
Probabilistic state estimation for labeled continuous

time Markov models with applications to attack

detection

Dimitri Lefebvre1, Carla Seatzu2, Christoforos N. Hadjicostis3, and Alessandro Giua2

1GREAH Laboratory, Normandy Univ., Le Havre, France Email:

dimitri.lefebvre@univ-lehavre.fr
2DIEE, Univ. of Cagliari, Italy Email: carla.seatzu@unica.it, giua@unica.it

3Dept. of Electrical and Computer Engineering, Univ. of Cyprus, Nicosia, Cyprus, Email:

chadjic@ucy.ac.cy

October 6, 2022

Abstract

This paper is about state estimation in a timed probabilistic setting. The main contri-

bution is a general procedure to design an observer for computing the probabilities of the

states for labeled continuous time Markov models as functions of time, based on a sequence

of observations and their associated time stamps that have been collected thus far.

Two notions of state consistency with respect to such a timed observation sequence are

introduced and related necessary and su�cient conditions are derived. The method is then

applied to the detection of cyber-attacks. The plant and the possible attacks are described

in terms of a labeled continuous time Markov model that includes both observable and

unobservable events, and where each attack corresponds to a particular subset of states.

Consequently, attack detection is reformulated as a state estimation problem.
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1 Introduction

Due to their heterogenous and often distributed nature, cyber-physical systems are exposed to

attacks from malicious intruders. Therefore, there is an emerging need for developing tools that

evaluate the risk of attacks in a quantitative way. Cyber-security in dynamical systems has been

studied in the framework of continuous time systems and discrete event systems [6,20,35]. As far

as continuous time models are used, attack scenarios depend mainly on replay, zero dynamics,

and bias injection [35]. When discrete event models are considered, attacks depend on: (i) the

communication channel where the attack happens, (ii) the attack impact on the transmitted

data, and (iii) the mechanism to prevent damage [26]. Attacks may occur in the observation

channel (known as sensor attacks), in the control channel (known as actuator attacks), or in both

the observation and control channels (as in most realistic cases) [4]. For example, weaknesses in

the address resolution protocol may be exploited by malicious hosts in a local area network to

implement attacks [13]. Deletion, insertion, and replacement are typical examples of the ways

an attack can alter the transmitted information [3]. In particular, there are several results

concerning sensor attacks that drive a controlled DES to unsafe or undesirable states by ma-

nipulating observation sequences [10,22,34]. The majority of previous works aims to investigate

one special type of cyber attacks, where an attacker can intercept and arbitrarily alter sensor

readings in order to trick the controller and drive the system to the targeted undesirable state.

In the same context, the approach in [38] includes observations that are corrupted by an intruder

who can insert and erase some sensor readings. The authors of [38] construct a stealthy attack

structure which aims to make the operator think that the plant is in a safe state whereas it

actually reaches an unsafe state. This is also the context of the present work where the attacker

manipulates the output labels. In order to prevent the consequences of cyber-attacks, two main

approaches have been presented in the literature: detection and prevention on the one hand, and

synthesis of a resilient supervisor on the other hand. Detection approaches place an intrusion

detection module in the system to detect an attack and prevent it before it causes damage to

the system [4,8]. Exploiting supervisory control approaches, a supervisor is synthesized which is

resilient to attacks [26].

The problem considered in this paper concerns the �rst approach where attack detection is

formulated in a timed probabilistic setting. The considered systems are modeled by labeled

continuous-time Markov models (LCTMM) de�ned as a subclass of nondeterministic �nite au-

tomata with possibly multiple initial states, where each arc is associated with a nonnegative real

number, representing the �ring rate of the transition. Such stochastic models behave basically as

continuous-time Markov models (CTMM) [7,14,23] and describe sequences of possible events in

which the probability of each event depends only on the state attained after the previous event,

and the next state is a function of the current state and the event that is selected. The Marko-

vian property of CTMM also implies that the interarrival times between events are distributed

exponentially.

CTMM are used in various domains. In particular, Poisson processes, birth and death processes,



and parallel queuing systems are examples of uses of continuous-time Markov models in the

domain of computer science and networked systems where cyber-attacks may occur [7]. With

usual CTMM, the events from one state to the next one are assumed to be undetectable and the

best one can do is to compute the probability of the states. In this work, on the contrary, we

are interested in the case where some (but not necessarily all) events are observable [36]. Each

time an observable event occurs, the label of the event is collected as well as the time when

the event occurs. The observation of these timed events (and corresponding time stamps) is

helpful for re�ning the computation of the probabilities of the various states or to even disqualify

certain states. Such an LCTMM is di�erent from a hidden Markov model (HMM) [25] which

is used to model a system with a Markov model where the parameters and consequently the

state probabilities are unknown. Unlike a usual Markov model, in a hidden Markov model, it is

assumed that there exists a complete probabilistic mapping from the set of states to a given set

of observations. On the contrary, with an LCTMM it is assumed that there is a partial determin-

istic mapping from the set of transitions to a given set of observations. Observe, however, that

the state estimation problem has been considered in the HMM setting. For example, in [27] the

authors use discrete-time hidden Markov chains, whose outputs are observable conditions that

depend on the current state. In addition, to reduce the bandwidth of the output measurements,

they assume outputs are not produced at each time instant.

The state estimation problem in the setting of discrete event systems (DES) has been intensively

studied during the last decades [12]. This has also led to the study of various properties of

interest, such as diagnosability, opacity and detectability, as well as ways to verify them. Of

particular relevance to this work is the property of detectability (i.e., the ability to eventually

determine exactly the state of a given system).

In a certain sense, the notions of state consistency introduced in this work can be viewed as

condition-based notions of detectability (conditioned on the observation of a given timed se-

quence).

Most pertinent existing contributions concern logical DES where probabilistic and timing aspects

are ignored. In particular, di�erent notions of detectability have been introduced to characterize

system properties: strong, weak, periodically strong and periodically weak detectability [28];

(k1, k2)-detectability [32]; K-delayed strong detectability [39], D-detectability [21], and so on. In

the aforementioned works, the authors focus on the conditions to be satis�ed in order to ensure

that a given system is detectable. The standard approach relies on observer design of exponential

complexity but, for some notions of detectability, algorithms with polynomial complexity exist

[11]. There is also interest about initial state estimation [31] and, depending on the considered

application, about dynamic event observation (i.e., situations where the occurrences of certain

events may or may not be observable, based on the state of the system) [30], [33], as well as

state estimation in systems with partially observable outputs (i.e., Moore automata) [37].

Detectability has been also studied in a probabilistic setting with probabilistic �nite automata

where events occur according to a given set of probabilities [29]. The notions of A-detectability

[15] and AA-detectability [15] have been introduced for that purpose. On the one hand, with



A-detectability, one can maintain a logical decision formulation (i.e., one can insist on obtaining

a binary decision regarding knowledge of the exact system state following a certain number of

observations) and use the probabilistic information provided by the model to assess performance

indicators of interest. On the other hand, with AA-detectability, one can relax the logical

requirement on the decision (that the system state is known with absolute certainty) by using

the probabilistic information to determine the posterior likelihood of this state, conditioned on

the speci�c sequence of observations. In order to quantify the detectability of a given system,

some authors have also proposed as a global metric the λ-detectability measure [40]. This measure

is de�ned as the limit of the sum of probabilities of all detectable sequences when the length of

the sequences goes to in�nity, which can be viewed as a quantitative indicator of goodness of

state estimation. Note that non-deterministic or probabilistic aspects can also be added in the

observations (apart from the probabilistic occurrence of events) [41].

While the above methods do incorporate probabilistic information, they do not incorporate

continuous timing information into the DES. On the other hand, prior studies of state estimation

[17], [9] based on certain subclasses of timed automata [1] are not probabilistic and thus do not

assume, as we do in this paper, that the interarrival times between events are exponentially

distributed. To the best of our knowledge, adding timing aspects in a probabilistic setting was

considered in only few contributions. More speci�cally, [36] has considered the diagnosability

problem for a given chemical system. In [18] a global evaluation of attack detectability has been

proposed but the approach was developed with a logical observer. Consequently, there is a need

to study the state estimation problem in a timed probabilistic setting, which is the aim of this

paper.

The paper is organized as follows. Section II introduces labeled continuous-time Markov models

(LCTMM) and points out di�erences with usual CTMM. Section III formulates the considered

problem as a state estimation problem and Section IV is devoted to probabilistic state estimation.

In particular, two notions of state consistency are introduced and related necessary and su�cient

conditions are derived. Section V is about the application to cyber-attack detection. Section

VI concludes the paper.

2 Labeled Continuous-Time Markov Models

In this section we de�ne labeled continuous-time Markov models (LCTMM) as nondeterministic

�nite automata (NFA) with multiple possible initial states, where each arc is associated with a

nonnegative real number, representing the �ring rate of the transition.

De�nition 1 (Nondeterministic �nite automaton): A nondeterministic �nite automaton

(NFA) is a 4-tuple A = (X,E,∆, X0), where:

� X = {x1, x2, . . . , xn} is a �nite set of n states;

� E is an alphabet of observable labels;



� ∆ ⊆ X×Eε×X is the transition relation, with Eε = E∪{ε} and ε being the empty string

(word);

� X0 ⊆ X is a subset of possible initial states. N

The transition relation ∆ speci�es the dynamics of the automaton. If (x, e, x′) ∈ ∆, then a

transition from state x to state x′, which we call e-jump, may occur. An e-jump generates an

observation e when e ∈ E while when e = ε, no observation is generated (silent transition).

De�nition 2 (Labeled continuous-time Markov model): A (�nite) labeled continuous-

time Markov model (LCTMM) is a 4-tuple G = (X,E,Λ,π0), where:

� X = {x1, x2, . . . , xn} is a �nite set of n states;

� E is an alphabet of observable labels;

� Λ ⊆ X × Eε × R>0 ×X is the transition relation;

� π0 ∈ [0, 1]1×n is an initial probability vector (with
∑n

i=1 π0,i = 1) where π0,i (the i-th entry

of vector π0) refers to the initial probability of state xi. N

The transition relation Λ speci�es the dynamics of the LCTMM: if (x, e, µ, x′) ∈ Λ, then from

state x an e-jump yielding state x′ occurs with rate µ. The time d required to jump from state x to

state x′ is exponentially distributed and satis�es Pr(d ≤ t) = 1−e−µt, where t is the sojourn time

in state x. Let us de�ne Out(xi) = {(xi, e, µ, x) ∈ Λ} as the set of jumps that may occur from

state xi and Post(xi) = {x ∈ X such that (∃e ∈ E), (∃µ ∈ R>0) with (xi, e, µ, x) ∈ Out(xi)} as
the set of states reachable from xi with the occurrence of a single jump. The state probabilities

πi(t | π0) that the system is in state xi ∈ X at time t, given that the vector of initial probabilities

is π0, form an 1× n vector π(t | π0) whose i-th entry is πi(t | π0).

Given an LCTMM G, the G-associated NFA A is de�ned next. For this purpose, let us �rst

de�ne the support X(t) of a given vector of probabilities π(t | π0).

De�nition 3 (Support and support vector): Given a vector of state probabilities π(t | π0),

the support X(t) of π(t | π0) is the subset of states such that:

X(t) = {xi ∈ X such that πi(t | π0) > 0}. (1)

In addition, given any subset of states X ′ ⊆ X, the support vector of X ′ is de�ned as an n-

dimensional binary vector vX′ such that vX′,i = 1 if xi ∈ X ′, otherwise vX′,i = 0. N

Then, the G-associated NFA A is de�ned as A = (X,E,∆G, X0) where ∆G is such that

(x, e, x′) ∈ ∆G if and only if there exists µ ∈ R>0 with (x, e, µ, x′) ∈ Λ and X0 is the sup-

port of π0. In simple words, A is obtained from G, disregarding the �ring rates in the transition



Figure 1: A labeled continuous-time Markov model.

relation as well as the initial probabilities associated with the initial states.

Example 1: Figure 1 shows a graphical representation of the LCTMM with X = {x1, x2, x3},
alphabet E = {a, b}, π0 = [1 0 0] and transition relation:

Λ = { (x1, a, µ1,1, x2), (x1, ε, µ1,2, x2), (x2, a, µ2,1, x1),

(x2, ε, µ2,2, x3), (x3, a, µ3,1, x3), (x3, b, µ3,2, x2), (x3, a, µ3,3, x1) }.

In this example, we have, for instance, Out(x1) = {(x1, a, µ1,1, x2), (x1, ε, µ1,2, x2)} and Post(x1) =

{x2}.

�
Remark 1: An alternative way of de�ning a labeled CTMM is that of starting from a CTMM

and then associating labels to transitions. However in a CTMM we cannot have two primitives

that are possible in an NFA.

� Two transitions in parallel from state x to state x′, e.g., transitions (x1, ε, µ1,2, x2) and

(x1, a, µ1,1, x2) in Fig. 1. This case is possible in an NFA provided the parallel transitions

have di�erent labels.

Each transition corresponds to an event that can be observable or unobservable. In the �rst

case, the transition is labeled with a symbol in E and in the second case, the transition is

labeled with ε. Observe that, considering the set of parallel transitions relative to a certain

pair of states, at most one of them can be labeled with ε, and there can not exist two

transitions sharing the same symbol in E.

� Self-loops, i.e., transitions whose starting and �nal state are the same. In this case, we

assume that self-loops are not labeled by the empty string (if this is not the case, the

self-loops can be simply removed),



but multiple sel�oops may be labeled according to two or more label in E. Observe that

in a standard Markov model this makes no sense because such a model only describes the

rate of change between states (and not the frequency of event occurrences).

For the above reasons, introducing LCTMMs by adding �ring rates to NFAs is more general

than adding labels to the usual de�nition of CTMMs [14], [7], [23]. �

In order to detail the dynamic evolution of an LCTMM, we further assume that each state xi ∈ X
is associated with a set of ni = |Out(xi)| independent alarm clocks with rates µi,k > 0, k =

1, ..., ni. As previously explained, the delays associated to the �ring of the output transitions

and the sojourn times in states are exponentially distributed. The rates µi,k > 0, k = 1, ..., ni
are structural parameters assumed to be known. We de�ne

µ(xi, xj) =
∑

(xi,e,µ,xj)∈Out(xi)

µ (2)

to be the sum of the rates of the transitions from state xi to state xj , and let

µ(xi) =
∑

xj∈Post(xi)\{xi}

µ(xi, xj).

.

µ′(xi) =
∑

xj∈Post(xi)

µ(xi, xj).

When the process enters state xi, two times of interest can be computed.

� The average time di that the process spends at state xi (including possible jumps from xi
to itself) is de�ned by

di =

 ∞ if µ(xi) = 0,

(µ(xi))
−1 otherwise.

(3)

� The average time d′i it spends at state xi before the next jump is de�ned by

d′i =

 ∞ if µ′(xi) = 0

(µ′(xi))
−1 otherwise,

(4)

From state xi, the probability of jumping to state xj ∈ Post(xi) \ {xi} is given by µ(xi, xj) · di,
whereas the probability that the next jump will be (xi, e, µ, xj) ∈ Λ is given by µ ·d′i. The vector
π(t | π0) can be computed as

π(t | π0) = π0 · eQt (5)



where the matrix Q = {qi,j} is the transition rate matrix (also known as the generator matrix):

for all i, qi,i = −µ(xi) (diagonal entry) and qi,j = µ(xi, xj) for j 6= i.

Note that if E = ∅ (or equivalently ∆ ⊆ X ×{ε}×µ×X) the LCTMM G = (X,E,Λ,π0) given

in De�nition 2 reduces to a standard (i.e., unlabeled) CTMM. In this case, one can de�ne its

structure as (X,Q,π0). Such a process generates no observation at all.

Remark 2: From the perspective of the state jumps, an LCTMM behaves as an CTMM (the

generator matrix Q of an LCTMM ignores the sel�oops and abstracts the parallel transitions

in a single transition rate). In particular, regarding the long run, a LCTMM has a single

limiting distribution πL = limt→+∞ π(t) (that does not depend on the initial distribution) if

it is irreducible but it has one or more stationary distributions πS(π0) = limt→+∞ π(t | π0)

that depend on the initial distribution. The number of stationary distributions depends on the

number of strongly connected components in the graph of the LCTMM [19].

3 Probabilistic estimation

3.1 Problem statement

A sequence of K consecutive jumps is considered for a given LCTMM within the time interval

[0, t]: s = (e1, τ1)(e2, τ2) ...(eK , τK), eh ∈ Eε, h = 1, ...,K and τ1, τ2, ..., τK are the time stamps

of the jumps that satisfy 0 ≤ τ1 ≤ τ2 ≤ ... ≤ τK ≤ t . The observation of s leads to a sequence

of observations σ = P (s) that can be formally de�ned by introducing λ as the empty string in

(Eε × R≥0)∗ and the projection P as follows:

P : (Eε × R≥0)∗ → (E × R≥0)∗

where
P (λ) = λ,

P ((e, τ)) = (e, τ) for e ∈ E and P ((ε, τ)) = λ,

P (s(e, τ)) = P (s)P ((e, τ)) for s ∈ (Eε × R≥0)∗ and (e, τ) ∈ Eε × R≥0.

We assume that an LCTMM is observed within the time interval [0, t] and a sequence of k, k ≤ K
successive observations σ = P (s) = (e1, t1)(e2, t2)...(ek, tk), eh ∈ E, h = 1, ..., k is collected where

t1, t2, ..., tk are the time stamps of the observations e1, e2, ..., ek that satisfy 0 ≤ t1 ≤ t2 ≤ ... ≤
tk ≤ t. At time t−h , h = 1, ..., k, event eh has not yet occurred (and, consequently, has not been

observed), but at time th the event eh has already (just) occurred (and has been observed).

The problem we are interested in is how to compute the conditional probability π(t | π0, σ) =

[π1(t | π0, σ) . . . πn(t | π0, σ)], where πi(t | π0, σ) denotes the probability that the current state

of the plant is xi at time t, given the observed sequence σ and the initial distribution π0. Note

that the time stamps of any silent jumps are unknown.



3.2 Extended ε sub-chain

Consider an LCTMM G = (X,E,Λ,π0) as in De�nition 2. The �rst problem we want to address

is to compute π(t | π0, λ) i.e., the probabilities of the states when s = (ε, τ1)(ε, τ2)...(ε, τk) and

no observation occurs in the time interval [0, t]: σ = P (s) = λ. This problem is a particular case

of the general problem described in the problem statement. To solve it, we associate to a given

LCTMM a particular CTMM referred to as the extended ε sub-chain of G .

De�nition 4 (Extended ε sub-chain): Given an LCTMM G = (X,E,Λ,π0) its extended ε

sub-chain (EESC) is a CTMM de�ned by Gε = (Xε, {ε},Λε,πε,0), where

� Xε = X ∪ {xn+1} where n =| X | and xn+1 is an additional absorbing state;

� Λε = Λ′ε ∪ Λ′′ε where Λ′ε = {(•, ε, •, •) ∈ Λ} (i.e., the subset of ε-transitions of Λ), and

Λ′′ε = {(xi, ε, µ, xn+1) | µ =
∑

(xi,e,µ′,xj)∈Out(xi),e∈E,xj∈X µ
′},

� πε,0 = [ π0 0 ] is the (n+ 1)-dimensional initial probability vector. N

In other words, the EESC of a given LCTMM is constructed by: (a) adding a new state xn+1;

(b) keeping all ε-transitions; (c) adding from each state xi (with i ≤ n) an ε-transition to state

xn+1 with rate equal to the sum of all rates of e-transitions (for e ∈ E) exiting state xi; (d)

removing all e-transitions (for e ∈ E).

Note that, as previously remarked, the alphabet of Gε is by construction the empty set and thus

Gε is a CTMM that can also be represented by the triplet (Xε, Qε,πε,0) with the transition rate

matrix Qε ∈ R(n+1)×(n+1)
≥0 . Note also that the observable transitions in sel�oops are considered

in the construction of Qε (see the a-transition from x3 to itself in the next example).

Example 2: Consider again the LCTMM in Figure 1, which was discussed in Example 1. Its

EESC, shown in Figure 2, is the continuous-time Markov model (Xε, Qε,πε,0) where

Qε =


−µ1,1 − µ1,2 µ1,2 0 µ1,1

0 −µ2,1 − µ2,2 µ2,2 µ2,1

0 0 −µ3,1 − µ3,2 − µ3,3 µ3,1 + µ3,2 + µ3,3

0 0 0 0

 .

�

The following result shows how the EESC can be used to compute π(t | π0, λ).

Lemma 1: Consider an LCTMM G = (X,E,Λ,π0) and its unobservable extended sub-chain

(Xε, Qε,πε,0) as de�ned in De�nition 4. Let πε(t|πε,0) = πε,0 · eQεt be the probability vector

of the EESC at time t. Then, the probability vector of the LCTMM at time t given a null



Figure 2: The ε extended sub-chain of the LCTMM in Figure 1.

observation λ is:

π(t | π0, λ) =
πε(t | πε,0) · [In×n ¦ 0n×1]T

1− πε(t | πε,0) · [01×n ¦ 1]T
, (6)

where In×n is the identity matrix of dimension n × n, 0n×1 is the column vector of zeros of

length n and 01×n is the row vector of zeros of length n.

Proof. Given an initial distribution π0, let x(t) and xε(t) denote the current state at time t of,

respectively, the LCTMM G and its EESC Gε.

For each state xi of the LCTMM, it holds that

πi(t | π0, λ) = Pr(x(t) = xi | σ = λ) =
Pr((x(t) = xi) ∩ (σ = λ))

Pr(σ = λ)

=
Pr((xε(t) = xi) ∩ (xε(t) 6= xn+1))

Pr(xε(t) 6= xn+1)
=

Pr(xε(t) = xi)

Pr(xε(t) 6= xn+1)

=
πε,i(t | π0)

1− πε,n+1(t | π0)
.

Consequently,

π(t | π0, λ) =
1

1− πε,n+1(t | πε,0)
[ πε,1(t | πε,0) πε,2(t |,πε,0) · · ·πε,n(t | πε,0) ]

which can be rewritten in a compact way as in Eq. (6). �

3.3 e-transition probability matrix

Consider now an LCTMM G = (X,E,Λ,π0) as in De�nition 2 and a given time t > 0. Suppose

that π(t− | π0) is known and σ = (e, t) is observed with e ∈ E, the second problem we want

to address is how to compute the probability vector π(t | π0, σ). To address this problem, we

de�ne for each event e ∈ E a suitable transition probability matrix.



De�nition 5 (e-transition probability matrix): Given an LCTMM G = (X,E,Λ,π0) and

an event e ∈ E, the e-transition probability matrix Qe = (qe,i,j), has element qe,i,j (for xi, xj ∈ X)

equal to the sum of the �ring rates of all e-transitions from state xi to xj or equal to zero if no

e-transition from state xi to xj exists. N

Note that the observable transitions in sel�oops are considered in the construction of Qe (see the

a-transition from x3 to itself in the next example).

Example 3: Consider again the LCTMM in Figure 1 and discussed in Example 1, whose

alphabet is E = {a, b}. To this LCTMM, we can associate the a-transition and b-transition

probability matrices

Qa =

 0 µ1,1 0

µ2,1 0 0

µ3,3 0 µ3,1

 , Qb =


0 0 0

0 0 0

0 µ3,2 0

 .
�

The following result shows how the e-transition probability matrices can be used to compute

π(t | π0, σ) with σ = (e, t) from π(t− | π0).

Lemma 2: Consider an LCTMM G = (X,E,Λ,π0) and its e-transition probability matrices

as in De�nition 5. Given an observation σ = (e, t) with e ∈ E, it holds that:

π(t | π0, σ) =
π(t− | π0) ·Qe

π(t− | π0) ·Qe · 1n×1
, (7)

where 1n×1 is the column vector of ones of length n.

Proof. For each state xj of the LCTMM it holds that

πj(t | π0, (e, t)) = lim
dt→0

Pr(x(t) = xj | (e, (t− dt, t]))

= lim
dt→0

Pr(x(t) = xj ∩ (e, (t− dt, t]))
Pr((e, (t− dt, t]))

= lim
dt→0

n∑
i=1

Pr((x(t) = xj ∩ (e, (t− dt, t])) | x(t− dt) = xi) · Pr(x(t− dt) = xi)

Pr((e, (t− dt, t]))

The numerator and denominator of the previous expression are reformulated.

� Given an in�nitesimal interval dt, the quantity qe,i,j · dt represents the probability that a

transition to x(t) = xj occurs when event e is observed in interval (t − dt, t] given that

x(t− dt) = xi. More formally, Pr(x(t) = xj ∩ (e, (t− dt, t]) | x(t− dt) = xi) = qe,i,j · dt.



� On the other hand,

Pr((e, (t− dt, t])) =
n∑
i=1

Pr((e, (t− dt, t]) | x(t− dt) = xi) · Pr(x(t− dt) = xi)

=

n∑
i=1

 n∑
j=1

qe,i,j .dt

 · Pr(x(t− dt) = xi)

Considering that lim
dt→0

Pr(x(t− dt) = xi) = πi(t
− | π0), we have

πj(t | π0, (e, t)) =

∑n
i=1 qe,i,j · πi(t− | π0)∑n

j=1 (
∑n

i=1 qe,i,j · πi(t− | π0))

or equation (7) in matrix form. Observe that the denominator in equation (7) is nonzero

because the event e has been observed at time t, i.e., there must exist a state xi from which a

transition labeled e may occur and such that πi(t− | π0) > 0. �

3.4 State estimation

From Lemmas 1 and 2, one can compute iteratively the probability π(t | π0, σ) at time t ≥ tk
when one knows the initial ditribution π0 and the sequence of observations σ.

Proposition 1: Consider an LCTMM, and assume that its initial probability distribution π(0)

is known and that the sequence σ = (e1, t1)(e2, t2) . . . (ek, tk) is observed within [0, t] with t ≥ tk.
Then, the state probability vector π(t | π0, σ) at time t can be computed with Eq. (8)

π(t | π0, σ) =
πε(t− tk | πε,k) · [In×n ¦ 0n×1]T

1− πε(t− tk | πε,k) · [ 01×n ¦ 1]T
, (8)

where the probability distributions πε,h = π′ε,h · (π′ε,h · (1)n)−1, for h = 1, ..., k are iteratively

updated with

π′ε,h =
πε(th − th−1 | πε,h−1) · [In×n ¦ 0n×1]T

1− πε(th − th−1 | πε,h−1) · [ 01×n ¦ 1]T
Qeh , h = 2, ..., k,

and

π′ε,1 =
πε(t1 | πε,0) · [In×n ¦ 0n×1]T

1− πε(t1 | πε,0) · [ 01×n ¦ 1]T
Qe1 .

Proof : The proof results from the iterative application of Lemmas 1 and 2. From a given

LCTMM and the initial probability distribution π0, one can compute the initial probability

distribution πε,0 of its EESC. Applying Lemma 1, one can compute with Eq. (6) the probability

distribution π(t−1 | π0, λ) at time t−1 (i.e., just before the �rst observation e1 occurs)

π(t−1 | π0, λ) =
πε(t1 | πε,0) · [In×n ¦ 0n×1]T

1− πε(t1 | πε,0) · [ 01×n ¦ 1]T
,



Figure 3: State probabilities with respect to σ = (a, 1)(b, 3)(a, 4)(a, 5) x1: top; x2: center; x3:

bottom.

and also the probability π(t1 | π0, (e1, t1)) at time t1 (just after e1 occurs) as π(t1 | π0, (e1, t1)) =

π′ε,1 · (π′ε,1 · 1n×1)−1 with

π′ε,1 =
πε(t1 | πε,0) · [In×n ¦ 0n×1]T

1− πε(t1 | πε,0) · [ 01×n ¦ 1]T
Qe1 .

Iterating the same computation for each observation, the probability distribution is updated at

times t2, ...., tk and �nally from the initial probability distribution of the EESC πε,k at time tk
one can compute the probability distribution at time t with Eq. (8). �

Note that the same approach is also useful to evaluate the probability of an arbitrary property

that depends on the LCTMM states. We assume that each state xi ∈ X may or may not satisfy

the property. Thus, P may be de�ned as the subset of states in X that satisfy the property of in-

terest. Let us de�ne vP as the support vector of the set P. Pr(P, t | π(0), σ) = π(t | π(0), σ)·vP
is the probability that the property P is satis�ed at a given time t when the plant starts with

an initial distribution of states π(0) and the sequence σ is observed within [0, t].

Example 4: Consider the LCTMM in Figure 1 with sequence σ = (a, 1)(b, 3)(a, 4)(a, 5) ob-

served during the time interval [0, 7]. The state probabilities are reported in Figure 3.

In order to illustrate that the time stamps of the observation in�uence the probabilities of the

states, consider also the sequence of observations σ = (a, t1) with several values of t1 within



Figure 4: Probability of state x3 corresponding to σ = (a, t1) with t1 = 3, (top) t1 = 2 (center)

and t1 = 1 (bottom).

the time interval [0, 4]. Observe in Figure 4 that the probability of x3 at time t = 4 changes

depending on the value of t1.

3.5 State consistency properties based on probabilistic aspects

In this section we are interested in state consistency properties based on the probability vector

π(t | π0, σ).

Let us �rst introduce some notation and some preliminary results. Let us refer to the support of

π(t | π0, σ) asXπ0,σ(t). By extension, we also de�neXπ0,σ(∞) = {xi ∈ X such that limt→+∞ πi(t |
π0, σ) > 0} (according to Remark 2, such a limit obviously exists).

Lemma 3: Consider an LCTMM G = (X,E,Λ,π0) and a sequence of k observations σ =

(e1, t1)(e2, t2)...(ek, tk). Then, it holds that Xπ0,σ(tk) ⊆ Xπ0,σ(t) for t > tk, and Xπ0,σ(∞) ⊆
Xπ0,σ(t).

Proof. According to Lemma 2, for each new observation, the state probabilities may switch to

new values. Some of these values are zero at tk and will remain zero as far as nothing more is

observed in the system; some of them are also zero at tk but then increase with respect to t;



and some of them are nonzero at tk and will vary with respect to time without reaching zero.

Consequently, Xπ0,σ(tk) ⊆ Xπ0,σ(t) if t > tk. In addition, when t tends to ∞ the probabilities

of some states may decrease to zero; these states will not be included in Xπ0,σ(∞) whereas they

are included in Xπ0,σ(t). Consequently, Xπ0,σ(∞) ⊆ Xπ0,σ(t). �

Note that for σ = (e1, t1)(e2, t2)...(ek, tk): (i) Xπ0,σ(t) does not depend on t as far as th <

t < th+1, h = 1, ..., k − 1, or t > tk, i.e., Xπ0,σ(t) = Xπ0,σ(t′) if th < t ≤ t′ < th+1, or

tk < t ≤ t′ < +∞. Consequently, Xπ0,σ(t) with th < t < th+1, h = 1, ..., k − 1 or t > tk
will be referred to as Xπ0,σ(t+h ) or Xπ0,σ(t+k ) in the following; (ii) there is no particular in-

clusion property between Xπ0,σ(tk) and Xπ0,σ(∞). In simple words, Xπ0,σ(tk) is the set of

possible states at time tk when σ is observed, Xπ0,σ(t+k ) is the set of possible states for any

time t > tk as far as no new observation occurs, and Xπ0,σ(∞) is the set of possible states whose

probabilities do not tend to 0 when t tends to∞ ( still assuming that no new observation occurs).

Next, we introduce the notions of (σ, t+k )-consistent and (σ,∞)-consistent subsets of states.

De�nition 6 ( (σ, t+k )-consistent and (σ,∞)-consistent subsets of states): Given an

LCTMM G and a sequence of observations σ = (e1, t1)(e2, t2)...(ek, tk), the subset of states

X ′ ⊆ X is said to be (σ, t+k )-consistent if Xπ0,σ(t+k ) ⊆ X ′. Similarly, the subset of states

X ′ ⊆ X is said to be (σ,∞)-consistent if Xπ0,σ(∞) ⊆ X ′. N

In simple words, X ′ is (σ, t+k )-consistent when, after observing sequence σ, one can deduce that

the system state belongs to X ′ as far as no new observations occurs. In addition, X ′ is (σ,∞)-

consistent when the probability of the system state to be in X ′ converges to 1 as the time after

σ has been observed goes to in�nity and no new observation occurs. Note that the previous

de�nitions are applicable for a particular state xi ∈ X or for a state property P. Observe also

that such properties depend on the initial distribution π0. Given an LCTMM G = (X,E,Λ, π0)

and its G-associated NFA A = (X,E,∆G, X0) (A being de�ned as in Section 2), timing aspects

are ignored and we can use this logical model to de�ne the logical observer of A. This observer

is obtained by extending the standard method [5], that transforms an NFA into a deterministic

�nite automaton when several possible initial states exist (see the proof of Theorem 1 below for

details). Let OBS = (XL, E,∆L, xL0) be the logical observer where XL is the set of observer

states (each state xL ∈ XL is a subset of X), ∆L is the transition function of OBS, and xL0 is the

observer initial state. The complexity in space of OBS is O(2|X|). In addition, let us de�ne the

logical sequence H(σ) = e1 e2 ... ek, for any sequence of observations σ = (e1, t1)(e2, t2)...(ek, tk)

and H(λ) = λ (i.e., H �lters out the logical sequence of events of σ). Finally, xL(H(σ)) ∈ XL

is the observer state (i.e., the subset of system states that are consistent with the sequence of

observations σ when timing information is ignored).

Proposition 2: Let us consider a given LCTMM G, and a sequence of observations σ =

(e1, t1)(e2, t2)...(ek, tk). Given X
′ ⊆ X a subset of system states, X ′ is (σ, t+k )-consistent if and



only if xL(H(σ)) ⊆ X ′.

Proof : Observe �rst that the design of the usual logical observer [5] can be trivially extended to

the case where the LDFA A has several possible initial states, and de�ne the set of possible initial

states of A as X0 where X0 is the support of π0. Let us consider a sequence of k observations

σ = (e1, t1)...(ek, tk) and H(σ) = e1 ... ek. The result of Theorem 1 is obtained by considering

sequences of observations σ of increasing length and by showing that xL(H(σ)) = Xπ0,σ(t+k ).

1. Let σ0 = λ and xL(λ) be the set of states reachable from X0 by executing 0 or more

ε-jumps in A. Each state xi ∈ xL(λ) is also reachable with 0 or more ε-jumps in G from

X0 and πi(t | π0, λ) > 0. The states xi ∈ X \ xL(λ) are not reachable with ε-jumps, thus

πi(t | π0, λ) = 0. Consequently Xλ(0+) = xL(λ). According to De�nition 6, a subset of

states X ′ ⊆ X is (λ, 0+)-consistent if and only if xL(λ) ⊆ X ′.

2. Consider now σ1 = (e1, t1). For each x ∈ xL(λ) one can compute �rst the subset of states

X(x, e1) that are reachable from x executing exactly one e1-jump in A and then the subset

of states xL(x, e1) reachable from any of the states previously obtained in X(x, e1) by

executing 0 or more ε-jumps in A. xL(e1) = ∪x∈xL(λ)xL(x, e1) is the subset of states

consistent with e1. Each state xi ∈ xL(e1) is also reachable with 0 or more ε-jumps in

G from X(σ1) and πi(t | π0, σ1) > 0. The states xi ∈ X \ xL(e1) are not reachable with

ε-jumps and πi(t | π0, σ1) = 0. Consequently, Xπ0,σ1(t+1 ) = xL(e1) and a subset of states

X ′ ⊆ X is (e1, t
+
1 )-consistent if and only if xL(e1) ⊆ X ′. The same reasoning can be

repeated for sequences of observations of length 2 to k − 1.

3. Consider �nally σk−1 = (e1, t1)..(ek−1, tk−1) and σ = σk−1(ek, tk). For each x ∈ xL(H(σk−1))

one can compute xL(H(σ)) = ∪x∈xL(H(σk−1))xL(x, H(σ)), and xL(H(σ)) is the sub-

set of system states consistent with the logical sequence of observations e1 ... ek. Each

state xi ∈ xL(H(σ)) is also reachable with 0 or more ε-jumps in G from X(σ) and

πi(t | π0, σ) > 0. The states xi ∈ X \ xL(H(σ)) are not reachable with ε-jumps and

πi(t | π0, σ) = 0. We have Xπ0,σ(t+k ) = xL(H(σ)). Consequently, Xπ0,σ(t+k ) = xL(H(σ))

and a subset of states X ′ ⊆ X is (σ, t+k )-consistent if and only if xL(H(σ)) ⊆ X ′. �

As a corollary of Theorem 1 it follows that Xπ0,σ(∞) ⊆ xL(H(σ)). Consequently, the prob-

ability vector π(t | π0, σ) may be used to re�ne the state estimation in a probabilistic sense

when time goes to in�nity and no new observation occurs (since we assume a probability is zero

if smaller than an arbitrarily �xed small value). Theorem 2 provides a characterisation of

(σ,∞)-consistent subsets of states. For this purpose, let us �rst introduce the notion of reduced

(σ, ε) sub-chain for a given LCTMM.

De�nition 7 (Reduced (σ, ε) sub-chain): Given an LCTMM G = (X,E,Λ,π0) and a se-

quence of observations σ = (e1, t1)...(ek, tk), the reduced (σ, ε) sub-chain (RESC) of G is a

CTMM de�ned by Gσ = (Xπ0,σ(t+k ), {ε},Λπ0,σ(t+k ),ππ0,σ(tk)), where



� Xπ0,σ(t+k ) is the support of π(t | π0, σ) for t > tk,

� Λπ0,σ(t+k ) = {(xi, ε, µ, xj) ∈ Λ} with xi, xj ∈ Xπ0,σ(t+k ) (i.e., the subset of ε-transitions of

Λ within Xπ0,σ(t+k )),

� ππ0,σ(tk) is the vector of size 1×|Xπ0,σ(t+k )| with the probabilities of the states in Xπ0,σ(t+k )

at time tk. N

In other words, the RESC of a given LCTMM is constructed by: (a) keeping all states in

Xπ0,σ(t+k ); (b) keeping all ε-transitions within these states with their rate; (c) removing all other

ε-transitions and all e-transitions (for e ∈ E).

The graph of Gσ contains a transient component and hσ (hσ ≥ 1) Absorbing Strongly Connected

Components (ASCC) Ωσ,i, i = 1, ..., hσ, some of which are reachable from a given initial distri-

bution π0 whereas the others are not. Several methods of linear complexity exist to compute

the ASCCs of a given graph, some of them based on the Tarjan or Gabow algorithms [2]. Let us

introduce Ωσ = (∪i=1,...,hσ Ωσ,i) ∩Xπ0,σ(t+k ). The aim of Theorem 2 is to provide a necessary

and su�cient condition for (σ,∞)-consistency in terms of absorbing strongly connected compo-

nents of the graph associated to the LCTMM.

Proposition 3: Let us consider a given LCTMMG, a sequence of observations σ = (e1, t1)(e2, t2)...(ek, tk),

and X ′ ⊆ X a subset of states. X ′ is (σ,∞)-consistent if and only if Ωσ ⊆ X ′.

Proof : To prove Theorem 2, we prove that Ωσ = Xπ0,σ(∞). According to De�nition 6, a

(σ,∞)-consistent state xi has a nonzero probability in the long run and belongs necessarily to Ωσ

(otherwise πi(t|π0, σ) will tend to 0 when t tends to∞). Consequently
∑

xi∈Ωσ
(πi(∞|π0, σ)) = 1.

If Ωσ ⊆ X ′ then πX′(∞|π0, σ)) = 1 and X ′ is (σ,∞)-consistent. Otherwise there exists xi ∈ Ωσ,

xi /∈ X ′, πX′(∞|π0, σ)) < 1, and X ′ is not (σ,∞)-consistent. As a conclusion, Ωσ = Xπ0,σ(∞)

and X ′ is (σ,∞)-consistent if and only if Ωσ ⊆ X ′. �

Example 5: Consider the LCTMM in Figure 1 with the sequence of observations σ = (a, 1)(b, 3)(a, 4)(a, 5)

within the time interval [0, 7] . The supports of the probability vectors are computed as follows:

Xσ(0) = {x1}, Xσ(0+) = {x1, x2, x3}, Xπ0,σ(1) = Xπ0,σ(1+) = {x1, x2, x3}, Xπ0,σ(3) = {x2}
and Xπ0,σ(3+) = {x2, x3}, and so on. When the whole time sequence σ is considered, Xπ0,σ(5) =

Xπ0,σ(5+) = {x1, x2, x3} and this estimation holds up to t ≤ 7. In addition, Xπ0,σ(∞) = {x2, x3}
if one assumes that no additional observation is collected after time 5. Consequently, {x2, x3} is
(σ,∞)-consistent. The same set is (σ, 3+)-consistent but not (σ, 5+)-consistent.



4 Application to cyber security

4.1 Model of cyber-attacks

In this section we consider a plant that is partially observed through a labeling function and that

may be corrupted by a particular type of cyber-attacks that manipulate the output symbols.

The following assumptions are considered for simplicity:

1. the attacks are not permanent,

2. only one attack a�ects the system at a time,

3. the plant is not attacked at time 0 and the initial state and initial time are assumed to be

known.

We assume that the normal behaviour of the plant when no attack is present is described by

an LCTMM G0 = (X0, E,Λ0,π0,0). The plant can be subject to K di�erent types of attacks.

The behaviour of the system under attack of type Ak (for k = 1, . . . ,K) can also be described

by LCTMM Gk = (Xk, E,Λk,π0,k) with π0,k(0) = 01×|Xk| (Assumption 2). It is important to

note that the sets Xk, k = 1, ..., k are copies of the set X and do not correspond to any new set

of states. Indeed, the plant model is replicated to describe the di�erent observations that the

plant can produce due to the attacks when it evolves. Such a representation corresponds more

or less to the composition of the plant by the attack mode and will be helpful for probabilistic

detection. Assuming the switching between the di�erent modes is also a Markovian process, one

can de�ne the sets of transition relations

� Λ0,k = {(xi, ε, µ, xj), with xi ∈ X0, and xj ∈ Xk}, k = 1, ...,K, that describes how the

attack Ak starts from normal behaviour,

� Λk,0 = {(xi, ε, µ, xj), with xi ∈ Xk, and xj ∈ X0}, k = 1, ...,K, that describes how the

attack Ak ends when the system returns to normal behavior,

� Λk,m = {(xi, ε, µ, xj), with xi ∈ Xk, and xj ∈ Xm}, k = 1, ...,K, m = 1, ...,K, that

describes how attack Ak switches to attack Am.

We assume that attack starting, ending and switching correspond to silent events. Other events

may be silent or observable. Then, the plant under possible attacks can be described by a global

LCTMM G = (X,E,Λ,π0) with

� X =
⋃K
k=0Xk

� Λ =
(⋃K

k=0 Λk

)
∪
(⋃K

k=0

⋃K
m=0 Λk,m

)
� π0 = [π0,0 π0,1 · · · π0,K ]



Figure 5: LCTMM model of a plant subject to two attacks.

Note that the underlying graph described by the generator matrix of G is strongly connected

(Assumption 1). Each mode (the normal behaviour and the attack modes) is considered as a

property to be detected and the probability of detection will be computed.

Example 6: Consider the example of a plant a�ected by two di�erent attacks A1 and A2,

depicted in Fig. 5. The set of states is X = X0 ∪ X1 ∪ X2 with X0 = {x1, x2, x3}, X1 =

{x4, x5, x6} and X2 = {x7, x8, x9} where the sets {x4, x5, x6} and {x7, x8, x9} are copies of the
set {x1, x2, x3}. The events that correspond to the starting or ending of an attack are unobserv-

able. The other events generate symbols a, b or c and E = {a, b, c}. Attack A1 permutes the

labels and transforms a into b, b into c and c into a. Attack A1 starts from state x1 and ends

at state x2. Attack A2 replaces a and c by b except the label a from state x3 to state x2 that

is replaced by c. Attack A2 also starts from state x1 and ends at state x2. For simplicity, all

events in this system are assumed to be exponentially distributed with time parameters that are

equal to 1. The initial state is assumed to be state x1. In Fig. 5, the labels resulting from the

observation function and the time parameters are reported.

4.2 Attack detection strategy

In this section we use the probabilistic estimation of the states, detailed in previous section, in

order to estimate the mode of the system and to detect the attacks. For this purpose, let us in-

troduce the K+1 properties: N = X0 and Ak = Xk, k = 1, ...,K. We assume a simple detection

strategy where we select the most likely among the di�erent modes of operation. Consequently,

we de�ne Pr(N , t | π(0), σ) = π(t | π(0), σ) · v|X0| as the probability that the plant is in normal

mode at a given time t when it starts with an initial distribution of states π(0) and the sequence

σ is observed within [0, t]. Similarly, Pr(Ak, t | π(0), σ) = π(t | π(0), σ) · v|Xk| is the probability



that the plant is in attack mode Ak at t.

The estimated modeM∗(t | π(0), σ) at a given time t with respect to the sequence of observations

σ is then obtained as

M∗(t | π(0), σ) = argmaxM∈{N ,Ak,k=1,...,K}{Pr(M, t | π(0), σ)}. (9)

Observe that the proposed detection strategy may be a�ected by detection errors. A con�dence

index CI(t | π(0), σ) is introduced with equation (10) in order to quantify the risk of detection

error.

CI(t | π(0), σ) =

((
K + 1

K

)
Pr(M∗(t | π(0), σ))− 1

K

)2

, (10)

where Pr(M∗(t | π(0), σ)) = maxM∈{N ,Ak,k=1,...,K}{Pr(M, t | π(0), σ)}.

Note that CI(t | π(0), σ) = 1 when Pr(M∗(t | π(0), σ)) = 1 (i.e., no detection error) and

CI(t | π(0), σ) = 0 when Pr(M∗(t | π(0), σ)) = 1
K+1 (i.e., maximal uncertainty since all modes

are equally probable).

Example 7: Consider a scenario where the system in Fig. 5 behaves as represented in Fig. 6

(the time is reported in X axis and the states are reported in Y axis). Several periods can be

distinguished in this scenario. During period [0 3.2) the plant is safe, then it is attacked by

A2 during period [3.2 10.5), returns to safe operation during the interval [10.5, 12.4), and is

attacked by A1 during period [10.5 19.5). After time 19.5 the plant is safe again. The sequence

of observations generated with this scenario is as follows

σ = (a, 1.16)(b, 2.47)(a, 2.50)(b, 2.96)(c, 3.01)(b, 3.55)(b, 4.20)

(c, 5.98)(b, 6.39)(b, 6.96)(b, 10.41)(b, 10.55)(c, 10.61)(a, 10.86)(b, 11.49)

(c, 11.63)(b, 13.32)(c, 13.82)(b, 14.25)(c, 15.41)(a, 18.03)(b, 19.32)(b, 19.60)

(c, 19.66)(a, 20.16)(b, 22.03)(c, 22.75).

Three properties are de�ned here: N = {x1, x2, x3}, A1 = {x4, x5, x6} and A2 = {x7, x8, x9}.
The probabilities for normal mode and for each attack mode are computed with respect to the

sequence of observations and reported in Fig. 7 with full blue lines (the true modes are also

reported in red dashed line).

Applying the detection strategy de�ned by equation (9), results of the probabilistic mode esti-

mation are reported in Fig. 9. In this �gure, "1" stands for the normal mode, "2" stands for

attack A1 and "3" stands for attack A2. From Fig. 7 and Fig. 9 (top), one can notice that both



Figure 6: An example of attack scenario: X(t) = i denotes the current state xi at time t.

Figure 7: Probability to be in normal mode (top), attack A1 (center) and attack A2 (bottom).

attacks are detected with a probability higher than 0.5, but with some small delays. Attack A1

is better detected than Attack A2, at least for the proposed observation sequence. Observe that

the con�dence index in Fig. 8 decreases signi�cantly within the interval of time [3, 8].

The logical observer of this system is computed for comparison purposes and reported in Fig. 10.

With this observer, one can compute, for each new observation, the subset sj , j = 1, ..., 19 of

plant states xi, i = 1, ..., 9, that are consistent with the sequence of untimed observations seen



Figure 8: Con�dence index.

thus far. Consequently, an estimation of the current mode is also possible with this observer

(see Fig. 9 (center)). The logical observer detects the current modeM(t), when the subset sj of

plant states consistent with the observation of the system within [0, t] sati�es sj ⊆ M(t) (here

M(t) is considered as a property, and consequently as a subset of plant states). Otherwise, the

logical observer returns a non detection (reported as "0" in Fig. 9 (center)). In particular,

for the considered observation sequence, the logical observer is unable to detect attack A2. To

conclude, the logical observer experiences situations where it is unable to estimate the current

mode, but does not lead to detection errors.

On the contrary, the detection strategy based on equation (9), always provides an estimation

M∗(t) of the current mode associated to a con�dence index CI(t). The estimation M∗(t) is

certainly correct (i.e., M∗(t) = M(t)) as far as Pr(M∗(t | π(0), σ)) = 1 (and these situations

occur when the logical observer detects the current mode) but this estimation is no longer certain

when Pr(M∗(t | π(0), σ)) < 1 (and these situations occur when the logical observer returns a

non detection of the mode). To conclude, the con�dence index may be used to moderate the

decisions of the probabilistic detection strategy and to reduce the detection error rate.



Figure 9: Mode detection with respect to time: true mode (top), with logical observer (center),

with probabilistic detection (bottom). Here, "0" stands for not detected, "1" stands for N , "2"

stands for A1 and "3" stands for A2

5 Conclusion

This paper has proposed an approach to compute the probability vector of the states of a given

LCTMM with respect to a sequence of observations. In a certain sense, such a vector can be

viewed as a "probabilistic observer" that bene�ts from the timed observations generated by

the plant and from the exponential dynamics of the LCTMM probabilities. At each instant, it

provides not only the set of states consistent with a given sequence of observations but also the

probability of each state in this set. The method has been applied to evaluate the probability,

as a function of the time, that a given system is under cyber-attacks.

Future research directions for our work are twofold. From a methodological point of view, timed

properties of the probabilistic observer will be used to investigate weak notions of detectability

for labeled continuous-time Markov models in a formal way. From a practical point of view, we

will be interested in establishing some average indicators for cyber-security performance charac-

terization and in considering more general attack scenarios.



Figure 10: Logical observer for the system in Fig. 5.
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