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Highlights 

o A comprehensive quantification of EEG (electroencephalographic) signals avoids 
misinterpretation of band-limited power differences 

o Aperiodic component features are proposed as possible biomarkers of a variety of medical 
conditions 

o Raising awareness might boost related research and challenge traditional approaches to 
diseases diagnosis, treatment and follow-up. 
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Abstract 

Objective  

The present mini-review summarizes recent clinical findings related to the analysis of the aperiodic 
component of EEG (electroencephalographic) power spectra, making them quickly accessible to our 
target audience of medical specialists and allied health researchers, with the final aim of boosting 
related research.  

Methods  

Based on our own experience about clinicians’ literature-searching habits, we queried the PubMed 
database with specific terms related to EEG power spectra aperiodic component analysis and 
selected clinical studies conducted on patients that referenced such terms in the title/abstract, and 
were published in the last five years. 

Results  

A total of 11 journal articles, dealing with 9 different neurologic and psychiatric conditions and 
published between 1st January 2016 – April 1st 2021, were surveyed.  

Conclusions  

Despite the heterogeneity of diseases and aspects investigated in the selected papers, the shared 
key points relate to the exploration of i) the pathophysiological significance of the aperiodic 
component of the EEG power spectra, ii) its impact on the traditional approach to oscillatory 
features, iii) its correlation with the presence/absence of pathology and with diseases stages and/or 
severity. 

Significance  

All studies reported relevant results about aperiodic activity significance, with findings that might 
possibly challenge the traditional approach to the diagnosis/treatment/follow up of the pathology 
considered. 

Keywords 
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1. Introduction 

The human electroencephalogram (EEG) recorded from the scalp has a frequency spectrum that is 
a mix of narrow-band oscillations (e.g., alpha and beta activity) and a non-oscillatory activity or 
broadband noise, which is dominant in lower frequencies (Barry and De Blasio, 2021). Non-
oscillatory brain activity is also termed ‘aperiodic’ or ‘arrhythmic’, namely without a predominant 
temporal frequency, and ‘scale-free’ in reference to its scale-invariant nature (He et al., 2010). 
Between the oscillatory activity, also called ‘periodic’ due to the particular temporal frequency of 
the patterns, and the aperiodic activity, we find quasiperiodic oscillations with intermediate 
characteristics, which exhibit recurrent patterns with an irregular period (Palva and Palva, 2018). 
While oscillations with stable periods retain their peaks both in single trials and in averaged power 
spectra, aperiodic signals lack of peaks both in single trials and in averaged data; quasiperiodic 
oscillations, with their high variable periods, may exhibit peaks in single trials that might not be 
retained in averaged power spectra data, making them indistinguishable from the spectra of 
aperiodic signals (Palva and Palva, 2018). Through the years, a considerable proportion of EEG 
literature focused on differences in pre-defined frequency bands, with a prolific production of 
studies evaluating the oscillatory neural activity in both typical and clinical groups. A less rigorous 
approach has been reserved to the aperiodic activity, and the colors neural noise could assume are 
still not fully explored by research (Doyle and Evans, 2018). Naming colors of noise is common in 
other fields (Doyle and Evans, 2018) as audio engineering, electronics and physics, with color of 
noise referring to the power spectrum of a noise signal. Noise colors relate to the probability 
distribution of the amplitude and the power of noise across the frequency spectrum. Colors mostly 
assume Gaussian amplitude distribution and differ only in their power spectral density (Doyle and 
Evans, 2018). 
A generic term used in literature to refer to any noise with a power spectral density 𝑆(𝑓) described 
by equation (1) is 1/f noise. 
 

𝑆(𝑓)	𝛼	 !
"!

             (1) 

In this equation (1) 𝑓 stands for frequency and the values α may assume determine the color of 
noise. α also determines the power of noise changes across the frequency spectrum (Ward and 
Greenwood, 2007). The canonical case with α = 1 is called pink noise, and it is ubiquitous both in 
nature and man-made processes (Bak et al., 1987).  
Pink (1/f) noise refers to a general form of noise which is intermediate between the white noise (α 
=0), with its equal intensity at different frequencies, and brown noise (α =2) or Brownian motion, 
which describes a random walk (Ward and Greenwood, 2007). 1/f noise exhibits typical attributes 
of healthy complex systems, namely a combination of dynamical minimal stability (the system is 
barely stable with respect to small perturbations) and adaptability (Bak et al., 1987; Stadnitski, 
2012). In virtue of its fractal structure, it has characteristics that remain similar when viewed at 
different scales of time or space (self-similarity), and this same structure gives it two essential 
properties: i) a very slow decaying autocorrelation function (ACF), namely a long-memory of the 
process (vs the theoretical one of i) white ideal noise – no memory, ii) brown ideal noise -infinite 
memory); ii) a power-law distribution, in which the power of noise is inversely proportional to the 
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frequency (Stadnitski, 2012). The latter becomes evident plotting the power spectrum on a log-log 
scale, with the logarithmic power function of 1/f noise that follows a straight line with slope equal 
to -1.  
Bak et al. (Bak et al., 1987) were the first to link together fractal geometry, 1/f noise and power-
laws, introducing the concept of self-organized criticality (SOC) and laying the foundation for 
modern 1/f research. SOC phenomenon is observed in particular complex systems with extended 
degrees of freedom, which operate near the critical configuration (minimal stability), with no need 
of fine-tuning by an external factor (Bak et al., 1987; Ward and Greenwood, 2007). The neural 
criticality hypothesis is controversial (Hesse and Gross, 2014) and although self-organized criticality 
and fractal temporal dynamics have been often used to explain 1/f brain activity (He, 2014), an 
unequivocal link between the phenomena is still missing and other models were proposed to 
account for 1/f activity (Bédard et al., 2006a; Miller et al., 2009; Muthukumaraswamy and Liley, 
2018), leaving the question open about what types of neuronal processes are responsible for these 
potentials. Specifically, as summarized by Muthukumaraswamy and Liley (2018), the existence of 
power laws in the brain has been argued to depend on the state of self-organized criticality of the 
brain, poised on a boundary between two qualitatively different dynamical states and identified as 
the best state for information transmission (Beggs, 2008), or might be potentially explained by low-
pass filtering of ionic current flow at dendritic processes (Lindén et al., 2010; Robinson et al., 2001), 
as well as might be created by current flow in the extracellular space, consisting in a complex folding 
of intermixed layers of fluids and membranes (Bédard et al., 2006b), if the media is considered as a 
complex arrangement of resistors and capacitors (Bédard et al., 2006a). 
A significant fraction of the spontaneous electrical field potentials of the EEG 
(electroencephalographic) recordings is represented by the aperiodic 1/f component of the power 
spectrum that constitutes the arrhythmic and scale free brain activity (He et al., 2010) and may be 
characterized in terms of slope, also referred as spectral exponent, namely the exponential decrease 
of power in a spectrogram as a function of frequency, and offset of the broadband power of the 
signal (He, 2014) (See Fig. 1 for a graphical display of aperiodic component’s features). It is of great 
importance to note that while the study of pure 1/f noise is, by definition, free from frequency 
ranges, the physiological 1/f-like noise is not. EEG recordings are in fact an intricate combination of 
non-stationary oscillatory rhythms overlapping the 1/f spectrum (Muthukumaraswamy and Liley, 
2018), which makes the accurate estimation of the aperiodic features, and of the slope in particular, 
not straightforward. The implication is that, even disregarding oscillations, the aperiodic component 
is not purely a line in the log-log plot, but it shows bends or “knee” frequencies, where the 1/f 
spectrum deviates from linearity. The estimates of the slope of 1/f like noise generally lie in the 
range between 0 < α < 4, and typically between 1 and 2. While we can state pink noise and brown 
noise have an exponent of 1 and 2 respectively, it is important to consider that these exponents are 
not exclusive to noises and might be generated by different processes, biological ones for example. 
A knee point has been found at ∼20 Hz by Robinson et al (2001) whose model reproduced the sleep-
related steepening of the 1/f-like decay in the low frequencies, attributing it, as well as the knee at 
higher frequencies, to the aforementioned low-pass filtering properties of the dendrites. 
Consistently, Colombo et al. (2019) found a steeper decay in the higher-frequencies during 
wakefulness and xenon/propofol anesthesia, with the knee once again at ∼20 Hz; to obtain a better 
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local fit they splitted the broad 1-40 Hz band examined in two sub-bands (1-20 Hz; 20-40 Hz) that 
interestingly revealed a different response to pharmacological manipulations, suggesting 
independent neuronal timescales are at a play. A simulated network including both excitatory and 
inhibitory populations modeled by Gao et al. (2017) suggested a crucial role of blocking activity 
propagation in steepening the PSD (power spectral density) decay. Excitatory and inhibitory inputs 
have different rates of decay, and changes in the relative contribution between their synaptic 
currents seem to be reflected in the field potential, namely in the frequency domain representation 
(PSD) (Gao et al., 2017). Gao et al. (2017) demonstrated how changes in the spectral exponent might 
depend on global changes in the excitation/inhibition (E/I) balance (e.g., an increased contribution 
of the inhibitory population, with reduction of the E/I ratio, steepens the decay) and how, vice versa, 
E/I changes can be estimated from the power law exponent. This general concept, confirmed by 
physiological, computational and pharmacological evidence (Colombo et al., 2019; Gao et al., 2017), 
offers an important starting point for the study of those clinical conditions in which the E/I tone has 
a relevant role. 
While the aperiodic signals of neural field recordings have been linked to the underlying activity of 
postsynaptic potentials (Gao et al., 2017; Miller et al., 2009), neural oscillations are thought to relate 
to population synchrony (Donoghue et al., 2021) and to possibly facilitate the dynamic temporal 
and spatial organization of neural activity (Voytek and Knight, 2015). Neuronal activation has been 
shown to result in a flatter slope (He, 2011), reflecting decreases in lower-frequency power and 
increases in higher-frequency power (Podvalny et al., 2015), suggesting that slope flattening and 
spectral power associated changes might be a signature of increased asynchronus neuronal activity 
(Peterson et al., 2017; Sheehan et al., 2018; Voytek and Knight, 2015). 
Consistently, Muthukumaraswamy and Liley (2018) demonstrated temporal correlations between 
oscillatory alpha power and the estimates of the slope (in high frequency bands: 5-100Hz) in EEG, 
ECoG (Electrocorticography) and MEG (magnetoencephalography). Considering the EEG spectra as 
being generated by a collection of stochastically perturbed damped oscillators with a distribution of 
relaxation rates, they proposed a model that possibly explains the nature of 1/f signal, its sensitivity 
to drug interventions, as well as its dynamic interaction with oscillatory rhythms 
(Muthukumaraswamy and Liley, 2018). Nevertheless, this dynamic interaction between the periodic 
and aperiodic component of EEG power spectrum is still under investigation. 
The aperiodic activity is the prevailing one when the oscillatory component is absent 
(Schaworonkow and Voytek, 2021), however most of the EEG studies are conducted on an ex ante 
basis taking in consideration canonical frequency bands to be investigated and ignoring the 
aperiodic “background activity”, often simplistically defined as noise. On the contrary, as has been 
stressed by recent works (Donoghue et al., 2020b), the aperiodic signal may instead correspond to 
physiologically relevant signals, with their peculiar functional significance.  
In contrast with the traditional view, several experimental findings confirm not only a significance 
behind part of the signals usually considered as noise, but also the dynamism of the aperiodic 
component, expressed by the changes in its parameters in relation to task demands (He et al., 2010), 
cognitive states (Podvalny et al., 2015), age (Schaworonkow and Voytek, 2021; Tran et al., 2020) 
and also diseases (Peterson et al., 2017; Robertson et al., 2019). Furthermore, already in 2001 
Robinson et al. (Robinson et al., 2001) provided a theoretical basis for the conventional division of 
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EEG spectrum into frequency bands, highlighting, at the same time, how the exact bounds are not 
universal but dependent on the individual. The common thread of individuality has been explored 
in the following years with studies that showed the important role that the subject-specific 
characteristics of EEG features may play for clinical purposes (Arns, 2012; Demuru et al., 2017; 
Fraschini et al., 2015; Pani et al., 2020; Rocca et al., 2014) In this context, it has been recently 
demonstrated by Demuru and Fraschini (2020) that the aperiodic component also is characterized 
by strong subject-specific properties and that its features may help to characterize and make 
inferences at the single subject level, with a better performance than that of the classical frequency 
bands. 
Not surprisingly, the traditional approach derives from partially arbitrary choices of the principles 
to be considered fundamental for the study of EEG signals and it would be definitely interesting to 
know what the differences in the EEG analysis routine would be if in the past the 1 / f exponential 
distribution had been defined as a core characteristic of EEG signals (Donoghue, 2020). 
The focus on the oscillatory component of EEG power spectra was strengthened by the selective 
attention scientists paid to it over the years, at the detriment of the aperiodic component, albeit 
unconsciously. In fact, although the first study dealing with the exponential distribution (1/f-like) of 
EEG data dates back to 1949 (Donoghue, 2020; Motokawa, 1949), it was followed by years of silence 
before being revived by Freeman, who worked on the topic through all his career and summarized 
the main concepts in a four part work: “Origin, structure, and role of background EEG activity” 
(Freeman, 2006, 2005, 2004a, 2004b), and then Pritchard (1992) and He et al. (2010). Voytek's group 
is, in recent years, the most prolific on the subject, with several studies (e.g., Peterson et al., 2017; 
Robertson et al., 2019; Voytek et al., 2015) aiming at characterizing the EEG aperiodic component 
in different groups and investigating its physiological and clinical significance. 
In light of these findings, and considering that the oscillatory component is embedded in the non-
oscillatory one (Donoghue et al., 2020b), it would be appropriate to take the non-oscillatory activity 
into account to avoid misinterpretation of band-limited power differences. In fact, being the 
aperiodic component omnipresent, non-zero power is always detectable at all frequencies bands, 
meaning that any spectral measure (e.g., computing a power spectrum, narrowband filtering, and 
average band-power measures) will return a numerical value of power for any chosen frequency 
band even when there is no oscillatory activity at all (Donoghue et al., 2021). Donoghue et al. (2021) 
recently proposed a very valuable 7-point checklist of methodological considerations and 
recommendations for a correct analysis and interpretation of neural oscillations. They provided a 
comprehensive overview of neural oscillations heterogeneity and addressed, among the other 
topics, the periodic/aperiodic issue. Donoghue et al. (2021), once again, highlighted the importance 
to evaluate to which of the elements of the data (periodic/aperiodic) the changes detected should 
be attributed, and have drawn attention to methods that can be used i) to separate and measure 
aperiodic neural activity as IRASA (Wen and Liu, 2016), and ii) to measure and control for aperiodic 
activity such as spectral parameterization (Donoghue et al., 2020b) and eBOSC (Kosciessa et al., 
2020). 
In summary, approaching EEG data with an a priori classical analysis focused on the periodic 
component of EEG power spectra, fails to answer the question: are the changes detected driven by 
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the oscillatory component alone? The power changes may indeed result from i) the periodic signal, 
ii) the aperiodic signal, iii) a combination of the two components, periodic and aperiodic.  
In spite of it, while the oscillatory component has been extensively investigated far less, attention 
was and is reserved to the changes of the aperiodic component, while conducting clinical EEG 
studies. 
With the final aim to boost the research related to the field, we realized this mini-review, revising 
recent clinical studies that included the aperiodic component analysis in their methods, defining 
field of interest, nature of the results and possible clinical impact. The 5-year criterion for our 
selection is based on the technical progress of the last five years regarding methods/tools to 
measure the aperiodic component features. Modern approaches enable a precise and uniform 
evaluation of aperiodic features and, consequently, the chance to produce, with little effort, 
reproducible and comparable results. Hoping to raise interest in our target audience made of 
medical specialists and allied health researchers, we focused on clinical outcomes of PubMed 
searches, ensuring an easy retrieve of the articles discussed for eventual further information. As a 
matter of fact, PubMed is one of the most widely accessible biomedical resources globally 
(Williamson and Minter, 2019) and also, in our experience, the most used database by clinicians 
colleagues.  
Our PubMed search of indexed articles on the topic resulted in two macro-areas of application, 
namely psychiatry and neurology. All of the studies, despite the heterogeneity of the topics, showed 
relevant results concerning aperiodic activity significance and highlighted the utility of the 
comprehensive approach to EEG power spectra features in avoiding misinterpretation of band-
limited power differences, and in exploring the role of the aperiodic features as possible 
electrophysiological biomarkers. 
 
Fig. 1 Periodic and aperiodic spectral features. Example of an EEG signal (grey): marked in yellow a peak in 
one of the canonical frequency bands (yellow stripe); in red the broadband offset and the slope that 
characterize the aperiodic component of the power spectra. 
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2. Methods  
 
In order to achieve our goal, searches were performed on the PubMed database to select articles 
from the last five years that referenced the following items/terms in their title or abstract: 1) 
aperiodic component of power spectrum; 2) EEG power spectral slope OR EEG power spectral offset; 
3) Aperiodic EEG activity; 4) 1/f brain activity OR 1/f neural noise. Eligibility criteria included i) type 
of study: clinical studies conducted on patients/patients and controls, ii) date of publication: last 
five years (1st January 2016 –1st April 2021); no language and length restriction were imposed; no 
unpublished studies and/or not indexed articles were included due to the choice to query only 
PubMed. A total of 11 studies were identified for inclusion in the review. The search of PubMed 
provided a total of 137 citations, and after adjusting for duplicates, 126 remained. Of these, 95 were 
excluded, after reviewing the titles and abstracts, due to clearly not meeting the criteria. Full text of 
31 reports that appeared to meet the inclusion criteria, or on which there was uncertainty, were 
accessed, and 11 studies were selected after excluding the ones not relevant to the current project 
(studies on subjects with no medical conditions/preclinical studies/conceptual papers). We detailed 
reports selection using PRISMA 2020 flow diagram (Page et al., 2021), see Fig. 2. Details about 
selected studies and main results concerning patients’ aperiodic activity features are shown in table 
1. The authors of the selected papers used a variety of terms to define changes of the exponent of 
the aperiodic component. To facilitate the reading and comprehension of the results we limited the 
heterogeneity using “steeper” each time the authors described an increase in the absolute value of 
the slope and “flatter” each time they described a decrease in the absolute value of the slope. 
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Fig 2. PRISMA 2020 flow diagram showing studies selection. 
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Tab. 1. List of studies selected. 

Study Year of 
publication 

N° of 
subjects 

Condition Main Results 
Aperiodic activity -

PATIENTS 

Method/Tool Frequency range 
considered to estimate 

1/f activity* 
 

Robertson et 
al. 

 
2019 

 
126 [76 
patients – 
50 
controls] 

 
ADHD 
 

 
Drug naïve: greater 
offset and steeper 
slope. 

 
FOOOF 

 
4-50 Hz 

 
Pertermann 

et al. 
 

 
2019 

 

 
61 [29 
patients – 
32 
controls] 
 

 
 
ADHD 
 

 
Engaged in response 
inhibition processes: 
flatter slope in theta 
band. 
 

 
 

MATLAB (script not 
available)  

 
 

0.5 -20 Hz 

 
 

Levin et al. 

 
 

2020 

 
 
51[25patie
nts-26 
controls] 
 

 
 
ASD 

 
Agreement across 
recording sessions: fair 
for the offset; good for 
the slope. 
 

 
 

FOOOF 

 
 

1-100 Hz 

 
Molina et al. 

 
2020 

 
67 [36 
patients - 
31 
controls] 

 
Schizophren
ia 
 

 
Steeper slope + 
normalization of the 
slope with 20 mg of 
memantine. 
 

 
FOOOF 

 
4-50 Hz 

 
Veerakumar 

et al. 

 
2019 

 
4 patients 

 
Depression 
 

 
Right hemisphere slope 
changes (steeper slope 
during treatment 
response) track 
sick/well states during 
ongoing SCC-DBS. 
 

 
 
 

Not reported 

 
 
 

2–48 Hz 

 
Roche et al. 

 
2019 

 
94 [57 
patients – 
37 
controls] 

 
Rett 
Syndrome 
 

 
Steeper slope + slope 
association with lower 
cognitive scores. 

 
MATLAB (code not 

available) 

 
2-24 Hz 

 
Martin et al. 

 
2018 

 
13 patients 

 
Parkinson 
Disease 

 
1/f broadband activity 
confounds the 
relationship between 
beta activity and motor 
symptoms. 
 

 
 
 
MATLAB (script available 

at request) 

 
 
 

8-90 Hz 

 
Belova et al. 

 
2020 

 
22 patients 

 
Parkinson 
Disease 

 
Slope difference during 
rest and voluntary 
movements (flatter 
slope during 
movements) correlates 
with motor signs 
severity. Slope 
sensibility to short-term 
changes. 
 

 
 
 

Neurodsp 

 
 
 

1-300 Hz 

 
Semenova et 

al. 

 
2020 

 
9 patients 

 
Cervical 
Dystonia 

 
Asymmetric difference 
of the slope in the 
internal segment of 
globus pallidus: flatter 
in the ipsilateral to the 
head-turning. 
 

 
 
 

FOOOF 

 
 
 

30- 70 Hz 

 
 
 

 
 
 

2021 

 
 
 

 
 
 

 
Flatter slope 
contributes significantly 

 
 
 
 

 
 
 
 



11 
 

Wilkinson & 
Nelson  

35 [11 
patients – 
24 
controls] 

X Fragile 
Syndrome 

to the increase in high-
frequency power.  
Aperiodic component 
driven increase of 
gamma power was 
associated with better 
language ability. 
 

FOOOF 2-55 Hz 

 
Pani et al. 

 
 

 
2021 

 
31 patients 
[15 SHE- 16 
NREM p] 

 
NREM sleep 
disorders 

 
Steeper slope in NREM 
parasomnia patients 
than in SHE patients, 
sleep stage N3. 
 

 
 
 

FOOOF 

 
 
 

0.5 -50 Hz 

ADHD: attention deficit hyperactivity disorder; ASD: autism spectrum disorder; SCC-DBS: subcallosal 
cingulate cortex - deep brain stimulation; NREM: non-rapid eye movements; NREM p: non-rapid eye 
movements parasomnia; SHE: sleep-related hypermotor epilepsy. * The frequency ranges reported have 
been deducted by the authors, they were in fact not uniformly reported in the reviewed papers. 
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3. Results 

In this section we summarized salient clinical findings concerning the aperiodic activity; the selected 
studies are divided by macro-area. 

3.1 Psychiatry 

3.1.1 Attention deficit hyperactivity disorder (ADHD) 

ADHD is a neurodevelopmental disorder, which can persist into adulthood, characterized by 
hyperactivity or impulsivity and inattentiveness (American Psychiatric Association, 2013). ADHD has 
been represented as an evolving construct shaped over the last decades by research into its clinical 
nature and structure, and it keeps changing depending on new findings (Posner et al., 2020). ADHD 
diagnosis is still clinical and requires a detailed and complex evaluation not only of current/previous 
symptoms and functional impairment but also of the full family, gestational, and developmental 
history (Barkley, 2002). It is therefore understandable how a lot of efforts have been made toward 
the identification of a biomarker of ADHD diagnosis and symptomatology. A large body of research 
has focused on resting state electroencephalography (EEG), searching for differences in the EEG 
power spectrum, with Lubar in 1991 (Lubar, 1991) who was the first to suggest the use of increased 
ratio of theta to beta power (TBR) as a measure to distinguish children affected by ADHD from 
typically developing ones. However, the elevated theta/beta ratio seems to be more reliable as 
prognostic than diagnostic measure, as demonstrated by Arns et al. (2013) in their meta-analysis 
conducted on the TBR in ADHD children/adolescents, and its relationship with behavior remains 
uncertain (Zhang et al., 2017). Current approaches calculate theta/beta ratio using fixed frequency 
bands, without considering the other relevant features of the power spectrum as possible 
confounders.  
In this framework fits the study by Robertson et al. (2019) in which they quantify not only features 
derived from the oscillatory component but also the spectral slope and offset from the aperiodic 
component of EEG power spectra, in the resting-state EEG of 3- to 7-yr-old children affected by 
ADHD and controls. Robertson et al. demonstrated that i) medication-naïve children with ADHD had 
higher alpha power, greater offsets and steeper slope when compared with typically developing 
children and ADHD children in treatment (despite a 24-h medication-washout period); ii) the 
spectral slope positively correlated with the traditional theta/beta ratio, even if they did not find a 
significant group difference in the ratio in their sample. Putting together this findings and past 
research we may conclude, as suggested by the authors, that band-limited theta/beta ratio 
calculations may inconsistently capture the shift in low-relative to high-frequency EEG power in 
ADHD, and that the slope may have an important role as neural marker, more than traditional 
approaches, taking also in account its association with executive functioning and 
excitatory/inhibitory balance. The results highlighted the possible role of the spectral slope in 
reflecting pathology in the brains of ADHD children, as well as the effects of stimulant medication.  
Pertermann et al. (2019) focused instead on task-related EEG and neural noise following research 
trends about a low stability of neural processes in ADHD. Assuming that the lack of stability may 
relate to increased level of neural noise, they examined 1/f neural noise of EEG data collected during 
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a response inhibition (Go/NoGo) task, and the effects of methylphenidate treatment on children 
affected by ADHD. The data showed higher neural noise in ADHD children than in healthy controls 
when engaged in response inhibition processes in the theta band only, namely a flatter slope of the 
1/f neural noise, that is generally considered crucial for cognitive control (Cohen, 2014). The authors 
then hypothesized that neural noise is not elevated on a general basis in ADHD, but with regard to 
highly demanding inhibitory control processes. Furthermore, they suggested that the effectiveness 
of the first-line pharmacological treatment with methylphenidate in treating cognitive dysfunction 
and impulsivity, depends on the action it has in reducing the neural noise to the level found in 
healthy subjects.  

3.1.2 Autism spectrum disorder (ASD) 

ASD is a set of neurodevelopment disorders resulting from complex genetic and environmental risk 
factors interactions, and characterized by deficit in social behaviors and non-verbal interactions, 
with an impairment of communication, and restricted, repetitive, or stereotyped behaviors 
(Barbaresi et al., 2006; Park et al., 2016). Although several variables impact treatment outcomes 
(Ben Itzchak and Zachor, 2011), early intervention programs seem to be beneficial for children with 
ASD, improving developmental functioning and decreasing maladaptive behaviors and symptoms 
severity (Rogers and Vismara, 2008). In the absence of definitive diagnostic tests, clinical evaluation 
following DSM-V criteria (American Psychiatric Association, 2013) remains the gold standard for 
diagnosis, and biomarker development is a high priority in neurodevelopmental disorder research. 
EEG is a promising tool for the development of biomarkers in neurodevelopmental disorders, and 
the resting state EEG PSD in particular is considered a potential biomarker in the field of autism 
spectrum disorders based on reported differences in resting state EEG PSD among patients and 
typically development children (Wang et al., 2013). In this context Levin et al (2020) estimated test-
retest reliability, in a short time span (~6 days), of the profile of the EEG PSD in children with ASD 
and typical development. To characterize the profile of the PSD they used two approaches i) FOOOF 
(fitting oscillations & one over f) algorithm (Donoghue et al., 2020b), with the estimation of six 
parameters (offset, slope, number of peaks, and amplitude, center frequency and bandwidth of the 
largest alpha peak) that characterize the shape of the EEG PSD; ii) non-parametric functional data 
analysis, with decomposition of EEG PSD shape into a reduced set of principal component functions 
that characterize individual power spectrum shapes. Non-parametric functional data analysis and 
FOOOF approaches were proven to be complementary in characterizing the PSD, and the alpha peak 
derived from FOOOF-based parameterization, in particular, has the highest test-retest reliability 
both at intra-subject (amplitude) and inter-subject level (center frequency). The offset was fairly 
stable in both groups across sessions; the slope showed a good agreement in the ASD group but was 
unstable in the control group across sessions, and possible explanation were sensitiveness to session 
effects, older mean age and/or lower mean IQ of the ASD group, very little inter-individual variability 
in the control group. Levin et al (Levin et al., 2020) demonstrated the utility of resting EEG PSD shape 
and some of its specific parameters as stable biomarkers of cortical activity over short time 
windows, suggesting their potential role as biomarkers of traits or diagnosis. Despite a wide focus 
not restricted to the aperiodic component, this work by Levin et al (2020) highlighted some of the 
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benefits of their use of a comprehensive approach to EEG power spectrum: fitting and interpretation 
of FOOOF parameters was more direct than in the non-parametric approach, and the parameters 
seemed to be less susceptible to artifact contamination than non-parametric analysis. Not to be 
neglected, FOOOF measuring of putative oscillations does not need predefining specific bands of 
interest and controlling for the aperiodic component. 

3.1.3 Schizophrenia 

Complexity and heterogeneity are crucial characteristics of schizophrenia and make it a severe 
psychiatric disorder with important behavioral and cognitive repercussions. Lot of efforts have been 
made to understand the origin of this complex syndrome and it seems to lie in genetic and/or 
environmental disruption of brain development (Owen et al., 2016). In lack of diagnostic tests or 
biomarkers the diagnosis is clinical, based on history and mental state (American Psychiatric 
Association, 2013). The disorder generally arises with psychotic symptoms that seem to be linked to 
dysfunction of dopaminergic neurotransmission, although the dysfunction appears to be more 
spread than originally thought and to involve different areas and circuits (Sakurai et al., 2015; 
Uhlhaas and Singer, 2015). The severity of this disorder has a deep impact on patients’ quality of 
life, and a multidisciplinary approach is a must to effective management; antipsychotic medication 
needs to be combined with psychological therapies, social support and rehabilitation (Lenroot et al., 
2003). 
Molina et al. (2020) focused on an interesting aspect of the disorder, namely the biology underlying 
cognitive symptoms that are pervasive and refractory to conventional treatment. Based on the 
proposed role of the aperiodic component in indexing tonic E/I balance (Gao et al., 2017), Molina et 
al. (2020) applied FOOOF algorithm (Donoghue et al., 2020b) to EEG recordings acquired during EAIP 
(early auditory information processing) testing, evaluating a sample of patients and healthy controls 
with the aim to investigate said balance and its abnormalities in schizophrenia patients, assessing 
its changes in response to memantine.  
The results confirmed the presence of deficits in the E/I balance of treated schizophrenia patients, 
described by a steeper periodic slope, and that E/I balance can be transiently normalized with a 
single 20-mg dose of memantine. Interestingly, the slope feature extracted from the aperiodic 
component of the EEG signal seems to be a candidate for the role of biomarker of cortical E/I 
balance. 

3.1.4 Depression 

Depression is a mental disorder with a complex nature and course that has a high worldwide 
incidence and prevalence. It has generally an early age onset, high chronicity, and function 
impairment that diminishes quality of life (American Psychiatric Association, 2013). The 
presentation may be heterogeneous and its detection, diagnosis, and management is challenging 
for clinicians, taking into account not only the unpredictable course and prognosis, but also the 
variable response to treatment (Malhi and Mann, 2018). A large portion of patients recover, often 
not permanently, but there is also a part of them that is treatment-resistant (Al-Harbi, 2012). One 
of the experimental therapies for treatment-resistant depression is deep brain stimulation (DBS); 
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Veerakumar et al. (2019) focused on subcallosal cingulate cortex (SCC) DBS in their observational 
study of four patients receiving therapeutic DBS while concurrent bilateral local field potential 
recording. Among the potential sources of the aperiodic component of EEG power spectrum, the 
activity-dependent dendritic filtering (Pettersen et al., 2014) and the E/I balance of brain networks 
(Voytek and Knight, 2015) are the ones that involve its responsiveness to neural inputs, suggesting 
its sensitiveness to experimental manipulation. By exploiting this putative propriety, Veerakumar et 
al. (2019) studied the sources of variance of SCC-local field potential slope magnitude in pre-
treatment recordings, and explored the possibility to use 1/f slope to track modifications of 
depression severity scores by studying both parameters changes during the six months of deep brain 
stimulation that the four patients underwent. Bearing in mind cohort size (n=4), the results seem to 
suggest the potential utility of the 1/f slope as putative biometric of longitudinal DBS-facilitated 
antidepressant effects, right-hemisphere slope changes indeed appear to discriminate sick/well 
states during ongoing SCC-DBS treatment in three of four subjects, namely right hemisphere slope 
steepened in the setting of treatment response. 

3.2 Neurology 
 
3.2.1 Rett Syndrome 
 
Rett syndrome is a devastating neurological disorder that impacts brain development and function 
and affects almost exclusively females. In most of the patients diagnosed with classic Rett syndrome 
the recognized causes are the loss-of-function mutations in the X-linked MECP2 gene, encoding 
methyl-CpG-binding protein 2 (Ip et al., 2018). The normal early development is followed by a 
subsequent regression, with the symptoms beginning around 12-18 months and progressing to 
cognitive, motor, sensory and autonomic dysfunction (Neul et al., 2010). Common features are 
motor dysfunction, loss of acquired verbal skills, intellectual disability, replacement of normal hand 
function with stereotyped repetitive movements and epilepsy (Ip et al., 2018; Neul et al., 2010). The 
need of objective biomarkers to assess brain function and disease severity in patients affected by 
Rett syndrome is explained by their objective difficulties in verbal communication and intentional 
hand use, which make the clinical evaluation challenging.  
In this context Roche et al. (2019) examined EEG spectral power and 1/f slope of girls affected by 
Rett syndrome and typically developing girls, to determine if there were group differences and 
dissimilarities within the patients group in relation to various clinical characteristics. The results 
showed lower power in middle frequency bands, higher power in lower frequencies and a 
significantly steeper slope in girls affected by Rett syndrome, with the last two in association with 
lower cognitive scores. The increased power in lower frequency bands accords with previous studies 
that proposed a “slowing” of the background activity in Rett syndrome (Niedermeyer et al., 1986), 
and the increase in delta band specifically is suggested to be linked to an abnormal cortical inhibition 
due to dysfunctional GABAergic signaling; the significant differences in the 1/f slope seen in patients 
might reflect an abnormal excitatory/inhibitory balance within the brain. Delta power increases in 
association with the altered spectral slope are then supposed to accurately reflect the alterations 
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of neural circuitry in Rett syndrome and are proposed as potential markers of severity according to 
their link with more severe phenotypes and the worsening with disease progression. 

3.2.2 Parkinson Disease 

Parkinson disease affects more than 6 million individuals worldwide and is the most common in a 
group of neurological disorders called parkinsonism (Armstrong and Okun, 2020). It is a 
heterogeneous syndrome that could have a rapid or slow progression, and is characterized by motor 
symptoms such as rigidity, bradykinesia, tremor, postural instability, and disability in functional 
performance (Miller, 2002). The disorder may also, in addition to the characteristic motor features, 
be associated with non-motor disturbances (Davie, 2008). The heterogeneity also reflects in the 
etiopathogenesis, with extensive regions of the nervous system involved, several neurotransmitters 
and protein aggregates implicated, leaving the root cause of the syndrome unknown; the disease 
seems indeed to result from genetic and environmental factors that affect numerous fundamental 
cellular processes (Kalia and Lang, 2015). Parkinson’s typical movement disorders result from 
dopamine deficiency within the basal ganglia, due to the early prominent death of dopaminergic 
neurons in the pars compacta of the substantia nigra (Kouli et al., 2018). The diagnosis of PD 
(Parkinson disease) remains essentially clinical, and involves evaluation of both symptoms and 
history, as well as the exclusion of other causes of parkinsonism (Bloem et al., 2021; Marsili et al., 
2018). Nowadays we just have symptomatic therapies, namely dopamine-based treatments that 
enhance intracerebral dopamine concentrations for motor symptoms, or selective serotonin 
reuptake inhibitors for psychiatric symptoms and cholinesterase inhibitors for cognition, but we do 
not dispose of disease-modifying drugs (Armstrong and Okun, 2020).  
Extensive studies demonstrated that abnormally synchronized activity of the basal ganglia-cortical 
loop correlates with motor impairments in both humans and animal models with Parkinson’s 
disease, and the suppression of excessive synchronization is the target of dopaminergic, ablative 
and deep-brain stimulation therapies (Hammond et al., 2007). The excessive synchronization of beta 
oscillatory activity in local field potentials (LFP) recorded from the subthalamic nucleus (STN) has 
been linked with bradykinesia and rigidity severity, and proposed as potential biomarker of disease 
state, however the functional role of beta activity in untreated Parkinsonian state is still not clear, 
with a marked inconsistency between different studies (e.g., Ray et al., 2008; Chen et al., 2010). 
Martin et al. (2018) hypothesized that the influence of the electrophysiological broadband activity 
may confound measurements of beta activity in STN recordings and it may have led to the 
inconsistency between previous studies. Using both modeled and actual data of thirteen patients 
affected by Parkinson disease they showed that beta oscillatory activity is significantly correlated 
with bradykinesia and rigidity only when 1/f broadband activity is not considered in the biomarker 
estimation. The electrophysiological features were evaluated taking 6 minutes of resting state STN 
LFPs bilaterally and motor clinical scores were evaluated immediately afterwards. They basically 
isolated beta activity from the potential confounder represented by the broadband activity, 
evaluating the impact the latter has on the relationship between beta activity and motor symptoms. 
No correlation was found between broadband activity and PD motor symptoms. The principal 
implication of Martin et al. (2018) results concerns closed-loop deep brain stimulation, where the 
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stimulation is triggered only according to the occurrence of the proposed biomarker: pathological 
beta activity (Iturrate et al., 2018). Furthermore, the importance of data-driven models is 
highlighted, as well as the need for a careful identification of biomarkers for symptom severity and 
close-loop applications. 
Belova et al. (2021) approached the association between synchronization and clinical signs 
comparing LFP signals in the STN of parkinsonian patients at rest and during voluntary hand 
movements occasionally followed by leg movements, by use of two methods: raw power approach 
and 1/f -corrected approach. For subsequent legs movements but not for hand movements they 
found a significant increase in the low beta range, with each of the two approaches. Both 
movements were instead associated with a significant increase in gamma range synchronization 
using the raw power spectra approach, and a significant decrease in the slope (flatter slope) of the 
aperiodic component using the 1/f corrected approach. Belova et al. (2021) results support the 
theory of 1/f slope as possible indicator of excitatory/inhibitory projections ratio in the recording 
site, and also suggest the slope as a useful measure on the basis of is sensitiveness not only to static 
or long-term changes in brain states but also to transient specific states. The study by Belova et al. 
(2021) was indeed the first one in which the 1/f aperiodic slope was evaluated in its short-term 
changes (for time periods <20 sec) with the aim to detect LFP features’ dynamical changes in 
voluntary movement. To be noted that Belova et al. (2021) found a significant correlation between 
the difference in the slopes during rest and movements, and the severity of PD motor signs. 

3.2.3 Cervical Dystonia (CD) 

Dystonia is a hyperkinetic movement disorder that is characterized by sustained or intermittent 
muscle contractions that cause abnormal and often repetitive movements and/or postures (Batla, 
2018). Voluntary action seems to initiate or worsen dystonia and it has an association with overflow 
muscle activation (Albanese et al., 2019). The most common type of focal dystonia is the cervical 
one that causes an abnormal and asymmetric head position manifested by neck rotation or tilt (Fahn 
et al., 1998). Several different theories were proposed about the origin of CD, the more recent seem 
to unify the previous, proposing a head neural integrator connecting cerebellum, basal ganglia and 
proprioceptive network in a circuit that form the final common pathway for head position control 
(Popa et al., 2018; Sedov et al., 2019b). The asymmetric contraction of muscles in CD is thought to 
be linked to lateralized differences in pallidal outflow (Moll et al., 2014). Although the estimation of 
spectral power in specified frequency bands is the traditional method used for interhemispheric 
asymmetry studies, Semenova et al. (2020) decided to include in their analysis the aperiodic 
component of the EEG power spectra, measuring bilateral pallidal LFP of nine CD patients during 
DBS surgery, to examine the effects of the lateralized asymmetry on the 1/f broadband activity. In 
2017 Gao et al. (2017) proposed the role of 1/f signal in reflecting the balance of the E/I inputs, 
while in 2015 Voytek and Knight (2015) proposed the impact of the same signal on neural 
communication. Relying on these two assumptions, Semenova et al. (2020) hypothesized that a 
lateralized increase of the broadband activity may be a possible signature of impaired asymmetric 
feedback to the neuronal integrator. The results highlighted a trend towards an asymmetric 
difference in the 1/f broadband activity in all patients, namely the ipsilateral 1/f slope of the 
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broadband activity in the internal segment of globus pallidus was flatter than the one of the other 
side, confirming previous findings about a higher inhibition of the pallidum contralateral to the 
head-turning (Sedov et al., 2019a). They also found asymmetry in oscillation scores of low-beta and 
alpha frequency bands for globus pallidus internus and globus pallidus externus respectively. 
Semenova et al. (2020) point out the importance of integrating periodic and aperiodic analysis to a 
complete approach to the study of the pallidal asymmetry in CD patients. 

3.2.4 Fragile X Syndrome (FXS) 

FXS is a trinucleotide disorder in which a repetition of the CGG motif on the X chromosome leads to 
silencing of the Fmr1 gene and to a consequent reduced expression of its product, namely Fragile X 
Mental Retardation Protein (FMRP). The FMRP has a key role in gene expression and regulation of 
the translation of a high number of mRNAs, many of which are implicated in mechanisms for 
development and maintenance of neuronal connections (Hagerman et al., 2017). The disorder is the 
most common inherited form of intellectual disability and autism spectrum disorders; children 
affected by FXS often present, in addition to cognitive deficits, language impairments, seizures and 
severe behavioral alterations such as hyperactivity, impulsivity and anxiety (Hagerman et al., 2009). 
Although the progress made towards the understanding of neural mechanisms that underlie FXS 
deficits and, consequently, the identification of targets for therapeutic intervention, the lack of 
clinical biomarkers contributes to limit the process of translation of therapeutics form laboratories 
to clinical practice. EEG alterations showed by both adult humans and Fmr1 KO mice (Ethridge et 
al., 2019; Wang et al., 2017) could be considered as potential biomarkers, nevertheless, as observed 
by Wilkinson & Nelson (2020), the absence of studies on young children complicates the 
identification of developmental timing of the EEG changes. Wilkinson & Nelson (2020) conducted 
the first EEG study focused on preschool/young school aged boys affected by full-mutation FXS, to 
investigate the presence of baseline EEG abnormalities analogous to FXS adults’ ones, and the 
relationship between baseline EEG measures and several cognitive measures. Periodic and aperiodic 
components of EEG power spectra were compared using non-parametric cluster-based permutation 
testing. It was demonstrated that resting-state measures from young boys with FXS identified 
alterations in gamma power similar to the ones reported in adults and mouse models. Participants 
affected by FXS presented increased power in the beta/gamma range (~ 25-50 Hz) across several 
regions (e.g., Frontal cluster, FXS vs age-matched controls, vs cognitive-match controls) and, 
although the aperiodic slope showed just a marginally significant trend in reduction (flatter slope) 
for patients vs age matched controls (frontal and central regions), it contributed significantly to the 
increase in high-frequency power, and drove the gamma power increase that was found to be 
associated with better language ability in the FXS group. The latter association between resting state 
aperiodic gamma power and language development is in contrast with previous findings, and 
Wilkinson & Nelson (2020) hypothesized that some EEG alterations may be able to reflect ongoing 
homeostatic compensatory mechanisms in young children, based on the concept of an increase in 
gamma activity in response to altered cortical spiking resulting in an E/I imbalance, but normalized 
firing rates. No associations were found between gamma power and parent report measures of 
behavioral challenges, sensory hypersensitivities, or adaptive behaviors. 
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 3.2.5 Non-Rem Sleep Disorders 

The differential diagnosis between non-rem (NREM) parasomnias and sleep-related hypermotor 
epilepsy (SHE) is one of the most difficult challenges for sleep physicians and epileptologists. NREM 
parasomnias are defined as abnormal behaviors arising typically from sleep stage N3, and are 
common during both childhood and adulthood (Greenblatt, 1992). These sleep disorders 
encompass confusional arousals, sleepwalking, night terrors, as well as lesser-known entities as 
sleep-related violence/eating disorder and sexsomnia (Hrozanova et al., 2018), and in case of 
particularly violent clinical occurrence might be mistaken for sleep-related hypermotor epilepsy 
seizures. SHE seizures, on the other hand, may arise in unconventional ways such as wandering, 
complex automatisms or vocalizations, and in this case may be easily mistaken for parasomnias 
(Derry et al., 2006). The clinical overlap of the two sleep-disorders, and the lack of specific 
electrophysiological biomarkers, confirmed nocturnal video-polysomnography as the gold standard 
for differential diagnosis. Being the latter an expensive, time consuming and operator-dependent 
procedure in which the video component is essential to formulate the diagnosis, a lot of efforts have 
been made to find objective parameters to make the diagnostic process easier and quicker.  
As with most clinical studies, sleep analysis focuses generally on the oscillatory activity and its 
distinct frequency bands. However, there are some exception; Lendner et al. (2020) for example, 
proposed the spectral slope as a marker of arousal levels in humans, with a clear role in facilitating 
reliable discrimination of wakefulness from propofol anesthesia, NREM and REM sleep. Shifting 
from the traditional to the comprehensive approach to EEG power spectra, our research group 
carried out a study (Pani et al., 2021) that included the extraction and examination of the slope and 
the offset, hypothesizing a disease-specific (SHE; NREM parasomnias) physiological significance of 
the features of the aperiodic component. For features extraction, we selected segments of 
multichannel sleep EEGs free from clinical episodes, deriving from the first part of the night and 
from N2 - N3 stages only, of two groups of patients affected respectively by NREM parasomnias and 
SHE. We found a difference in the gamma frequency band, with an increased relative power in SHE 
subjects in both N2 and N3, and a significant steeper 1/f slope in NREM parasomnia patients during 
N3. The results of this preliminary study suggested that the relative power of the gamma band and 
the slope extracted from the EEG signal may be helpful, in combination or disjointed, to support the 
differential diagnosis between NREM parasomnia and SHE in subjects with uncertain clinical 
features. Further investigations are however needed to confirm their potential role as possible 
electrophysiological biomarkers.  
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4. Limitations 

In this work we did not discuss individually the limitations reported by each of the reviewed articles 
based on the heterogeneity of the topics covered and, consequently, of the specific nature of the 
limitations. However, some of the main points shared in turn by different studies concern i) the use 
of a new signal processing method and the inherent natural risks in results rendering, ii) the need 
of replications in larger samples size to assess the generalizability of the results and, on the other 
hand, the difficulty of patients recruitment for rare conditions and the consequent variability in 
terms of age, disease stage and severity, iii) the need for further investigations to clarify the precise 
contribution of excitatory and inhibitory signaling to the aperiodic slope for diseases in which the 
E/I tone has a relevant role. 

We must point out that information about the studied frequency range is often not mentioned 
and/or difficult to find in the papers we considered. It is relevant to notice that differences in the 
frequency ranges examined might affect comparisons between results from different studies, and 
that the field would greatly benefit from a systematization of this information that would, in first 
place, promote reproducibility. 

It is also very important to highlight that the aperiodic components of the power spectra may be 
influenced, and thus affected by several sources of noise, namely electrooculographic (EOG) activity 
steepens the slope and electromyographic (EMG) activity flattens (Schaworonkow and Voytek, 
2021). As a consequence, we would like to stress the importance of limiting as much as possible 
these confounders before estimating and interpreting the results of the analysis. Another issue we 
would like to highlight, which may be particularly relevant for clinicians, is the inherent connection 
between EEG slowing (a typical effect of brain injury) and 1/f slope. In this context, it is interesting 
to notice how the spectral exponent may be used as index for the longitudinal assessment of stroke 
recovery (Lanzone et al., 2021). Moreover, we want to stress that other quantitative EEG metrics 
(i.e., EEG mean/median frequency, spectral edge, spectral entropy) have been used in this research 
field to estimate EEG slowing and that have been shown to be affected by power spectrum rotation 
(which clearly induces changes in the slope of the spectrum). 
 
Although modern research on the aperiodic component introduced new interesting opportunities 
of development of diagnostic and therapeutic strategies for psychiatric and neurological conditions, 
the number of studies regarding clinical area is still relatively small, and this reflects in a lack of 
uniformity in terms of sample tested and tools/methods used even when a specific disease is 
considered. The lack of a generally accepted method to measure the aperiodic activity, in particular, 
makes the attempts of integration of the results tricky and undermines the reproducibility. 
Similar challenges are faced by groups dealing with cutting-edge research topics, an example could 
be modern network science. As early as 2014, Stam (2014) warned the researchers in the field 
against the pitfalls in comparing results from different studies and different technologies, and about 
the need to minimize arbitrary choices in the analysis process to guarantee reproducibility as well 
as a uniform interpretation of the outcomes. Even from the same data, if analyzed with different 
methods, we can come to slightly different conclusions (for an explicative example see the results 
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from the functional connectivity studies conducted by Sabaroedin et al. (2019) and Pani et al. (2021) 
on the same data). 
 
Finally, a specific limitation of our mini-review is the arbitrary choice to only focus on outcomes 
from PubMed database searches. Although we are aware that including other search services (e.g., 
Google Scholar or bioRxiv) would have brought to a higher number of articles, the choice is in line 
with the defined research topic. PubMed is in fact not only one of the most widely accessible 
biomedical resources globally but also, in our experience, the most used database by clinicians 
colleagues. Following the idea of a target audience made of medical specialists and allied health 
researchers, we excluded from this mini-review preclinical and non-clinical studies. 
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5. Conclusions 

In this review of studies, a total of 11 journal articles published between 1st January 2016 – April 1st 
2021 were surveyed, each of them comprising the extraction and examination of the features of the 
aperiodic component of EEG power spectra. In these papers, despite the heterogeneity of the 
diseases or aspects investigated, the shared key points relate to i) the exploration of the eventual 
pathophysiological significance of the aperiodic component of the EEG power spectra as described 
by Donoghue et al. (2020a, 2020b), ii) the evaluation of its impact on the traditional approach to 
oscillatory features (Samaha and Cohen, 2021), iii) the estimation of its correlation with the 
presence/absence of pathology and with diseases stages and/or severity. 
All studies had relevant results concerning aperiodic “background” activity significance, with 
findings that might possibly challenge the traditional approach to the diagnosis/treatment/follow 
up of the pathology considered.  
 
We can certainly deduce, from the majority of the evaluated studies, that there is no doubting about 
the potential clinical utility of a comprehensive quantification of EEG power spectra features. A clear 
advantage of including the analysis of the aperiodic component in the pipeline of EEG clinical 
studies, with an explicit parametrization of neural power spectra, is the appropriate physiological 
interpretation of the results, with a more precise definition of which components of the data change 
and in which way. Seems in fact to be confirmed that the a priori classical approach, focusing on the 
periodic component alone, is no longer sufficient; it lacks in fact of measurement specificity failing 
to ensure the dependence of the changes detected from the periodic component alone (Donoghue 
et al., 2021). 
The mystery of “neural noise” has been systematically ignored because of the difficulty linked to its 
interpretation and, at present, we still do not have a conventional widely accepted view of the 
physiological basis of this signal. However, on the base that it may correspond to physiological 
relevant signals with functional significance (Donoghue et al., 2020b; He et al., 2010), it is clear the 
need to take it into account for two principal purposes, as proposed by most of the studies 
considered in this analysis: avoid misinterpretation of band-limited power differences and, in light 
of its partial independence from the oscillatory component, explore its possible role as 
electrophysiological biomarker. 

As mentioned previously, the physiological underpinnings of the aperiodic component have been 
evaluated by different research groups, and some studies suggested that the spectral slope reflects 
neural signal-to-noise ratio (Voytek et al., 2015) and that it is an index of the E/I balance in the 
cortical circuitry (Gao et al., 2017). These general concepts are common starting points of several of 
the studies reviewed, namely the ones treating clinical conditions in which the E/I tone has a 
relevant role. It should be borne in mind that it is tricky to cluster different pathologies (and relative 
pathophysiologies) on the sole basis of an electrophysiological characteristic (e.g. the steepness of 
the slope), especially when: i) this comparison is not meant from the beginning with an appropriate 
study design; ii) the number of subjects involved in the studies is still exiguous; iii) the numbers of 
clinical papers based on this specific EEG feature is limited; iv) the pool of pathologies is broad and 
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heterogeneous. Nevertheless, we tried to explore any commonalities in the considerations drawn 
by the authors about their results. 

The slope is thought to reflect abnormal E/I balance in the brain circuits and a steeper slope has 
generally been seen as a reflection of an enhanced signal-to-noise ratio and thus increased GABA 
signaling and/or reduced glutamate signaling (Gao et al., 2017; Voytek et al., 2015). Consistent with 
the idea of the slope as index of E/I balance, Pertermann et al (2019) demonstrated a reduction of 
neural noise in patients with ADHD through methylphenidate; its action of inhibition of the reuptake 
of dopamine and norepinephrine results in the normalization of E/I balance and reflects in the 
normalization of the slope. In patients with ADHD, we might expect a flatter slope linked to a 
reduction in GABA signaling and/or increases in glutamate signaling, with a predominance of 
excitation on inhibition. Robertson et al (2019), which on the contrary found a steeper slope in a 
group of children with ADHD, conjectured the existence of a range of cognitively optimal spectral 
slopes for each developmental stages, with slopes “too flat” or “too steep” leading to cognitive 
impairments; they also hypothesized that the patients, tested in circumstances that asked for high 
cognitive control, might have developed some sort of compensatory mechanism which implies an 
increase in GABAergic activity.  
A similar mechanism might interest patients with schizophrenia, which is generally associated with 
reduced GABAergic inhibition in the cortex (Lewis et al., 2005). We might expect, as for ADHD, a 
flatter slope in patients compared with controls, however Molina et al (2020) detected steeper 
slopes in patients during a passive auditory oddball paradigm. They also demonstrated a normalizing 
effect of memantine on patients’ slopes, providing evidence of the utility of indices of E/I balance 
as metrics of pharmacologic sensitivity in drug discovery. Again, these findings seem to reflect a 
compensatory increase in GABAergic activity of patients with schizophrenia during passive auditory 
information processing.  
Another group which, as schizophrenia patients, presents a more negative slope (steeper slope) 
compared with controls is represented by girls with Rett Syndrome (2019). The girls affected by Rett 
Syndrome showed also a significant variability in the slope, which Roche et al (2019) suggested to 
potentially represent both abnormalities in excitatory and inhibitory connections, and significant 
individual differences in neural connectivity and E/I balance.  
In accordance with the state of hyperexcitability observed in rodent models of Fragile X syndrome, 
Wilkinson&Nelson (2021) found a flatter slope in patients affected than in controls. A possible 
explanation for the inhibitory dysfunction in FXS patients and the consequent increase in E/I ratio, 
might represent, again, a compensation mechanism for altered cortical spiking in order to normalize 
firing rates. Wilkinson and Nelson hypothesized that the above-mentioned increase in E/I ratio 
might be in the end functionally beneficial to FXS patients, as supported by their results of better 
language ability linked to aperiodic driven increase of gamma power. 
Following the previous reasoning, in healthy subjects the shift from motionless state to motor 
activity leads to a decrease in the E/I (excitation > inhibition) ratio due to a reduction in total power 
of the indirect pathway in the network of basal ganglia, resulting in a steeper slope; this is in 
accordance with Belova et al (2021) results, which reported an anomalous flatter slope in the 
subthalamic nucleus during movements in patients with Parkinson’s disease, as well as a correlation 
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of the decrease with motor signs severity. They also confirmed the utility of the slope to determine 
short term dynamical changes in local field potential features during voluntary movement. 
E/I balance is also recognized as a preclinical measure of interest in the pathophysiology of 
anhedonia which is one of the principal components of major depression: changes in 1/f slope have 
been shown to go along with hyperexcitability of infralimbic cortex in rodents, which in turn has 
been shown to cause impairment social interaction (Ferenczi et al., 2016). Assuming that slope 
changes between experimental conditions reflect changes in E/I balance, Veerakumar et al. (2019) 
tested patients with treatment-resistant depression and demonstrated, although in a very small 
sample, that right hemisphere slope changes could track sick/well states during ongoing SCC-DBS, 
with the match steeper slope – treatment response.  
Semenova et al (2021) suggested a link between the abnormal head postures in patient with cervical 
dystonia and the asymmetry in the pallidal activity: the pallidum contralateral to the head-turning 
side appeared more inhibited than the ipsilateral side, showing thus a steeper slope; the 1/f slope 
was confirmed to be index of E/I balance, and abnormalities of this equilibrium was proposed as 
possible cause of a defective function of neural integration of the head movements. 
 
Being a steeper slope generally associated with hypoexcitability (> GABA signaling and/or < 
Glutamate signaling) (Gao et al., 2017; Voytek et al., 2015), a flatter slope is associated with 
hyperexcitability (< GABA signaling and/or >glutamate signaling). Based on this assumption and on 
the results of the reviewed studies, we can divide most of the pathologies cited into two macro-
groups in relation to the mechanism that reflects in slope alterations: i) hypo-excitability: ADHD, 
schizophrenia, Rett Syndrome, depression, cervical dystonia; ii) hyper-excitability: fragile X 
syndrome, Parkinson disease. It is interesting to note that three studies show counterintuitive 
findings: due to their pathophysiology, we expected ADHD and schizophrenia to be in the 
hyperexcitability group, and fragile X syndrome in the hypoexcitability one. On the contrary, the 
results show slope alterations that belong to the opposite group respectively. A possible explanation 
is thought to be the existence of compensation mechanisms, such as an increase in GABAergic 
activity in case of demanding tasks for patients who struggle with high cognitive control, or a 
decrease in GABAergic activity, aimed at normalizing firing rates, in patients with altered cortical 
spiking. Also, it has to be noted that while it might be appropriate to observe that pathologies 
affecting similar circuits or activities can show a similar pattern of spectral slope alterations, we do 
not have at this stage, enough evidence to proceed in the opposite direction, namely, to suppose 
that similar slope alterations necessary imply same mechanism underlying the examined diseases. 
We, again, would point out that the grouping we made is based on the results and the conclusions 
drawn by the authors and it should not be taken as definitive due to the huge heterogeneity of 
pathologies, techniques, sample size and, not the least, the still limited number of clinical studies. 
 
We should although notice that at this early stage, the study of the aperiodic component of EEG 
power spectra is mostly challenging the current approach to EEG analysis and that the putative role 
of some features as biomarkers, together with the promising clinical applications, must be 
explored/confirmed by a larger number of analysis standardized in terms of 
methodological/technical approach. Several and relevant points related to 1/f should be discussed 
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and properly considered when interpreting any pathological changes. In particular, we would like to 
emphasize that 1/f may flatten as an effect of aging (Dave et al., 2018; Voytek et al., 2015) or may 
steepen in pharmacological induced unconsciousness (Colombo et al., 2019; Gao et al., 2017; Huang 
et al., 2020) or may discriminate between different states of consciousness (present/reduced or 
abolished) (Colombo et al., 2019). Moreover, 1/f slope has been shown to be a marker of states of 
reduced arousal, including sleep stages as well as anesthesia (Lendner et al., 2020; Miskovic et al., 
2019; Muthukumaraswamy and Liley, 2018; Pereda et al., 1998; Shen et al., 2003). 
 
Ultimately, persuaded of the clinical utility of the comprehensive approach to the features of EEG 
power spectra, we hope with this mini-review to boost the research about the aperiodic component 
of EEG signals in neurology and psychiatry. We aim to reach as many clinicians as we can and, 
through the summary proposed about versatility and possible applications of the aperiodic 
component analysis, promote use and scientific debate about it.  
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