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Using mobile devices, people leave latent fingerprints on the screen that can be photographed and
used as a mold to fabricate high-quality spoofs. In this paper, we analysed the threat level of realistic
attacks using snapshot pictures of latent fingerprints against presentation attack detection systems.
Our evaluation compares a semi-consensual acquisition, given by a voluntary pressure of the finger
on the screen, with a completely non-consensual one, given by the normal use of the device.

1. Introduction

Fingerprint presentation attack detectors (FPADs) are sys-
tems able to detect whether a fingerprint image comes from
a Presentation Attack Instrument (PAI) [1], namely, an artifi-
cial replica of a finger. In the last years, FPADs have shown
an increasing accuracy, thanks to deep learning-based ap-
proaches especially [4, 8]. However, presentation attacks
(PAs) detection is commonly considered an open problem
due to its “arms race” nature. Current FPAD are machine
learning models trained over pre-collected alive and fake im-
ages. Training an FPAD by a sufficiently large set of fin-
gerprint images from PAIs consensually obtained, as com-
monly done, should lead to an effective detector. Actually,
it would be difficult for attackers to obtain such conditions
in real scenarios. In other words, semi-consensual or uncon-
sensual PAIs should be relatively worse than those obtained
by the consensual approach, and easily blocked, as suggested
in [5, 9].

However, previous works showed no significant correla-
tion between image quality score and “liveness” score, i.e.,
the probability that the image comes from an alive finger
given the feature set, as usual outcome of an FPAD [9] viewed
as a two-class classifier. To the best of our knowledge, the
claim is still to be confirmed that more realistic attacks, lead-
ing to low-quality images, are ineffective.

This is the goal of the present paper, which is the fol-
low up of [3], where a novel approach to provide the finger’s
mold was presented and called “ScreenSpoof™. It consists of
digitally processing the snapshot of the smartphone screen of
the targeted client. This picture can retain the latent finger-
prints released in daily device use. In [3], we tested finger-
print images provided by this method against the best three
FPADs submitted to the 6th edition of the International Fin-
gerprint Liveness Detection Competition (LivDet2019 [11]),
which can be considered as good state of the art (SOTA) rep-
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resentatives. The ScreenSpoof data set of [3] was captured
under strict, constrained conditions: the user’s smartphone
screen was always cleaned and the user puts her/his finger
on it under our control. Thus, it could not yet be consid-
ered a full realistic test and, for this reason, we refer to it as
“in vitro” ScreenSpoof data set. This paper provides a novel
set of ScreenSpoof-based images completely acquired “in
the wild”, since the screenshots were taken from daily-used
smartphone screens without our intervention. This repli-
cates the scenario where the attacker must process latent fin-
gerprints, never analyzed in other contributions to the SOTA.
The new data is collected fully unsupervised. Moreover, we
compared the “in vitro” and the new “in the wild” acquisition
methods, testing the attacker ability to deceive an FPAD. For
this purpose, we used the same algorithms of [3], namely, the
LivDet2019 winners.

Behind this contribution, we carried out a large set of
experiments, which allowed us to confirm the effectiveness
of the SOTA FPADs against “in the wild” attacks; however,
several deviations from this general statement are worthy of
being put into the research community’s attention. We pro-
pose a possible explanation for those deviations, that rep-
resents a further step forward from our previous work [3].
Analyzing the qualities and distributions of gray levels al-
lowed us to hypothesize why “in the wild” PAs made with
some materials are more dangerous than others.

The paper is structured as follows. Section 2 reports
a brief summary of existing approaches to PAI fabrication
based on realistic attacks. Section 3 describes the Screen-
Spoof method adapted to “in the wild” scenarios. Section
4 details experimental protocols and results on the proposed
data set. Section 5 concludes the paper.

2. Realistic approaches to PAI fabrication

While the consensual method can be part of a coercion
scenario for the targeted client or a very insidious cheat that
leads the user to press a finger on a plasticine-like material,
non-consensual methods rely on developing the latent finger-
print left on a smooth or non-porous surface. The digitized
version of the mark can be processed to obtain the mold,
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printed on a transparent sheet by a laser printer or photolitho-
graphic techniques. Methods of this kind require a high level
of precision and image processing capabilities, besides an
excellent manual ability and time [9].

In the 2013 LivDet competition [5], two data sets were
created by developing latent fingerprints left by volunteers
on a paper sheet using magnetic powders. Since the fin-
ger mark was left under the laboratory staft’s control and
the whole fingers were clearly visible, the process was semi-
consensual. Nevertheless, a high accuracy rate suggested the
ineffectiveness of those semi-consensual PAIs. In particular,
the winner of LivDet 2013 achieved on average 95.9% ac-
curacy on samples obtained by the semi-consensual method
based on powder and 77.4% on data obtained by the con-
sensual method. FPADs were approximately 20% more ac-
curate in detecting PAs obtained from latent fingerprints.
Therefore, that early attempt was not a real threat to biomet-
ric systems equipped with FPADs.

Another method for taking latent fingerprints consists of
photographing a phone screen, firstly proposed by [6]. They
argued that the typical device use leaves on the glass intact
or partial fingerprints, which can be detected very well in
optimal light conditions. Captured finger marks were pro-
cessed using PCB techniques. Several attacks against the
fingerprint sensor of various smartphones were simulated.
An IAPRM of 9.08% was obtained over 17,100 attacks on
five devices[1]"). However, as well-known, the smartphones
do not have integrated software PADs, and the user cannot
set the acceptance threshold.

Therefore, to the best of our knowledge, the literature
lacks a clear reporting of the effectiveness of realistic PAs on
systems equipped with presentation attack detection ability.

3. The ScreenSpoof method

The ScreenSpoof method (SS) [3] simplifies the idea pre-
sented in [6]. The basic assumption is that the regular smart-
phone use during the day generates several finger marks on
the screen surface, which can be photographed and digitally
processed in order to create a mold for a PAI. This is poten-
tially a concrete and more realistic threat since an attacker
could obtain the fingerprints from the screen without costly
resources and technical skills.A clever attacker could also
take a snapshot on a smartphone left temporarily unattended.

Moreover, ScreenSpoof bypasses the expensive techniques,

in time and skills especially, based on 3d printing or PCB as
done in [6]. To be as realistic as possible, we used the stan-
dard 2d laser printing process on a transparent foil, exploit-
ing the 3d differences in height between ridges and valleys
introduced by the inkjet on the foil.

The PAI creation process of the ScreenSpoof technique
can be outlined in four steps (Fig. 1):

1. Acquisition: a camera is used to snap a picture of the
smartphone screen, after identifying an ideal set of
candidates for creating the molds. An external light

'Impostor Attack Presentation Match Rate (IAPMR), in some publica-
tions also reported as Spoof-False Acceptance Rate or SFAR

source can be employed to better differentiate it from
the background.

2. Binarization: the image is converted from RGB to gray
scale and inverted, then the contrast between valleys
and ridges is increased in order to create a very accu-
rate cast for the fake fabrication.

3. Pagination: each fingerprint image is cropped and re-
sized to the real fingerprint dimensions by analyzing
proportions with respect to the device in the original
photo. Finally, they are printed on a transparent sheet
to simulate the distance between ridges and valleys
through the thickness between sheet and ink.

4. PAI fabrication: the previous phase provides a set of
casts that can be used to create several PAIs by drip-
ping different materials on the sheet as done in the
non-consensual approach. Once dried, the fakes can
be removed and acquired with the sensors.

Based on this starting point, we collected two data sets
based on the degree of realism in PAI fabrication: the first
one is called in vitro ScreenSpoof,already employed in [3];
the second one is called in the wild ScreenSpoof because
no real cooperation is asked to the volunteer except for its
consent to lend the device for the finger marks development.
The term in the wild comes from biometric recognition, in
particular from face detection, referring to data collected «in
unconstrained conditions» [13]2.

3.1. In vitro ScreenSpoof data collection

The in vitro procedure is detailed as follows: after thor-
oughly cleaning the screen, the smartphone is placed hori-
zontally, and the user is asked to place the left index, mid-
dle, and ring fingers in the lower part of the screen, while
the same fingers from the right hand are placed above the
previous ones. The smartphone is then placed on a verti-
cal support and properly lit to display the fingerprint de-
tails better, while a high-resolution photo of the entire screen
is taken. The same procedure is repeated to capture both
hands’ thumb and little finger. We then followed the 2-4
steps, described above.

The in vitro approach was the first to be compared to the
SOTA consensual methods in terms of PA detection. Over-
all, reported results [3] showed comparable performances
in the two cases, confirming the effectiveness of PAIs real-
ized through snapshot pictures. Moreover, some tested algo-
rithms have experienced a significant drop in performance,
clearly proving the actual threat of the new fabrication method.
In particular, we showed in [3] that ScreenSpoof-based at-
tacks can be a threat comparable to that where PAIs are fab-
ricated by the consensual method.

Although these notable results, it should be noted that
this scenario represented the “worst-case”, i.e. the best chance
for an attacker to steal the most apparent latent print of the
victim, since he/she collaborates during the first phase. This
paper aims to face this aspect, simulating a real and stealthy
acquisition of finger marks from the user’s smartphone; the
details will be discussed in the next Section.

2See the LFW data set at: http://vis-www.cs.umass.edu/lfw/index.html
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Figure 1: The four steps of the ScreenSpoof method, in accordance with the in vitro acquisition protocol: (1) acquisition of the
latent fingerprint, (2) pre-process and binarization, (3) resize and pagination and (4) PA creation with different materials.

(@) (b)

Figure 2: Differences between the first two steps of ScreenSpoof method using different acquisition protocols: in vitro acquisition
(a) and binarization (b); in the wild acquisition (c) and binarization (d).

3.2. In the wild ScreenSpoof data collection

Figure 2c shows that, in an uncontrolled scenario, the
dirty surface of the screen is the leading cause of noisy latent
finger marks, mostly partials or overlapped to other impres-
sions. However, it is still possible to find complete finger-
prints with sufficient ridge information, representing optimal
candidates for realizing the cast and consequently a viable
threat. Accordingly, we captured the smartphone screen by
simulating the total unawareness of the victim.

We collected a new set of images called in the wild Screen-
Spoof data set, without imposed restrictions on the fingers’
position or screen cleanness. In this scenario, finding clear
latent marks can be challenging and time-consuming due to
the poor ridge quality and considerable background noise.

By varying the shooting modes, we obtained very dif-
ferent results in terms of ridge clearness, according to the
characteristics of the impressions left on the user’s smart-
phone screen and the light conditions in the room. By em-
ploying an external light source, such as portable led lights,
smartphone flashlight, etc., we further highlighted the finger
marks; moreover, this is an optimal solution in cases where
the display of latent fingerprints cannot be done satisfacto-
rily by varying the shooting mode only. We subdivided the
potential molds in “Full finger marks”, that is, finger marks
fully deploying a complete mold, and “Partial finger marks”,
where only a fraction of them was useful to deploy a mold.
Some examples are shown in Figure 3. The amount of col-
lected images is reported in Table 2.

In our opinion, the in the wild data set is a significant
step ahead with respect to what done in [3] and described in
Section 3.1. This task is challenging for the attacker because
the related skill and ability in designing the best strategy to
capture the targeted finger mark dramatically increase. Nev-
ertheless, nothing assures that a good snapshot can lead to

Figure 3: Examples of acquired PAs of ScreenSpoof in the wild
data set. Green Bit: full (a); partial (b). DigitalPersona: full
(c); partial (d).

Table 1
Device characteristics for ScreenSpoof data sets.

Scanner Model Res.[dpi] | Img Size | Format | Type
Green Bit DactyScan84C 500 500x500 BMP Optical
DigitalPersona | U.are.U 5160 500 252x324 PNG Optical

an effective PAI Thus the attack is expensive, as we experi-
enced that 50% of snapshots were useless, due to overlapping
or distorted fingerprints. Moreover, the failure probability is
potentially high once the PAI is fabricated, as we showed in
the next Sections.

4. Experimental results

4.1. Experimental protocol

In order to compare the in the wild ScreenSpoof with
the “in vitro” ScreenSpoof data set, we employed the same
materials (Body Double, Mix1 and Mix2) for the PAIs’ fab-
rication as well as the same sensors, namely, the Green Bit
DactyScan84C and DigitalPersona U.are.U 5160 (Tab. 1).
The total number of fingerprints collected with the new ap-
proach is 67, 56 of which are complete and 11 partial. Each
of them was acquired ten times, varying rotation, displayed
section and pressure exerted on the spoof when placed on the
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Table 2

ScreenSpoof in vitro and in the wild data sets composition. The latter consists of two
subsets: one composed of full (F) and one composed of partial (P) latent fingerprints.

ScreenSpoof in vitro data set ScreenSpoof in the wild data set
Data set Live | BD | Mix1 | Mix2 || Live (F) | BD (F) | Mix (F) | Mix2 (F) || Live (P) | BD (P) | MixI (P) | Mix2 (P)
Green Bit || 1500 | 600 | 600 | 600 1250 560 560 560 250 110 110 110
DigitalPersona || 1500 | 600 | 600 | 600 1250 560 560 560 250 110 110 110
Table 3
APCER of the in the wild approach compared to the in vitro =
method, for the three most accurate FPADs of LivDet 2019. 2N\

Green Bit DigitalPersona
in vitro | wild(T) | wild(F) | wild(P) | in vitro | wild(T) | wild(F) | wild(P)
PAD [7] 32.83% | 1.04% 1.25% | 0.00% | 15.06% | 0.05% 0.06% 0.00%
ZJUT [14] | 0.61% 9.35% 8.15% | 15.45% | 19.67% | 0.00% 0.00% 0.00%
JLW 0.72% 9.45% 8.27% | 15.45% | 19.67% | 0.00% 0.00% 0.00%

sensor. Table 2 reports the amount of useful PAs obtained by
in vitro and in the wild ScreenSpoof. We clearly indicated
the amount of PAs derived from full (F) and partial (P) fin-
ger marks detected in the smartphone screen, as explained
in Section 3.2.

In the experiments, we focused on the Attack Presenta-
tion Classification Error Rates (APCER) and Bona fide Pre-
sentation Classification Error Rates (BPCER), which are er-
ror rates strictly referred to the FPAD performance and False
Non-Match Rate (FNMR), False Match Rate (FMR) and Im-
poster Attack Presentation Match Rate (IAPMR), related to
an integrated system [1].

We put ourselves in the same experimental conditions of
[3], namely, the three winning FPADs submitted to LivDet
2019 competition were selected as good representatives of
SOTA FPADs: 1) PAD, a handcrafted system that uses com-
binations of local and global features [7], 2)ZJUT, based on
Slim-Res CNN [14] and 3)JLW, also based on deep learn-
ing. These algorithms had previously been trained with the
LivDet 2019 training set, consisting of fingerprint images
collected by the consensual method. Therefore, this analysis
will also outline the effectiveness of SOTA solutions against
cross-method as well as cross-material threats.

4.2. Threat evaluation

Tables 3 and 4 describe the outcomes of each algorithm
on all data sets analyzed by reporting the accuracy and the
BPCER @1%APCER and APCER @ 1%BPCER values, re-
spectively. As can be clearly noticed in Table 3, a trend re-
versal characterizes the in the wild method compared to the
in vitro one: for the Green Bit sensor, the deep learning-
based algorithms are more vulnerable than the handcrafted
one, while the DigitalPersona sensor keeps a high level of
security. The same tendency can be observed in Table 4.
To show more precisely the relationship between error rates
at different decision thresholds, the detection error tradeoff
(DET) curves are shown in Figure ??. In general, our ex-
periments show that an attack performed with an in the wild
replica has a much lower incidence in terms of fake recog-
nition, in fact, on average, the in the wild experiments are
characterized by a lower APCER for all operating points.

| e |
(a) PAI (b) GB PAimage(c) DP PA
image

.—q’\
ZEASRN

1

2

s

S

(e) GB PA image(f) DP PA im-
age

(d) PAI

Figure 4: Examples of PAs in vitro (first row) and in the wild
(second row).

To explain these performance differences, we firstly per-
formed a visual analysis of the samples acquired. Figure 4
reports an example of Body Double fakes created using the
two ScreenSpoof methods and the relative acquisitions with
the two sensors. It is apparent that the in vitro (4a) replica
has a higher quality, and this feature is also transmitted in the
optical sensor acquisitions (4b-4c). The in the wild forgery
(4d) is characterized by a considerable degree of noise, par-
ticularly pronounced in the DigitalPersona sample (4f). As
a matter of fact, the screen cleaning in the in vitro data set
allows a very sharp and detailed photo of the fingerprint; on
the contrary, the new approach presents “noisy” images, due
mainly to accumulated dirt and continuous overlapping of
fingerprints on the screen.

Another aspect worth deepening regards each FPAD’s
behavior over different materials used to counterfeit the fin-
gerprints. This allows to figure out the riskiest or most suit-
able material classes for a specific detector type. Table 5
shows the outcome of this investigation, which can be sum-
marized as follows:

e For the Green Bit sensor, Mix2 PAs fabricated in the
wild appear to be a threat for the two deep learning-
based FPADs, presenting a much higher APCER than
those fabricated in vitro; the handcrafted-based detec-
tor turns out to be more robust with the in the wild data
set. On the other hand, no significant differences are
shown in terms of APCER in the Body Double and
Mix1 cases. This suggests that the Mix2 material is
responsible for the trend reversal highlighted above.
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Table 4

BPCER®@1%BPCER and APCERQ1%BPCER for the top-three LivDet 2019 winners tested

on the ScreenSpoof in the wild and in vitro data sets.

Towards realistic fingerprint presentation attacks

Green Bit DigitalPersona
BPCERQ1%APCER APCER@1%BPCER BPCERQ1%APCER APCER@1%BPCER
in vitro | wild(T) [ wild(F) | wild(P) | in vitro | wild(T) | wild(F) | wild(P) | in vitro | wild(T) | wild(F) | wild(P) | in vitro | wild(T) [ wild(F) | wild(P)
PAD | 40.80% | 2.33% 1.84% 1.60% | 48.39% | 3.03% 3.15% 3.33% 8.93% 0.13% 0.16% 0.00% | 20.61% | 0.05% 0.06% 0.00%
ZJUT | 0.07% 2.80% 2.40% 6.00% 0.17% 2.84% 2.26% 5.76% | 18.07% | 0.60% 0.80% 0.40% | 27.67% | 0.30% 0.36% 0.00%
JLW 0.07% 2.87% 2.24% 6.80% 0.17% 2.99% 2.44% 5.76% | 18.07% | 0.60% 0.80% 0.40% | 27.56% | 0.30% 0.36% 0.00%
Table 5 we can observe that although the PAIs’ quality is compara-

APCER for each individual material componing the in the wild
and the in vitro data sets, for the three most accurate liveness
detectors of LivDet 2019 competition.

Green Bit DigitalPersona

Alg. wild (T) | wild (F) | wild (P) | in vitro | wild (T) | wild (F) | wild (P)

in vitro

0.00%
0.00%
0.00%

PAD
ZJjuT
JwW

0.00%
0.00%
0.00%

17.50%
19.00%
25.33%

0.00% 0.00%
0.00% 0.00%
0.00% 0.00%

37.67%
0.67%
0.00%

1.64% 1.96%
1.04% 1.25%
1.05% 1.25%

BD

0.00%
0.00%
0.00%

PAD
ZJjuT
JLw

0.00%
0.00%
0.00%

14.83%
15.34%
25.33%

0.00% 0.00%
0.00% 0.00%
0.00% 0.00%

29.00%
0.00%
0.00%

0.60% 0.71%
0.90% 1.07%
1.05% 1.25%

Mix1

0.00%
0.00%
0.00%

PAD
zZJjuT
JLw

0.00%
46.36%
26.36%

12.83%
14.67%
14.67%

0.15% 0.18%
0.00% 0.00%
0.00% 0.00%

31.83%
1.17%
1.17%

0.90% 1.07%
26.12% | 22.14%
16.27% | 22.32%

Mix2

e For the DigitalPersona sensor, all detectors are unani-

mous on the ineffectiveness of in the wild spoofs, achiev-

ing 0% APCER in almost all considered materials, al-
though it was strongly susceptible to in vitro attacks.
As pointed up in the visual analysis (Figure 4d), this
evidence could be due to a certain degree of noise in
the spoof, which results in being more marked in im-
ages acquired with this sensor.

4.3. Spoof images analysis

Reported results allowed us to identify the Mix2 material
as a severe threat to the security of the Green Bit sensor if
equipped with deep learning-based FPADs. Such accuracy
decrease can not be explained with only the different FPADs’
nature, given the excellent response against the other mate-
rials. To explain why PAIs in the wild in Mix2 are more dif-
ficult to classify for deep-learning based methods than other
PAs, we carried out two additional investigations: (1) the
quality assessment and (2) the gray level analysis of all the
images of the in vitro and in the wild ScreenSpoof data sets.
The goal is to understand if these images are of higher qual-
ity than the others or if they have particular characteristics
that confuse the classifiers.

For the first analysis, we used the NIST Fingerprint Im-
age Quality (NFIQ) algorithm [12], which assigns a score
based on five levels of quality: poor (5), fair (4), good (3),
very good (2), and excellent (1). We plot the quality score
and the liveness score associated to each image in Figures
8 - 9. These Figs. point out two mainly common aspects:
first, live fingerprint samples are generally characterized by
high quality, regardless of the considered sensor; second, the
quality trend in the PAI case is strongly affected by the ac-
quisition protocol.

Considering the analysis of the ScreenSpoof in vitro data
set acquired with the Green Bit sensor reported in Fig. 8,

ble to that of live samples, the PAs are, overall, correctly
recognized by the detectors, achieving a much lower live-
ness score. This lack of correlation was already observed
in [9]. Worth noting, deep learning-based FPADs tend to
squeeze scores towards extremes, while the detector based
on handcrafted features shows a more uniform and concen-
trated distribution in a range close to the 50% threshold. As
a matter of fact, this behavior is synonymous of worse per-
formance (Table 3). On the other hand, the “in the wild”
ScreenSpoof data are characterized by low-quality PAs, ex-
plicitly confirming the findings of the visual analysis carried
out in the previous section. However, despite this, the Mix2
fakes’ distribution for the two deep learning-based PADs is
equally spread in the liveness score axis; therefore, perfor-
mance is not related to quality, which does not help us un-
derstanding the drop in this specific case. The difference
between the in vitro and in the wild approaches is more ev-
ident for the Digital Persona sensor (Figure 9). In the first
case, a significant percentage of high-quality PAs presents a
liveness score greater than 50, leading to an inadequate level
of security, especially for JLW and ZJUT detectors. On the
contrary, the PAIs created through the in the wild approach
generate a well-separated distribution, where the poor qual-
ity of the sample implies a low score and, consequently, a
significant growth in the accuracy.

The average gray level distribution for all fingerprint im-
ages gave us some more insights. The gray level profiles for
the Digital Persona sensor, shown in Fig. 5a, are very simi-
lar for each type of fake and for the live ones. However, the
gray-level profile of Mix2-based PAIs differs significantly
from others when the GreenBit sensor is used. This is true
for gray values in the range 0-50 and 220-255 especially (Fig.
5b). In other words, the in vitro images have more pixels
pure white (values around 255) than the in the wild ones.
These are more characterized by off-white pixels (values be-
tween 200 and 254), probably due to the dirty background
typical of images of the kind. Therefore, to assess whether
this range of gray level profiles affected the FPADs perfor-
mance, we adapted the gray-level profiles of in the wild im-
ages to those of in vitro images as follows: Experiment 1)
we modified the value of the gray levels of 10% of the image
pixels chosen randomly within the range (201-254), what-
ever their position, to the value of 255; that is, if a pixel fell
in the range (201-254) we squashed it to 255 with probability
to 0.1. (Fig. 6a); Experiment 2) we modified the value of the
gray levels of 12.5% of the pixels chosen randomly within
the range (201-224) and 20% chosen randomly within the
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Figure 5: Differences between the mean grayscale histograms
for the Green Bit (a) and the Digital Persona (b) sensors.

(a) (b) (c)

Figure 6: Example of the altered pixels, in green, in the three
different experiments: (a) no constraints; (b) inside the ROI,
(c) outside the ROI.

range (225-254), internal to the fingerprint, to the value of
255 (Fig. 6b); Experiment 3) we modified the value of the
gray levels of 12.5% of the pixels chosen randomly within
the range (201-224) and 20% chosen randomly within the
range (225-254), external to the fingerprint, to the value of
255 (Fig.6c). In the above experiments, we modified only
10% or 12.5% of pixels for meeting two constraints: match-
ing the in the wild profile on the in vitro profile the more
as possible, and avoiding strong modifications of the images
clearly detectable by visual inspection. We repeated each
test ten times and reported the results in Table 6. All live
samples were also included in this investigation to evaluate
the impact of this alteration on the detectors’ entire classifi-
cation potential.
Experiment 1 led to the APCER decrease of deep learning-

based algorithms, while leaving the BPCER almost unchanged.

This means that the introduced alterations lowered the live-
ness scores of fake fingerprints previously misclassified, lead-
ing them under the 50% threshold. Therefore, the differ-

Table 6
APCER and BPCER analysis before and after pixel alterations
introduced by Experiments 1, 2 and 3.

BPCER
ZJUT
0.13%
0.19%
0.19%
0.19%

APCER Mix2
ZJUT
26.12%
18.75%
18.82%
23.99%

PAD
2.33%
2.33%
2.50%
2.09%

PAD
0.9%
0.96%
0.9%
0.81%

JLW
0.13%
0.19%
0.18%
0.13%

JLW
26.27%
19.13%
19.15%
24.60%

Original
Exp.1
Exp.2 (inside ROI)
Exp.3 (outside ROI)

Table 7

APCER of a CNN-based PAD trained both with PAs generated
with only the consensual method and including ScreenSpoof in
vitro samples and tested on ScreenSpoof in the wild.

Train data APCER (%)
GB Consensual 30.26
GB Consensual+ in vitro ScreenSpoof 1.65
DP Consensual 32.58
DP Consensual+ in vitro ScreenSpoof 12.74

ent gray level profiles observed for Mix2 affected the deep
learning-based FPAD performance. On the other hand, these
changes don’t affect the handcrafted method. Off-white pixel
distributed over the whole image do not impact on images
classification.

Experiments 2 and 3 aim to point out which pixels are
more discriminative for deep learning-based FPAD classifi-
cation, between the external and internal to the fingerprint
ROIL. In particular, the improved accuracy of JLW and ZJUT
algorithms when tested on samples modified inside the ROI
(Experiment 2), highlights the role of these pixels in the
classification performance. In our opinion, this alteration
is explained by the dirty surface of the smartphone. There-
fore, a possible attacker able to know the gray-level profile
given by the sensor may further proceed in “soiling” the im-
ages to increase the probability of circument the PAD algo-
rithm. Since recent results reported in [10] show that specific
changes in the gray level profiles may lead to much more ef-
fective PAIs, we found a further confirmation of the weak-
nesses of deep-learning methods, without relying on com-
plex adversarial approaches.

To sum up, the Mix2 PAIs deviation can be related to
the different gray level profiles. In particular, the threat that
Mix2 PAIs represent for deep learning FPADs may be due
to dirt inside the ROI, invisible to the eye, which neural net-
works associate instead to significant, “alive” features, such
as secretions of the eccrine, sebaceous and apocrine glands
of the finger skin.

4.4. Match analysis in an integrated system

Once we evaluated the actual threat posed by the two
ScreenSpoof procedures, we completed our investigation by
assessing the risk of ScreenSpoof in vitro PAs on an inte-
grated system since it has proven to be the most critical one.
For the sake of space, we present the trade-off between FMR
and FNMR and between IAPMR and FNMR for JLW and
ZJUT algorithms (Figure 7). For this evaluation, 6000 gen-
uine comparisons (FNMR), 8700 zero-effort comparisons
(FMR) and 9000 PA comparisons (IAPMR) were performed.
For the licit scenario, in blue, the horizontal axis represents
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Figure 7: ROC curves for the top-two LivDet 2019 integrated
systems tested on ScreenSpoof in vitro data set for the Green
Bit (a,b) and the DigitalPersona (b,c) sensor.

FMR, while for the PA scenario, in black, it represents IAPMR.

From the graphs, it is evident that in all the analyzed scenar-
ios the PAs represent a higher risk than zero-effort attacks.
This is particularly apparent for the DigitalPersona sensor,
where the fakes’ images preserve the information necessary
to match the genuine template with a higher probability.

4.5. Results and discussions

The dangerousness of the in vitro ScreenSpoof technique
for the replication of fingerprints has been also confirmed
by the seventh edition of the Fingerprint Liveness Detec-
tion Competition [2]. In fact, part of the test set was ac-
quired with this semi-consensual technique, and these data
proved to be more difficult to classify than the consensual
ones. Since the training set was entirely consensual, the data
acquired with the ScreenSpoof in vitro technique represent
a “never-seen-before” attack and a deterioration in perfor-
mance was expected. Although these models should pro-
vide a good generalization ability, many proposed FPAD so-
lutions exhibit high IAPMR rates on the ScreenSpoof data.
This technique not only is able to circumvent the FPAD, but
also can preserve information about the person’s identity and
thus represent a severe risk for system security. This is fur-
ther confirmed by the match analysis reported in this work.
In this scenario, a simple solution is to include, in the PAD’s
training set, samples generated with the in vitro ScreenSpoof
protocol since it provides high-quality molds easy to acquire.
For this purpose, we carried out further experimental anal-
ysis to show the benefit of training with data obtained with
multiple acquisition techniques. In particular, we trained a
simple CNN (made up of five layers: two convolutional lay-
ers alternated with the same number of average-pooling lay-
ers and a final dense layer) both with PAIs generated only
through the consensual method, and subsequently, we have
also included ScreenSpoof in vitro samples. We then tested

both models on PAIs fabricated with the new in the wild
method. Reported results (Table 7) confirmed our hypoth-
esis since the model trained with additional data discrimi-
nates the PAs with more significant accuracy. From these
preliminary results, it has been shown that in vitro data is
representative of in the wild data and a designer can protect
a PAD system from the in the wild attack by collecting in
vitro data.

5. Conclusions

Anticipating the capabilities of an adversary is crucial
in computer security systems. In the design of the FPAD
systems, it is therefore necessary to know the threat that new
attacks can pose, in order to protect the biometric recognition
systems in advance. In this paper, we deepened the analysis
on a new technique of replicating latent fingerprints, called
ScreenSpoof. It captures the latent fingerprints left on the
smartphone screen surface by a simple snapshot.

In particular, snapshots were taken in the wild, i.e., bet-
ter simulating an attack during the everyday use of the de-
vice. Accordingly, a novel data sets of PA images were col-
lected. This new technique, completely non-consensual, re-
alistically simulates an attack scenario with latent fingerprints
captured from a screen. The LivDet 2019 competition’s top
three winning algorithms on this new data set has shown that
the attack in the wild is less effective than the in vitro coun-
terpart due to the noise in images. The exceptions required
further investigation. This allowed us to examine better the
characteristics of some sensors and materials that still con-
stitute, especially in the worst scenario, an open issue for
modern PADs. The analysis of the qualities and distributions
of gray levels highlighted the vulnerability of deep learning-
based methods to certain pixel configurations given to the
dirt present in the sensor. This was confirmed by proposed
experiments, where the pixel “whitening” inside and outside
the fingerprint ROI improved the PA classification.

We believe this paper is a significant step ahead toward
the realistic PA detection. In general, current FPADs ap-
peared to be strong enough to face the proposed one. How-
ever, the pieces of evidence reported here showed that the
problem is not yet solved and only a careful analysis of what
the FPADs actually focused on may prevent significant clas-
sification errors.
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