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Abstract: The Internet of Things (IoT) is transforming the world into an ecosystem of objects that
communicate with each other to enrich our lives. The devices’ collaboration allows the creation of
complex applications, where each object can provide one or more services needed for global benefit.
The information moves to nodes in a peer-to-peer network, in which the concept of trustworthiness
is essential. Trust and Reputation Models (TRMs) are developed with the goal of guaranteeing that
actions taken by entities in a system reflect their trustworthiness values and to prevent these values
from being manipulated by malicious entities. The cornerstone of any TRM is the ability to generate a
coherent evaluation of the information received. Indeed, the feedback generated by the consumers of
the services has a vital role as the source of any trust model. In this paper, we focus on the generation
of the feedback and propose different metrics to evaluate it. Moreover, we illustrate a new collusive
attack that influences the evaluation of the received services. Simulations with a real IoT dataset
show the importance of feedback generation and the impact of the new proposed attack.

Keywords: Internet of Things; trust models; feedback evaluation; collusive attacks

1. Introduction

The Internet of Things (IoT) aims to embody into the internet a large number of
heterogeneous and pervasive objects that, through standard communication protocols
and unique addressing schemes, provide services to the final users [1]. The number and
types of applications that can be realized using these technologies is ever increasing with
the most powerful ones requiring things to collaborate by exchanging information and
services, e.g., cars that exchange information about the traffic status and the sprinkler that
obtains triggering events from distributed smoke detectors.

Such future IoT applications will likely be developed, making use of a service-oriented
architecture, where each device can play the role of a service provider, a service requester,
or both. IoT is moving towards a model where things look for other things to provide com-
posite services for the benefit of human beings (object-object interaction) [2]. With such an
interaction model, it is essential to understand how the information provided by each object
can be processed automatically by any other peer in the system. This cannot clearly disre-
gard the level of trustworthiness of the object providing information and services, which
should take into account its profile and history. Trust and Reputation Models (TRMs) have
the goal to guarantee that actions taken by entities in a system reflect their trustworthiness
values, and to prevent these values from being manipulated by malicious entities.

The cornerstone to any TRMs is their ability to generate a coherent evaluation of the
information received. From the analysis of the past works, an element that is frequently
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missing and only sometimes superficially treated is the generation of feedback. Indeed,
when an object receives the requested service, it needs to evaluate whether the service
is consistent with its query and so rates it [3]. The feedback has the fundamental role
of being the source of every trust model, which processes the ones received in the past
to drive the computation of the trust level. Until now, the proposed algorithms have
assumed that a node is able to perfectly rate the received service and only focus on the
trust computation techniques.

Feedback generation is strictly tied to how well the information received matches the
request. To this end, the requester has to compute a reference value, which is usually not
available since an object does not have any knowledge regarding the ground-truth value of
the requested information. Our paper works in this direction with the goal to estimate a
reference value and to use it in order to assign feedback to the providers, and thus provides
the following contributions:

e  First, we define the problem of feedback evaluation in the IoT. We also propose
different metrics to evaluate a reference value and how this value should be used to
rate services.

e  Second, we propose a new collusive attack on trust that aims to influence the evalua-
tion of the reference value and thus to confuse the IoT network. Moreover, we test the
resiliency of existing models against it and show how the proposed TRMs are not able
to efficiently identify such an attack.

¢ Third, by using a dataset of real IoT objects, we conduct extensive experiments to
analyze the impact of the proposed metrics and the eventual errors in the feedback
assignment. Furthermore, we compare different TRMs in order to study the impact of
the service and feedback evaluation.

The rest of the paper is organized as follows: Section 2 presents a brief survey on
trust management models and, in particular, their approach to the problem of feedback
evaluation. In Section 3, we define the problem, introduce the used notations and illus-
trate the proposed service and feedback evaluation model. Section 4 presents the model
performance under different conditions, while Section 5 draws final remarks.

2. State of the Art

Trustworthiness is recognized as a critical factor for the Internet of Things, and the
different algorithms used to implement it play an essential role [4]. Generally, trust among
devices allows to share opinions between them and can be used by a requester to decide
whether to require information from the provider [5]. In recent years, many researchers
have examined the problem of trust, so the literature is now quite abundant. This section
provides a brief overview regarding the background of trustworthiness management in the
IoT. In particular, we focus on the use of feedback and its importance for trust algorithms,
taking into consideration the main characteristics discussed in the following, and we do
not intend to cover all of the published papers.

Dimension: The feedback is expressed by a value that may be continuous or discrete.
The feedback values are generated on the basis of the considered model, and they are used
to compose the trust values.

Sharing: The feedback could be available for all the nodes in the network or only
for the releasing node. Generally, it is shared in order to improve a recommendation
mechanism. Otherwise, it is not shared and is used only by the agent responsible for the
trust values.

Metrics: The feedback consists of the evaluation of the interaction, and it is based
on defined metrics. Usually, the models make use of QoS metrics, such as memory con-
sumption or energy cost. However, often the authors do not depict how the feedback is
generated and assume that an agent is able to perfectly evaluate a service without providing
any explanation.

Source: The feedback could be released by different sources—an IoT node, an agent,
or an end-user. For the decentralized mechanism, generally, the source might be the
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requester node. Otherwise, usually in centralized models, an agent is responsible for
feedback generation.

Among the analyzed works considering the concept of trust in the IoT, in [6] the
authors propose a centralized trust management architecture based on IoT clusters for
countering bad-mouthing attacks. The architecture allows IoT devices and applications to
contact each other, making use of trust manager nodes responsible for the communication
and data transporting. The trust manager generates the feedback and evaluates the interac-
tions, thanks to QoS parameters, such as memory efficiency. In addition, it takes care of all
the trust values and all clusters’ management.

Another model against bad-mouthing attacks is described in [7]. The authors illustrate
a decentralized trust management model, using direct and indirect observations. Each
requester node evaluates the received service according to their resource-consuming capa-
bilities and other QoS parameters (each service has different energy requirements, memory,
and processing in a node). The produced feedback consists of a continuous value, where
high values require more processing capacity, while differently low values do not require
many resources. Nodes share feedback with each other, and thus, it is used to calculate
trust values.

Among the approaches, those developed to oppose other types of attacks are de-
scribed [8,9]. In the first work, the authors propose a hybrid trust protocol to allow users
to query services toward IoT providers. Each user can evaluate a provider in a trusted
environment, where the trust is composed of recommendations from neighbors and direct
experience. The feedback reports are shared to a cloud server that takes care of all the trust
values. Unfortunately, the authors do not provide any information about the feedback
evaluation. In the second one, the authors take into account machine-learning principles
to classify the trust features and combine them to produce a final trust value in a decen-
tralized architecture. Each requester node selects a provider based on a machine-learning
algorithm and considers feedback values in {0, 1}, where 0 represents a scarce service and
1 a good one.

Furthermore, relevant approaches developed for attacks in a specific scenario are
presented in [10,11]. In the first paper, the authors illustrate a trusted approach for vehicle-
to-vehicle communications, combining vehicle certificates and trust management. Vehicles
communicate with each other in a peer-to-peer distribution model and can take decisions
based on the reputation of all nodes. Each object evaluates by itself the feedback and
shares it with all the other nodes in the network. Additionally, in [11], the authors depict a
decentralized technique to improve performance in a vehicular network. An intelligent
protocol is developed in order to achieve a good decision with inaccurate and erroneous
information and adapt to a dynamic communication environment. Each node evaluates
the feedback with QoS metrics, such as the data traffic or the link quality, and expresses it
with a continuous variable. Any feedback is shared.

Moreover, two recent works, refs [12,13] illustrate a trust model for a general sce-
nario. The authors in [12] propose a trust management framework for collaborative IoT
applications. The trust of each node is based on past interactions, recommendations and
QoS parameters. Moreover, the requester node evaluates the feedback and depicts it in a
continuous range based on the specific scenario. The sharing through the neighbour nodes
allows improving collaboration and resistance against collusive attacks. Furthermore,
in [14], the authors develop a trust architecture that integrates software-defined networks
to improve organization and reputation management. A reputation node in charge takes
care of the nodes’ trust, according to their operations. The node evaluates the interaction
measuring node operations and considers the feedback into three layers: normal, fault
and malicious.

In recent years, many researchers have tried to improve the reliability of trust models
in terms of the ability to detect malicious behaviors, e.g., by making use of machine
learning [15], or employing Markov matrices [16]. In the first work, the authors propose a
decentralized trust management model for social IoT. With the benefit of social networks,
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such as improved searching mechanisms and resources discovery, the approach attempts
to detect the most trust attacks in the state of the art. Each requester node evaluates the
interaction by itself in a continuous range [0, 1] and shares the feedback with its neighbor
and pre-trusted nodes. Any information about the metrics used for the evaluation is
illustrated. In the second one, discrete feedback is used to evaluate the nodes’ interactions
in a scenario with various types of attacks. Each node evaluates the feedback and shares it
with its neighbor nodes; this value and the recommendations are employed to model the
individual trust value.

Table 1 shows a classification of the trust models based on the use of feedback values
and takes into consideration the characteristics mentioned above.
Table 1. Comparison of trust management models: main aspects of the feedback.

Reference Dimension Sharing Metrics Source
Alshehri et al. [6] n.a. Trust Manager QoS-based Trust Manager
Mendoza et al. [7] Continuous Neighbor nodes QoS-based Requester node

Chen et al. [8] Continuous Cloud server n.a. Owner user
Jayasinghe et al. [9] Discrete Not shared n.a. Requester node
Garcia et al. [10] n.a. All nodes n.a. Requester node
Wu et al. [11] Continuous Not shared QoS-based Requester Node
Adewuyi et al. [12] Continuous Neighbor nodes na. Requester node
Chen et al. [14] Discrete Reputation nodes QoS-based Reputation node
Marche al. [15] Continuous Neighbor /Pre-trusted nodes n.a. Requester node
Wang et al. [16] Discrete Neighbor /Pre-trusted nodes n.a. Requester node

3. Feedback Evaluation
3.1. Reference Scenario

The focus of this paper is to propose a feedback evaluation mechanism that is able to
rate the service received by the requester.

In our model, the set of nodes in the network is represented by N = {ny, ..., n;, ..ny }
with cardinality I, where 7, is the generic node. Every node in our network can provide
one or more services, so S; is the set of services that can be provided by ;. The reference
scenario is then represented by an application installed in a node #;, or in the connected
cloud space, requesting a particular service S;: a service discovery component in the
network is able to return to ; a list of potential providers P, = {nj € N': 5, € S;}. At this
point, TRMs usually assume that the requester is able to perfectly evaluate the service, and
then it has to select only one of the providers in P}, based on their level of trust. However,
the requester does not know the ground-truth value v" of the service and has, then, no
means to evaluate whether the received service is good or not and its level of accuracy.
In order to assess a value for the service to be used by the application, the requester has
to contact more than one provider in P;: from every provider 1, the requester receives a

value v? for the service Sy, and then has to aggregate all the received values into a reference

value v"*. Moreover, to compute the trust level of every provider, a TRM has to rely on the
previous interactions among the nodes in the form of feedback, which represents how a
requester is satisfied with the received service. After every transaction, the requester ;
has to assign a feedback to all the providers to evaluate the service, based on the provided
values ZJ? and on their “distance” from the computed reference value v"*. Each feedback
can be expressed using values in the continuous range [0, 1], where 1 is used when the
requester is fully satisfied by the service and 0 otherwise.

Figure 1 provides a simple example of a generic graph N' = {ny, ..., n11}, with each
node capable of providing one or more services, as highlighted in the grey clouds; n; is the



IoT 2021, 2

502

node that is requesting the service Sy, as highlighted in the white cloud; Pj, = {ns, 1, 19}
is the set of nodes that can provide the requested service. For each of the providers in Py,
the requester 17 receives a value for the service Sy (red lines in the Figure), then aggregates
them to compute the reference value v”*. Based on this value, 111 can rate the providers
individually and assign to each of them feedback (dotted green lines in the Figure) that can
be used to update their trustworthiness levels.

&
e 9 o
o

Value received:
A

7 7

¢ o

S1, S7, Ss
— &

Figure 1. Reference scenario.

The goal of the feedback evaluation algorithm is two-fold: compute the reference value
o™ that will be used by the application and estimate the reliability of the providers. This
step is fundamental to help the requester to assess a solid value for the requested service and
to reward/penalize the providers so as to avoid any malicious node in future transactions.

3.2. Service and Feedback Evaluation Model

According to the presented scenario, we propose a service and feedback evaluation
model, where each node, during a transaction, calculates the reference value "™ to be
passed to the application. This value is then used as a reference to compute the feedback that
will be assigned to the different providers. In this way, every TRM can have information
regarding the past interactions available to be used for the trust computation value.

Whenever a node n; has the need to retrieve a service, it has to select a subset of
providers from the list of potential providers Pj,. To this end, the requester immediately
discards any provider with a trust value lower than a given threshold TH, so that the
reliable providers are included in the set 7j, = {n]' €Py:T;>TH }, where Tjj is the trust
of node n; toward node n;j. The value of the threshold has to be decided based on the TRM
implemented in the system since different models have different dynamics to label a node
as malicious. From this set, the requester contacts the most trustworthy providers of M in
order to actually require a service’s value.

When the requester receives all the service’s values from the providers, it has to
implement some mechanism in order to infer the reference value v"* to be passed to the
application. Several strategies can be used:

. Mean of all the values obtained by the M providers;
*  Sum of all the values obtained by the M providers weighted by their trustworthiness;
*  Median of all the values obtained by the M providers.
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Since every application requires a certain accuracy, it is possible to assign feedback
to the different providers. For simplicity, we consider the ground-truth value to be 0, and
we always normalize the application accuracy so that values in the interval [—1,1] are
acceptable by the application (blue area in Figure 2). The reference value v, calculated
with one of the metrics proposed above, can deviate from the ground-truth value; in this
case, if v'™* is still within the application accuracy, i.e.,, =1 < v < 1, the transaction is
labeled as successful. Otherwise, it means the malicious attack was able to confuse the
network and the transaction was unsuccessful.

The requester is unable to assess the outcome of the transaction, so despite its result,
it has to assign feedback to each of the providers. The maximum feedback is assigned to
those providers that sent exactly the reference value v, while the other providers receive
lower feedback based on how much the provided value is distant from v/, as shown by
the orange areas in Figure 2. Nodes that have provided values with a distance equal to the
accuracy of the application, i.e., v* — 1 and v"* + 1, which represent the points of greatest
uncertainty, are assigned feedback equal to 0.5. For intermediate values, the feedback
follows a linear behavior, but other approaches are feasible and could also depend on the
application at hand.

Feedback

A
Unsuccessful Successful
transaction 1 transaction

........... P
n Accuracy

Figure 2. Feedback evaluation.

Due to the difference between the pseudo and the ground-truth value, feedback
assignment leads to error in the evaluation of the providers: benevolent nodes that provided
values in the light green area are given feedback lower than 0.5 and, in some cases, even 0,
while malicious nodes that provided values unacceptable by the application, i.e., outside
of the blue area of application accuracy, are given positive feedback, as it is the case of the
dark green area in Figure 2.

The introduction of a feedback evaluation system leads to a new malicious behavior
that would not be possible if the requester is able to perfectly rate the received service.
Generally, malicious behavior is a strategic behavior corresponding to an opportunistic
participant who cheats whenever it is advantageous for it to do so. The goal of a node
performing maliciously is usually to provide low quality or false services in order to save
its own resources; at the same time, it aims to maintain a high value of trust toward the
rest of the network so that other nodes will be agreeable in providing their services when
requested. A group of nodes (collusive attack) can work together to provide the same
malicious value so as to influence the reference value v, let the requester believe that it is
the correct value to be passed to the application, and assign to them a positive feedback.
To the best of our knowledge, this is the first time this attack is presented; therefore, TRMs
were never tested against it and we do not know their ability to detect and react to such
an attack.
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4. Experiments and Results
4.1. Simulation Setup

In order to test our trustworthiness model, we need a large dataset of a SIoT scenario.
To this end, we make use of the dataset made available by [17]; it consists of a network
of 16,216 devices owned by 4000 users and by the municipality of Santander (Spain),
who created their own relations over 11 days. Moreover, the authors share a set of real
services and applications offered and requested by the nodes, which are useful to emulate
interactions among nodes. We decide to consider only a connected sub-network of around
800 nodes to increase the probability of two nodes interacting with each other. Furthermore,
a model of interaction among the nodes is also needed to understand which devices are
more likely to interact; trust models are usually tested considering random interactions
among nodes without taking into account the behavior of objects that generate queries of
services when interacting with the other peers. To this end, we have adopted the query
generation model presented in [17], so that at the start of each transaction, the simulator
can choose the requester and select all the possible providers. Among all the providers,
those up to M are contacted to require the service. The impact of this value is investigated
in the first set of simulations. However, all the providers with a trustworthiness value
lower than TH = 0.2 are automatically discarded and are not considered providers.

Two main behaviors are implemented in the network: one is cooperative and benevo-
lent so that a node always provides good services acceptable by the application, i.e., within
the interval [—1;1]. However, in order to simulate different devices’ accuracy, the values
provided by the nodes follow a uniform or a normal distribution with different values of
the variance ¢, ranging from 0.20 to 0.40. The other behavior is a malicious one, where a
node tries to disrupt the network by providing scarce services, i.e., services with values
outside of the application accuracy. In particular, malicious nodes provide services with
errors up to 300% of the application accuracy. We consider that 25% of the nodes in the
network are malicious, implementing a different kind of attack [18].

Table 2 shows all the configuration parameters for the proposed simulations. Every
set of simulations is repeated 10 times, and the values shown in the Figures are the average
of the obtained values in each run.

Table 2. Simulation setup parameters.

Parameter Value
Number of nodes 791
Percentage of malicious nodes 25%
Trustworthiness lower threshold (TH) 0.2
Percentage of errors provided by malicious nodes 300%
Variance of service generation distribution for benevolent nodes (c?) {0.2,0.3,0.4}

4.2. Results

This section aims to evaluate the performance of the service and feedback evalua-
tion. The first set of simulations aims to analyze the transaction success rate, i.e., the ratio
between the number of successful transactions and the total number of transactions: a
transaction is considered successful if the reference value is within the application ac-
curacy. Figure 3 shows the performance of the Marche et al. trust algorithm [15] when
the requester can perfectly evaluate the service received and when it implements one of
the three possible strategies to infer the reference value and for different values of the
numbers of providers M. The mentioned model is designed for a social IoT scenario and
makes use of a subjective approach, where every node has its own vision of the network
and relies on the recommendations from its friends to speed up the evaluation of trust.
In these simulations, malicious nodes implement a strategic behavior corresponding to an
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opportunistic participant who acts maliciously with everyone. This is the most basic attack:
a node always provides bad services and recommendations, regardless of the requester.
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Figure 3. Transaction success rate for all strategies.

Surprisingly, the trust model that makes use of a perfect feedback evaluation has the
lowest success rate out of all the versions: this is related to the number of providers M
contacted by the requester. A requester with perfect feedback evaluation only interacts with
one provider and thus they will need many transactions to accumulate enough experience
to accurately evaluate the providers. In the approach proposed in this paper, multiple
providers are required to infer the reference value and, even if each of them receives not
perfect feedback, the overall learning process of the trust algorithm speeds up. Moreover,
the presence of a higher number of providers enables increasing the success rate since it is
difficult for few malicious nodes to change the reference value enough for the transaction
to be considered malicious. The approach based on the median, dark lines in Figure is the
most reliable since there must be M/2 + 1 malicious nodes in order for the transaction
to be labeled as unsuccessful; using the mean is not ideal since a single malicious node
providing a value very distant from the ground-truth value could significantly change the
reference value. Finally, the weighted sum is able to obtain good results since it smooths
out this effect by weighting every received value for the trustworthiness of the node that
provided it.

We evaluated the system performance by analyzing the mean of malicious nodes
per transaction, the mean and standard deviation of the reference value, the reference
value errors, and the number of errors in the feedback assignment. This last parameter
considers both when a malicious node gains a good score, i.e., feedback higher than 0.5,
and when a benevolent node receives feedback lower than 0.5. Table 3 shows these results
when considering 25% of malicious nodes but with two different types of attacks: the
first six simulations implement the basic attack with malicious nodes always providing
bad services, while the last six simulations show what happens with the collusive attack
described in Section 3.2. Coherently with Figure 3, when implementing only the basic
attack, the median is the approach with the lowest percentage of malicious transactions,
which means that it is able to efficiently isolate malicious nodes. This can also be inferred
by the accuracy of the reference value and by the number of times it is outside of the
bounds accepted by the application. Moreover, it confirms how selecting a higher number
of providers leads to better results. Differently, if malicious nodes implement the collusive
behavior, all the strategies show worse performance: if we consider the error percentage
in calculating the reference value, i.e., the number of times the reference value is outside
of the application accuracy, we can notice how this percentage is an order of magnitude
higher w.r.t. the basic attack; in particular, the median approach with M = 5 goes from
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3.33% errors to 16.48%, thereby showing the threat of the collusive behavior. Overall,
the median approach involves a higher number of malicious nodes per transaction and
it has more difficulty in correctly evaluating malicious nodes, as can be inferred by the
error percentage in providing feedback, which is higher w.r.t. to the other two approaches.
However, the median approach still shows the lowest percentage of errors when computing
the reference value.

Table 3. Comparison between simple and collusive attacks.

Malicious Nodes Reference Value Feedback Errors
per Transaction Mean o/ SD (v"*) Errors [%] Malicious vs.

[%] Benevolent [%]
Median, M = 10 9.9 0.0025 0.27 0.16 1.57-13.97
Mean, M =10 10.1 0.0041 0.44 0.81 2.11-15.05
Weighted sum, M =10 10.1 0.0028 0.43 0.76 2.02-14.85
Median, M =5 124 0.0346 0.79 3.33 3.44-18.81
Mean, M =5 12.2 0.0305 0.81 5.52 3.08-18.36
Weighted sum, M =5 124 0.0161 0.81 5.15 3.44-20.07
Median, M = 10, Collusive 11.3 0.0050 0.98 5.15 4.60-16.60
Mean, M = 10, Collusive 10.9 0.0035 0.83 7.73 3.31-19.74
Weighted sum, M = 10, Collusive 11.0 0.0228 0.84 8.01 3.49-19.85
Median, M =5, Collusive 154 0.0060 1.41 14.68 9.26-26.66
Mean, M =5, Collusive 14.6 0.0284 1.36 15.87 7.21-26.86
Weighted sum, M =5, Collusive 14.6 0.0226 1.38 16.43 7.56-26.69

In order to better understand this behavior, we tested the performance of the trust algo-
rithm at varying the percentage of the malicious nodes. Figure 4 refers to a scenario where
all malicious nodes implement the collusive behavior: on the left (Figure 4a), there is the
case with M = 5 providers, while on the right (Figure 4b) we consider M = 10 providers.
Two approaches are evaluated: the median (solid lines) and the weighted sum (dotted
lines). The figure confirms the table above: with more providers, the trust algorithm per-
forms slightly better but at the expense of more traffic exchanged among the requester and
providers. However, when comparing these results with the original trust algorithm, which
implemented a perfect evaluation of the service received (xxx line in Figure), we can notice
how the success rate greatly decreases: for 50% of malicious nodes, the algorithm proposed
by Marche et al. shows a success rate higher than 80%, while, with the collusive attack, it is
not able to even reach 60% of successful transactions with a decrease of over 20%.

Finally, the last set of simulations aims to understand how different trust algorithms re-
act with 20% of nodes implementing the collusive attack and considering the median as the
strategy to infer the reference value. Other than the algorithm of Marche et al., we have also
implemented three other algorithms, namely those of Chen et al. [19], Adewuyi et al. [12]
and Mendoza et al. [7].

The model proposed by Chen et al. is similar to the one described by Marche et al.:
they are both designed for a social IoT environment, where each node computes the trust
value of the rest of the network by itself, so that each device has subjective values of
trust toward the rest of the network. Those of Adewuyi et al. and Mendoza et al. are
non-social algorithms, based on a distributed approach, which rely on recommendations
from neighbor nodes and QoS parameters: trust is computed making use of a weighted
sum among these parameters, but while Adewuyi et al. focus on historical interactions,
making use of a time window of past interactions, Mendoza et al. concentrate only on the
last transaction and the type of service. Differences in the performance of the models can
depend on the structure of the network considered and on the types of service/information



IoT 2021, 2

507

requested. To this end, we did not consider our ad-hoc network, but we have adopted
the IoT dataset opportunistically re-scaled to a size comparable to their experiments,
as described in the previous subsection. Moreover, we have considered the same requests
for all the four models, so we are confident that the obtained results are consistent with
those obtained by the authors.
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Figure 4. Transaction success rate at increasing values of % of malicious nodes, with M = 5 (a) and
M =10 (b) providers.

Figure 5 shows the comparison of the four trust models, considering a number of
providers M = 10. We can notice that all the algorithms have a high success rate of over
90%, but Chen et al. and Mendoza et al. show an SR decreasing over time. This is due to the
collusive attack that is able to confuse the network. The two mentioned algorithms have
a short dynamic, i.e., that trust values of both benevolent and malicious nodes, and are
concentrated around 0.5, so they are more prone to errors. Whenever there is a transaction
where the collusive malicious attack is successful, the malicious nodes are able to obtain the
highest value of feedback, since the reference value would correspond with the malicious
value provided by all the nodes. So, even if really slowly, these nodes would impact more
and more transactions, thus making the success rate decrease over time.
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Figure 5. Transaction success rate for different trust management models.

5. Conclusions

In this paper, we have defined the problem of feedback evaluation in the IoT and
proposed different metrics to evaluate a reference value that should be used to rate the
service received by the providers. The introduction of a mechanism to assign feedback to
the services providers leads to error in the evaluation of the providers, due to the difference
between the pseudo and the ground-truth value. This means that, even without any mali-
cious nodes, benevolent devices could be assigned with negative feedback. Furthermore,
we have observed that, regardless of the ability to provide perfect feedback, choosing
more providers enables trust management systems to converge faster. Among the different
approaches proposed, the median one is the most reliable since there must be M /2 + 1
malicious nodes in order for the transaction to be labeled as unsuccessful. However,
by choosing more providers, a new malicious attack can be proposed: it is a collusive attack
on trust, where a group of nodes works together to provide the same malicious value.
The attack aims to influence the evaluation of the reference value and, thus, to confuse
the IoT network. The proposed service and feedback evaluation methods were applied
to well-known trust algorithms; the experiments have shown their importance and the
challenges of generating consistent feedback for the trust evaluation in the exchange of
services in IoT.

We plan to extend our methods by considering a more realistic scenario. In particular,
we want to differentiate the accuracy of each application and consider that each node
has different accuracies based on the service provided. This way, also benevolent nodes
with low accuracy can provide values outside the range accepted by the application and,
therefore, receive low ratings. We then expect that the goal of TRMs will shift: they will not
only have to prevent malicious entities from hampering the services, but they will have to
select the best provider based on the application at hand.
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