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Abstract 

Background: Cardiac magnetic resonance (CMR) with late gadolinium enhancement (LGE) 

is a key diagnostic tool in the differential diagnosis between non-ischemic cause of cardiac 

chest pain. Some patients are not eligible for a gadolinium contrast-enhanced CMR; in this 

scenario, the diagnosis remains challenging without invasive examination. Our purpose was 

to derive a machine learning model integrating some non-contrast CMR parameters and 

demographic factors to identify Takotsubo cardiomyopathy (TTC) in subjects with cardiac 

chest pain. 

 

Material and methods: three groups of patients were retrospectively studied: TTC, acute 

myocarditis, and healthy controls. Global and regional left ventricular longitudinal, 

circumferential, and radial strain (RS) analysis included were assessed. Reservoir, conduit, 

and booster bi-atrial functions were evaluated by tissue-tracking. Parametric mapping values 

were also assessed in all the patients. Five different tree-based ensemble learning algorithms 

were tested concerning their ability in recognizing TTC in a fully cross-validated framework. 

 

Results: The CMR-based machine learning (ML) ensemble model, by using the Extremely 

Randomized Trees algorithm with Elastic Net feature selection, showed a sensitivity of 92% 

(95% CI 78 - 100), specificity of 86% (95% CI 80 - 92) and area under the ROC of 0.94 

(95% CI 0.90 – 0.99) in diagnosing TTC. Among non-contrast CMR parameters, the Shapley 

additive explanations analysis revealed that left atrial (LA) strain and strain rate were the top 

imaging markers in identifying TTC patients. 

 

Conclusions: Our study demonstrated that using a tree-based ensemble learning algorithm on 

non-contrast CMR parameters and demographic factors enables the identification of subjects 

with TTC with good diagnostic accuracy.  

 

 

Translational outlook: 
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Our results suggest that non-contrast CMR features can be implemented in a ML model to 

accurately identify TTC subjects. This model could be a valuable tool for aiding in the 

diagnosis of subjects with a contraindication to the contrast media. Furthermore, the left atrial 

conduit strain and strain rate were imaging markers that had a strong impact on TTC 

identification. Further prospective and longitudinal studies are needed to validate these 

findings and assess predictive performance in different cohorts, such as those with different 

ethnicities, and social backgrounds and undergoing different treatments.   

 

Keywords: Myocardial strain; Takotsubo; CMR; Machine learning;  
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Abbreviations  

AUROC area under the receiver-operating characteristic curve 

CMR cardiac magnetic resonance  

LA left atrium  

LV left ventricle 

LVEF Left Ventricle Ejection Fraction 

ML machine learning 

TTC Takotsubo syndrome 
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Introduction 

In the Emergency Department, acute chest pain of cardiac origin is a common 

compliant in daily practice which can arise either from ischemic or non-ischemic disease. The 

first step is consistent with diagnosing or ruling out ST-elevation myocardial infarction and 

non-ST elevated myocardial infarction. As a second step, non-ischemic causes of cardiac 

chest pain should be considered as well, such as Takotsubo cardiomyopathy (TTC) and acute 

myocarditis. Making a differential diagnosis between the two is often challenging 
1,2

. 

However, that is crucial, because of its impact on the management and outcome of the 

patients 
1,3

. Although the reference standard for the diagnosis of TTC is represented by 

coronary angiogram with ventriculography, several non-invasive imaging modalities can be 

useful in the work-up of TTC as well 
1,2,4

. Among them, cardiac magnetic resonance imaging 

(CMR), following the ESC guidelines
5
, is progressively gaining more and more importance 

4,6,7
. The specific CMR criteria for the diagnosis of TTC were the combination of typical wall 

motion abnormalities, myocardial edema, and the absence of enhancement after 

administration of gadolinium
4
. 

In clinical practice, CMR acquired with late-gadolinium enhancement (LGE) is often contra-

indicated due to concomitant renal disease, to prevent a life-threatening complication after 

contrast medium administration, namely nephrogenic systemic fibrosis.  

 In addition to established diagnostic imaging criteria, recent studies have demonstrated the 

importance of left ventricular and atrial strain parameters in identifying patients with TTC
2,8

. 

Myocardial strain is a non-contrast quantitative method that uses cine images in the routinely 

acquired CMR examination allowing to quantify the degree of myocardial deformation in 

different orientations
9
. Myocardial strain imaging has been shown to be a reliable diagnostic 

tool for both systolic and diastolic evaluation in different cardiac diseases, such as 

hypertrophic cardiomyopathies, dilated cardiomyopathies, myocarditis, and Takotsubo 
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cardiomyopathy
10, 9,11,12

. Strain analysis offers additional information over the traditional 

ejection fraction or cardiac chamber dimension and provides a sub-clinical assessment of 

myocardial function
9
. In particular, strain analysis can detect myocardial abnormalities in 

patients with preserved/recovery EF and wall motion abnormalities, or in case of an absence 

of myocardial tissue alterations (i.e, edema) during the recovery process of TTC
13,14

. 

Cau et al demonstrated a difference in myocardial strain parameters between TTC and 

acute myocarditis helping in the differential diagnosis of this two cardiac diseases
2
. 

Given the possible overlap of symptoms, laboratory data, and electrocardiography 

changes between TTC and acute myocarditis 
1
, may be challenging. Machine learning (ML), 

a sub-field of Artificial Intelligence whose field of application is steadily growing with 

several applications in cardiovascular imaging 
15,16;17

, has the potential to identify and analyze 

such complex relationships.  

In this paper, we compared five different tree-based ensemble learning methods, 

which were applied to solve the problem of discriminating between TTC and acute 

myocarditis in subjects with acute chest pain using a CMR protocol without intravenous 

contrast administration.  A fully cross-validated pipeline was developed to perform feature 

selection, training, and evaluation of ML models in an unbiased manner. We hypothesized 

that non-contrast CMR-derived parameters can accurately and reliably characterize the 

complexity of the disease and that a ML algorithm could leverage those features to diagnose 

TTC. 

 

Material and Methods 

The data collection and protocols used in this study were approved by the Institutional review 

board, and individual patient consent was waived because of the retrospective nature of the 

study. 
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Study population  

In this retrospective single-center study we searched in our database all the patients 

who underwent CMR between March 3
rd

, 2017, and February 7
th

, 2021, because of clinical 

suspicion of acute myocarditis or apical ballooning TTC. A total of 43 subjects were finally 

included in the study cohort. Of those, 18 and 14 were TTC and acute myocarditis subjects 

respectively, and 11 were healthy controls. 

TTC diagnosis was made using the current definition as reported in the Position 

Statement of the European Society of Cardiology Heart Failure Association
 3

. The diagnostic 

criteria include regional wall motion abnormalities not limited to a single epicardial vascular 

distribution territory. The disease onset is usually preceded by a stressful trigger, culprit 

atherosclerotic coronary disease as assessed at invasive catheterization is usually absent, new 

ECG abnormalities are present, elevated serum natriuretic peptide and a small increase in 

cardiac troponin are often detected. LV dysfunction full recovery is typically noted at follow-

up
 3

. Conversely, the diagnosis of acute myocarditis was made clinically according to that 

reported in the Position Statement of the European Society of Cardiology Working Group on 

Myocardial and Pericardial Diseases 
18

. Endomyocardial biopsy was not performed. 

Exclusion criteria were subjects under 18 years of age, contraindication to CMR (implantable 

devices, severe claustrophobia), history of severe renal disease with a eGFR < 30 

mL/min/1.73 m2, and coronary artery disease. The control group comprised healthy subjects 

who had CMR to rule out scar related ventricular tachycardia.  

A flowchart demonstrating the application of inclusion and exclusion criteria is 

provided in Figure 1. 

 

CMR acquisition  
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CMR scans were performed after hospital admission with a mean delay of 4.1 ± SD 

2.6 days using a 1.5 T scanner system (Philips Achieva dStream, Philips Healthcare, Best, 

The Netherlands). 8 channels anterior cardiac coil array was used. Cine-CMR examinations 

were electrocardiogram triggered and performed during breath-hold expiration manoeuvres. 

Thirty phases were derived for each cardiac cycle. CMR protocol used for the diagnosis of 

TTC in our institute included functional sequences, such as cine bright blood steady-state free 

precession (SSFP) on the short axis and long axes (2 chambers, 3 chambers and 4 chambers); 

morphological and tissue characterization sequences, such as T2 Short Tau Inversion 

Recovery (STIR) on both short and long axes, T1 mappings and T2 mapping acquisitions and 

Late Gadolinium Enhancement (LGE) acquisitions. LGE imaging was performed 10-

12 minutes after contrast media injection (Gadovist, Bayer Healthcare, Berlin, Germany) with 

a dose of 0.15 ml per kg body weight using phase-sensitive inversion recovery sequences 

acquired in both short and long axis. The correct inversion time was determined using the 

Look-Locker technique. In the current study, we evaluated only the protocol sequences 

without the administration of a contrast medium. 

. Details of CMR sequence parameters explored in the current study are included in 

the Supplementary Methods. 

 

CMR image post-processing  

We used the commercially available software Circle CVI42 (CVI42, Circle 

Cardiovascular Imaging Inc., Calgary, Canada) for CMR feature tracking data analysis. 

Offline CMR feature tracking analyses were conducted for evaluation of peak global 

longitudinal strain, global radial strain, and global circumferential strain in a 16-segment 

software-generated 2D model. Concerning longitudinal strain, data on myocardial strain were 

derived from two-, three- and four-chambers long-axis views. Regarding radial strain and 
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circumferential strain, data on myocardial strain was derived from apical, mid-ventricular, and 

basal short-axis views in all the patients. On all images, the epi- and endocardial borders were 

traced in end-diastole. After that, an automatic computation was triggered, by which the 

applied software algorithm automatically outlined the border throughout the cardiac cycle. 

The quality of the tracking and contouring was visually validated and manually corrected 

when needed. 

CMR feature tracking analyses of atrial deformation were conducted offline. Left atrial (LA) 

and right atrial endocardial borders were manually traced on long axis view of the cine 

images when the atrium was at its minimum volume. In particular, the four-, three-, and two-

chamber views were used to derive LA longitudinal strain. LA appendage and pulmonary 

veins were excluded from segmentation. right atrial longitudinal strain was based on the four-

chamber view only. After manual segmentation, the software automatically tracked the 

myocardial borders throughout the entire cardiac cycle. The quality of the tracking and 

contouring was visually validated and manually corrected by a radiologist with 3 years of 

experience in cardiac imaging. There are three peaks in the strain curve, including reservoir, 

conduit, and booster strain. Accordingly, their corresponding strain rate parameters were 

included. 

Global and regional native T1 mapping were assessed on the same commercial post-

processing software (CVI42, Circle Cardiovascular Imaging Inc., Calgary, Canada) by 

manually tracing endocardial and epicardial contours. A 10% safety margin was 

automatically set for both borders to prevent contamination from the blood pool and 

neighbouring tissues. Finally, the reference point was set at the right ventricle insertion to 

generate a 16-segment AHA model. 

 

Blinded CMR interpretation 
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To determine the accuracy of the human diagnostic evaluation of the non-contrast CMR 

analysis, we performed a dedicated blinded evaluation of all enrolled patients. The non-

contrast CMR images were reviewed by an experienced radiologist with 3 years of training in 

cardiovascular imaging who was blinded to clinical history. The reviewer categorized his 

interpretation based on the level of confidence for each diagnosis of TTC, rated using a 4-

point Likert scale (1=no confidence, 4=high confidence). The time required for each 

evaluation was also recorded and compared to the overall time taken by the model, which 

encompasses feature selection, training, and prediction.  

 

 Machine Learning 

Machine learning models were trained to identify TTC subjects integrating multiple 

variables. In particular, forty-two CMR-derived variables on atrial and ventricular strain and 

parametric mapping and 2 demographic variables (age and gender) were available for feature 

selection and model derivation (full list provided in Supplementary Table 1).  

 Tree-based ensemble algorithms 

Tree-based ensembles can handle high-dimensional data and classify each 

subject into multiple classes natively. Additionally, they can estimate any (possibly 

nonlinear) relationship due to their non-parametric nature. 

We selected three bagging ensembles - Random Forest
 19

, Extremely 

Randomized Trees
 20

 and a plain bagging classifier of decision trees
 21

 - and two 

boosting ensembles, Adaptive Boosting  and Extreme Gradient Boosting. In brief, 

ensemble learning consists in producing a strong estimator by combining the 

predictions of multiple, weaker estimators that are generally weaker when considered 

in isolation
22

. Random forests, extremely randomized trees and the plain bagging of 

decision trees derive the estimator by fitting decision trees on different bootstrap 
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resamples of the data set and combine individual predictions to obtain the final 

ensemble prediction. Adaptive boosting and extreme gradient boosting build the 

ensemble sequentially; at each iteration, a weak estimator is fitted on samples having 

different weights according to the performance of the previous weak learner 

(additional details are provided in the Supplementary Methods). Each algorithm was 

used to compute individualized probability of TTC, considering multiple variables. 

Model Building 

Figure 2 shows the steps involved in building and validating ML models using 

nested leave-one-out cross-validation. First, 42 subjects were randomly selected for 

constituting the training set used for variable selection and model building; the 

remaining subject was used for testing the resulting model; second, feature selection 

was performed on the training set; in greater detail, another leave-one-out procedure 

was used to derive 42 feature sets (one for each subject in the training set) and the 

union of all sets (all features selected at least once) was computed; third,  the model 

was built using the selected variables; fourth, the independent subject that was set 

aside at the start of the procedure was classified into TTC, acute myocarditis or 

control. The leave-one-out procedure was repeated for each subject, each time using 

42 subjects for variable selection and model building and one subject for validation; 

this ensured that each subject was used exactly once for validation. In the end, each 

subject was predicted using a model trained with all other subjects. Once finished, the 

predictions from the 43 models were pooled and used to assess predictive 

performance in diagnosing TTC. This process was repeated for every ensemble 

algorithm. The leave-one-out protocol is detailed in Supplementary Figure 1. Due to 

the small sample size, we refrained from tuning algorithm’s hyperparameters and used 

default values (see Supplementary Table 2 for specific values). 
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Leave-one-out maximizes data available for training and testing, hence 

reducing overfitting and avoiding overlap between data used to select features and 

build models, reduces variance in the estimation of generalization error and limits bias 

when estimating predictive performance of models.  

Repeated leave-10-out analysis 

To further assess the robustness of our methodology, we repeated the analysis 

100 times, each time shuffling the dataset and setting aside roughly 10 subjects as the 

independent test set and using the remaining subjects for variable selection and model 

building. Stratified sampling was performed to ensure each class had the same 

frequency in both training and test data.  

Feature Selection 

A feature, or variable, is any property that describes a different aspect of interest of a 

subject. Including too many variables in a statistical model may increase the chance of 

overfitting the data; this is especially true with small datasets
23

. The process of 

selecting only the most relevant variables for the prediction task is called feature 

selection. 

Feature selection was performed using regularized regression with elastic net 

penalty, which  zeroes the coefficients of less predictive features while handling 

possible redundancy in the feature set
24,25

. Only features with non-zero coefficients 

were selected for model training (additional details are provided in the 

Supplementary Methods). Once the nested leave-one-out procedure was finished, 

the final set of variables was computed as the intersection of the 43 sets; thus, we 

considered only features selected at every round of the cross-validation protocol. 

Feature Importance 
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To inspect the impact of the features included in the ML model, we analyzed 

the predictions from the repeated leave-10-out analysis and used the Shapley Additive 

Explanations (SHAP) framework to derive average importance scores. SHAP exploits 

a game theoretic approach to attribute individual contributions of features to model 

predictions
26

. For each variable, the average SHAP value calculated across all subjects 

measures the global impact that feature had on model’s predictions. For the prediction 

of a specific subject, summing up SHAP values of all features leads to the model-

predicted likelihood of TTC for that subject. Features with greater, positive values 

contributed positively to predicting the class of interest (TTC in our study), whereas 

smaller, negative values had an opposite impact. Additional details are provided in the 

Supplementary Methods.  

 

 

Statistical analysis 

In this study, continuous data were described as the mean ± SD. Homogeneity of 

variance across groups was assessed through Levene’s test. Normality of residuals was 

assessed through Shapiro-Wilks’s test. One-way ANOVA, Kruskal-Wallis H and Mann-

Whitney U tests were used for comparison between groups of continuous variables, as 

appropriate. For categorical variables, we used the Chi-squared test. The overall performance 

of ML models was assessed with the area under the receiver operating characteristics 

(AUROC) and precision-recall curves. Sensitivity and specificity were also reported 

(additional details on performance evaluation are given in the Supplementary Methods). 

The DeLong test
27

 was used to test for statistically significant differences between AUC. 

Calibration was assessed through Brier score and observed vs. predicted plot. The Brier score 

is a proper scoring rule that is commonly used to assess binary prediction models, which 
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simultaneously considers both discrimination ability and calibration of predicted 

probabilities, with smaller values – towards 0 - indicating superior models
28

. Multiple testing 

correction was done via Benjamini-Hochberg procedure to control the false discovery rate. A 

Padj value < .05 was considered significant. Confidence intervals at 95% significance level 

were computed using the efficient Wilson score method with continuity correction
30

 for 

proportions and the percentile method for pooled mean scores of the repeated analysis. All 

statistical analyses were performed with the R software version 4.1.0 (R Foundation for 

Statistical Computing, Vienna, Austria) and Python version 3.9. 

 

Results  

Patient demographics and CMR parameters. 

A total of 32 symptomatic subjects were screened. Of those, 18 were TTC (17 

females, mean age 69±10 years.) and 14 patients were acute myocarditis (5 females, 43±16 

years). Additionally, 11 healthy subjects (7 females, 50±9 years) who underwent CMR 

imaging to rule out scar-related tachycardia were included as controls (Figure 2). Baseline 

characteristics of included patients are summarized in Table 1. 

 

Model comparison and predictive performance 

Area under the curves for the repeated leave-10-out analysis is reported in Figure 2.  

All models showed excellent capabilities in identifying TTC patients among acute 

myocarditis and controls, except the adaptive boosting. Of note, the extremely randomized 

trees outperformed all other models in terms of AUROC (0.94, 95% CI [0.90 – 0.99], P < 

.001 vs all) and sensitivity (91.6%, 95% CI [78 – 100], P < .001 vs all, Figure 3). The area 

under the precision-recall curve was also excellent (0.92, 95% CI [0.85 – 0.98]). The model 
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also showed good calibration with a Brier score of 0.11 (95% CI [0.08 – 0.13], 

Supplementary Figure 2). For this reason, it was selected as the final model. 

The reader’s area under the curve was worse than the models’ (AUROC of 0.52 and 

area under the precision-recall curve of 0.43). Reader’s calibration was substandard, with a 

Brier score of 7.3 (95% CI [5.6 – 9]). Using a reader’s diagnostic evaluation of 2 (Youden’s 

index) or greater as a threshold to classify all subjects as TTC, the sensitivity was 83% (95% 

CI [58 – 96]) and specificity was 24% (95% CI [10 – 46]). At the Youden’s index, the 

extremely randomized trees model had a sensitivity of 93 (95% CI [92 – 94]) and a 

specificity of 82%, 95% CI [80 – 83]. In the leave-one-out analysis, the performance was 

similar, except for the random forests’ AUROC and sensitivity that were higher than those of 

extremely randomized trees, although not significant (0.97 vs 0.96, P = .66 and 100% vs 

94%, P = 1.0 respectively, Supplementary Figure 3 and 4).  

As our model was trained only on relatively old TTC subjects (mean 69, SD 10), 

younger subjects may potentially be misdiagnosed because of this bias. When trained without 

the age input variable, all models achieved comparable predictive performance and the same 

relative ranking as compared with the experiment that included age (Supplementary Figure 

5A, 5B, and 5E).   

To further assess the effectiveness of the feature selection, we evaluated the extremely 

randomize trees model in the repeated leave-10-out analysis without performing feature 

selection. The AUROC for the reduced feature set was significantly greater than that for the 

whole feature set (0.94 vs 0.93, P < .001, Supplementary Figure 5A). Sensitivity and 

specificity were similar, although the model derived using all features had slightly higher 

sensitivity (91.8 vs 91.6, P < .001, Supplementary Figure 5B). 
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Finally, we compared the time needed to produce a diagnosis. On average, the reader 

needed 586 s (SD 52) compared to 0.26 s (SD 0.004) for the model, which encompasses the 

time needed for feature selection, training, and prediction (Supplementary Figure 6).  

 

Important variables for identifying TTC 

The 13 features identified by the feature selection are shown in Figure 4A ranked by 

decreasing impact on identifying TTC patients according to SHAP values. Box-whisker plots 

showing inter-group differences and pairwise comparisons are reported in Supplementary 

Figure 7.  

Overall, age, LA conduit strain, and strain rate had the most impact on identifying TTC. 

Greater age and LA conduit rate and smaller LA Conduit rate values had more impact on 

identifying TTC subjects (Figure 4B). The S-shaped relationships between LA conduit strain 

and strain rate (x-axis) and SHAP values (y-axis) for LA conduit and LA conduit rate are 

shown in Figures 4C and 4D. When trained without age as input, the feature selection 

process identified 8 features as shown in Supplementary Figure 5B. Notably, LA Conduit and 

Conduit rate still had the most impact on identifying TTC subjects, with equal curves relating 

feature values and impact on predictions. 

 

Discussion 

In the present study, we have demonstrated that a tree-based ML ensemble algorithm 

trained with non-contrast CMR measurements and demographic information was able to 

identify patients with TTC accurately when they are mixed with patients with acute 

myocarditis and healthy controls.  

The incremental diagnostic performance of a ML-based model in the diagnosis of 

cardiac diseases has been demonstrated in previous studies
29–31,32

. Baeßler et al investigated 
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texture analysis of non-contrast T1-weighted CMR images using ML-based approaches in 

patients with hypertrophic cardiomyopathy showing a sensitivity of 94% and a specificity of 

90% of the proposed model in distinguishing patients with hypertrophic cardiomyopathy 

from controls
32

. Gopalakrishnan et al. evaluated a ML-based model that uses CMR 

parameters to differentiate cardiomyopathies from a cohort of 83 pediatric patients 

demonstrating an accuracy of 80,72 % with an area under the curve of 0.80
33

.  

To the best of our knowledge, this is the first work focused on a ML-based model that 

combines demographic and non-contrast CMR parameters (including atrial and ventricular 

strain measurements and parametric mapping features) to discriminate between TTC and 

acute myocarditis.  

  In light of the ESC guidelines, CMR with LGE has acquired a growing role to 

facilitate the differential diagnosis between ischemic and non-ischemic origin of chest pain, 

identifying the underlying cause and reducing the need for invasive coronary angiography
5
. 

In the clinical setting, some patients are not eligible for a gadolinium contrast-enhanced 

CMR; therefore, a non-contrast CMR may be of diagnostic support in the differential 

diagnosis of these patients. The ability of the ML model to correctly classify patients with 

TTC could allow a diagnosis in individuals with a contraindication to the contrast media and 

reduce associated costs.  

Among non-contrast CMR parameters, the SHAP analysis revealed that LA conduit 

strain and strain rate were the imaging markers with the highest impact on TTC 

identification. The LA plays a key role in maintaining left ventricular filling. Several studies 

have highlighted the LA significant pathophysiological contribution in different 

cardiomyopathies 
34–36

. Hinojar et al. investigated LA contractile function using CMR in 

seventy-five patients with hypertrophic cardiomyopathy 
34

. They demonstrated that LA 

longitudinal function is impaired also in HCM patients with normal LA volume and LV 
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filling pressure in comparison with the healthy control group, thus suggesting that LA 

deformation parameters are sensitive parameters since the early stage of the disease 
34

. LA 

strain impairment was reported also in patients with myocarditis 
35,36

. Similar LA strain 

impairment was reported in patients with TTC 
8,37

. In this respect, Backhaus et al. 

demonstrated altered LA reservoir and conduit functions in TTC patients 
37

. In spite of the 

pathophysiology of the disease not being fully explained,  LA dysfunction is reported in TTC 

patients. It may be caused either by direct atrial involvement or may be secondary to LV 

dysfunction 
38

. Our data are consistent with that reported in literature 
8,37,39

. They show that 

LA conduit strain and strain rate may identify TTC patients among those with acute chest 

pain via a ML model. LA conduit represents the most sensitive marker of exercise intolerance 

in patients with heart failure and preserved ejection fraction, reflecting an increased stiffness 

and decreased elastance of LA, as shown by Von Roeder et Al. 
40

. In addition, an association 

between LA conduit function and early LV filling was noted 
40

. A potential “atrial myopathy” 

in TTC patients, beyond the well-known LV involvement, was intrinsically suggested 
40

.  

Figure 5 illustrates the different phases of LA strain. 

Finally, our model outperformed clinical reader’s diagnoses with an average increase 

in AUROC of 0.42 (80%), sensitivity of 0.08 (10%), and specificity of 0.618 (257%). Model 

calibration was also better (0.11 vs 7.3), but still suboptimal due to slight overestimations of 

the observed frequencies in the first deciles and slight underestimations in the last deciles. 

The model was also much faster, taking, on average, 0.26 seconds for feature selection, 

training, and making the prediction, against 560 seconds needed by the clinical reader to 

make a diagnosis.   

The following study limitations should be acknowledged and addressed in future 

research before the presented method can be employed in clinical practice. First, the 

relatively small sample size and the cross-sectional nature of the study. However, we enrolled 
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exclusively very homogenous TTC patients with classic apical ballooning. Second, although 

we have taken precautions when training models and estimating generalization performance, 

our model may still have to overfit the data. To guard against overfitting, we employed 

nested cross-validation to select features with diagnostic value, train algorithms, and evaluate 

performance on the same cohort, by considering non-overlapping subsets of the data and thus 

reducing the bias in performance estimation
41

. The promising results of our study could 

prompt further prospective trials including a larger number of patients to confirm our 

findings. In fact, deriving a ML model that performs well in the general population would 

likely require a much larger cohort to capture the heterogeneity and nuances of takotsubo 

syndrome. Third, in our study the predictive value of strain and parametric mapping 

parameters for adverse cardiovascular events was not assessed at follow-up. Further 

longitudinal studies are warranted to evaluate the association of these CMR parameters with 

patient outcomes. Fourth, given the retrospective nature of our work, the control group 

includes patients with a negative CMR examination and considered “structurally” healthy. 

Further prospective studies that include healthy volunteers are warranted to confirm our 

results. Fifth, the impairment in strain and parametric mapping measurements in patients with 

TTC would have probably been different if CMR had been performed within a shorter period 

of time, ideally on the same day of hospital admission. This may have potentially influenced 

the ML algorithms’ performance and should be further tested in the future. Finally, although 

our model only took a fraction of the time needed by the clinical reader to make a diagnosis, 

the variable extraction process is lengthy (30 minutes on average). We compared the time to 

diagnosis of the model trained on variables extracted from non-contrast CMR examinations 

to that of the clinical reader that directly interpreted the CMR examinations. The rationale for 

this choice was to acquire readers’ diagnoses in an environment that was as similar as 

possible to ordinary clinical practice. Considering the time needed to extract variables, the 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



overall model time to diagnosis is, on average, 1800 seconds, almost three times slower than 

the reader. However, the model’s performance are significantly higher. In future studies, a 

deep learning system able to analyse and automatically extract variables from non-contract 

CMR scans could be developed and compared to classical ML algorithms trained on 

variables extracted by radiologists. 

 

Conclusion 

We demonstrated that a tree-based ML ensemble algorithm integrating demographic 

factors with non-contrast CMR parameters could accurately identify TTC in patients with 

cardiac chest pain, and as such, it could be additional support to the clinician in identifying 

TTC in subjects with cardiac chest pain. 
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Figure legends  

Figure 1. Patient flowchart. Inclusion and exclusion criteria for patients included in the 

study. CMR indicates cardiac magnetic resonance; TTC, takotsubo syndrome. 

 

Figure 2. Summary of steps involved in machine learning (ML) analysis and 

performance of ML models. (A) ML analysis involved a leave-one-patient-out (LOO) 

cross-validation (1) where 42 patients were used to perform feature selection (2) using 

regularized regression with elastic net penalty, (3) ith model building and (4) prediction of 

TTC and acute myocarditis for the validation patient. (5) Each patient was used exactly once 

as test and overall predictions for the 43 patients are used to evaluate prediction performance. 

CMR indicates cardiovascular magnetic resonance. (B-C) Receiver-operating characteristics 
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and precision-recall curves reporting performance of reader and ML models on identifying 

TTC patients from repeated leave-10-out testing. AdaBoost indicates adaptive boosting; 

Bagging, bagging of decision trees; XGBoost, extreme gradient boosting; RF, random forests 

and ExtraTrees, extremely randomized trees. 

 

Figure 3.  Diagnostic performance of ML models from repeated leave-10-out testing. 

Sensitivity and specificity (solid bars) and 95% CI (whiskers) are presented for both ML 

models and the reader. Abbreviations as in Figure 1. 

Figure 4. Feature importance for the ML model based on the reduced feature set for 

identifying TTC patients according to SHAP values. Plots showing the contribution of each 

feature of the final set to model’s predictions according to SHAP values. (A) Global feature 

importance; features are sorted decreasingly by impact according to the mean absolute 

SHAP, for each variable (solid bars). (B) Relationships between features values and impact 

on model prediction (violin plots). Higher values of LA Conduit Rate contributed positively 

to predicting TTC, whereas the opposite was observed for LA Conduit. (C-D) Detailed trends 

of impact on TTC prediction for LA Conduit and LA Conduit rate. Smaller values of LA 

Conduit and greater values of LA Conduit Rate have greater impact on predicting TTC.  

 

Figure 5. Representative CMR images of the different phases of left atrial strain, including 

reservoir, conduit and booster phase from 2-chamber view in a TTC patient.  
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Tables  

  Takotsubo Myocarditis Control P Padj 

Demographics           
Age (mean ± std) (yr) 69 ± 11 44 ± 16 50 ± 10 <.001 <.001 

Gender (female = 29) 94.4 (17/18) 64.3 (9/14) 63.6 (7/11) 0.052 0.076 

Ventricle Functions           

LVEF 58.71 ± 8.9 58.11 ± 5.03 59.24 ± 4.88 0.79 0.79 

EDV LV/BSA 72.37 ± 16.03 90.42 ± 18.14 78.84 ± 12.49 0.011 0.021 

ESV LV/BSA 29.86 ± 9.63 38.57 ± 11.85 32.12 ± 6.13 0.049 0.073 

SV LV/BSA 42.49 ± 11.14 51.88 ± 7.37 46.74 ± 8.75 0.029 0.049 

RVEF 59.36 ± 5.85 55.77 ± 4.17 55.66 ± 2.96 0.056 0.076 

EDV RV/BSA 57.12 ± 12.61 87.76 ± 18.77 75.84 ± 19.27 <.001 <.001 

ESV RV/BSA 23.36 ± 6.1 38.85 ± 10.35 33.97 ± 9.67 <.001 <.001 

SV RV/BSA 32.56 ± 7.33 48.86 ± 9.98 42.29 ± 11.36 <.001 <.001 

Ventricular Strain (L)           

Basal RS 42.76 ± 11.15 35.7 ± 10.64 29.86 ± 17.7 0.021 0.037 

Mid RS 31.3 ± 8.81 27.21 ± 6.9 27.61 ± 16.14 0.304 0.346 

Apical RS 24.64 ± 9.25 27.42 ± 12.99 40.68 ± 23.86 0.012 0.022 

Global RS 30.31 ± 7.35 28.44 ± 7.32 36.14 ± 6.59 0.031 0.05 

Basal CS -20.07 ± 2.63 -18.1 ± 3.02 -19.86 ± 3.11 0.142 0.17 

Mid CS -18.07 ± 3.39 -18.17 ± 2.45 -19.62 ± 2.16 0.322 0.355 

Apical CS -17.61 ± 4.85 -20.35 ± 5.37 -24.61 ± 2.81 0.001 0.003 

Global CS -16.02 ± 9.13 -18.46 ± 2.61 -20.56 ± 2.17 0.055 0.076 

Basal LS -16.76 ± 3.75 -10.96 ± 3.17 -16.78 ± 2.16 <.001 <.001 

Mid LS -13.07 ± 2.99 -11.66 ± 2.34 -18.0 ± 2.91 <.001 <.001 

Apical LS -14.03 ± 2.66 -14.88 ± 2.21 -17.57 ± 3.15 0.006 0.013 

Global LS  -12.91 ± 2.62 -12.45 ± 2.24 -17.76 ± 1.82 <.001 <.001 

Atrial Strain           

Reservoir 24.89 ± 5.92 30.15 ± 7.19 35.6 ± 3.95 <.001 <.001 

Reservoir Rate 1.11 ± 0.32 1.47 ± 0.35 1.53 ± 0.25 0.001 0.003 

Conduit 10.66 ± 4.46 16.32 ± 6.27 21.49 ± 4.91 <.001 <.001 

Conduit Rate -0.98 ± 0.41 -1.92 ± 0.72 -1.88 ± 0.4 <.001 <.001 

Booster 14.71 ± 6.21 12.39 ± 3.86 13.19 ± 2.13 0.774 0.79 

Booster Rate -1.65 ± 0.49 -1.52 ± 0.43 -1.74 ± 0.32 0.459 0.494 

Atrial Strain           

Reservoir 35.91 ± 22.69 28.26 ± 9.61 38.67 ± 9.19 0.084 0.107 

Reservoir Rate 2.19 ± 1.48 1.59 ± 0.5 1.95 ± 0.62 0.486 0.51 

Conduit 21.31 ± 15.12 17.85 ± 6.0 24.3 ± 9.8 0.236 0.276 

Conduit Rate -1.68 ± 1.0 -1.45 ± 0.35 -2.2 ± 0.8 0.046 0.072 

Booster 14.93 ± 8.77 9.68 ± 5.53 13.37 ± 4.82 0.114 0.141 

Booster Rate -2.06 ± 1.23 -1.26 ± 0.7 -1.45 ± 0.6 0.076 0.1 

Mapping           

Global T1 1141.78 ± 67.45 1058.3 ± 95.58 1031.26 ± 76.59 <.001 <.001 

Basal T1 1110.42 ± 83.4 1046.14 ± 84.06 1030.83 ± 78.27 0.004 0.009 

Mid T1 1138.15 ± 67.62 1055.02 ± 108.76 1017.18 ± 78.13 0.001 0.003 
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Apical T1 1209.82 ± 99.69 1080.54 ± 109.37 1053.01 ± 82.27 <.001 <.001 

Global T2 63.85 ± 4.47 60.08 ± 5.92 54.82 ± 3.9 <.001 <.001 

Basal T2 58.7 ± 4.17 60.73 ± 5.74 54.68 ± 4.08 0.01 0.02 

Mid T2 63.18 ± 5.15 58.17 ± 6.5 53.31 ± 2.79 <.001 <.001 

Apical T2 70.38 ± 5.91 61.35 ± 6.61 56.47 ± 6.92 <.001 <.001 

Table 1. Baseline characteristics of takotsubo, myocarditis and healthy control patients. Both 

raw and adjusted P values of inter-group comparison tests (i.e., difference in means or 

medians of takotsubo, acute myocarditis and control subgroups) are reported, using bold and 

underlined notation for P values that remained statistically significant after adjustment. EDV 

indicates end-diastolic volume; LV, left ventricle; BSA, body surface area; ESV, end-systolic 

volume; SV, systolic volume; LVEF, left ventricle ejection fraction; RVEF, right ventricle 

ejection fraction; RS, radial strain; CS, circumferential strain; LS, longitudinal strain; Padj 

indicates adjusted P value after multiple testing correction. 
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 CMR-derived parameters were supposed to have high discriminatory power in 

identifying Takotsubo cardiomyopathy. 

 Many CMR-derived features were selected and implemented in a tree-based ML 

ensemble model to recognize TTC patients. 

 Left atrial strain parameters proved to be the best non-contrast CMR markers in 

making TTC diagnosis. 
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