. Capotondi, G. Deriu, M. Brian, F. Conti, D. Rossi, L. Raffo,
and L. Benini, “Neuraghe: Exploiting CPU-FPGA synergies for efficient
and flexible CNN inference acceleration on zynq socs,” ACM Transactions
on Reconfigurable Technology and Systems, vol. 11, no. 3, pp. 1–24, 2018.
(Cited on page 12)

[62] K. Vissers, “Versal: The xilinx adaptive compute acceleration platform
(acap),” in Proceedings of the 2019 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, ser. FPGA ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 83. [Online]. Available:
https://doi.org/10.1145/3289602.3294007 (Cited on page 12)

[63] A. Przybył, “Fixed-point arithmetic unit with a scaling mechanism for
fpga-based embedded systems,” Electronics, vol. 10, no. 10, 2021. [Online].
Available: https://www.mdpi.com/2079-9292/10/10/1164 (Cited on
page 12)

[64] NVIDIA®. (2020) Nvidia cudnn. [Online]. Available: https://developer.nvid
ia.com/cudnn (Cited on page 12)

[65] arm Developer, “Cortex microcontroller software interface standard,” 2016.
[Online]. Available: https://developer.arm.com/tools-and-software/embed
ded/cmsis (Cited on page 12)

[66] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning and quan-
tization for deep neural network acceleration: A survey,” 2021. (Cited on
page 13)

https://cloud.google.com/tpu
https://cloud.google.com/tpu
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://doi.org/10.1145/3289602.3294007
https://www.mdpi.com/2079-9292/10/10/1164
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.arm.com/tools-and-software/embedded/cmsis
https://developer.arm.com/tools-and-software/embedded/cmsis

BIBLIOGRAPHY 119

[67] S. Ward-Foxton, “Artificial intelligence gets its own system of numbers,”
Available online: https://www.eetimes.com/artificial-intelligence-gets-its-
own-system-of-numbers/, 2020. (Cited on page 13)

[68] P. Dziwiński, A. Przybył, P. Trippner, J. Paszkowski, and Y. Hayashi,
“Hardware implementation of a takagi-sugeno neuro-fuzzy system optimized
by a population algorithm,” Journal of Artificial Intelligence and Soft
Computing Research, vol. 11, no. 3, pp. 243–266, 2021. [Online]. Available:
https://doi.org/10.2478/jaiscr-2021-0015 (Cited on page 13)

[69] M.-L. Boukhanoufa, “Adaptabilité et reconfiguration des systèmes temps-
réel embarqués,” Theses, Université Paris Sud - Paris XI, Sep. 2012.
[Online]. Available: https://tel.archives-ouvertes.fr/tel-00758807 (Cited on
page 13)

[70] X. Wang, M. Khalgui, Z. Li, and O. Mosbahi, “Automatic low-power re-
configurations of real-time embedded control systems,” Technical Reprot,
Systems Control and Automation Group School of ElectroMechancial Engi-
neering Xidian University., 2010. (Cited on page 13)

[71] J. Kephart and D. Chess, “The vision of autonomic computing,” Computer,
vol. 36, no. 1, pp. 41–50, 2003. (Cited on page 13)

[72] J. Joyce, G. Lomow, K. Slind, and B. Unger, “Monitoring distributed
systems,” ACM Trans. Comput. Syst., vol. 5, no. 2, p. 121–150, mar
1987. [Online]. Available: https://doi.org/10.1145/13677.22723 (Cited on
page 14)

[73] F. Fouquet, B. Morin, F. Fleurey, O. Barais, N. Plouzeau, and J.-M.
Jezequel, “A dynamic component model for cyber physical systems,”
in Proceedings of the 15th ACM SIGSOFT Symposium on Component
Based Software Engineering, ser. CBSE ’12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 135–144. [Online]. Available:
https://doi.org/10.1145/2304736.2304759 (Cited on page 14)

[74] L. Morgenstern, P. Stefaneas, F. Lévy, A. Wyner, and A. Paschke,
Theory, Practice, and Applications of Rules on the Web: 7th International
Symposium, RuleML 2013, Seattle, WA, USA, July 11-13, 2013, Proceedings,
ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013.
[Online]. Available: https://books.google.it/books?id=Mkm6BQAAQBAJ
(Cited on page 14)

https://www.eetimes.com/artificial-intelligence-gets-its-own-system-of-numbers/
https://www.eetimes.com/artificial-intelligence-gets-its-own-system-of-numbers/
https://doi.org/10.2478/jaiscr-2021-0015
https://tel.archives-ouvertes.fr/tel-00758807
https://doi.org/10.1145/13677.22723
https://doi.org/10.1145/2304736.2304759
https://books.google.it/books?id=Mkm6BQAAQBAJ

BIBLIOGRAPHY 120

[75] G. Tuveri, P. Meloni, F. Palumbo, G. P. Seu, I. Loi, F. Conti, and L. Raffo,
“On-the-fly adaptivity for process networks over shared-memory platforms,”
Microprocessors and Microsystems, vol. 46, pp. 240 – 254, 2016. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S01419331163
00758 (Cited on page 14)

[76] J. Jahn and J. Henkel, “Pipelets: Self-organizing software pipelines for many-
core architectures,” in 2013 Design, Automation Test in Europe Conference
Exhibition (DATE), March 2013, pp. 1516–1521. (Cited on page 14)

[77] Y. Choi, C.-H. Li, D. D. Silva, A. Bivens, and E. Schenfeld, “Adaptive task
duplication using on-line bottleneck detection for streaming applications,”
in Proceedings of the 9th Conference on Computing Frontiers, ser. CF
’12. New York, NY, USA: Association for Computing Machinery, 2012,
p. 163–172. [Online]. Available: https://doi.org/10.1145/2212908.2212932
(Cited on page 14)

[78] Arm, “Arm compute library,” Available online: https://developer.arm.co
m/ip-products/processors/machine-learning/compute-library. (Cited on
pages 15 and 16)

[79] OAID, “Tengine,” Available online: https://github.com/OAID/Tengine.
(Cited on pages 15 and 16)

[80] Tencent, “Ncnn,” Available online: https://github.com/Tencent/ncnn.
(Cited on pages 15 and 16)

[81] S. Wang, G. Ananthanarayanan, Y. Zeng, N. Goel, A. Pathania, and T. Mi-
tra, “High-throughput cnn inference on embedded arm big.little multi-core
processors,” 03 2019. (Cited on pages 15, 16, and 97)

[82] H.-I. Wu, D.-Y. Guo, H.-H. Chin, and R.-S. Tsay, “A pipeline-based sched-
uler for optimizing latency of convolution neural network inference over het-
erogeneous multicore systems,” in 2020 2nd IEEE International Conference
on Artificial Intelligence Circuits and Systems (AICAS), 2020, pp. 46–49.
(Cited on pages 15 and 16)

[83] H. Huang, V. Chaturvedi, G. Quan, J. Fan, and M. Qiu, “Throughput
maximization for periodic real-time systems under the maximal temperature
constraint,” ACM Trans. Embed. Comput. Syst., vol. 13, no. 2s, Jan. 2014.
[Online]. Available: https://doi.org/10.1145/2544375.2544390 (Cited on
pages 15 and 17)

http://www.sciencedirect.com/science/article/pii/S0141933116300758
http://www.sciencedirect.com/science/article/pii/S0141933116300758
https://doi.org/10.1145/2212908.2212932
https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://github.com/OAID/Tengine
https://github.com/Tencent/ncnn
https://doi.org/10.1145/2544375.2544390

BIBLIOGRAPHY 121

[84] H. Yu, R. Syed, and Y. Ha, “Thermal-aware frequency scaling for adaptive
workloads on heterogeneous mpsocs,” in 2014 Design, Automation Test in
Europe Conference Exhibition (DATE), 2014, pp. 1–6. (Cited on pages 16
and 17)

[85] H. Yu, Y. Ha, and J. Wang, “Quality optimization of resilient
applications under temperature constraints,” in Proceedings of the
Computing Frontiers Conference, ser. CF’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 9–16. [Online]. Available:
https://doi.org/10.1145/3075564.3075577 (Cited on pages 16 and 17)

[86] Y. Ma, T. Chantem, R. P. Dick, and X. S. Hu, “Improving system-level
lifetime reliability of multicore soft real-time systems,” vol. 25, no. 6, 2017,
pp. 1895–1905. (Cited on pages 16 and 17)

[87] A. Weissel and F. Bellosa, “Process cruise control: Event-driven clock scaling
for dynamic power management,” 10 2002. (Cited on pages 16 and 17)

[88] K. D. Vogeleer, G. Memmi, P. Jouvelot, and F. Coelho, “The energy/fre-
quency convexity rule: Modeling and experimental validation on mobile de-
vices,” 2014. (Cited on pages 16 and 17)

[89] S. M. Nabavinejad, H. Hafez-Kolahi, and S. Reda, “Coordinated dvfs and
precision control for deep neural networks,” IEEE Computer Architecture
Letters, vol. 18, no. 2, pp. 136–140, 2019. (Cited on pages 16 and 17)

[90] M. Motamedi, D. Fong, and S. Ghiasi, “Machine intelligence on resource-
constrained iot devices: The case of thread granularity optimization for cnn
inference,” ACM Trans. Embed. Comput. Syst., vol. 16, no. 5s, Sep. 2017.
[Online]. Available: https://doi.org/10.1145/3126555 (Cited on pages 16
and 17)

[91] K. Bong, S. Choi, C. Kim, and H.-J. Yoo, “Low-power convolutional neural
network processor for a face-recognition system,” IEEE Micro, vol. 37, no. 6,
pp. 30–38, 2017. (Cited on pages 16 and 17)

[92] G. Santoro, M. R. Casu, V. Peluso, A. Calimera, and M. Alioto, “Design-
space exploration of pareto-optimal architectures for deep learning with
dvfs,” in 2018 IEEE International Symposium on Circuits and Systems (IS-
CAS), 2018, pp. 1–5. (Cited on page 17)

https://doi.org/10.1145/3075564.3075577
https://doi.org/10.1145/3126555

BIBLIOGRAPHY 122

[93] L. Lai, N. Suda, and V. Chandra, “Deep convolutional neural network infer-
ence with floating-point weights and fixed-point activations,” 2017. (Cited
on page 28)

[94] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, “Fixed point quantization
of deep convolutional networks,” 2016. (Cited on page 28)

[95] C. Li, Y. Yang, M. Feng, S. Chakradhar, and H. Zhou, “Optimizing memory
efficiency for deep convolutional neural networks on gpus,” 2016. (Cited on
page 29)

[96] J. E. Hall and M. E. Hall, Guyton and Hall textbook of medical physiology
e-Book. Elsevier Health Sciences, 2020. (Cited on page 42)

[97] A. L. Goldberger, Z. D. Goldberger, and A. Shvilkin, Clinical electrocardiog-
raphy: a simplified approach e-book. Elsevier Health Sciences, 2017. (Cited
on page 42)

[98] G. Moody and R. Mark, “The impact of the mit-bih arrhythmia database,”
IEEE Engineering in Medicine and Biology Magazine, vol. 20, no. 3, pp.
45–50, 2001. (Cited on page 43)

[99] A. Goldberger, L. Amaral, L. Glass, S. Havlin, J. Hausdorg, P. Ivanov,
R. Mark, J. Mietus, G. Moody, C.-K. Peng, H. Stanley, and P. Physiobank,
“Components of a new research resource for complex physiologic signals,”
PhysioNet, vol. 101, 01 2000. (Cited on page 44)

[100] D. Li, J. Zhang, Q. Zhang, and X. Wei, “Classification of ecg signals based on
1d convolution neural network,” in 2017 IEEE 19th International Conference
on e-Health Networking, Applications and Services (Healthcom), Oct 2017,
pp. 1–6. (Cited on page 56)

[101] J. Pan and W. J. Tompkins, “A real-time qrs detection algorithm,” IEEE
Transactions on Biomedical Engineering, vol. BME-32, no. 3, pp. 230–236,
1985. (Cited on page 56)

[102] V. Gupta, M. Mittal, and V. Mittal, “R-peak detection using
chaos analysis in standard and real time ecg databases,” IRBM,
vol. 40, no. 6, pp. 341–354, 2019. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1959031818303166 (Cited on
page 58)

https://www.sciencedirect.com/science/article/pii/S1959031818303166
https://www.sciencedirect.com/science/article/pii/S1959031818303166

BIBLIOGRAPHY 123

[103] J. Laitala, M. Jiang, E. Syrjälä, E. K. Naeini, A. Airola, A. M. Rahmani,
N. D. Dutt, and P. Liljeberg, “Robust ecg r-peak detection using lstm,” in
Proceedings of the 35th Annual ACM Symposium on Applied Computing, ser.
SAC ’20. New York, NY, USA: Association for Computing Machinery, 2020,
p. 1104–1111. [Online]. Available: https://doi.org/10.1145/3341105.3373945
(Cited on page 58)

[104] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, ser. Adaptive
Computation and Machine Learning series. MIT Press, 2016. [Online].
Available: https://books.google.it/books?id=Np9SDQAAQBAJ (Cited on
pages 61, 66, 84, and 86)

[105] A. D. Pimentel, “Exploring exploration: A tutorial introduction to embedded
systems design space exploration,” IEEE Design Test, vol. 34, no. 1, pp. 77–
90, Feb 2017. (Cited on page 94)

[106] P. Meloni, D. Loi, G. Deriu, A. D. Pimentel, D. Sapra, B. Moser,
N. Shepeleva, F. Conti, L. Benini, O. Ripolles, D. Solans, M. Pintor,
B. Biggio, T. Stefanov, S. Minakova, N. Fragoulis, I. Theodorakopoulos,
M. Masin, and F. Palumbo, “Aloha: An architectural-aware framework
for deep learning at the edge,” in Proceedings of the Workshop on
INTelligent Embedded Systems Architectures and Applications, ser. INTESA
’18. New York, NY, USA: ACM, 2018, pp. 19–26. [Online]. Available:
http://doi.acm.org/10.1145/3285017.3285019 (Cited on page 94)

[107] S. Goodfellow, A. Goodwin, D. Eytan, R. Greer, M. Mazwi, and P. Laussen,
“Towards understanding ecg rhythm classification using convolutional neural
networks and attention mappings,” 08 2018. (Cited on page 99)

https://doi.org/10.1145/3341105.3373945
https://books.google.it/books?id=Np9SDQAAQBAJ
http://doi.acm.org/10.1145/3285017.3285019

	Introduction
	State of the art
	IoT for healthcare solutions
	Integration of cognitive processing on IoMT devices

	Sensory nodes for cardiovascular disease treatment
	Cognitive approach for cardiovascular disease detection

	Cognitive IoMT node for sensorimotor exercise detection
	Edge-computing paradigm & runtime adaptivity on nodes with low or high computational capabilities
	Runtime adaptivity
	CNN workload partitioning and mapping
	Dynamic Voltage and Frequency Scaling

	Current scenario summary and proposed novelties

	Methodologies, techniques and architectures
	Hardware platform
	SensorTile
	Orlando

	Middleware & Operating System
	Common Microcontroller Software Interface Standard
	FreeRTOS
	Orlando middleware

	PyTorch framework & quantization
	Electrocardiogram configuration
	MIT-BIH Arrhythmia Database

	Application model & ADAptive runtime Manager
	ADAptive runtime Manager algorithm

	Cardiovascular disease detection on electrocardiogram
	Operating modes
	Operating mode: Raw data
	Operating mode: Peak detection
	Operating mode: CNN processing

	The peak detection algorithm
	Designing the CNN: training and optimization
	Model exploration
	Post-deployment degradation and refinement with Augmentation

	Experimental results
	Pre-deployment CNN accuracy
	Post-deployment CNN accuracy
	Power consumption measures
	Power model & operating mode power consumption estimation

	Work comparison

	Sensorimotor exercise detection using a wobble board
	Operating modes
	Operating mode: raw data
	Operating mode: basic balance
	Operating mode: CNN

	Neural network design
	Data augmentation & generalization

	Experimental results
	Neural network accuracy
	Power consumption measures
	Power model & operating mode power consumption estimation

	Runtime reconfiguration on multi-core platforms
	Adaptivity in Advanced Multi-core Hardware Platforms
	ADAM for Multi-Cores

	Splitting policies
	Splitting model on Orlando

	Operating mode
	Experimental results
	Experimental setup
	Single Channel
	Multi-Channel

	Conclusion
	Repositories
	Bibliography

