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Abstract

In this paper we propose a novel distributed local interaction protocol for networks of multi-agent systems (MASs) in a
multi-dimensional space under directed time-varying graph with the objective to achieve secure rendezvous or static contain-
ment within the convex hull of a set of leader agents. We consider the scenario where a set of anonymous adversarial agents
may intrude the network (or may be hijacked by a cyber-attack) and show that the proposed strategy guarantees the achieve-
ment of the global objective despite the continued influence of the adversaries which can not be detected nor identified by the
collaborative agents. We characterize the convergence properties of the proposed protocol in terms of the characteristics of
the underlying network topology of the multi-agent system. Numerical simulations and examples corroborate the theoretical

results.
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1 Introduction

Large scale networks or swarms of mobile agents, such
as autonomous vehicles, are envisioned to play a role in
future civilian and military applications (Macwan et al.
(2015), Liu and Foina (2016)).

One of the fundamental open problems in the design
of distributed coordination algorithms for large scale
autonomous teams is the resiliency of the control pro-
tocols with respect to the unexpected behavior of team
members when faults or cyber-physical attacks occur.

While there is strength in numbers, there is also an in-
creased probability of faults and opportunity for cyber-
attacks against single agents, members of the network.
Current coordination protocols developed to enable the
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functioning of the group of agents by exploiting only
local information and limited sensing are developed un-
der the assumption that all agents execute the same
nominal protocol, thus even one among thousands of
agents which does not execute the prescribed nominal
control protocol is able to disrupt the emerging beha-
vior of most coordination algorithms based on consensus
protocols. Given the multiple applications that utilize
these kind of coordination protocols, research on resili-
ency and robustness against such adversities has gained
a lot of interest in recent years.

In this paper we aim to overcome this vulnerability by
proposing a secure strategy for multi-dimensional ren-
dezvous (consensus) and static containment of the MAS
within a specified area defined by a set of agents of the
network. The proposed control strategy is secure, under
proper topological conditions of the underlying directed
time-varying graph, against the presence of adversarial
agents assumed to be members of the network who either
i) have been affected by a cyber-physical attack and are
thus remotely controlled by a third party or ii) have
suffered a fault that made them unable to execute the
nominal prescribed control protocol. Notably, the pro-
posed protocol exploits only local sensing of relative po-
sitions of neighboring agents with respect to their own
reference frame in a multi-dimensional space.
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1.1 Literature Review

In the past decades distributed cooperative control and
in particular the consensus problem, i.e., the problem of
designing a local interaction protocol in order to reach
a common agreement among the agents of a network,
has attracted much interest as in Chen et al. (2011),
Cao and Ren (2014), Franceschelli et al. (2015), Frances-
chelli et al. (2017), Cortés (2006), Chen et al. (2012), and
Wang and Xiao (2010). Given the development of cyber-
physical systems (Pasqualetti et al. (2013), Sridhar et al.
(2012), Khaitan and McCalley (2015), Mo and Sinopoli
(2016)), over the last decade people have shifted their ef-
forts to enhance the physical and cyber security of MASs.
One of the problems that has attracted recent attention
is the resilient consensus problem, i.e., the problem of
designing a local update law to reach consensus over a
network in the presence of adversarial or faulty agents,
with recent examples as Zhang and Sundaram (2012),
Leblanc et al. (2013), Wu et al. (2020), Wang and Ishii
(2020), and Abbas et al. (2018). In these works, as well
as in the rest of the literature, the resilient consensus and
the adversarial agents are often referred to with different
names. One of the keyword that is often used as a syn-
onym for resilient and that we use throughout the rest
of the paper is secure. Synonyms for adversarial agents
are instead adversaries, intruders, attackers, malicious
agents, and misbehaving nodes. In this work we mainly
refer to them using the adjective adversarial.

In this context the first significant results are Zhang
and Sundaram (2012), and Leblanc et al. (2013) where
the authors introduced a topological property known
as robustness in order to enhance the resiliency of the
network to adversarial nodes and provided a distrib-
uted robust protocol to achieve consensus when a bound
on the number of adversarial agents in the network is
known. Said topological property is able to capture the
idea of redundancy of information in a network in a
better way than the previously used notions of con-
nectivity and minimum degree of a graph. Depending on
the locality of the bound on the number of adversarial
agents in the network, i.e., if it is local only to the neigh-
borhood of the agents or if it is global with respect
to the whole network, two different models have been
considered: the F-local model which assumes that each
single agent can be influenced at maximum by F' mali-
cious agents in its own neighborhood, and the F-total
model which assumes that there are at maximum F ma-
licious agents in the whole network. Given a topology
condition of the network related to the considered model,
the proposed distributed algorithm, known as Weighted-
Mean-Subsequence-Reduced (W-MSR), discards part of
the data collected from the neighborhood that could
have been compromised by the adversarial agents and
it is capable of guaranteeing the resilient consensus in
a one-dimensional space independently from the con-
sidered model.

The W-MSR algorithm became very popular within
the secure control community and inspired a lot of
works such as Sundaram and Gharesifard (2019), Shang
(2020), Liu et al. (2018), Wu and He (2017), Dibaji and
Ishii (2017), Yigit Oksliz and Akar (2018), Usevitch
and Panagou (2017), Usevitch and Panagou (2020),
and Leblanc and Koutsoukos (2018). For example,
Shang (2020) adapted the W-MSR algorithm in order
to achieve resilient consensus for an hybrid multi-agent
system composed of both continuous time and discrete
time dynamical agents. Liu et al. (2018) addressed the
problem of bipartite consensus under the F-local and
F-total model attack extending the W-MSR algorithm
to consider the absolute value of the neighbors giving
rise to the AW-MSR (Absolute W-MSR) algorithm. In
addition upon considering the delay factor that natural
information transmission could have, Wu and He (2017)
improved the W-MSR to achieve consensus even under
delayed transmissions whereas Dibaji and Ishii (2017)
slightly modified the base algorithm in order to work
with agents whose dynamics are described by a double
integrator law.

All the works mentioned above, however, are one-
dimensional, meaning that the state of agents evolves
in R; on the contrary, under the same topological as-
sumptions, our work allows to achieve a secure rendez-
vous in a multi-dimensional space.

Works that achieve resilient objectives in multi-
dimensional space such as consensus (Leblanc and
Koutsoukos (2018)), flocking (Saulnier et al. (2017)),
formation control and leader tracking (Usevitch et al.
(2018), Zegers et al. (2021)) exist but propose results
based either on separating the position coordinates or
using a norm-based version of the W-MSR algorithm,
which both require the presence of common reference
frames or the access to the absolute positions of the
agents (GPS).

A different approach to the secure consensus problem
consists in adopting the so called secure localization ap-
proach (Liu et al. (2008), Lazos and Poovendran (2005))
in which the agents try to detect the adversarial agents in
order to fulfill the global objective isolating such agents.
Notable examples of this approach can be found in Quan
et al. (2017), Boem et al. (2017) where the authors de-
veloped local state observers to estimate the presence of
adversarial agents or faults in the network. These meth-
ods, however, rely on communication among the agents
and presence of common reference frames. In our con-
text, on the contrary, the agents are anonymous and
their interactions are sensing-based. Furthermore, our
work does not require the presence of a common refer-
ence frame shared among the agents.

The containment problem consist in designing a local
interaction rule in order to let a set of agents, namely



the cooperative agents, enter and then remain within an
area defined by another set of agents, namely the leaders
(Jiet al. (2008), Cao et al. (2012), Xiao et al. (2019), Fu
et al. (2019), Mu and Liu (2016)). In Ji et al. (2008) the
authors proposed hybrid control schemes based on stop-
go rules in order to ensure that the cooperative agents re-
main in the convex polytope spanned by both the leaders
and the cooperative agents. Cao et al. (2012) provided
necessary and sufficient conditions to achieve the con-
tainment problem in the convex hull of the leaders for
both stationary and dynamic leaders under fixed and
switching topology. In addition, in Xiao et al. (2019) the
authors developed a distributed algorithm for hetero-
geneous multi-agent systems whose dynamics change on
successive time intervals, able to asymptotically achieve
containment under the hypothesis of a directed path
from each follower to at least a leader.

To the best of the authors’ knowledge, there is no prior
work that has addressed directly the secure containment
problem. Resilient distributed optimization frameworks
could theoretically encode it but this would be either
constrained to a one-dimensional space (Sundaram and
Gharesifard (2019)) or require the presence of a com-
mon reference frame (Kuwaranancharoen et al. (2020))
whereas our work consider a multi-dimensional space
with no requirement on shared common coordinate
systems. Under the assumption of a common reference
frame and measurements for bearing angles in Santilli
et al. (2019) and Santilli et al. (2022) we proposed a
distributed control protocol based on bearing angles
measurements capable of achieving secure containment
within the hypercube of the leaders. In this work we
remove the assumption on the common reference frame
and we improve the description of the containment re-
gion, which in this case is the convex hull of the positions
of the leaders, rather than the hypercube.

1.2 Main Contribution

In this paper we propose a distributed control protocol
for multi-dimensional MASs described by directed time-
varying graphs which is secure against the influence of a
finite set of anonymous adversarial agents.

The objective of the MAS is to perform rendezvous or
containment within a given area while the adversarial
agents have the objective to either stop the convergence
to a common position or to make the collaborative
agents get out of their containment area. We charac-
terize the convergence properties of the proposed al-
gorithm and provide a sufficient theoretical condition on
the robustness of the underlying directed time-varying
graph under which the algorithm is secure against the
existence of up to F' adversarial agents in each neigh-
borhood of the agents (F-local model). The proposed
control strategy can be computed by using local inform-
ation on the neighborhood of the agents thus making

the cooperative framework completely distributed and
scalable. The adversarial agents are assumed to benefit
from unbounded control actions and knowledge of the
full network state.

To the best of the authors’ knowledge this is the first
work to achieve secure rendezvous and secure contain-
ment in a multi-dimensional environment without re-
quiring access to global position (GPS) or common ref-
erence frames.

1.8 Structure of the paper

The rest of the paper is structured as follows. In Sec-
tion 2, preliminary results concerning graph theory and
topology definitions along with the introduction of no-
tions that are used in the rest of the paper are provided.
In Section 3, the problem setting of our work and the
model of the agents are described. In Section 4, the pro-
posed secure distributed protocol is discussed. In Sec-
tion 5, the theoretical analysis of the proposed distrib-
uted algorithm is carried out. In Section 6, the results of
numerical validation are described. Finally, in Section 7,
the conclusion is drawn and future work is discussed.

2 Preliminaries

In this section we review and introduce notions about
graph theory and notation that we adopt in the rest of
the paper.

A set K in a vector space X C R? is called convez,
if for every z,y € K and every a € [0,1], the point
(1-—a)z+aye€ K. The convex hull of K, denoted
co (K), is the smallest set containing K. We denote by
0dco (K) the border of the convex hull co (K) and by
Qco (K) the set of its vertices.

Consider a non-self-intersecting closed polygon P in R¢,
we define the mean of all the points of P the centroid of
the polygon P to which we refer as C(P) € R? (Protter
and Morrey (1977)). In addition, we denote with R
the set of non negative real numbers and with |S| the
cardinality of the set S. The term (}) with a > b > 0
denotes the binomial coefficient, that is all the possible
ways to select an unordered subset of a elements from a
set of b elements and it is computed as b,(aailb),

Let us introduce the definition of a lexicographic order,
that is a relationship between pairs of elements of a set .S
such that V(z,y), (z,w) € S, (z,y) < (2, w) holds only
if either x < z is verified or both x = z and y < w are
verified.

Let G(t) = (V,£(t)) be a directed time-varying graph,
where V = {1,...,n} is the set of nodes representing



agents and E(t) C {V x V} is the set of edges repres-
enting their ability to sense their relative position. Let
(j,1) € £(t) be the edge joining the agents j and ¢ mean-
ing that agent ¢ can receive information from agent j at
time ¢, i.e., agent ¢ can sense agent j at time t. We denote
by Ni(t) = {j € V: (j,i) € E(t)} the set of neighbors of
agent 7. Moreover, let NV;(t) = N;(t) U {i} be the set of
the extended neighbors of the agent i, i.e., its neighbors
plus itself.

A directed path Pij = {(7’7 T)v (Ta k)v R (S, t)7 (tvj)}
between node 7 and j in a graph G is a sequence of
consecutive edges, all with same direction, which starts
from node i and ends with node j. A directed graph
is said to be strongly connected if there exists a direc-
ted path between any pair of nodes. A graph possess a
rooted spanning tree if there exists a node, called root,
that is able to reach every other node by a directed path
starting from the root.

We now report the notions of reachability and robustness
for directed graphs introduced in Zhang and Sundaram
(2012).

Definition 1 (r-reachable set) Consider a directed
graph G = {V,E} with node set V, edge set £ and a
nonempty node subset S C V. We say that S is an
r-reachable set if 3i € S such that |N; \ S| > r, where
re ZZO'

Basically, a subset of nodes § C V is r-reachable accord-
ing to Definition 1 if there exists at least one node in
set S with at least r neighbors outside set S. The next
definition makes use of the concept of r-reachability to
define the so-called r-robust graph.

Definition 2 (r-robust graph) Consider a directed
graph G = {V,E} with node set V and edge set £. We
say that G is r-robust if for all pairs of nonempty, dis-
joint subsets 81,52 C V), at least one of S1 or Sy is
r-reachable, where r € Z>.

From Definition 2 it follows that in a r-robust graph
there is always a subset of nodes S with a least one of
them that has at least r neighbors outside S. Moreover, a
graph is r-robust if and only if it contains a rooted span-
ning tree (Leblanc et al. (2013)). To conclude this sec-
tion we report a variation of the concept of r-robustness,
known as strong r-robustness.

Definition 3 (strongly r-robust graph) Consider a
directed graph G = {V,E} with node set V and edge
set £. We say that G is strongly r-robust if for any
subset S C V, either S is r-reachable or there exists a
node i € S such that V\ S C N; wherer € Z>g.

The difference between Definition 2 and Definition 3 is
that while the former requires one of the two subset of

Figure 1. Example of a graph with 8 nodes that is 2-robust.

nodes to satisfy the r-reachability property, the latter
requires every subset to be r-reachable, or to have at
least a node that is connected to every node outside the
set. Clearly strong r-robustness implies r-robustness
while the inverse is generally not true. A strongly
r-robust graph is also strongly connected. Furthermore,
in a strongly r-robust graph, as well as in a r-robust
graph, each node has at least r neighbors. The reader
is referred to Zhang and Sundaram (2012) and Leblanc
et al. (2013) for more insight and properties of r-robust
graphs and related notions.

Figure 1 depicts a directed graph composed of 8 nodes. It
can be verified by applying Definition 2 that the graph is
2-robust. Moreover, applying Definition 3, it can be veri-
fied that the graph is strongly 1-robust. It is not strongly
2-robust since the subset S = {2, 3} is not 2-reachable
and nodes 2 and 3 are not connected to all the rest of
the network, thus not satisfying Definition 3.

3 Problem Setting

Let us consider a multi-agent system where three dif-
ferent sets of agents are considered, namely cooperative
agents, leaders, and adversarial agents. More specifically,
the set of “cooperative agents”, denoted as V,, represents
those agents that execute a distributed protocol based on
the sensing of relative positions of their neighbors with
respect to their own inertial reference frame. In the fol-
lowing we refer to the cooperative agents also as “follow-
ers”. Furthermore, we consider a set of so-called “lead-
ers”, denoted as V, representing those agents which do
not execute the proposed control protocol and are pos-
sibly autonomous or remotely controlled. In this paper
leaders are static and can be also considered as anchor
nodes. The positions of the leaders define a containment
area that the followers are expected to reach and not es-
cape from. The set of leaders can be empty, in that case
only cooperative and adversarial agents are considered.
Finally, the set of “adversaries”, denoted as V,, repres-
ents those agents tasked with preventing the cooperative
agents to fulfill their goal, or the agents that suffered a
fault and are thus unable to execute the prescribed con-
trol protocol. Clearly the node set V of the network G(t)
issuch that V =V, UV, UV,.

In this paper, mobile agents (possibly representing



autonomous vehicles) with positions in an arbitrary
d-dimensional space are modeled as discrete-time
multi-dimensional integrators with fixed step-size and
state 2; € R? which evolve according to the dynamics
shown next as

x;(t+ 1) = x;(0), i €V, (2)
2ot + 1) = 25(t) + 2 us(8), icVe,  (3)

where u$(t) € R? is the local control input of the co-
operative agents i € V, to be later specified, x;(0) € R?
is the initial position at time ¢t = 0, and u¢(t) € R? is
the dynamic of the adversarial agents i € V,. For the
sake of simplicity and analysis we express the variables
in eq. (1)—(3) in a common reference frame but we stress
that the agents do not share one. Otherwise, local vari-
ables &; s, (1) (t), ls 3, 1) (t) € R? with ¢ € V could be
introduced to represent the presence of possibly time-
varying local reference frames ¥;(t) = (R;, t;) encoding
rigid body transformations that uniquely identify the
local reference frames with respect to an unknown com-
mon reference frame. Furthermore, for the sake of ana-
lysis we collect the state of all the agents in the stacked
vector x(t) = [z1 ()T, ..., 2, (¢)T]T. In addition, we refer
to the cardinality of the sets V., Vy, and V, respectively
as ne, ng and ng, i.e. |Ve| = ne, |Ve| = ng, and |V, | = n,.

Let us now introduce the working assumptions of our
multi-agent system.

(A1) The adversarial agents are assumed to be embed-
ded with unbounded control inputs and full know-
ledge of the network model and state (worst case
scenario);

(A2) There are a maximum of F' adversarial agents in the
neighborhood of each cooperative agent (F-local
model);

(A3) The cooperative agents are able to measure the re-
lative distance and bearing of their neighbors with
respect to their own reference frame;

(A4) The interactions of the agents are described by a
directed time-varying graph.

We are now ready to state two coordination problems
addressed by the algorithm proposed in this work, that
is a cooperative protocol u(t) for the followers i € V. so
that they can i) asymptotically achieve rendezvous when
there are adversarial agents and no leader in the net-
work and ii) asymptotically reach a containment region
defined according to the position of the leaders despite
the influence of adversarial agents.

Problem 1 (Secure Rendezvous) Consider a multi-
agent system composed of n. cooperative agents and
ng adversaries with dynamics (1) and (3) wunder
Assumptions (A1)-(A4). Our goal is to design a distrib-
uted control law u$(t) for the cooperative agents i € V.

so that for any initial condition x(0) and for any in-
put ul(t) of the anonymous adversarial agents in the
set Vg, the following holds true:

lim z;(t) = p, Vi € V., p € R%. (4)

t—o00

Problem 2 (Secure Containment) Consider a multi-
agent system composed of n. cooperative agents, ny lead-
ers and n, adversaries with dynamics (1)—(3) under
Assumptions (A1)-(A4). Consider a containment re-
gion Cy defined according to the position of the leaders.
Our goal is to design a distributed control law u§(t) for
the cooperative agents i € V. so that for any initial con-
dition x(0), and for any input ul(t) of the anonymous
adversarial agents in the set V,, the following holds true:

lim x;(t) € Cy, Vi € V.. (5)

t—o00

4 Proposed local interaction protocol

In this section we provide the distributed control
strategy capable of solving Problems 1 and 2 under
proper topological conditions of the graph G(t).

To this end, let us now introduce the definition of the
convex hull of the state variables of the agents belonging
toaset S CV, that is

co(x,S) = {yERdayZaixi:zai =104 20}-

i€s i€s
(6)

In our case co(x,S) is a compact set and, in fact, a
convex polytope. Let us now introduce the definitions of
secure convex hull and F-secure convex hull.

Definition 4 (Secure convex hull) We refer to the
convez hull of cooperative agents as secure convex hull,
which is defined as

s-co (x) = co (x,V,) . (7)

Definition 5 (F-Secure convex hull) We define as
F'-secure convex hull for the agent i, the safe area 0b-
tained as follows

F-co (x,N;) = ﬂ co (X,Ni\I). (8)
VICN;
|Z|=min{F, |N;[}

The F-Secure convex hull is built from the intersection
of the convex hull of the state variables of the neighbors
where each time a different subset of the neighbors of
cardinality equal to min {F, |N;(¢)|} has been removed.



Algorithm 1 F-Secure Rendezvous and Containment
Protocol
States of the agents: z,(t) for all i € V,;
Protocol execution: At each time instant ¢, all the
agents repeat the following operations, here reported
for the agent i:
1) Collect the neighbors relative positions x;(t) —x; (¢)
in its own local reference frame;
2) According to eq. (8) compute the F-secure convex
hull F-co (x(t), N;(t));
3) Compute the centroid m;(t) of the F-secure convex

hull as
mi(t) = C((F-co (x(), N (1)), 9)

where C(F-co (x(t),N;(t))) is the centroid of the
F-secure convex hull computed with respect to the
local reference frame of the agent;

4) Compute the relative control action u$(t) as

i (t) = mi(t) — z(t); (10)
5) Update the state z;(t) as

zi(t+ 1) = x;(t) + euf(t) = x;(t) + e(my(t) — x;(t)).

It should be noticed that Definition 5 has been also used
in Wang et al. (2019) where the authors developed a geo-
metrical method to obtain the so-called resilient convex
combination from a set of vectors which may contain ma-
licious data. In our case instead we use the above defini-
tion to build a secure area where the agents are allowed
to move.

Algorithm 1 describes the local coordination protocol
that is proven to solve Problems 1 and 2. The basic idea
of the algorithm is to let the cooperative agents move
in an area, i.e., the F-secure convex hull, that cannot
be arbitrarily influenced by the adversarial agents. The
area is built intersecting a combination of convex hulls
of the state variables of the neighbors of the agent that
is computing the secure area, where each time F' of the
neighbors (or all of them) have been removed from con-
sideration. In this way, under proper topological condi-
tions, the agents are able to move freely in such area and
actively work towards the collaborative objective undis-
turbed. Notice how the intersection includes the state
of the agent ¢, which is considered by definition secure,
whereas the subset Z does not. This implies that in the
worst case the F-secure convex hull is a singleton con-
sisting of the state of the agent ¢. Finally, we point out
that in order to compute eq. (8), each agent ¢ has to

analyze exactly (V\Ié"l) combinations of convex hulls.

Among all the possible points in the F-secure convex
hull, the one that we choose to move towards is its
centroid. Indeed the centroid, being the mean of all the
points in the F-secure convex hull, is always defined in-

Figure 2. A two dimensional MAS where the control
term mo(t) of the cooperative agent 2 is highlighted. Agent 1
is an adversarial agent. The F-secure convex hull is depicted
with a dashed green line. The orange solid line represents
the convex hull of the states of the extended neighborhood
of agent 2 whereas the dash-dotted blue line depicts the Se-
cure convex hull s-co.

dependently if the hull is a single point, a line, or an
area. In the first case, the centroid is the single point it-
self; in second case, the centroid is the mean of the two
endpoints of the line; whereas in the case the F-secure
convex hull is an area, it is possible to compute it from
the vertices of the area itself (further details are given in
Section 6).

Notice also how the steps described in Algorithm 1 can
be implemented by each agent by relying on relative in-
formation measured with respect to their own reference
frame only. Notably, the control input in eq. (10) is in-
variant with respect to any rotation and/or translation
of the agent’s reference frame. Hence, for this reason, the
presence of a common reference frame among the agents
is not required.

Figure 2 depicts the control term mq(t) of agent 2 in
a two-dimensional MAS with 7 agents in which one
of them (agent 1) is an adversarial intruder. The con-
trol term mq(t) is the centroid of the 1-secure convex
hull F-co (x(t),N2(t)) and it is represented by a black
cross whereas the secure convex hull itself is portrayed
with dashed green lines.

5 Theoretical Analysis

In this section we provide the theoretical properties of
the F-secure convex hull and consequently the theor-
etical results of the problems introduced in Section 3.
In particular, first we prove three structural properties
on the F-secure convex hull and then we use them to
demonstrate the convergence properties of Algorithm 1
in regards to Problems 1 and 2.

Proposition 1 The F'-secure convex hull in eq. (8) built



by each agent i € V. is never an empty set, that is

Feco (x(t), N () # {0} (12)

PROOF. The result follows from the fact that for each
agent i € Ve, the convex hulls co (x(t), N;(t) \ Z) built in
eq. (8), for any Z C N;(t), always include the state z;(t).
Therefore, the F-secure convex hull F-co (x(t), N;(t)) is
never empty. O

From Proposition 1 it follows that the centroid m;(t)
can always be computed by any cooperative agent of the
network.

Proposition 2 Consider a cooperative agenti € V, un-
der Assumption (A2), then its F'-secure convex hull is a
subset of the secure convex hull, that is,

F-co (x(t), N;(t)) C s-co (x(t)) (13)

PROOF. The proof follows from the construction of
eq. (8).

Denote as Cyafe the convex hull of cooperative agents in
the neighborhood of agent 1, i.e.,

Caate = co (x(t), N;(t) N Ve) . (14)

Moreover, denote with C7 the subsets that made up
the convex hulls involved in the intersection in eq. (8),
ie., Cz = N,(t) \ T with Z such that Z C N(t) and
IZ| = min{F, [Ni(2)[}.

Since by assumption there are a maximum of F' ad-
versarial agents, and rule (8) removes min{F, |N;(t)|}
elements each time from the set A, it follows that it
must exists a set Cz that contains only elements of the
set Csate, 1.€., O € Caate.

By definition the convex hull of the set C7 is considered
in the intersection in eq. (8) so it holds that

F-co (x(t), N;(t)) C C1 C Caate C s-co (x(t)). (15)
The result follows. O

Proposition 3 Consider a cooperative agent v € V,
which is a vertex of the secure convex hull s-co(x(t))
in a d-dimensional space. If IN;(t)] > F(d+1) +1
and co (x(¢), Ve NN;(t)) # {x;(t)}, then there exists at
least a point y € R different from x;(t), i.e., such that
y # x;(t), which is inside the F-secure convex hull, i.e.,

y € F-co (x(t), Ni(t)). (16)

Furthermore, all points z € R? of the convex combination
z = azri(t)+ (1 — a)y with o € (0,1) belong to the
F-secure convex hull as well, i.e., z € F-co (x(t), N;(t)).

PROOF. The proof follows from the application of
(Wang et al., 2019, Lemma 3) where R is the equival-
ent of our intersection operation in eq. (8) in which the
agent ¢ is not considered, i.e., R represents the following

R = ﬂ
VI CNi(t)
|Z|=min{F, |N; ()|}

co (x(t),M(t) \z). (17)

In particular, since |NV;(t)] > F(d + 1) + 1 holds, then
it follows that R is not empty and contains at least
a point y € RZ In addition, since R is built without
including the state of the agent i then it holds that
R C F-co(x(¢),N;(t)), hence, it must necessarily also
hold that y # x;(t).

In addition, since the F-secure convex hull is convex
by construction and eq. (16) holds, then the points
z = azi(t) + (1 — a)y with « € (0,1) belong to the
F-secure convex hull as well, i.e., z € F-co (x(t), N;(t)).
The result follows. 0

As it will be shown later, the results of Proposi-
tion 3 imply that if its conditions are met, then the
centroid m;(t) computed by each agent 4, vertex of the
convex hull s-co(x(t)), is located in the interior of the
F-secure convex hull.

5.1 Secure Rendezvous

We now provide our theoretical result concerning the
solution of Problem 1.

Theorem 1 Consider a multi-agent system con-
sisting of n. cooperative agents and n, adversaries
agents with dynamics as in eqs. (1) and (3) under
Assumptions (A1)—-(A4). Let the cooperative agents ex-
ecute the control protocol in Algorithm 1. If the graph G(t)
is (F(d+ 1)+ 1)-robust YVt > 0, then the cooperative
agents asymptotically reach rendezvous, i.e.

tli}m zi(t) = p, Vi € V., p € s-co(x(0)), (18)

where s-co (x(0)) is the secure convex hull introduced in
Definition 4 at time t = 0.

PROOF. In order to prove this result, let us con-
sider the secure convex hull s-co (x(t)) composed of
the states of the cooperative agents V. at time ¢ and
its volume V(x(t)) : R™ — Rsq. Note that V(x(t))
is a positive and continuous function of the state x(¢).
In what follows for the sake of brevity we denote the
volume at time ¢ simply as V (t).



If all the cooperative agents have reached the rendezvous
point then s-co (x(t)) is a singleton, i.e., the rendezvous
point, and the volume is zero. Now, suppose that the co-
operative agents are not in a rendezvous state at time ¢.

As stated in Proposition 2, the F-secure convex hull
F-co (x(t), N;(t)) for each agent i is a subset of the secure
convex hull of cooperative agents s-co (x(t)). Then for
the centroid m;(t) the following statements hold

m;(t) € co (x(t), Ni(t)\Va) (19)

and
m;(t) € s-co (x(t)). (20)

Moreover, in virtue of eq. (11), each agent moves towards
its computed centroid m;(t). Since at time ¢ both x;(¢)
and m;(t) belong to the convex hull s-co (x(t)), then it
also holds

zi(t+1) € s-co(x(t)), i€V, (21)
because it is defined as a convex combination of x;(t)
and m;(t) (see eq. (11)).

Since eq. (21) holds for all i € V,(t), it follows that
s-co (x(t + 1)) C s-co(x(1)), (22)

and thus the volume of the convex hull of the cooperative
agents is non-increasing with respect to time

V(t+1) < V(D). (23)

Consider now the cooperative agents belonging to
Qs-co(x(t)) at time ¢, i.e., agents that are vertices of
the set s-co (x(t)).

We want now to prove that either the volume V is
strictly decreasing or that, even if the volume stays the
same, there exists at least a cooperative agent in the
set ©s-co (x(t)) moving towards the rendezvous point p
at time ¢ that eventually leads to the decrease of the
convex hull s-co (x(t)) and hence of its volume V.

First, consider the case where cooperative agents do not
overlap during the execution of Algorithm 1. Recall that
by assumption the graph is (F/(d+ 1)+ 1)-robust, imply-
ing that |A;(¢t)| > F(d+ 1) + 1 holds for each agent i of
the network. It then follows that the conditions of Pro-
position 3 are satisfied.

Then, in virtue of eq. (19) and Proposition 3, it is
guaranteed that the centroid of each agent ¢ which
is vertex of the convex hull of the cooperative agents
s-co (x(t)) is located in the interior of the convex hull
co(x(t), Ni(t) \ V.). Hence it follows that

s-co (x(t+ 1)) C s-co(x(t)). (24)

Eq. (24) holds true as long as for each agent ¢ vertex
of s-co (x(t)) it holds co(x(t), N;(t)\ V) # {xi(t)} = p,
i.e., until the agents reach the rendenzvous point p. This
implies that V(¢ + 1) < V(¢) holds as long as V(¢) > 0
if no agent overlaps its position with others.

Now consider the case where some agents may overlap
their position with others at certain times. In particu-
lar, suppose there exists h subsets Si,...,S, C V. of
agents that overlap at different vertices of the convex
hull s-co (x(t)) during the execution of Algorithm 1 at
time ¢, i.e.,

Sy = {z € Vet xi(t) =z, Tq € Qs-co (x(1)) }, (25)

with ¢ € {1,...,h}.

In this case, eq. (24) is no longer guaranteed to hold since
there could exists agents in those subsets such that

zi(t+1) = i(t), (26)

i.e., such that F-co (x(t),N;(t)) = {x;(¢)}, potentially
leading to

s-co (x(t+ 1)) =s-co(x(t)) and V(t+1)=V(t).
(27)
However, by Definition 2 it must hold for each pair of
subsets S,, Sp, with a,b€{1,...,h} that there exists at
least an agent ¢, with either 1 €S, or i €Sy, that is con-
nected to at least F'(d+ 1)+ 1 neighbors not overlapped
with him outside its respective subset. Then, since for
agent ¢ the conditions of Proposition 3 hold, we can as-

sert that
F-co (x(t),Ni(t)) # {z:(t)}- (28)

This implies that eq. (19) holds as well. Define now the
variable ¥(t) as the number of agents overlapped at the
vertices of the convex hull s-co (x(t)), i.e.,

h

T() = 1S (29)

q=1

Then, in virtue of eq. (11) and what has been derived
above, for each pair of subsets of overlapped agents there
always exists at least an agent ¢ that moves towards the
neighbors not overlapped with him, hence reducing the
number of agents overlapped at the vertices, that is

T(t+1) < T(t). (30)

Since W¥(t) is upper bounded by n., it is guaran-
teed that in a finite number of consecutive time in-
stants Ty < n. — 2, either the volume of the convex
hull decreases again or the rendezvous point p has been
reached by all cooperative agents.



Summarizing, during the evolution of the multi-agent
system the following three scenarios are possible:

) VE+1) < V()
i) ViE+1+7)=V({t+71)and U(t+1+7)<T(t+7)

with 7 > 0;
iii) V(t+1)=V(t)=0and ¥(t+1) = ¥({) = n. and
s-co (x(1)) = {p}.

Consider now the lexicographic ordered function V()
defined as

Vi) = (V. e). (31)

consisting of volume V'(¢) and function ¥(t). We have
proven above and summarized in i) and ii) that Vi (%)
decreases at each iteration until the cooperative agents
reach the rendezvous point p.

We point out that the time variability of the graph
does not change the reasoning of the proof as long
as the graph is (F(d + 1) + 1)-robust for all time in-
stants. In other words, the edge set £(t) is allowed to
change during the evolution of the system as long as
the (F'(d+ 1) + 1)-robustness property is satisfied for
all ¢ > 0.

In conclusion we notice that since the convex hull of co-
operative agents is not increasing in size, the rendezvous
point satisfies p € s-co (x(0)). The result follows. O

In addition, we want to point out that the usage of
the concept of (r,s)-robustness introduced in Leb-
lanc et al. (2013), i.e., considering a time-varying
(F(d+1)+1, s)-robust graph with s > 1, does not guar-
antee a strict decrease of the volume. However, increas-
ing the parameter s guarantees a minor upper bound
on the time bound Ty. In particular, having a network
(F(d+ 1) 4+ 1, s)-robust would increase the speed by a
factor of s time steps since at each time instant there
would exists at least s cooperative agents moving to-
wards the interior of the convex hull hence decreasing
the value of the function ¥(t) by at least s at each ¢.

Figure 2 gives insights on the inclusion properties of the
different convex hulls in place: the F-secure convex hull
F-co (x(t), N;(t)) depicted with a dashed green line is
contained in the secure convex hull s-co (x(t)) depicted
with a dashed dotted blue line, which is, in turn, con-
tained in the convex hull of all the agents co (x(¢),V)
depicted with a solid orange line.

Remark 1 If a necessary and sufficient condition for
the result in (Wang et al., 2019, Lemma 3) were to be
found, then the same graph theoretical condition would
become necessary and sufficient for Theorem 1.

5.2 Secure Containment

We now provide our theoretical result concerning the
solution of Problem 2. The containment region that the
cooperative agents V., have to reach and then remain
contained within is the convex hull of the initial positions
of the leaders V.

Theorem 2 Consider a multi-agent system consisting
of ne cooperative agents, ny leaders, and n, adversaries
agents with dynamics as in egs. (1), (2), and (3) respect-
wely, under Assumptions (A1)—-(A4). Let the cooperat-
we agents execute the control protocol in Algorithm 1. If
the graph G(t) is strongly (F(d+ 1) 4+ 1)-robust Vt > 0,
then the cooperative agents asymptotically reach and re-
main contained in the convex hull defined by the initial
positions of the leaders, that is

lim x(t) € Cy, (32)

t—o0

where the containment region is the convex hull of the
initial positions of the leaders, i.e., C; = co (x(0), V).

PROOF. To prove this result we follow the same steps
as done in Theorem 1. To this end, consider the convex
hull composed of the states of the cooperative agents V.
and leaders Vy combined at time ¢, co (x(t), V.UV,) and
its volume V(x(t)) : R"@ — R, positive and continu-
ous function of the state x(¢).

We now prove that the volume V(¢) of the con-
vex hull of cooperative agents and leaders combined
co (x(t), VcUVy) decreases as long as it is not entirely
contained in the convex hull of the leaders co (x(0), V)
at time ¢t = 0.

Clearly, if at time ¢t = 0 the convex hull of cooperative
agents s-co (x(0)) is entirely contained within the con-
vex hull of the leaders co (x(0), V), then Problem 2 is
solved. Suppose that s-co (x(0)) is not entirely contained
in co (x(0), Vy), that is,

co (x(0),V.UVy) & co (x(0),Vy). (33)
As discussed in the proof of Theorem 1, the F-secure
convex hull F-co (x(t),NV;(t)) for each agent i is a sub-

set of the secure convex hull s-co (x(¢)) (Proposition 2),
hence the centroid m;(t) is such that

m;(t) € co (x(t),N;(t)\Va) . (34)

In this case then it holds that
co (x(t), Ns(t)\Va) C co(x(t), VaUVy).  (35)
Then, it follows that for every i € V. the following holds

m;(t) € co (x(t), V. UVy), (36)



leading to

xi(t+1) €cox(t),VeUVy), i€V, (37)
in virtue of eq. (11). Moreover, since eq. (37) holds for
all i € V.(t), it holds that

co (x(t+ 1)V.UVy) C co (x(t)V.UVy),
(38)
and V(t+1) <V(¢).

As in the case of secure rendezvous, let us now consider
the case when agents at the vertices of the convex hull
s-co (x(t)) do not overlap during the execution of Al-
gorithm 1.

Recalling that by assumption the network is strongly
(F(d+41)+1)-robust, we have that |N;(¢)| > F(d+1)+1
holds for every agent. For the agents vertices of
s-co (x(t)) then Proposition 3 holds. From eq. (11) and
eq. (34) we can then infer that

co (x(t +1),V.UVy) C co (x(t), V.UVy), (39)
that is, the convex hull of the followers and leaders
combined is strictly decreasing. As a consequence, its
volume V decreases as well, i.e., V(t + 1) < V(¢), as
long as the convex hull of the cooperative agents is not
entirely contained in the convex hull of the leaders.

In the case the cooperative agents overlap at the vertices
of the convex hull of cooperative agents only, we can col-
lect them in the subsets S; C V. defined as in eq. (25)
and apply the same reasoning as Theorem 1. In this case,
however, to account for the missed contribution of the
leaders (that are static and hence not actively involved
in the convergence of the convex hull co (x(t), V.UVy))
the network requires a greater level of robustness. The
strongly (F'(d + 1) + 1)-robustness property of the time-
varying network guarantees that there always exists at
least a cooperative agent in one of the subsets S, of over-
lapped agents that possess at least F'(d + 1) 4+ 1 neigh-
bors not overlapped with him outside its set, leading to
the decrease of either the volume V or the value of the
function ¥(t) defined as in eq. (29).

Considering the lexicographic ordered function Vi (t)
defined as VL, (t) = (V(t), ¥(t)) consisting of volume V (¥)
and function ¥(t) as done in the proof of Theorem 1, we
can prove that at each iteration such that the convex hull
s-co (x(t)) is not entirely contained in the convex hull
of the initial positions of the leaders, the lexicographic
function V() decreases. The cooperative agents then
asymptotically reach and remain contained in convex
hull of the initial position of the leaders C; thus proving
the result. (]

We want to remark that the network graph G(t) is
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allowed to change as long as the strongly (F(d+1) +1)-
robustness property is satisfied for all time instants ¢ > 0.

We also point out that the same argument as Remark 1
holds in the case of secure containment, i.e., if a graph
theoretical necessary and sufficient condition were to be
found for the result in Wang et al. (2019) then the same
condition would become necessary and sufficient for The-
orem 2.

6 Numerical simulations

In this section we provide numerical simulations to cor-
roborate the theoretical findings, we present two differ-
ent scenarios: i) a MAS with no leaders in which the co-
operative agents are performing secure rendezvous un-
der the presence of two adversarial agents and ii) a MAS
in which the cooperative agents are tasked to reach and
remain contained in an area defined by the positions of
a set of leaders under the disruptive behaviour of two
adversarial agents.

In both scenarios the agents do not share a common
reference frame nor have access to absolute positions but
rely on measurements with respect to their own reference
frame only to execute the proposed Algorithm 1.

The simulations are carried out in a two-dimensional
space for the sake of clearness. The centroid of a polygon
in this case assumes a well known form. In particular,
considering a mnon-self-intersecting closed polygon P
defined by v vertices {(I()a ZJO)v ('rh yl)a ) (‘Tv—h yv—l)}
numbered in order of their occurrence along the
polygon’s perimeter, the centroid of P is the point
C(P) = [Cy, Cy]T defined as

v—1
1
Cx — a (,I:Z —+ .Ti+1)($iyi+1 - xi-l—lyi)v
i=0
1 v—1 (40)
Cy = — (yl + yi+1>(l‘i Yi+1 — $i+lyi)7
6A i=0

where the vertex (z,,y,) = (zo,y0) and A is the area of
the polygon expressed by

v—1

1
A= ) ;(ﬂfiyiﬂ - $i+1yz’)-

(41)

In the case d = 3, the centroid can be computed by per-
forming proper polygon triangulations: after the polygon
has been decomposed in w triangular faces, its centroid
is given from the mean value of the centroids of the w tri-
angular faces (Protter and Morrey (1977)).
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Figure 3. A multi-agent system composed of 18 cooperative agents and 2 adversarial agents with d = 2 performing secure
rendezvous with interactions described by a directed time-varying 7-robust graph.
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Figure 4. A multi-agent system composed of 15 cooperative agents, 5 leaders and 2 adversarial agents with d = 2 performing
secure containment with interactions described by a directed time-varying strongly 7-robust graph.

6.1 Secure Rendezvous ugy(t) = [1 6} , te{l,...,150},

T
uso(t) = [2, by sin(5)+35] . ¢ € {151,400},

For the case of secure rendezvous we consider a multi- T

agent system described by a directed 7-robust time- ugy(t) = [_1%’ ﬁ Sin(liﬂ)+1l0:| , t € {401,...,700}.

varying graph composed of 18 cooperative agents, 2 ad- (42)

ial 1 . Th i . . .

versara agent.s and no . eaders ° coopiratlve agents Figure 3 depicts the evolution of the states of the agents;

execute Algorithm 1 with parameter F© = 2. The two . ticular in Fi 3a it is depicted th Lt
adversarial agents evolve using the following control 1L particwiar m- Figure Ja 1t 1s depicted the evolution
inputs: along the x-axis whereas in Figure 3b it is portrayed the
evolution along the y-axis. The evolution of the cooper-
ative agents is depicted with a light blue dashed line
whereas the evolution of the intruders is portrayed with
uly(t) = [%’ _%} , te{l,...,150}, a Solif:l orange line. Until time ¢ = 150 the intruders be-
- have in a similar way to the rest of the agents. After that

uly(t) = {ﬁ cos(g—t) ,1% Sin(lt_S)] . te{151,...,700}, time, however, they start executing a disruptive beha-
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viour. Nevertheless all the cooperative agents correctly
achieve the rendezvous as expected from the results of
Theorem 1.

6.2 Secure Containment

For the case of secure containment we consider a multi-
agent system described by a directed strongly 7-robust
time-varying graph. The network is composed of 15 co-
operative agents executing Algorithm 1 with para-
meter F' = 2, 5 static leaders and 2 intruders. The first
intruder evolves using the following control inputs:

T
ugl(t):[_%,g}, te{l,...,150},
T
ug () = [~4, 1], e {15, 5000, (43)
T
ug, (t) = [% %] ., te{501,...,1500},
whereas the second one with the followings:
T
ugo(t) = [31] te{l1,...,150},
T
ugy(t) = {—%, ﬁsin(%)} , te{151,...,1500}.
(44)

The evolution of the states of the agents are depicted in
Figure 4 in which the dash dotted green line, the dashed
light blue line, and the solid orange line represent the
evolution of the leaders, of the cooperative agents and of
the adversarial agent, respectively. As can be seen from
Figures 4a and 4b even thought the behaviour of the
intruder is capable of influencing the behaviour of the
cooperative agents, they remain contained in the con-
finement region defined by the leaders as expected from
the result of Theorem 2. Figure 5 depicts the evolution
over time of the MAS where the convex hulls of the lead-
ers (light blue) and cooperative agents (green) can be
clearly seen.

7 Conclusions

In this paper we investigated the secure rendezvous and
static containment problems for multi-agents system de-
scribed by directed time-varying networks under the
presence of anonymous adversarial intruders which at-
tempt to disrupt the desired behaviour of the system.
We proposed a novel distributed local interaction pro-
tocol able to achieve a secure rendezvous and secure
containment within the convex hull of set of agents of
the system under proper topological conditions known
as r-robustness. Future work will focus on developing a
control strategy able to guarantee containment with dy-
namic leaders.
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