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Abstract

Fetal echocardiography is an operator-dependent examination technique requiring a high

level of expertise. Pulsed-wave Doppler (PWD) is often used as a reference for the mechan-

ical activity of the heart, from which several quantitative parameters can be extracted.

These aspects suggest the development of software tools that can reliably identify complete

and clinically meaningful fetal cardiac cycles that can enable their automatic measurement.

Several scientific works have addressed the tracing of the PWD velocity envelope. In this

work, we assess the different steps involved in the signal processing chains that enable

PWD envelope tracing. We apply a supervised classifier trained on envelopes traced by dif-

ferent signal processing chains for distinguishing complete and measurable PWD heart-

beats from incomplete or malformed ones, which makes it possible to determine the impact

of each of the different processing steps on the detection accuracy. In this study, we col-

lected 43 images and labeled 174,319 PWD segments from 25 pregnant women volunteers.

By considering seven envelope tracing techniques and the 23 different processing steps

involved in their implementation, the results of our study reveal that, compared to the steps

investigated in most other works, those that achieve binarisation and envelope extraction

are significantly more important (p < 0.05). The best approaches among those studied

enabled greater than 98% accuracy on our large manually annotated dataset.

Introduction

Ultrasonography is the leading technology for the diagnosis and monitoring of fetal heart

pathologies [1]. Among the available modalities, fetal echocardiography typically takes advan-

tage of pulsed-wave Doppler (PWD) for the assessment of the cardiac rhythm [2, 3], which

enables objective analysis of the blood flow through the heart. In particular, in routine Doppler

examinations, the apical view is considered to be the best for fetal heart inspection in cases of

suspected valvular heart disease [4]. Using the apical five-chamber view, the four cardiac

chambers and the first part of the aorta (assumed to be a fifth chamber) can be investigated.
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Fig 1 shows an apical five-chamber view in which the two atria, two ventricles and the aortic

region are visible and labeled. By positioning the sample volume on the mitral-aortic junction

(PW in Fig 1), the morphologies of the diastolic and systolic functions are clear and recogniz-

able in the PWD spectrum [5], as illustrated in Fig 2. Overall, there are two main waves: the

so-called E/A wave, where E is the first peak and A is the second, and the V wave. The E/A

wave refers to the mitral inflow and the V wave represents the aortic outflow. These two waves

have opposite polarity. Specifically, the E peak (E for “early”) refers to the early, passive dia-

stolic filling of the ventricle, which depends on the ventricular wall relaxation, and the A peak

(A for “atrial”) is the wave associated with the active filling of the ventricle [6]. E/A wave

abnormality is an indication of systolic dysfunction. The V peak (V for “ventricular”) is the

wave associated with the ventricular systole.

By representing the blood flow when the sample volume is positioned on the mitral-aortic

junction, the PWD provides a good reference signal for the mechanical heart activity during

systole and diastole. Several clinical indexes can be extracted from this signal, the fetal heart

rate being the simplest. Different guidelines suggest baseline values ranging between 110 and

150-160 bpm before and during labor [7]. The E/A ratio is an index for the evaluation of the

left ventricle of the heart, where E is smaller than A, and the E/A ratio increases during preg-

nancy towards a value of one. After birth, the E/A ratio becomes greater than one [8]. During

early pregnancy (8-20 weeks), anemic fetuses present a dominant E peak, which suggests that

Fig 1. Apical five-chamber B-mode view of the fetal heart. In detail: right ventricle (RV), right atrium (RA), left

ventricle (LV), left atrium (LA), aortic region (AO) and sample volume positioning (PW).

https://doi.org/10.1371/journal.pone.0248114.g001

PLOS ONE Impact of pulsed-wave-Doppler velocity-envelope tracing techniques on classification of fetal cardiac cycle

PLOS ONE | https://doi.org/10.1371/journal.pone.0248114 April 28, 2021 2 / 25

Funding: Eleonora Sulas is grateful to Sardinia

Regional Government for supporting her PhD

scholarship (P.O.R. F.S.E., European Social Fund

2014-2020). Part of this research was supported

by the Italian Government–Progetti di Interesse

Nazionale (PRIN) under the grant agreement

2017RR5EW3 - ICT4MOMs project.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0248114.g001
https://doi.org/10.1371/journal.pone.0248114


in fetal anemia, there is an increased preload in the right atrium [9]. The atrio-ventricular

interval (AV) is an important index of conduction disorders that can be derived from the

PWD. In fact, a normal heart rate with a prolonged AV conduction time interval may progress

to a complete AV block. Measurement of the mechanical AV conduction time interval could

aid in the identification of fetuses with first-degree AV block. These fetuses might benefit from

transplacental steroid administration to prevent progression toward complete and irreversible

AV block [10]. The myocardial performance index was reported by Tei [11] to be a useful pre-

dictor of systolic and diastolic cardiac dysfunction. This index is defined as the sum of the iso-

volumetric contraction time and isovolumetric relaxation time, divided by the ejection time

from each ventricle. These time indexes are also very useful indicators of fetal wellbeing [12].

The mean velocity is also used for the assessment of Doppler images [13].

Despite the possibility of obtaining such a large amount of information from this signal, the

fetal PWD procedure is challenging for cardiologists to perform and, like any other antenatal

ultrasound examination, it is strongly operator-dependent and requires a high level of exper-

tise. To support ultrasound operators with limited skills to perform fetal echocardiography,

beyond tele-mentoring sessions [14], or for the automatic analysis of long traces, it is impor-

tant to develop automatic tools for the detection of complete and clinically meaningful fetal

heartbeats in the PWD trace [15]. Once identified, these heartbeats can be analyzed for extrac-

tion of the aforementioned clinical parameters and quantification of the cardiac function.

Recent works have addressed this important issue using ad-hoc algorithms and machine

learning [15–17]. However, to the best of our knowledge, there has been no systematic analysis

of the steps comprising the signal processing chain for tracing the PWD velocity envelope.

Such analysis is necessary to support the development of effective methods that enable the

improvement of steps that are critical for the effective detection and processing of clinically

valuable fetal heartbeats in the PWD image. Compared to the use of synthetic indexes such as

the mean velocity or other parameters that can be extracted from the Doppler image, by

Fig 2. Pulsed-wave Doppler image. (Left) The initial segment of the image shows the first five beats from the first PWD image in our shared dataset.

The image includes the upper (red line) and lower (blue line) envelopes. (Right) A graphical representation of the ideal waveform morphology of the

envelope associated with a fetal beat, which was acquired using PWD with the apical five-chamber window.

https://doi.org/10.1371/journal.pone.0248114.g002
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focusing only on the PWD envelope it is possible to reduce the occurrence of computational

errors. Moreover, this focus is closely aligned with the usual clinical experience in the identifi-

cation of well-formed PWD traces that have clinical value for subsequent analyses.

On this basis, and after an in-depth analysis of the scientific literature regarding methods

for the automatic tracing of the velocity envelope from Doppler images, in this work, we iden-

tified the main processing steps adopted in Doppler envelope tracing. These steps were then

combined to evaluate their relative importance in defining a near-optimal processing chain for

the extraction of features to feed a supervised classifier trained to distinguish fetal heartbeats

that are complete and measurable from those that are incomplete or malformed. As such, as

the objective is not to accurately trace PWD envelopes, but rather to identify clinically mean-

ingful fetal heartbeats in the PWD signal, the performance evaluation was conducted using

traditional machine learning indexes rather than comparing manual tracings. From this per-

spective, the optimization of the classifier is of minor interest, considering its performance as a

bias for the assessment of all the PWD tracing methods. Validation of the proposed approach

was performed on a large custom dataset of fetal PWD recordings, which is publicly accessible

with this article.

Related works

The automatic and unsupervised detection of meaningful fetal cardiac cycles in Doppler ultra-

sound videos was originally presented in [17], and subsequent development of the original

technique is presented in [15, 16]. To the best of our knowledge, no other works have focused

on the automatic detection of complete and clinically measurable fetal cardiac cycles in a

Doppler ultrasound trace. In the cited works, detection was performed on PWD signals

acquired using an apical five-chamber window, which were characterized by two envelopes:

one for the diastolic phase and the other for the systolic phase. The idea behind these methods

was to reduce the complexity of the classification by using the envelopes rather than the PWD

image.

This approach is dependent on the adopted envelope tracing method and very different

methods have been developed to achieve this aim. In this study, we identified these methods

and systematically assessed the impact of their individual processing steps on the final classifi-

cation outcome. This section briefly introduces the techniques used and developed for enve-

lope tracing in the contexts envisioned by the authors. In the Materials and methods section,

we provide a detailed technical description of the processing steps studied in this work.

Table 1 lists the main processing steps adopted in studies focused on the automatic tracing of

Doppler envelopes [16, 18–23].

Ref. [18] introduced the automated analysis of a general Doppler ultrasound velocity flow

and presented a method comprising the following processing steps: (i) image filtering, using a

Gaussian-shaped low-pass filter with a σ = 1.5 to remove high-frequency noise, (ii) edge detec-

tion by a non-linear Laplace edge detector (NLLAP), (iii) suppression of spurious edges, and

(iv) extraction of the overall envelope function using a custom algorithm known as the biggest-
gap algorithm, which is with the other processing steps in the next section. The authors com-

pared the envelope extraction results with manual tracings and determined their concordance

using Bland-Altman analysis.

In [19], the authors studied patients with atrial fibrillation. Using the same process

described in [18], they focused more on contrast enhancement, whereby just after the applica-

tion of the Gaussian kernel to remove background noise and the stretch of the contrast, they

used a k-means algorithm to organize the pixel intensities of the image into three main clus-

ters, representing weak-signal, strong-signal, and background pixels. The centers of these
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three clusters were applied to find two optimal thresholds to enhance important signal infor-

mation in the image. To facilitate annotation of the heartbeats in the Doppler traces, the

recordings included the ECG signal. After tracing the envelope, the authors fitted a parametric

model to each cardiac cycle, based on the sum of cosines. They were able to apply these models

to the cardiac cycles because of the presence of the fetal heartbeat annotations. The results

were shown in terms of the errors between the clinical parameters computed on the automati-

cally traced envelope and those manually traced. Beat-by-beat and average beat comparisons

of the two were performed, with the relative errors determined by Bland-Altman analysis.

Later, Ref. [20] focused on retrieval of the shape-based similarities of Doppler images to

support clinical decision-making. The authors binarized the images based on an Otsu thresh-

old, followed by dilation and then extraction of the envelope, which was traced by considering

the boundary pixels of the white regions. A three-tap temporal median filter was then applied

to smooth the envelope.

The authors in [21] adopted a two-dimensional (2D) Doppler echocardiography for the

non-invasive automated assessment of the severity of aortic regurgitation. They used a local

adaptive threshold to binarize images, filtered the envelope using a median filter with 15 taps,

and then interpolated the envelope using a cubic spline to achieve a sampling frequency of 1

kHz. This method also relied on ECG gating to identify the required fiducial points. The

results were then compared with manually-traced envelopes by Bland-Altman analysis.

The main aim of the study reported in [22] was again the automated assessment of aortic

regurgitation using 2D Doppler echocardiography. The applied algorithm in that study was

decomposed into the following steps: (i) application of a 5 × 5 Gaussian kernel with σ = 1.5, (ii)

conversion of the filtered image into a grayscale image, (iii) morphological operation on the

image by disk approximation, (iv) subtraction of the images obtained in the first and second

steps to adjust the intensity, and (v) Canny edge detection (σ = 0.5). These results were also

compared with a manually-traced envelope.

Table 1. Main publications on the automated tracing of the Doppler velocity envelope.

Image preprocessing 1 Image preprocessing

2

Image binarisation Image postprocessing Envelope extraction Envelope post

processing

[18] Gaussian-shaped low-

pass filter with σ = 1.5

Modified non-linear

Laplace edge detector

Region-growing algorithm Biggest-gap algorithm five-point averaging

filter

[19] Gaussian-shaped 5 × 5

low-pass filter with a σ
= 1.5

k-means algorithm to

enhance the contrast

Combination of modified

non-linear Laplace and

Sobel edge detectors

Removal of spurious areas

(unspecified number of

connected pixels)

Biggest-gap algorithm

[20] Otsu Threshold Removal of spurious areas

with <_50 connected pixels_

+ Dilation step

Trace the boundary

pixels of all white

regions to get contours

Median filter with 3

taps, cut-off frequency

� 70 Hz

[21] Local adaptive threshold Envelope extraction † Median filter with 15

taps

[22] Gaussian kernel of 5 × 5

with a σ = 1.5

Intensity adjustment

by images subtraction

Canny algorithm (σ = 0.5) Peak velocity extraction
†

[23] Steepest gradient histogram

threshold

Removal of small noisy

clusters with <_500

connected pixels

Biggest-gap algorithm low-pass first-order

Butterworth.

[16] Otsu 2D method Removal of small noisy

clusters with <_70

4-connected pixels

Trace the boundary

pixels of all white

regions to obtain

contours

†: This method was not specified in the original manuscript, so that adopted in [16] was used.

https://doi.org/10.1371/journal.pone.0248114.t001
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The study in [23] analysed 30-second adult Doppler traces acquired using an apical five-

chamber window positioned in the left ventricular outflow tract. First, the authors identified

the Doppler region of interest and converted it from RGB to grayscale format. To filter out

small noisy clusters, they removed connected areas with fewer than a predefined number of

pixels (empirically chosen as 500 pixels). The maximum velocity profile was then extracted

from the resulting filtered image using the biggest-gap method. To filter out high-frequency

noise, they applied a low-pass first-order Butterworth digital filter to the initial velocity profile.

ECG data were collected simultaneously from a subgroup of patients with heart rates of 60-96

bpm. In the analysis of the Doppler envelopes in the left ventricular outflow tract, based on the

typical monophasic cardiac cycle pattern, each cardiac cycle was considered to have two base

points, one at the onset and the other at the end of the curve, as well as a peak. Peak points on

the smoothed velocity profile were identified by imposing a constraint whereby the distance

between two consecutive peaks should be not smaller than 80% of the duration of the cardiac

cycle. To determine the location of the pattern base points, the authors computed the first

derivative of the velocity curve. Lastly, to obtain the final automated traces, they fitted a third-

order Gaussian model to each cardiac cycle of the velocity profile.

Materials and methods

In this section, we provide a technical description of the processing steps of the algorithms

identified in the previous section, which were used in our systematic analysis presented here,

even when they are outside the context of the original algorithms. We then describe the assess-

ment process and dataset adopted in this investigation.

By analyzing the most important aspects related to envelope tracing, with guidance from

the studies briefly reviewed in the section above, we were able to recognize five main phases:

(i) image preprocessing, (ii) image binarization, (iii) image post-processing, (iv) envelope

extraction, and (v) envelope post-processing. Considering the processing steps used in previ-

ous works (Table 1), we found that the first phase can be also composed of two separate conse-

cutive processes. For this reason, in the following, six steps are considered and analyzed. Fig 3

shows the complete workflow, including the different options for the various processing steps

used in the literature for envelope tracing, which are described below.

Pool of steps for image and signal processing

The algorithms presented in the related works have been decomposed into their main process-

ing modules relative only to the automatic envelope tracing process. Hereafter, they are briefly

described, following the phases reported in Fig 3. As some were used in more than one study,

they are not generally associated with a specific work. We report the parameterization chosen

by the original authors, when available.

Image preprocessing phase. This phase is performed to remove noise and emphasize

aspects of interest in the image. From the literature review presented above, we know that this

phase can involve up to two sub-phases, namely image filtering and contrast enhancement.

Image filtering: Gaussian filter. Image filtering techniques are traditionally associated with

image enhancement, whereby a low-pass filter is generally adopted to remove high-frequency

noise while preserving the frequency components at the lower end of the spectrum [24]. A

Gaussian low-pass filter is a smoothing filter that produces a particular Gaussian shape of the

blurred kernel whose radius is related to the standard deviation σ of the distribution. In Refs.

[18, 19, 22], the authors used a Gaussian low-pass filter with σ = 1.5, which had been deter-

mined empirically, based on a trade-off between noise suppression and blurring of the image

data. As the present work does not address the fine tuning of parameters associated with the
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Fig 3. Envelope tracing workflow. Columns show the different processing steps in the workflow for tracing the Doppler velocity envelope. The shaded

boxes in the center row indicates the chosen main work chain and the remaining indicate the available options from the state-of-the-art algorithms

evaluated in this study.

https://doi.org/10.1371/journal.pone.0248114.g003
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different processing steps reported in the literature, the value of σ adopted by the original

authors is considered in our comparative assessment.

Some algorithms for Doppler envelope tracing do not include any low-pass filtering at the

beginning of the processing chain, relying either on the original image quality or on the effec-

tiveness of the downstream processing steps.

Contrast enhancement: K-means. The authors of [19] achieved both the removal of back-

ground noise and stretching of the signal contrast by the use of two thresholds, whose values

were chosen based on the range in which the signal needed to be enhanced. These two thresh-

olds were defined using a k-means algorithm that clustered pixels by their intensity into three

classes, i.e., background pixels (class 1), weak-signal pixels (class 2) and strong-signal pixels

(class 3). Using the values of the cluster centers, low and high thresholds can be identified. The

Thlow value s determined to be the point at which the histogram value drops by 1ffiffi
2
p its value at

the class-1-cluster centroid μ1. The other threshold, Thhigh, is similarly selected using the value

of the class-3-cluster centroid μ3. Using both thresholds, contrast stretching is implemented as

follows:

gðsÞ ¼

0 s < Thlow
1

Thhigh � Thlow
s � Thlow

Thhigh � Thlow
Thlow � s � Thhigh

1 s > Thhigh

8
>>>><

>>>>:

ð1Þ

where s is the pixel brightness.

Contrast enhancement: Intensity adjustment. An image must have sufficient brightness and

contrast for easy viewing. Brightness refers to the overall lightness or darkness of an image,

whereas contrast refers to the difference in brightness between objects or regions in the image.

Adjustment of the contrast and brightness enables visualization of the features in an image

[25]. The authors in [22] performed contrast adjustment by subtracting the original grayscale

image from the image obtained by morphological operations using disk approximations.

We note that some algorithms used for Doppler velocity tracing have no such adjustment

capability.

Image binarization phase. To trace the velocity profile from a Doppler image, the image

is usually binarized. In general, an image can be binarized using an edge detector or a thresh-

old technique. Specifically, segmentation is used to subdivide an image into its constituent

regions or objects. Most segmentation algorithms are based on one or two basic properties

related to intensity values: discontinuity and similarity. Regarding discontinuity, the idea is to

partition an image based on abrupt changes in intensity, such as edges. When considering sim-

ilarity, the idea is to partition an image into uniform regions according to predefined criteria,

such as color, gray level, etc. Thresholding, region growing, region splitting and merging are

examples of these approaches [25].

Non-linear Laplace edge detector. A modified version of the NLLAP edge detector [26] was

adopted in [18] whereas, in [19], a combination of the NLLAP and Sobel edge detectors was

proposed. The NLLAP edge detector exhibits excellent performance even at very low signal-

to-noise ratios. Its algorithm, derived from the original NLLAP detector, can be described as

follows:

NLLAPðx; yÞ ¼ grandmaxðx; yÞ þ grandminðx; yÞ ð2Þ
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where:

grandmaxðx; yÞ ¼ max
i2N4

½ðIðxi; yiÞ� � Iðx; yÞ ð3Þ

grandminðx; yÞ ¼ min
i2N4

½ðIðxi; yiÞ� � Iðx; yÞ ð4Þ

for every pixel in the input image. The pair (x, y) represents the set of coordinates of the center

pixel, and N4 is the set of all four neighbors connected to the center pixel. The function I(xi, yi)
indicates the intensity (brightness) of the underlying pixeland grandmax and grandmin repre-

sent the highest and lowest gradients, respectively, around the pixel located at coordinates

(x, y).
We note that this algorithm is adaptive by nature. At each kernel position, the neighbors

delivering the highest and lowest gradients are chosen, neighbors the other neighbours do not

contribute to the result for that point. The result obtained from Eq 2 consists of regions with

positive and negative values, which may be separated by a band of zeros. Each pixel with a zero

value is assigned to its nearest region, either positive or negative. Edges are then positioned at

the locations of the zero-crossings. The strength ie of an edge is given by:

ie ¼ min½grandmaxðx; yÞ � grandminðx; yÞ� ð5Þ

The edge detector delivers a grayscale image with intensities corresponding to the edge

strength. However, a binary image is needed to trace the Doppler envelope. Weak edges are

often spurious, due to noise, which varies significantly across Doppler images. This means that

the choice of an appropriate threshold for tracing the velocity envelope is directly related to

the image content and must be determined adaptively. This is achieved by taking several small

areas of the original image near the horizontal axis and evaluating their means and standard

deviations. The sample with the lowest mean value is taken to be representative of the back-

ground and its mean (mb) and standard deviation (σb) values are used to select the threshold

value t using Eq 6:

t ¼

( l1 if mb < mth or sb > sth

l2 otherwise
ð6Þ

where l1, l2,mth, and σth are empirically determined beforehand.

Combining NLLAP and Sobel edge detectors. The work reported in [19] used a combination

of a Sobel operator [27] and an NLLAP edge detector [26]. The Sobel edge detector [27] is a

gradient-based method that uses first-order derivatives, originally approximated using 3 × 3

kernels [28]. As no peculiar kernel size is mentioned in [19], a size equal to 3 × 3 was adopted,

based on the original definition of the algorithm [28]. The results can be combined to deter-

mine the absolute magnitude of the gradient, which represents output edges with larger values.

Canny edge detector. In Ref. [22], the authors applied Canny edge detection to binarize

images. After performing noise reduction using a Gaussian filter, the Canny algorithm [29]

uses four filters to identify the horizontal, vertical and oblique edges (in given ranges), which

are obtained by the first derivatives of a Gaussian. Then, edge points are detected as local max-

ima of the derivatives (in a given direction). To trace the contours, a hysteresis-based process

is controlled by two thresholds to limit fragmentation of the reconstructed edges.

Threshold-based binarisation by Otsu threshold. Because of its simplicity and low computa-

tional cost, image thresholding holds a central position in image segmentation applications

[24]. Several threshold techniques have been presented in the literature with respect to Doppler

velocity-envelope tracing, which we used in this work. The first technique is the Otsu threshold
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[30], which is based on the assumption that the histogram of a given image is bimodal, so that

two classes of pixels (background and content of interest) can be identified. To this end, the

optimum threshold is determined for separating the two classes, with minimal intra-class vari-

ance. This threshold was employed by Ref. [20].

The Doppler spectrum covers a large portion of the grayscale range. To effectively separate

information of interest, in Refs. [16, 17], the image is binarized using a global threshold

obtained from a gray-level-median histogram based on the 2D Otsu method. In this method, a

2D histogram is built, but instead of using the gray level and average gray value of the neigh-

borhood of image pixels, the gray level and median of the neighborhood of image pixels are

used, which effectively separates noise pixels from object and background regions [31].

Threshold-based binarization by steepest gradient histogram. In Ref. [23] the optimum value

is empirically selected for contrast thresholding using the steepest gradient method. To sepa-

rate the foreground from the background, 80% was suggested to be a good threshold for the x-

intercept of the steepest tangential line to the gradient of the image histogram [32]. However,

in the original work, the authors considered the optimum threshold to be the value at which

the gradient of the image histogram reaches its peak, which indicates the background pixel val-

ues in a grayscale Doppler image.

Threshold-based binarization by local adaptive threshold. To automatically extract the

Doppler velocity profile from Doppler images, the authors in [21] applied a local adaptive

thresholding algorithm. Adaptive thresholding takes into account the spatial variations in illu-

mination. To account for these variations, a different threshold is computed for each pixel in

the image. In their study, the authors first divided the region of interest (ROI) into three par-

tially overlapping and rectangular regions of equal size. Then, for each ROI, an inverse nor-

malized cumulative intensity histogram was computed. The threshold for a given ROI was

estimated to be the 25th percentile of the pixel intensities. In overlapping areas, they used the

average thresholds of the two adjacent regions.

Image post-processing phase. Removal of spurious areas by connected pixel analysis.
Mathematical morphological operations are commonly used as image processing tools for

extracting image components that are useful for representing and describing a regional shape.

Image enhancement using morphological approaches has been widely addressed in previous

experimental research on Doppler velocity-envelope tracing, primarily to reduce residual

noise [33]. The two most common types of additive noises are Gaussian and salt-and-pepper

noise [33]. Although noise is ordinarily removed by spatial or frequency-domain filters, mor-

phological processing may be more frequently adopted to reduce noise in binary images. In

this processing, a dilation step is applied to fill small holes in bright regions to yield a clean

velocity signal. To filter out small noisy clusters, connected areas with fewer than a predefined

number of pixels are removed; this number was empirically selected to be 500 pixels in [23], 50

in [20], and 70 in [16].

Region growing. Region growing [34], a simple region-based image segmentation method,

was used in the post-processing image phase by the study reported in [18]. This segmentation

approach examines the neighboring pixels of initial seed points and determines whether these

pixel neighbors should be included in the region. Starting from a seed-point, the flood-fill algo-

rithm finds all the connected pixels of the same value and deletes small spurious areas from the

image.

We note that some algorithms used for Doppler velocity tracing include no post-processing

step.

Envelope extraction phase. The regional outline of an image differs from the back-

ground, which should provide a good estimate of the Doppler velocity profile, and can be

extracted in two lines representing the upper and lower profiles. In the literature, two main
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envelope extraction methods have been presented, the biggest-gap method and the white-

region contour method, which are described below.

Biggest-gap method. The biggest-gap method [19] defines a column vector that moves across

the image from left to right. Within this column vector, the sub-vector with the highest num-

ber of consecutive black pixels is identified. Consecutive black pixels comprise a gap. The big-

gest-gap algorithm weights gap values according to their vertical positions, so that a gap in the

central area of the search space is more significant than those in the upper and lower parts.

The lowest [highest] pixel of the largest gap, considering all the position-dependent weighted

gaps, is labeled as part of the upper [lower] envelope function.

White-region contour method. This method, used by the authors in [16, 23], traces the

boundary pixels of all white regions to obtain contours as follows:

GuðxÞ ¼ argmax
y
fIðx; yÞ ¼ 1g � yb ð7Þ

GlðxÞ ¼ argmin
y
fIðx; yÞ ¼ 1g � yb ð8Þ

where yb is the baseline position, i.e., the horizontal axis line that divides the image into two

parts. Depending on the direction of the blood flow away from or toward the transducer, one

part is characterized by positive waves and the other by negative waves.

Envelope post-processing phase. Lastly, to remove the effect of spiking artefacts or to

smooth the velocity profile signal, a post-processing step can be applied to the extracted enve-

lope. In this study, we compared four different filters, a median filter of order 15, a five-point

averaging filter, a median filter with a window size of two samples and a cut-off frequency of

71 Hz, and a first-order Butterworth filter with a cut-off frequency of 70 Hz.

Median filter. A basic processing step is the application of a temporal median filter with a

variable window size. The median filter evaluates the median value within a sliding window

of a given size, and provides a smoothing effect that is less sensitive to outlier values than the

moving average filter.

In [21], the extracted envelope is filtered using a median filter with order 15, whereas in

[20] a median filter with a window size of three pixels is used to remove the effect of spiking

artefacts on the extracted envelopes. In the latter case, when considering a sampling frequency

of 500 Hz, the obtained cut-off frequency was approximately 78 Hz.

Butterworth filter. In [23], the authors adopted a Butterworth low-pass filter to suppress

high-amplitude outliers and artefacts in the velocity profile. Any frequency ten times higher

than the fundamental frequency of the heart motion was filtered out. This ratio was selected

empirically as a trade-off between noise removal and waveform accuracy. The low-pass filter is

also a crucial tool for isolating individual cardiac cycles.

Moving average filter. To suppress the effect of remaining noise, Ref. [18] applied a five-

point averaging filter to the envelope curve. This simple filter smooths the extracted envelope

much like other kinds of low-pass filters, but with a simpler implementation.

Performance assessment

To enable evaluation of the role played by the processing steps of each option described

above with respect to PWD envelope tracing, we identified a prototypical processing chain

(highlighted in gray in Fig 3), which we labeled the main work chain (MC).

Starting from the MC, step by step from first to last, we evaluated each processing option by

introducing it into the MC (replacing only the homologous step in the MC). As the MC com-

prises six steps, the number of chains composed of five steps belonging to the MC and one step
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from the available pool of steps will be 23 − 6 = 17. A workflow example is shown in Fig 4

where, from top to bottom, we can see the MC, followed by the first, second, and last (17th)

chain created by this procedure. Table 2 lists the different processing chains constructed in

this way. This numbering system is used to present of the results of our analysis.

A second assessment was aimed at the identification of a near-optimal work chain, without

an exhaustive exploration of the design space. In this case, we tested the different options for

the first processing step by the MC, selected that leading to the best performance and used it to

modify the MC. With this change to the MC, we tested the different options for the second

processing step, changing the MC to include that leading to the best performance. This step-

wise process was repeated six times. Although this solution does not guarantee that the best

Fig 4. Workflow of the classification method. Example of the procedure used to evaluate the importance of each single processing technique. Specifically, the

processing chains created by MC, 1st, 2nd, and 17th are shown.

https://doi.org/10.1371/journal.pone.0248114.g004
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processing chain in the whole design space will be obtained, it enables the identification of a

near-optimal solution (hereafter referred to as the sub-optimal chain, SOC).

Lastly, we compared the different state-of-the-art chains (listed and described in Table 1),

the SOC, and a randomly built work chain. The latter was included to verify whether or not

the robustness of the algorithms was such that the actual composition of the processing chain

was of little importance, provided that the processing elements are taken from the pool, as

described in this section.

The aim of our study is not the identification of a solution leading to the best envelope trac-

ing algorithm, but rather the identification of the traced envelope that maximizes the perfor-

mance of a generic classifier trained to distinguish between fetal heartbeat with complete and

clinically meaningful PWD segments and those with incomplete or malformed segments. For

this reason, the assessment focuses on the accuracy of a chosen classifier, whose architecture is

presented in the next section. The minimum value for the accuracy considered as acceptable in

this work was 90%.

Classifier model. In this work, we used a simple multi-layer perceptron ANN to identify

the portions of the PWD envelope in which there is a recognizable complete and clinically

well-formed fetal cardiac cycle. ANNs are characterized by a variable number of hidden layers

and a variable number of nodes comprising the input, hidden, and output layers. Using the

scaled conjugate gradient back-propagation algorithm, we trained an ANN characterized by

264 input nodes, according to the number of extracted features, 10 hidden nodes, and two out-

put nodes, which equal the number of classes that we wished to identify.

In particular, the input fed to the ANN is as follows:

Table 2. Processing chains for assessment of individual steps. The numbering and description of the different pro-

cessing chains created to assess the importance of individual steps in a prototypical processing chain.

# Description

MC A Gaussian-shaped low-pass filter with σ = 1.5, a k-means algorithm to enhance the contrast, application of

the Otsu 2D method, removal of small noisy clusters with 70 four-connected pixels, tracing of boundary pixels

of all white regions to obtain contours, and a temporal median filter with a window size of three pixels.

1 MC with no filter application for the first step of the preprocessing phase

2 MC that performs intensity adjustment by subtracting the grayscale and modified images in the second step of

the preprocessing phase

3 MC that uses no operation for the second step of the preprocessing phase

4 MC that uses the Canny algorithm for the image binarization phase

5 MC that uses the NLLAP edge detector for the image binarization phase

6 MC that uses a combination of the NLLAP and Sobel edge detectors for the image binarization phase

7 MC that uses an adaptive threshold for the image binarization phase

8 MC that uses the steepest gradient histogram threshold for the image binarization phase

9 MC that uses the Otsu threshold for the image binarization phase

10 MC that uses the region-growing algorithm in the image post-processing phase

11 MC that removes spurious areas by performing a morphological operation (MO) with a maximum of

500-connected pixels in the image post-processing phase

12 MC that removes spurious areas by performing a morphological operation (MO) with a maximum of

50-connected pixels in the image post-processing phase

13 MC without any image post-processing phase

14 MC that uses the biggest-gap algorithm for envelope extraction

15 MC that uses a median filter of five-point length for envelope post-processing

16 MC that uses a median filter of 15-point length for envelope post-processing

17 MC that uses a low-pass first-order Butterworth filter for envelope post-processing

https://doi.org/10.1371/journal.pone.0248114.t002
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1. the upper Gu(x) and the lower Gl(x) envelopes in a 128-point window. These two envelopes

have been normalized to between 0 and 1 and between -1 and 0, respectively, without any

resampling. Based on the window size, a total of 256 inputs are associated with the traced

PWD envelopes;

2. four features associated with the area under the curve of the two envelopes in the first and

second halves of the window (Ai);

3. four pixel-based features (Pi), computed as the mean values of the pixels included in the

four areas described in the previous point.

Overall, 264 input features for every sample are then presented to the ANN to be classified.

By considering the envelope sampling rate and the duration of the mean cardiac cycle

among the targeted gestational weeks, the chosen window length can capture a whole fetal

heartbeat. Moreover, considering only healthy fetuses, a 1:1 atrio-ventricular conduction can

be assumed so that the atrial activity can be enclosed in one half of the window and the ventric-

ular activity in the other half.

Fig 5 shows the structure of the ANN used and the feature extraction step. The number of

neurons in the hidden layer and the number of hidden layers were empirically chosen to

obtain acceptable performance on the available dataset without incurring overfitting problems

[17, 35].

Performance metrics and statistical analysis. To evaluate the impact of the different

steps on the whole processing chain, we determined the accuracy (Acc) of the classification as

follows:

Acc ¼
TP þ TN
P þ N

� 100 ð9Þ

where TP is the number of true positive detections, TN is the number of true negative detec-

tions, P is the number of positive samples and N is the number of negative samples.

We adopted a leave-one-subject-out cross-validation scheme corresponding to a 25-fold

cross-validation, but without any randomness in the selection of the samples from the test set.

This approach was considered to be fairer than a normal k-fold stratified cross-validation as

the leave-one-subject-out approach does not train the classifier on any heartbeat coming from

a given subject, which can happen when this type of system is integrated into an ultrasound

device. Using this validation scheme, we obtained 25 Acc values. To observe the symmetry of

the distributions, we adopted box-and-whiskers plots, as shown in Figs 8 and 9. In these plots,

the median value is highlighted inside a box ranging from the 25th to 75th percentiles and the

whiskers range from the minimum to maximum number of samples that cannot be considered

to be outliers (represented by red crosses).

Statistical analyses were performed to support the interpretation of the obtained results.

First, we used the Lilliefors test to determine the normality of the distributions. If a result did

not satisfy the assumption of a normal distribution, a non-parametric statistical test was

applied. Specifically, we used the Kruskal–Wallis test for comparisons involving more than

two distributions to verify that they had all come from the same distribution. Otherwise, we

used the Wilcoxon signed rank test to compare just two distributions to verify the statistical

difference between the two. When the results of the Lilliefors test satisfied the assumption of a

normal distribution, we then applied the Student’s t-test for paired data. In all the statistical

tests, we considered p< 0.05 to indicate statistical significance.

All data processing was performed using MATLAB v2018b (MathWorks Inc., MA, USA).
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Test dataset of fetal PWD. A dataset of fetal cardiac PWD signals was collected at the

Division of Pediatric Cardiology, San Michele Hospital, Cagliari, Italy. The study was approved

by the Independent Ethics Committee of the Cagliari University Hospital (AOU Cagliari) and

performed following the principles outlined in the Helsinki Declaration of 1975, as revised in

2000. Each volunteer signed a form acknowledging their informed consent to the research pro-

tocol. All images and data were anonymized prior to analysis.

The PWD signals were recorded using a Philips iE33 ultrasound machine (Philips, The

Netherlands). We set the sweep speed to 75 mm/s and the machine settings (e.g., gain, axis

scaling, and baseline) were not changed during the acquisition process (ranging from 6.4 s to

119.8 s). All the frames were captured using the video frame grabber USB3HDCAP USB3.0

(by StarTech, Ontario, Canada), which was connected to the DVI output of the ultrasound

device. To ensure that no frame was dropped, the frames were collected at a rate of 60 fps,

which is higher than both the screen refresh rate and the DVI output (30 fps).

Based on best clinical practice, we chose the five-chamber apical window. Due to the variable

position of the fetus in the maternal uterus, the mitral blood inflow can be moving either towards

Fig 5. Classifier model. From left to right, the features are extracted from a portion of the PWD signal (in this case that representing a meaningful beat). The

features include 128 samples from the upper envelope (red line), 128 samples from the lower envelope (blue line), four area features (Ai), and four pixel-based

features (Pi). The ANN is fed by this 264-element feature vector, and consists of one hidden layer with 10 hidden neurons and two output nodes for binary

classification.

https://doi.org/10.1371/journal.pone.0248114.g005
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or away from the ultrasound transducer. Therefore, the E/A-V pattern can have a positive bal-

ance (positive E/A wave, negative V wave) or a negative balance (negative E/A wave, positive V

wave). We converted the whole video into a single wide image [17] and, to work only with

images exhibiting a positive balance, we flipped the negatively balanced images upside-down.

The data were collected from the fetal echocardiographic examination of 25 low-risk preg-

nant volunteers at gestational weeks ranging from the 21st to the 27th, from which we obtained

a total of 43 PWD traces. An expert pediatric cardiologist labeled all the complete and measur-

able fetal cardiac cycles using a custom MATLAB graphical interface, as described in [15]. This

MATLAB application enables the cardiologist to scroll through the traces and label fetal heart-

beats frame-by-frame. The graphical interface drew two rectangular outlines on the PWD

image, one enclosing the atrial activity and the other the ventricular activity. The window size

was set to be 128 samples wide, as previously explained. The cardiologist could label a selected

window as “complete and measurable” or continue to scroll over the trace.

Overall, 174,319 PWD windows were labeled. For each manually labeled complete and

meaningful fetal cardiac cycle, the tool also labelled other windows, as many as 15, in the same

way before and after the one manually labeled by the cardiologist. Overall, we obtained 87,736

windows representing meaningful cycles. The other 86,583 windows representing incomplete

or malformed fetal cardiac cycles were randomly selected by the application. This approach

yielded to a balanced dataset.

Fig 6 shows an example of two fetal heartbeats: one that is complete and measurable by the

cardiologist and the other that shows an incomplete fetal cycle. The complete heartbeat allows

for the clear identification of the atrial and ventricular activity of the fetal heart, whereas the

other does not. The atrial activity must also contain distinguishable A and E waves that can be

labelled as measurable by the cardiologist.

Results

Assessment of individual steps

Fig 7 shows the output image and traced envelopes obtained by the MC and the other 17 pro-

cessing chains constructed for this first assessment. For the sake of clarity, the processed

images shown were obtained from the same exemplary PWD segment shown in Fig 2. It is

clear by observation alone that some chains realized better tracing than others, even apart

from the analysis of the classifier output.

Fig 8 shows the results of this first analysis, in terms of classifier accuracy, grouped by pro-

cessing step, which enables a direct comparison with the MC. The distribution of the accuracy

values related to the third and fifth steps in Fig 8 clearly reveal that two main steps have a

major influence on classification: image binarization and envelope extraction. Table 3 shows

the results of the statistical analysis of this first assessment. The results of the Kruskal-Wallis

test confirm a significant difference between those two steps (p< 0.001). At the same time, the

results of the pairwise Wilcoxon tests, which was applied to each processing step on the MC

and other processing chains that differed only in the use of another option in that step, reveal

significant differences for all combinations in the phases mentioned above and between chains

2, 15, and 16 and the MC.

Table 4 presents a comparative analysis of all 18 processing chains in terms of the median

and first and third quartiles.

Identification of a near-optimal processing chain

Table 5 presents the results regarding the identification of an alternative, near-optimal, pro-

cessing chain, which was created following the approach described in the previous section.

PLOS ONE Impact of pulsed-wave-Doppler velocity-envelope tracing techniques on classification of fetal cardiac cycle

PLOS ONE | https://doi.org/10.1371/journal.pone.0248114 April 28, 2021 16 / 25

https://doi.org/10.1371/journal.pone.0248114


Fig 6. Examples of complete and incomplete fetal cardiac cycles. A PWD segment labeled as complete and measurable by the

cardiologist, with clear E/A and V patterns (left), and a PWD segment labeled as incomplete/malformed (right).

https://doi.org/10.1371/journal.pone.0248114.g006
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Fig 7. Example of output images. Each image presents envelopes (upper envelopes (red) and lower envelopes (blue)) and a binarized image, as

obtained by the different signal processing chains listed in Table 2, for the same five fetal beats. From left to right, and top to bottom, the processing

chains are identified by numbers 1 to 17 in Table 2. The last image was obtained using the MC.

https://doi.org/10.1371/journal.pone.0248114.g007
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The last row of this table lists the p-values obtained from the Kruskal–Wallis test for all the

options available for that step to determine whether an observed difference introduced by a

given choice was statistically significant. We identified the most accurate processing method

for a single step by selecting the one that achieved the highest accuracy (based on the mean of

the 25-fold validation).

Based on this approach, the resulting SOC was identified. Step 1: application of Gaussian

low-pass filter; Step 2: k-means clustering contrast adjustment; Step 3: binarization using 2D

Otsu thresholding); Step 4: removal of spurious areas (less than 500 pixels); Step 5: tracing of

the boundary pixels of all white regions to obtain contour; and Step 6: smoothing of the enve-

lope by the Butterworth filter.

Comparison of different processing chains

The last analysis we performed was a comparison of the accuracies of the processing chains

presented in the literature (see Table 1) with the SOC and a randomly-composed chain. Fig 9

shows the results of this comparison.

Based on their performances, the Kruskal–Wallis test clearly indicates that the distributions

of the tested chains are statistically different (p< 0.001). Moreover, we we used the Wilcoxon

Fig 8. Assessment of individual processing steps. Accuracies (percentages) of the six steps (from left to right, top to bottom) identified in Fig 3. For

the numbering used to identify these chains, refer to Table 2.

https://doi.org/10.1371/journal.pone.0248114.g008

Table 3. Statistical analysis of individual step assessments. For each step identified in the first row of table (Fig 3), the second row shows the Kruskal–Wallis test result,

and the third row uses an � symbol to indicate any statistically significant difference in the results of the pairwise Wilcoxon signed rank tests between the MC and the other

processing chains that differ only in the use of another option in that step.

1st 2nd 3rd 4th 5th 6th

p > 0.05 p > 0.05 p < 0.001 p > 0.05 p < 0.001 p > 0.05

1 vs. MC 2� 3 vs. MC 4� 5� 6� 7� 8� 9� vs. MC 10 11 12 13 vs. MC 14� vs. MC 15� 16� 17 vs. MC

https://doi.org/10.1371/journal.pone.0248114.t003
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signed rank test to make a pairwise comparison of all the distributions with that of the SOC.

The results of all the comparisons, except that for the chain proposed by Sulas et al. [16],

revealed statistically significant differences (p< 0.05). This is not surprising because the chain

proposed by Sulas et al. [16] and the SOC adopted the same methods for image binarization

and envelope extraction, which were identified as the most important steps in the work chain.

Discussion

From the first analysis of the assessment of each processing option available on the processing

chain, from Fig 8 and Table 3 we can conclude that, regarding image preprocessing and post-

processing, performing no operation or trying to improve the image quality to emphasise the

signal of interest has no significant effect on the classification outcome. This finding also

applies to the post-processing of the traced envelopes, for which the performance improve-

ment is very limited.

Regarding image binarization, we can observe that the Canny and NLLAP edge detectors

are not reliable for PWD images. The combination of the NLLAP and Sobel edge detectors

improved the output, compared to that of NLLAP alone, thus confirming the conclusions

drawn by [19]. However, the Otsu 2D method demonstrates clear superiority (p< 0.001).

Considering envelope extraction, our comparison of the two methods reveals the clear superi-

ority of the white-region contour method (p< 0.001).

These findings are confirmed by the identification of an SOC that incorporates the best

options available in those two important stages.

The results also reveal that the chains presented by Tschirren et al. [18], Greenspan et al.

[19], and Zolgharni et al. [23], and the random chain obtain accuracies far below minimum

expectations. Although the techniques presented by Syeda-Mahmood et al. [20] and by Kir-

uthika et al. [22] achieved high median accuracies, exceeding 90%, the accuracies achieved in

the 25 folds in the cross-validations are widely dispersed, as can be observed from the boxplot

in Fig 9. This result confirms that image binarization is a critical step and that it is better to use

a thresholding technique than an edge detector for the purposes of PWD signals.

Table 4. Details of individual step assessment results. Q1 refers to the first quartile, Q2 to the median and Q3 to third quartile. The results are expressed as percentages.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 MC

Q1 97.4 96.1 97.1 49.6 49.5 83.0 95.2 94.5 94.9 97.2 97.5 97.7 97.2 49.6 96.7 96.2 97.3 97.3

Q2 98.3 97.5 98.4 50.0 49.7 88.1 96.8 96.3 96.2 98.1 98.3 98.4 98.3 91.1 97.7 97.1 98.3 98.6

Q3 98.8 98.5 99.0 52.0 49.8 91.8 97.8 97.9 97.8 98.7 98.9 98.6 98.8 98.2 98.2 98.2 98.9 98.8

https://doi.org/10.1371/journal.pone.0248114.t004

Table 5. Near-optimal chain identification results. For each processing step identified in Fig 3, the accuracy is reported (as a percentage). The number in the brackets

indicates the processing chain in Table 2 from which that processing option was taken. The results in bold indicate the option selected for use in successive tests.

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

98.33 (1) 98.12 (2) 51.72 (4) 97.83 (10) 49.79 (14) 98.35 (15)

98.36 (MC) 96.15 (3) 49.58 (5) 98.06 (11) 98.44 (MC) 98.44 (16)

98.44 (MC) 85.33 (6) 97.77 (12) 98.05 (17)

96.08 (7) 97.95 (13) 98.45 (MC)

95.98 (8) 97.93 (MC)

95.96 (9)

97.93 (MC)

p = 0.54 p = 0.38 p< 0.001 p< 0.001 p< 0.001 p = 0.99

https://doi.org/10.1371/journal.pone.0248114.t005
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The chain proposed by Magagnin et al. [21] uses the same envelope extraction adopted by

Sulas et al. [16] and the SOC, but not the same binarization technique (adaptive thresholding

rather than the Otsu 2D). If we look at Fig 8, the adaptive threshold (used in chain number 7

(Table 2), whereby the MC was modified to introduce an adaptive threshold,) and the Otsu 2D

(binarization algorithm used in the MC) have similar distributions. Moreover, from Table 5,

we can see that the adaptive threshold (equivalent to the chain 7) achieved high classification

accuracy.

From a methodological perspective, some choices made in this work require a justification.

First, a fine tuning of the parameters adopted by the different processing chains and the identi-

fication of the best possible processing chain are beyond the scope of this work, which primar-

ily focused on analysis of the importance of the different options reported in the literature for

the automatic tracing of Doppler traces. In this sense, the adoption of different classifiers

was not considered either. The choice of supervised classification method has been carefully

studied and analyzed in previous work. Preliminary studies [15] compared three different clas-

sifier models, based on the preliminary extraction of PWD velocity envelopes. The adoption

of a supervised classifier trained with selected features achieved significantly better results

(p< 0.0001) than other feature-based approaches. The choice of the ANN has also been

addressed in other work [17, 35], and its excellent performance revealed.

For the same reason, the study of deep neural network approaches was not a focus of this

work, although it would be of interest to do so in future studies. In fact, while deep learning

and convolutional neural networks could lead to similar or even better results, the perfor-

mance improvement would be modest and would not counterbalance the significantly

higher complexity of the classifier model. Moreover, these approaches would provide no

insight regarding the role of the different processing steps normally used to trace the PWD

envelopes.

Fig 9. Comparison of the different processing chains results. Comparison of classification accuracies of the workflows presented in the literature

(Table 1) with those of the near-optimal chain and a randomly-composed chain.

https://doi.org/10.1371/journal.pone.0248114.g009
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The identification of a “universally best” processing approach could not be based on the

exploration of a single dataset, recorded and annotated by a single cardiologist using a single

machine with a limited number of participants. All these limitations are described below.

One limitation in this study was the adoption of a single ultrasound machine. Different

ultrasound machines feature a different number of pixels per second, which lead to a different

sampling frequencies of the envelopes obtained by our approach. For this reason, the size of

the selected window must be adequate. The colors, brightness, and contrast of different

machines could also differ and, as they are used by the ANN as features, this could lead to

slightly different classifier performances. The filters are also different in different ultrasound

machines. Although these aspects should be carefully considered, our study demonstrated that

the first preprocessing steps that use image filters and techniques to enhance the image con-

trast, do not play an important role in the classification output. Therefore, it is reasonable to

assume that different filters and contrasts will not have a significant impact on the extraction

output.

The limitation associated with the labeling having been performed by a single cardiologist

is also of little importance. No measurements were performed during the labeling procedure,

merely visual inspection. From this perspective, the cardiologist’s experience and habits have a

negligible impact on the procedure, although they could severely impact a measurement ses-

sion. This limitation is also of minor importance considering that our test dataset comprised

signals from healthy fetuses only, as per the experimental protocol approved by the Ethics

Committee. A more comprehensive study including a larger population with different heart

conditions and at different gestational ages could improve the generalizability of the results.

Another limitation of the study is its sample size. For this pilot study, the sample size was

based on a convenience sample of 25 volunteers with consideration of the pregnancy’s flow,

the research budget, and the time frame. The number of volunteers was determined by their

availability within the time frame (about two years) allocated to the recording protocol. Very

little is known about the standard deviation of the variables of interest adopted in this study,

and the obtained results can be used to plan further research and perform power analyses,

which was impossible for our study. We note that this type of PWD signal is quite difficult to

acquire as the cardiologist must have the necessary expertise and training and there are other

factors affecting the measurement, such as fetal movements and fetal heart size. Beyond the

signal acquisition, which is particularly cumbersome at that gestational age, the pediatric cardi-

ologist must label the dataset, which is a very time-consuming task.

Lastly, our assessment was performed by offline processing, as the focus was to evaluate the

importance of each step in the envelope tracing process from the PWD image for the recogni-

tion of clinically complete and measurable fetal heartbeats. Therefore, the computational time

effort was not considered in the evaluation of the processing chains. For such a comparison,

the algorithms must also be optimized in the same way, and executed on a reference architec-

ture. This cannot be realized by the adoption of functional MATLAB implementations. In any

case, Table 6 shows the time (in seconds) to process a short Doppler image in Fig 2 containing

five fetal heart cycles, executed on a Intel Core i7 with 16GB RAM. The computational effort is

mostly expended during the binarization step (which changed between the 4, 5, 6, 7, 8, 9, and

MC processing chains). Table 7 illustrates the same analysis for state-of-the-art chains and the

Table 6. Processing time (seconds) for the five fetal heartbeats in Fig 2, for the 18 processing chains obtained from the MC.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 MC

26.32 30.43 30.63 0.18 0.44 0.51 0.14 0.12 0.10 32.34 30.72 29.18 29.25 29.79 29.50 30.26 29.29 29.86

https://doi.org/10.1371/journal.pone.0248114.t006
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MC. On this basis, if the goal is real-time implementation, this study represents a very prelimi-

nary assessment of the studied methods.

Conclusion

To date, many studies of cardiac ultrasound signal processing have been reported with the aim

of identifying good processing chains to achieve an optimal approximation of the Doppler

velocity profile. In this work, we analyzed these studies by combining the techniques they used

with a supervised classifier, i.e., a simple ANN, to identify the presence of complete and mea-

surable fetal heartbeats from the PWD envelope. We investigated the impact of the different

steps in the processing chain and compared the different techniques on the same dataset to

identify a near-optimal processing chain in terms of classifier accuracy.

Although we could identify such a near-optimal processing chain and our comparison of

different techniques revealed the superiority of some methods, when the aim is the recognition

of complete and measurable fetal cardiac cycles within a trace, rather than the quality of the

envelope itself, the role of some processing steps in the chain can have a limited effect. In fact,

we found only the binarization and envelope extraction steps to have a major effect on the

final result, so the greatest attention should be paid to the selection of these processing steps.

The results of this study, even in the light of its limitations, are important for researchers

interested in the development of processing techniques for the automatic identification of clin-

ically meaningful fetal heart cycles in long recordings or in scenarios where a computer aid

could facilitate examination.
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