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On time-dependent nonlinear dynamics of micro-elastic solids 

Abstract 

A new approach to the mechanical response of micro-mechanic problems is presented using the 

modified couple stress theory. This model captured micro-turns due to micro-particles' rotations which 

could be essential for microstructural materials and/or at small scales. In a micro media based on the 

small rotations, sub-particles can also turn except the whole domain rotation. However, this framework 

is competent for a static medium. In terms of dynamic investigations of micro materials, it is required 

to involve micro-rotations' mass inertias. This fact persuades us to pay particular attention to the micro 

mechanics' models and directed us to re-derive the modified couple stress model to propose and 

represent a new micro-mechanic approach which is well-deserved, especially for dynamic studies of 

microstructures. In carrying out this job, the classical beam has provided the basic form of formulation 

procedure. The continuum medium has been limited to a square flat non-porous beam deducing a 

homogeneous isotropic micromaterial. As long as the time-dependent results are concerned due to 

studying micro-mass inertia in time history, there would be two solution steps. The Galerkin 

decomposition technique is imposed in accord with an analytical postulate to issue the algebraic problem 

distributing time-dependent equations. The latter, the Homotopy perturbation method delivers time-

dependent outcomes. The solution methods have been validated by building numerical models in 

Abaqus software. On the new achievements of this study, one can declare that both static and dynamic 

length scale parameters are very effective in order to study vibrations of microstructures. If the values 

of these characteristic lengths are considerable, the nonlinear frequency analysis will be essential. 

Furthermore, the stiffness of the structure will be higher if the values of both length scale parameters 

increase. 

Keywords: Micro-rotation; Micro-inertia; Euler-Bernoulli beam; Nonlinear frequency; Galerkin 

decomposition; Homotopy technique 

1 Introduction 

The materials found at a micro-level are well-known as microstructures. Particularly, the sub-

particles of these materials have been revealed within the meso and micro phases. Pores, 

lamellae, spherulites, dendrites, precipitates, grains, etc., in these materials, can be detected in 

the microphase. By the use of a range of electron or optical microscopy methods, the phases 

can be recognized individually based on the different amorphous, crystalline, and semi-

crystalline structures. Most apparently, the material behavior and physical characteristics are 

affected by microstructures. It is required to build a connection among specific properties 



happening at a micro level and the macroscale properties also tailor the material microstructure 

in order to acquire explicit and precise knowledge of the behavior of the material. What is more, 

while describing a material's micro properties, it is momentous to take into account a length 

scale for the carried-out observations. This is because while using various length scales, the 

microstructural characteristics of the employed material differ enormously (Zum Gahr, 1987; 

Malikan et al., 2020a; Stempin & Sumelka, 2022; Abdussalam Nuhu & Safaei, 2022; Chen et 

al., 2021; Fan et al., 2021). On this subject, some researchers have already probed that a 

micromaterial does not include a constant-value length scale and the value of this factor shifts 

with a variation in the material sizes principally its thickness (Akbarzadeh Khorshidi, 2018). 

A strong pack of well-presented studies has been witnessed by the literature in order to predict 

the mechanical behavior of microscale beam/plate-like materials on the grounds of the couple 

stress (Anthoine, 2000; Mindlin, 1963; Toupin, 1962; Yang et al., 2002; Yang et al., 2021; 

Safaei, 2021; Lu et al., 2021) and the modified couple stress models (Arefi & Taghavian, 2022; 

Dastjerdi et al., 2021; Dehrouyeh-Semnani, 2021; Dehrouyeh-Semnani & Mostafaei, 2021; 

Jouneghani et al., 2020; Kong, 2022; Kumar Jena, 2022; Li e al., 2018; Malikan, 2017; Sedighi 

& Bozorgmehri, 2016; Tsiatas, 2009; Yuan et al., 2020). As far as we are focusing on the couple 

stress models only, we will not expand the methods performed in those works, such as 

beam/plate models, solution techniques, and the results they have achieved. Because these 

factors do not concern the scope of the present work. The originality of this research relates to 

the type of couple stress model. Adding to these references, there have been found some works 

especially attended a couple stress model for anisotropic micro materials (He et al., 2017; Ma 

et al., 2020; Qu et al., 2020; Thanh et al., 2019; Wang & Zheng, 2018; Yang & Chen, 2015). 

Very few published works on the different couple stress theories have interfered with mass 

micro-inertias due to micro-rotations in their formulations (Georgiadis & Velgaki, 2003; 

Fathalilou et al., 2014). However, their theoretical model is totally different from what is 

presented in this paper. 

A deficiency in the popular couple stress theories, from these authors' point of view, can be the 

static form of the models frequently employed in the rigorous literature. This contradicts the 

main couple stress assumptions. In terms of static studies of microstructures, the couple stress 

and modified couple stress theories may be consistent. However, these theories in turn exclude 

the mass inertia resulting from micro-rotation. Herewith, eliminating the micro-inertias of 

grains will not lead to a well-modeled microstructure. In this study, a new modified couple 

stress model is found out composing of two sections. The first one is regarding the routine 



micro-rotations. On the other hand, the second part consists of micro-mass inertia which is 

normally neglected in the conventional couple stress models. The primary intention of this study 

has been concentrated on investigating these two micro-size phases, introducing one extra 

length scale characteristics quantity. In the concrete, a wide range of sub-movements have been 

supposed by this paper. 

The sections of this paper are ordered as; first, by presenting section 2 the theoretical 

examination is undertaken. This section, for one, includes some sub-sections taking into review 

a continuum medium, classic and modified couple stress approaches, and more importantly, 

mass micro-inertias. The next section is devoted to a physical specimen represented for giving 

the results on a beam-like structure all based on the Euler-Bernoulli beam theory. Afterward, 

by means of section 4, a solution of the derived governing equations will proceed further. The 

Galerkin decomposition method is applied for clamped and simple edge conditions beams, 

resulting in the algebraic relations which reckon bifurcation conditions. The Homotopy 

perturbation technique is required to solve the obtained algebraic equations which are based on 

the time unknown variable. Thereafter, there is a need to approve the solution method by the 

given literature. Results should be discussed in detail due to various essential parameters 

affecting the micro-beam time-dependent dynamic response. This is addressed by the use of 

section 6. In this part, we will see whether the new phases of micro-particles proposed in this 

study, will be able to affect the mechanical response of a microstructure based on several 

theoretical estimations. We expect that the last section grants a brief but adequate and efficient 

conclusion about the whole paper along with the novel results. 

2 Governing equations 

Let us consider the peculiarities of the proposed model. First, we consider linear elasticity. 

2.1 Classic continuum model under small deformations 

Deformations of a  material are defined through  the vector of first-order displacements (u)  

( ),u u x t=                                                                                                                                         (1) 

where x  is a position vector and t is time.  

The corresponding strain tensor is given by (Lai et al., 1993; Malikan & Eremeyev, 2022; 

Malikan et al., 2020b), 



( )1

2
 =  + Tu u                                                                                                                        (2) 

where the fourth-order elasticity tensor is demonstrated by C. Moreover, the Greek letter   

represents the 3D nabla operator meaning the gradient, and T means matrix transpose.  

The balance of forces on any internal volume (V) with a surface (S) can be written considering 

the dynamics laws (Lai et al., 1993; Malikan & Eremeyev, 2022; Malikan et al., 2020b), 

( ) ( )

.

nV S V
vdV T dS FdV = +                                                                                                                   (3) 

in which v u= &, and F reveals the external volumetric loads. Further, (). exhibits derivate 

regarding time, and ρ shows the mass density. ( )nT denotes a surface traction vector defined 

through symmetric Cauchy stress tensor σ. 

Also, surface traction is expressed as (Lai et al., 1993; Malikan & Eremeyev, 2022; Malikan et 

al., 2020b), 

( ) .nT n=                                                                                                                                    (4) 

For an isotropic solid the components of 𝜎 are given by 

2ij kk ij ijG   = +                                                                                                                                    (5) 

where λ and G are Lame elastic moduli, ij  is the Kronecker symbol. 

Governing equations of dynamics could be derived using Hamilton's principle  

( )
2

1

t

V V
t

KdV UdV W  = −                                                                                                                    (6) 

where W denotes the works of external forces, given by  

.
V V

W F udV T udS  


=  +                                                                                                                                 (7) 



U and K determine the strain energy density and the kinetic energy density, respectively. In Eq. 

(7) T is a surface loading vector, the dot stands for a scalar product, and 𝛿𝑢 is a variation of 

displacements. 

2.2 Classical couple stress theory 

Couple stress theory can be idiomatically named as a child of Cosserat elasticity theory. Indeed, 

it is a simplified and shortened form of the Cosserat brothers' model. The standard and classical 

form of couple stress theory has been developed by Mindlin, (1963). 

As a principal definition of Cauchy couple stress tensor, one can say that there exists a tensor μ 

upon a unit surface with normality n if a torque (couple) ( )nM  is acting on the surface (Grekova, 

2019; Eringen, 1999; Hadjesfandiari & Dargush, 2015; Mindlin & Tiersten, 1962), 

( ) .nM n =                                                                                                                                    (8) 

The couple stress tensor (μ) itself does not depend on the n. If in an actual configuration one 

defines the gradient of angular velocity as  , couple stress tensor works on this gradient. 

However, in contrast, stress tensor σ works on the translational velocity’ gradient ( v ) in the 

same structure. 

In continuing with the micro-medium and when the heat effects are absent, the balance of 

energy would be written as (Grekova, 2019, Eringen, 1999;), 

( )( ) ( ) ( )( ) ( )
.

. . . .n nV S V
K U V T v M dS F v L V     + = + + +                                                  (9) 

where L is the density of the external volumetric torque. The strain energy density is dependent 

on how the medium deforms. The kinetic energy mass density is given by the formula, 

2 . .

2 2

v I
K

 
= +                                                                                                                           (10) 

In (9) I is a symmetric microinertia tensor. 

The first variation of potential energy can be written as follows (Mindlin & Tiersten, 1962; 

Yuan et al., 2020), 



( ): :
V

U dV    = +                                                                                                       (11) 

where stress and couple stress constitutive relations are given by Eq. (5) and the new 

constitutive relation for the couple stress tensor 

24ij sr ijl G =                                                                                                                                (12) 

where 
srl  is a static characteristic length. Let us define the asymmetric curvature ( ij ) and 

symmetric strain ( ij ) tensors aforesaid in the above equations as (Mindlin & Tiersten, 1962; 

Yuan et al., 2020), 

1

2
ij i , j=                                                                                                                                    (13) 

( )
1

2
ij i , j j ,i k ,i k , j= u u u u + +                                                                                                                                   (14) 

in which ui shows the displacements field of the domain.  

The rotation vector can be calculated as, 

1

2
i ijk k,je u =                                                                                                                                    (15) 

in which ijke is the permutation symbol. 

2.3 Modified couple stress theory 

An altered couple stress model has been proposed by Yang and Chen (2015) in which unlike 

the standard form of couple stress theory, the gradient of the rotation's part is symmetric. This 

revised model is called the modified couple stress theory and has been used broadly and heavily 

so far (Arefi & Taghavian, 2022; Dastjerdi et al., 2021; Dehrouyeh-Semnani, 2021; Dehrouyeh-

Semnani & Mostafaei, 2021; Jouneghani et al., 2020; Kong, 2022; Kumar Jena, 2022; Li e al., 

2018; Malikan, 2017; Sedighi & Bozorgmehri, 2016; Tsiatas, 2009; Yuan et al., 2020). 

The media particles' micro-rotations in the Cosserat elastic solid can be curled by the following 

relation, 

1

2
u =                                                                                                                                       (16) 



The symmetric curvature tensor can be written by 

( )
1

2

T=   +                                                                                                                             (17) 

And the stress and couple stress tensors are given by 

22 srl G =                                                                                                                                (18) 

2T I G  = +                                                                                                                               (19) 

The micro-particles and the couple stress tensor can be graphically indicated in Fig. 1. 

 

(a) 

 

(b) 

Fig. 1 (a) micro rotations in microscale framework (b) couple stresses in continuum medium 

2.4 A dynamic extension of the modified couple stress theory 

The general Cosserat micropolar theory and its sub-theories (couple stress models), as indicated 

briefly in the previous sections, suit the static problems and omit time-dependent at the 

microscale. Micro-rotations of particles inside a microstructure are still mass-dependent points 

and their rotation will certainly incorporate mass inertia. 

The classic relation of kinetic energy can be reported by, 

( )
23

1

1

1

2

i

i

K z dV
t

u


=

 
=  

 
                                                                                                                   (20) 



We here grant that the mass inertia due to the micro-rotation of the point's bodies exists in the 

couple stress models. Fulfilling this assumption can be possible by proposing a kinetic energy 

characteristic relation consisting of micro velocities by integrating the velocity of the micro-

rotations as  =  inside the kinetic energy of the medium, 

( )
23

2
1

1

1

2

i
dr

i

K K z l dV
t




=

  
 = +   

   
                                                                                         (21) 

in which ldr is a dynamic length characteristic and credits the infinitesimal mass inertia which 

is deduced to exist due to micro rotations in a microstructure. 

3 A physical example: a microbeam 

Here we are supposed to model a beam-like microstructure as denoted by Fig. 2 for which the 

nonlinear natural frequencies will be calculated. The dimensions of the drawn beam are inserted 

into a rectangular coordinate system. The dedicated letter L is called the effective length. The 

lateral dimension is named thickness signed with the letter h used inside mathematical 

formulations. 

 

Fig. 2 A schematic continuum micro-beam fully clamped at ends 

Let us here shift the 3D relations to the 1D ones on the basis of the plane strain hypothesis by 

means of the Euler-Bernoulli kinematic theory as follows (Barretta et al., 2022; Chen et al., 

2020; Darban et al., 2022; Darban et al., 2020; Russillo et al., 2021; Russillo et al., 2022) 



( ) ( )
( )

1

,
, , ,

w x t
u x z t u x t z

x


= −

                                                                                                             
(22) 

( ) ( )3 , , ,u x z t w x t=
                                                                                                                        

(23) 

In the above-written relation, u  and w  are defined for the axial and transverse displacement of 

the mid-plane, z is the thickness variable parameter. Afterward, it is time to expand the 

governing equations consisting of stress and couple stress resultants in the following. 

3.1 Static part 

Involving Eqs. (22) and (23) allows transform the axial strain in Eq. (2) as follows 

 
2

311
2

2
xx

uu

x x


   
= +  

    
                                                                                                         (24) 

Then, we got 

22

2

1

2
xx

u w w
z

x x x


   
= − +  
   

                                                                                                            (25) 

Using Hooke's law for a homogeneous isotropic material, we come to 

22

2 2

1

1 2
xx

E u w w
z

x x x




    
= − +  

−      
                                                                                                (26) 

where the parameter  depicts the Poisson's ratio. Internal forces (stress resultants) of the media 

can be formulated as (Karami et al., 2022) 

ijij

ijij

N
dz

zM





    
=   

    
                                                                                                                                  (27)

 

in which the parameters ijN  and ijM  are devoted to the axial and moment stress resultants, 

respectively. Expanding Eq. (27) requires implementing Eq. (26) which results in 



2

11

2

11 2

1

2xx

xx

u w
A

N x x

M
w

D
x

    
+   

       =   
   

− 
 

                                                                                                                            (28)

 

where 

3

11 112 2
,

1 1 12

Eh E h
A  D

 
= =

− −
.

 

The micro-rotations vectors can be derived as 

2

w

x



= −


                                                                                                                                       (29) 

Use of the couple stress model leads to couple stress resultants established in the form 

   
/2

/2

h

ij ij
h

Y dz
−

=                                                                                                                                   (30) 

Form Eq. (30), we get 

2
2

2
2xy sr

yx
xy

w
l G

x





 
  − 

=    
   

 

                                                                                                                  (31) 

2

2xy sr

yx
xy

w
Y B

x
Y

Y

 
  − 

=    
   

 

                                                                                                                     (32) 

where 
22sr srB l Gh= . Besides, 

srl stands for a static length scale parameter. 

Let us reword the total potential energy relation as in (Dastjerdi et al., 2022; Xu et al., 2021a; 

Xu et al., 2021b), 

 2

1

0
t

t
K W U dt + − =                                                                                                                    (33) 

For one-dimensional case instead of Eq. (11) we attain 



( )xx xx xy xy
V

U dV    = +                                                                                               (34) 

or, 

2 2

2 2xx xy
V

u w w w w
U z m dV

x x x x x

   
 

        
= − + + −    

        
                                                 (35) 

Integrating by part from Eq. (35) leads to nonlinear static equilibrium equations including 

classical and micro stress resultants as follows 

0 0xxN
u  ;  

x



= =


                                                                                                                       (36) 

22

2 2
0 0

xyxx
xx

YM w
w  ;  N

x x x x


   
= − + − = 

    
                                                                                    (37) 

Furthermore, non-classical boundary conditions can be worded as, 

( ) ( )
0

0

L

xx xx xx xy

w
N u M w N w Y w

x x x
   

   
+ + − = 
   

                                                                   (38) 

3.2 Dynamic part 

Let us present Eq. (21) in the open state as follows, 

( )
22 2

2 2 2

2

311

2

h

drh
K z l dz

t t t

uu 


−

       
= + +     

        
                                                                            (39) 

Then, substituting Eqs. (22), (23), and Eq. (29) into Eq. (39), we obtain 

( )

2 222 2
2 2

2

1

2

h

drh

u w w w
K z z l dz

t x t t x t


−

         
= − + + −                   
                                                         (40) 

Afterward, simplifying Eq. (40), one gets 

( )
2 2 2 2

2 2

2
2

h

drh

u w u w w w w w
K z z z l dz

t x t t x t t t x t x t

   
 

−

                
= − − + +                                 
           (41) 



It is now possible to collect all the static and dynamic terms together in a system of equations 

2 3

0 12 2

xN u w
I I

x t x t

  
= −

   
                                                                                                                  (42) 

22 2 4 3 4

0 0 1 22 2 2 2 2 2 2 2

xyxx
xx

YM w w w u w
N I I I I

x x x x t x t x t x t

       
− + − = + − + 

           
                           (43) 

where the macro mass moment of inertias is available (Dastjerdi et al., 2020; Shariati et al., 

2021), 

( )
0

2

1 2
2

2

1
h

h

I

I z z dz

I z


−

  
  

=   
   
   

                                                                                                           (44) 

And the micro mass moment of inertia has been found as, 

( )
22

0 2

h

dr h
I l z dz

−
 =                                                                                                                    (45) 

If the chosen material is homogenous, so then 1I  would be eliminated (in this paper, a 

homogeneous material has been picked up). Some mathematical efforts are performed 

concerning the integration of the stretching effect in the limit of length and then proceeding 

with u (0) and u (L) initial conditions enables us to calculate axial normal force. Consequently, 

the final nonlinear frequency equation can be arranged as follows, 

24 2 4 2 4 4

11 11 0 0 24 2 4 2 2 2 2 20

L

sr

w w w w w w w
D H dx B I I I

x x x x t x t x t

       
+ + = + + 

         
                                (46) 

where 

2

11
11

2

A h
H

L
=                                                                                                                                 (47) 

4 Solution process 

To consider the nonlinear mathematical model with an actual physical sample, we here proceed 

with an analytical solution including Galerkin weighted residual method (GWRM) and the 

Homotopy perturbation technique. 



4.1 Galerkin decomposition method 

Among analytical solution methods that separate motion governing differential relations into 

temporal and spatial sections, the Galerkin decomposition method is a simple and accurate one 

by which many problems have been solved properly (Malikan & Eremeyev, 2021). 

The constitutive partial differential equations that appeared in Eq. (46) can be decomposed into 

algebraic equations by the application of the Galerkin scheme as the next effort. First,  

( ) ( ) ( )
1

m

m

w x,t X x q t


=

=                                                                                                                     (48) 

where ( )q t  denotes the time response of the system and depends on frequency modes as well. 

Based on the Galerkin decomposition technique, one receives 

( ) ( )
0

0
L

mR x,t X x dx =                                                                                                                        (49) 

where R  is a residue of Eq. (46) after replacing Eq. (48) inside it as,  

( )
24 2 4 2 4 4

11 11 0 0 24 2 4 2 2 2 2 20

L

sr

w w w w w w w
R x,t D H dx B I I I

x x x x t x t x t

        
= + + − + +  

           
            (50) 

and  

( ) ( ) ( ) ( ) ( )( )1 2 3 4sin sinh cos coshm m m m m mX x x x x x       = + − +                                (51) 

The trigonometric admissible shape functions which supposed to satisfy boundary conditions 

are shown in Table 1 (Malikan & Eremeyev, 2022). These shape functions are presented in 

mode number (m). 

Table 1 

The admissible shape functions are chosen as trigonometric functions 

Boundary Conditions i  m  m  

 

SS 
1 2

3 4

1,  0,  

0,  0 

 

 

= =

= =
 m L  1 



 
CS 

1 2

3 4

1,  1,  

1,  1

 

 

= = −

= = −
 tan tanhm m =  

( ) ( )

( ) ( )

sin sinh

cos cosh

m m

m m

L L

L L

 

 

+

+
 

 
CC 

1 2

3 4

1,  1,  

1,  1

 

 

= = −

= = −
 cos cosh 1m m  = −  

( ) ( )

( ) ( )

sin sinh

cos cosh

m m

m m

L L

L L

 

 

−

−
 

where the aforesaid comparison functions introduced in Table 1 will be able to satisfy the 

following boundary conditions devoted to simply supported and clamped boundary conditions, 

SS: 
( ) ( )

( ) ( )

0, 0, , 0

0, 0, , 0x x

w t  w L t

M t  M L t

= =


= =

                                                                                                  (52) 

CC: 
( ) ( )

( ) ( )

0, 0, , 0

0, 0, , 0

w t  w L t

w w
t  L t

x x

= =

 

= =
 

                                                                                                   (53) 

Replacing Eq. (51) into Eq. (49) 

( )

24 2 4

11 114 2 40

2 4 40

0 0 22 2 2 2 2

0

L

sr
L

m

w w w w
D H dx B

x x x x
X x dx

w w w
I I I

t x t x t

     
+ +  

      =
    
 − + + 

       


                                                          (54) 

Imposing Eq. (48) on Eq. (54) gives 

( )
( ) ( )

( ) ( ) ( )
( )

( )
( ) ( ) ( ) ( ) ( )

( )

24 2 4

3

11 114 2 40 0

2 2 2 2 2

0 0 22 2 2 2 2
0

L L
m m m m

sr

m m

m m

d X x d X x dX x d X x
D q t H q t dx B q t

dx dx dx dx

d q t d X x d q t d X x d q t
I X x I I X x dx

dt dx dt dx dt

  
 + + 
  

 
− + + = 

 

 
                   (55) 

Simplifying Eq. (55) leads to 

( )
( ) ( )

( ) ( ) ( )
( )

( ) ( )
( ) ( )

( )

24 2 4

3

11 114 2 40 0

2 2

0 0 2 2 2
0

L L
m m m m

sr

m

m m

d X x d X x dX x d X x
D q t q t H dx B q t

dx dx dx dx

d X x d q t
I X x I I X x dx

dx dt

  
+ +  

 

  
− + + = 

  

 
                  (56) 



Executing Eqs. (56) using Table 1, will convey Eqs. (56) to an algebraic time-dependent 

configuration. Then, having nonlinear natural frequencies is in need of a solution of the 

following relation, 

( )
( ) ( )

2

3

1 22
0

d q t
q t q t

dt
 + + =                                                                                                       (57) 

where 

3 2

1 2
0 0

, 
 

 
 

= =                                                                                                                               (58) 

( ) ( ) ( )
( )2

2
0 0 0 2 20

L
m

m m

d X x
I X x I I X x dx

dx


 
= + + 

 
                                                                           (59) 

( )
( )

( )
2 2

2 11 20 0
0

L L
m m

m

dX x d X x
H dx X x dx

dx dx


  
= −  =  

   
                                                                    (60) 

( ) ( )
( )4

3 11 40

L
m

sr m

d X x
D B X x dx

dx


 
= + 

 
                                                                                                    (61) 

Let us assume the initial conditions 

( )
( )0

0 0
dq

q f , 
dt

= =                                                                                                                      (62) 

The Galerkin decomposition method here enables us to convert the nonlinear partial differential 

equations (PDE) to nonlinear ordinary ones (ODE) by decomposing the equations into temporal 

parts. The approximate analytical processes or numerical methods can help us simply solve the 

decomposed nonlinear ODE system. For this paper, the Homotopy perturbation technique will 

be adopted because of its high precision and entirely analytical procedure. 

4.2 Homotopy perturbation technique 

Due to the nonlinear terms presented in Eq. (57), the symbolic solution is here generated based 

on the Homotopy perturbation method as follows (He et al., 1999; Sobamowo et al., 2021; 

Wang et al., 2012). 



The Homotopy equation is introduced below by considering a Homotopy condition as 

( )  , : 0,q r p L , 

( ) ( ) ( ) ( ) ( )0 0 0H q, p L q L u pL u pN q= − + + =                                                                                            (63) 

Here, u0 denotes the initial approximation, while we define N and L as nonlinear and linear 

terms that appeared in Eq. (57). 

Let us write down the initial approximation using conditions mentioned in Eq. (62) as, 

( )0 cosu f t=                                                                                                                             (64) 

where f represents an amplitude of the motion.  

The initial conditions of Eq. (62) can be satisfied by Eq. (64). Now, there is a possibility to 

readily construct the Homotopy as, 

( ) ( ) ( )  
2 2

30
1 0 1 22 2

1 0 0 1 2
d u d q

H q, p p u q p q ,   p , , ,...
dt dt

  
   

= − + + + + =    
  

                              (65) 

Let us assume that Eq. (57) takes the below solution, 

( ) ( ) ( ) ( )2

0 1 2q t q t pq t p q t ...= + + +                                                                                                          (66) 

in which ( )  =0,1,2,...iq t , i  are terms of q which have to be determined. 

If we set p=1 in order to process with the Homotopy method. Thus, Eq. (66) becomes  

( ) ( ) 2 3

0 1 2 3 0 1 2 3
1 1

lim lim ... ...
p p

q t q t q pq p q p q q q q q
→ →

 = = + + + + = + + + + 
                               (67) 

Replacing Eq. (66) in Eq. (65) provides, 

( )
( )

( )

( ) ( )

2 2

0 1 2 2

1 0 1 22

2
3

20
1 0 2 0 1 22

1

d q pq p q ...
H q, p q pq p q ...

dt

d u
p u p q pq p q ...

dt



 

 + + +
 = + + + +
  

   + − + + + + +     

                                            (68) 

A series of linear ODE will be gained, if one simplifies and rearranges Eq. (68) due to the 

similar powers of p,  

Zero-order: 



2 2
0 0 0

1 0 1 02 2
0

d q d u
p :  q u

dt dt
 

   
+ − + =   

   
                                                                                            (69) 

With the conditions, 

( )
( )0

0

0
0 0

dq
q f , 

dt
= =                                                                                                                       (70) 

First-order: 

2 2
1 30 1

1 0 1 1 2 02 2
0

d u d q
p :  u q q

dt dt
  + + + + =                                                                                                (71) 

By introducing the initial conditions below, 

( )
( )1

1

0
0 0 0

dq
q , 

dt
= =                                                                                                                      (72) 

Second-order: 

2
2 22

1 2 2 0 12
3 0

d q
p :  q q q

dt
 + + =                                                                                                     (73) 

Using the introduced initial conditions, 

( )
( )2

2

0
0 0 0

dq
q , 

dt
= =                                                                                                                      (74) 

The following solution can be presented for the first-order relation, 

2 2

0 0
1 0 1 0 0 02 2

d q d u
q u q u

dt dt
 

   
+ = +  =   

   
                                                                                     (75) 

From Eq. (75), we have 

( )0 cosq f t=                                                                                                                                 (76) 

By substituting Eq. (76) into Eq. (71) and the second derivative of Eq. (64), the first-order 

relation can be solved, 



( ) ( ) ( )
2

2 3 31
1 1 1 22

cos cos cos 0
d q

q f t f t f t
dt

      + − + + =                                                         (77) 

Replacing the trigonometric identities 

( )
( ) ( )3

3cos cos 3
cos

4

t t
t

 


+
=                                                                                                                 (78) 

into Eq. (77), one achieves 

( ) ( )
( ) ( )2

2 31
1 1 1 22

3cos cos 3
cos cos 0

4

t td q
q f t f t f

dt

 
     

+ 
+ − + + = 

 
                              (79) 

By collecting similar expressions, one gets 

( ) ( )
2

2 3 31
1 1 1 2 22

3 1
cos cos 3

4 4

d q
q f f f t f t

dt
      

 
+ = − − + − 

 
                                                   (80) 

Eq. (80) is a nonhomogeneous ordinary differential equation; hence, it is possible to solve it by 

the method of variation of constants based on an initial guess as, 

( ) ( ) ( ) ( ) ( )1 1 1 2 1cos sinq t C t t C t t = +                                                                                         (81) 

Then, there are two answers for Eq. (80), a general answer and the specific one, 

( ) ( )

2

1
1 12

2
2 3 31

1 1 1 2 22

0

3 1
cos cos 3

4 4

d q
q

dt

d q
q f f f t f t

dt



      


+ =




  + = − − + −   

                                             (82) 

Now, if we proceed with the method, the constants C1 and C2 will be gained (the procedure is 

available in Appendix A). Thereafter, on the basis of Eq. (72), the first term q will be derived 

as follows, 

( ) ( ) ( )

( )

3
2 2 1 2 1

1 1 2 2 2 2 2

1 1

3
2 2 1 2 1

1 2 12 2 2 2

1 1

3
cos cos 3

4 4 9

3
cos

4 4 9

f
q t f f t t

f
f f t

  
    

   

  
   

   

     
= − + +     

− −     

     
+ − + +     

− −     

                    (83) 



Let us have the time-dependent response of the system. To perform this, Eqs. (76) and (83) 

should be substituted into Eq. (66). 

( ) ( )

( )

( )

( )

2 2 1
1 2 2 2

1

3

2 1

2 2

1

3
2 2 1 2 1

1 2 12 2 2 2

1 1

3
cos

4
cos

cos 3
4 9

3
cos

4 4 9

f f t

q t f t
f

t

f
f f t


   

 


 


 

  
   

   

   
− +   

−   
= +

  
 +  

−   

     
+ − + +     

− −     

                                           (84) 

This is the time history response of the nonlinear natural frequency of the system using the first 

two terms of the right side of Eq. (66). There are two unknowns in Eq. (84), that is,   and t . 

The nonlinear natural frequency can be found by eliminating the secular terms in Eq. (84). For 

doing this, the coefficients of ( )1cos t  shall be set to zero.  

3
2 2 1 2 1

1 2 2 2 2 2

1 1

3
0

4 4 9

f
f f

  
  

   

    
− + + =    

− −    
                                                                (85) 

By simplifying and rearranging Eq. (85) on the basis of  , one obtains 

4 2

1 2 0   + + =                                                                                                                        (86) 

where 32
1 2

1 1

,  


 
 

 = = , and ( )

( )

3

1 1

4 3 2 2

2 1 1 2 1 2

4 3 2 3

3 1 1 2

36

36 4 27

4 3

f f

f f

 

     

   

 =

  = − + + +  


= + +

. 

Afterward, the roots of Eq. (86) can be found easily upon the assumption
2y = , 

2

1 2 0y y  + + =                                                                                                                        (87) 

Then, a solution to the above-written quadratic equation is available. All four roots of Eq. (86) 

are calculated below, 

2

1 1 24

2
NL

  


  −  −
=                                                                                                                         (88) 



Eq. (88) cannot be a highly accurate response for Eq. (46), indeed. In order to find a higher 

precise nonlinear frequency upon the second term of q, it is enough to repeat the above 

procedure. To reach the desired accuracy, this direction and process may be continued. Not to 

mention that a few terms are sufficient to get suitable results and many iterations are not 

required. 

The linear frequency can also be calculated by 1L = . 

The mathematical model will be implemented in MATLAB and MATHEMATICA and its 

robustness and accuracy will be displayed through the next section. 

5 Validation 

To check the applicability of the solution techniques, this section is prepared. The initial 

comparison is exhibited with the aid of the robust finite element software, namely Abaqus. This 

verification is performed by tabulating Tables 2-4 for linear natural frequency and classical 

beam model. The material and specifications required for the validation are placed beside the 

title of the Table. The variable parameter is selected as the slenderness ratio (L/h). The unit of 

natural frequency is considered as rad/s. Moreover, the differences in results of FEM and those 

of the present study are demonstrated in percentage by erf% (Eq. (85)). The comparison is made 

from a relatively thick domain up to a thin one. As observed, when the 2I  is eliminated, the 

present results are closer to those of Abaqus. For this part of the validation, a good agreement 

can be seen. 

100
present reference

erf %
reference

−
=                                                                                                       (89) 

Table 2. Solution validation of linear natural frequency by means of Abaqus for a squared macro 

beam (E=210e3 MPa, υ= 0.3, h=10 mm, Ly=Lx, ρ=2.2 tonne/mm3, SS) 

L/h 

Present 

with 2I * 

Present 

without 2I  
Abaqus 

Erf% 

for * 

10 0.88389 0.88025 0.88027 0.41123 

12 0.61304 0.61128 0.61128 0.28792 

14 0.45005 0.44910 0.44910 0.21153 

16 0.34440 0.34384 0.34384 0.16286 



18 0.27202 0.27168 0.27168 0.12514 

20 0.22029 0.22006 0.22006 0.10451 

22 0.18202 0.18187 0.18187 0.08247 

24 0.15293 0.15282 0.15282 0.07198 

26 0.13029 0.13021 0.13021 0.06143 

28 0.11233 0.11227 0.11227 0.05344 

30 0.09785 0.09780 0.09780 0.05112 

32 0.08599 0.08596 0.08596 0.03490 

34 0.07617 0.07614 0.07614 0.03940 

36 0.06794 0.06792 0.06792 0.02944 

38 0.06097 0.06095 0.06095 0.03281 

40 0.05502 0.05501 0.05501 0.01817 

Table 3. Solution validation of linear natural frequency by means of Abaqus for a squared macro 

beam (E=210e3 MPa, υ= 0.3, h=10 mm, Ly=Lx, ρ=2.2 tonne/mm3, CC) 

L/h 

Present 

with 2I * 

Present 

without 2I  
Abaqus 

Erf% 

for * 

10 1.98073 1.98057 1.99541 0.73568 

12 1.37547 1.37540 1.38569 0.73753 

14 1.01054 1.01049 1.01806 0.73866 

16 0.77368 0.77366 0.77949 0.74535 

18 0.61130 0.61128 0.61587 0.74204 

20 0.49515 0.49514 0.49885 0.74170 

22 0.40921 0.40920 0.41228 0.74464 

24 0.34385 0.34384 0.34642 0.74187 

26 0.29298 0.29298 0.29518 0.74530 

28 0.25262 0.25262 0.25451 0.74260 

30 0.22006 0.22006 0.22171 0.74421 

32 0.19341 0.19341 0.19486 0.74412 

34 0.17133 0.17132 0.17261 0.74155 

36 0.15282 0.15282 0.15396 0.74045 

38 0.13715 0.13715 0.13818 0.74540 

40 0.12378 0.12378 0.12471 0.74573 

Table 4. Solution validation of linear natural frequency by means of Abaqus for a squared macro 

beam (E=210e3 MPa, υ= 0.3, h=10 mm, Ly=Lx, ρ=2.2 tonne/mm3, CS) 



L/h 

Present 

with 2I * 

Present 

without 2I  
Abaqus 

Erf% 

for * 

10 1.37922 1.37540 1.37513 0.29742 

12 0.95697 0.95513 0.95491 0.21572 

14 0.70272 0.70173 0.70158 0.16249 

16 0.53784 0.53726 0.53715 0.12845 

18 0.42486 0.42450 0.42442 0.10367 

20 0.34408 0.34384 0.34378 0.08726 

22 0.28433 0.28417 0.28411 0.07743 

24 0.23889 0.23878 0.23873 0.06702 

26 0.20354 0.20346 0.20342 0.05899 

28 0.17549 0.17543 0.17539 0.05701 

30 0.15286 0.15282 0.15279 0.04581 

32 0.13435 0.13431 0.13428 0.05213 

34 0.11900 0.11897 0.11895 0.04203 

36 0.10614 0.10612 0.10610 0.03770 

38 0.09526 0.09524 0.09522 0.04200 

40 0.08597 0.08596 0.08594 0.03490 

Table 5. Validation for the nonlinear natural frequency with those obtained by the literature for SS 

Frequency ratio 

f Present 
(Bhashyam & 

Prathap, 1980) 

(Abdul-Majid, 

2011) 

0.1 1.0011 1.0009 1.0010 

0.2 1.0045 1.0037 1.0043 

0.4 1.0178 1.0149 1.0170 

0.6 1.0398 1.0332 1.0384 

0.8 1.0697 1.0583 1.0673 

1 1.1071 1.0897 1.1030 

The published results in Tables 2-4 cannot be a perfect case in order to approve the whole 

solving methods, although the analytical boundary conditions can be corroborated. 

To show further comparisons, nonlinear natural frequencies shall be compared to the literature 

or a reputable reference. Table 5 demonstrates a comparison of the natural frequencies of beams 

with geometrical nonlinear effects. The numerical results are compared in different frequency 



amplitudes for simply-supported boundary conditions. Noted that the frequency ratio here and 

in the next sections means the ratio of the nonlinear frequency to that of linear. As seen, results 

indicate an acceptable accuracy, particularly for higher slenderness rations. It is significant to 

remind that for Table 5, we have not taken the 2I  into the mathematical model (Eq. (46)). It is 

also interesting to realize that while eliminating 2I , the analytical natural frequency approaches 

the Abaqus results led to this finding that Abaqus may not consider the second mass inertia in 

its FE formulation for 1D beam elements. Consequently, we will ignore it in the results section. 

One may say that this finding cannot be true for clamped end conditions. It is very crucial to 

note that the Student Edition of Abaqus has been used for comparison purposes and it is limited 

in the number of mesh so the fixed ends results may not be entirely precise. Moreover, the more 

the mesh, the lower the values of Abaqus results for this model. 

6 Results and discussions 

After finding a good accuracy for those boundary conditions and solution methods, let us 

investigate the critical parameters with detailed discussions. 

Let us define and introduce some nondimensional parameters to easier provide the numerical 

results as follows, 
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sr dr

L max

l l Df x L w
F_r , f ,x = , L = , l = , l = , W= , t t

h L h h h w L



 
= = =  

To start the discussion and results, in the beginning, we will discuss the effect of changes in 

static (SLS) and dynamic length scale (DLS) parameters. These two factors play a vital and 

main role in the mechanical response of the analyzed microstructure. The SLS parameter has 

been evaluated abundantly by researchers in the research background. However, the DLS 

parameter has been neglected in couple stress problems, especially dynamic problems based on 

the couple stress theory. Figures 3a, b, and c express the changes in the SLS parameter for the 

horizontal axis of the graphs, and Figures 4a, b, and c display the variation in the dynamic 

parameter on this axis. The ratio of nonlinear to linear frequency, which will be known as the 

frequency coefficient in this article, is placed on the vertical axis of these figures to represent 

the importance of nonlinear frequency with changes in static and dynamic parameters. Figures 

3a-c and Figures 4a-c, figures are presented for a dedicated boundary condition one by one, 

which are respectively the beam with two clamp ends, the beam with the full hinge boundary 



condition, and finally the beam with the clamp boundary condition on the left side and the hinge 

on the right support. With the help of Figures 3a, b, and c, as can be seen, by an increase in the 

SLS parameter, the significance of the nonlinear frequency becomes further. This higher 

importance will also be more visible in larger values of the DLS parameter. Although in the 

beam with two hinges, first, up to certain values of the static parameter, the importance of the 

nonlinear frequency decreases; but after a certain number, the frequency ratio increases which 

demonstrates the increase in the urgency of the nonlinear frequency. The key point is that the 

presence of both static and dynamic parameters leads to an increase in the natural frequency, 

both in the linear and nonlinear frequency modes, which is associated with greater stiffness of 

the material. But the increasing and decreasing trends in these graphs are related to the 

frequency ratio and it is not the case that, for example, the increase in the static parameter has 

led to a decrease in the stiffness of the material and the softening effect. Finally, with the aid of 

Figure 3c, one can see that the behavior of the beam with one end hinged and the other side 

completely fixed can be between the behavior of fully hinged and fully fixed beams. To 

complete this discussion, Figures 4a to 4c can be a confirmation of several results obtained that 

the larger the DLS parameter and the higher the SLS parameter values, the more the seriousness 

of the nonlinear frequency.  It is essential to note that the slenderness ratio (ratio of length to the 

thickness of the beam) has been selected as 10. As the current model is derived based on the 

Euler-Bernoulli beam, one may say that the ratio shall be higher than 15 which is devoted to 

thin beams. However, we are aware of this case and the reasoning here is the fact that in large 

beams the problem will not be influenced by nonlinear terms as much as we expect. This result 

will be attained in the next diagrams. 
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Fig 3a. Frequency ratio vs. static length scale parameter  

including L*=10, f*=0.1, CC. 

 

Fig 3b. Frequency ratio vs. static length scale parameter  

including L*=10, f*=0.1, SS. 

 

Fig 3c. Frequency ratio vs. static length scale parameter  

including L*=10, f*=0.1, CS. 
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Fig 4a. Frequency ratio vs. dynamic length scale parameter  

including L*=10, f*=0.1, CC. 

 

Fig 4b. Frequency ratio vs. dynamic length scale parameter  

including L*=10, f*=0.1, SS. 

1

1.3

1.6

1.9

2.2

2.5

2.8

3.1

3.4

3.7

0 0.2 0.4 0.6 0.8 1

F_r

ldr
*

lsr*=0 lsr*=1 lsr*=2

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 0.2 0.4 0.6 0.8 1

F_r

ldr
*

lsr*=0 lsr*=1 lsr*=2



 

Fig 4c. Frequency ratio vs. dynamic length scale parameter  

including L*=10, f*=0.1, CS. 

In the study of vibration problems with large amplitudes, investigating the effect of the 

amplitude on the modeled beam or plate is of particular importance. In fact, since the nonlinear 

vibration analysis is done, we must examine the problem in the nonlinear region. By dint of 

Figure 5, different frequency amplitudes have been investigated and the frequency amplitude 

varies from linear to nonlinear states. In the figure, in one case, the SLS coefficient is fixed and 

the DLS one is variable. In the other case, this time the DLS parameter is constant and the SLS 

coefficient is changeable. It can be seen that increasing the frequency amplitude ends up 

increasing the nonlinear frequency effect. However, these increases will be different in the 

examined situations. A valuable finding that can be discussed by this figure is that the influence 

of a DLS parameter in the vibration problems of microstructures is very dominant and this 

parameter should not be simply ignored. 
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Fig 5. Frequency ratio vs. frequency amplitude 

including L*=10. 

Beam's slenderness ratio (length to thickness) is one of the most principal factors in examining 

the mechanical behavior of these elements. Using Figures 6a and 6b, we evaluated the changes 

in slenderness coefficient from thick to thin beams in two boundary conditions in different 

frequency amplitudes. As can be observed, in both boundary conditions, in larger frequency 

ranges, the frequency ratio is a larger number which means a greater difference between the 

nonlinear frequency results and the linear ones. It shows that the larger the frequency amplitude, 

the greater the notability of the nonlinear frequency. In the hinge boundary condition, when the 

amplitude is small, the change in the slenderness ratio markedly influences the frequency ratio 

denoting that the linear frequency analysis is satisfactory to study the vibration of beams in 

small amplitudes. However, when the frequency range becomes higher, the slenderness ratio 

does not have such a noticeable effect on the variation of the frequency ratio. Moreover, in the 

second figure, which is related to the clamped boundary condition, it can be seen that the 

decrease in the frequency ratio resulting from the increase in beam slenderness has almost the 

same slope in all amplitudes. As another result of these two figures, it can be claimed that the 

beam's slenderness increases the difference between nonlinear and linear frequencies. And in 

fact, the longer the beam becomes, the more important the frequency amplitude will be. This 

result is gotten from the difference in the results of the frequency amplitudes in larger values 

of the slenderness coefficient. However, the effectiveness of the slenderness ratio from L*=10 

is insignificant in the frequency ratio. 
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Fig 6a. Frequency ratio vs. slenderness coefficient 

including lsr
*=0.2, ldr

*=0.2, SS. 

 

Fig 6b. Frequency ratio vs. slenderness coefficient 

including lsr
*=0.2, ldr

*=0.2, CC. 

The shape of the frequency modes is almost a geometrical problem, and in small-scale beams, 

it can be similar to macro-scale beams, although with a difference in its dynamic transverse 

deflection rate. Figures 7a, b, and c were drawn to display the frequency mode shapes from the 

first frequency mode to the fourth one in three various boundary conditions. On the other hand, 

the accuracy of the trigonometric functions presented in Table 1 for the beam with three types 

of boundary conditions can also be confirmed here. Of course, it is necessary to remember that 

these mode shapes are dynamic and time-dependent. To plot them, we considered time equal to 
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pi. It should also be mentioned that the frequency range also affects these modes. In fact, time, 

frequency amplitude, and SLS and DLS parameters can differ the phase of the modes. But in 

order to pull out these three figures, we avoided producing the modes in a different phase state 

and tried to show more of the geometric aspect of the modes. The correctness of the 

trigonometric functions used for the analytical solution is fully confirmed by drawing these 

three figures. 

 

Fig 7a. Dynamic transverse displacements vs. normalized dimensionless mode shapes 

including lsr
*=0.2, ldr

*=0.2, f*=0.1, CC. 

 

Fig 7b. Dynamic transverse displacements vs. normalized dimensionless mode shapes 

including lsr
*=0.2, ldr

*=0.2, f*=0.1, SS. 
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Fig 7c. Dynamic transverse displacements vs. normalized dimensionless mode shapes 

including lsr
*=0.2, ldr

*=0.2, f*=0.1, CS. 

Figures 8a and 8b are represented to study the effect of SLS and DLS parameters on dynamic 

deflections in two boundary conditions. The figures have been plotted in cases where the beam 

is without microscale effects as compared to the beam with microscale effects. The different 

frequency amplitude ranges have also been shown. In this problem, the phase difference has 

been neglected and all the deflections have been drawn as positive. These figures were also 

extracted at the time of pi. As it is clear, the frequency modes are in the first mode. By studying 

these two figures, it can be concluded that small-scale static and dynamic length scale effects 

should be taken into consideration in the vibration problems of microstructures because they 

cause serious differences in the results of transverse dynamic deflections. 
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Fig 8a. Normalized mode shapes vs. frequency amplitudes 

including m=1, SS. 

 

Fig 8b. Normalized mode shapes vs. frequency amplitudes 

including m=1, CC. 

After assessing the results in different situations with changes in various parameters, it is time 

to check the time history response of the system in different conditions. Figures 9a and 9b are 

plotted to exhibit the effects of large and small frequency amplitudes on the time history of the 

hinged beam. On the other hand, Figures 10a and 10b also illustrate the same conditions but for 

the beam with two fixed ends. In Figures 9a and 10a, since the amplitude is larger than that of 

Figures 9b and 10b, more cycles and shorter wavelengths are observed, which means that the 

frequency value is bigger in the larger amplitude, which is a classic result in nonlinear vibrations 

studies. Researchers and Engineers have already proven it. The result extracted in this research 

can be that the effect of the microscale leads to the phase difference in the time response of the 

frequency. This phase difference is not only specific to large frequency amplitudes and can be 

seen in small ranges as well. As a point of fact, the influence of the microscale slows down the 

movement of the system, and the same thing creates a phase difference in the time history of 

the system, which of course, is clear and evident as time increases. This phase difference will 

increase until it reaches a difference of 2pi. Another valuable result of these figures can be 

mentioned in Figure 10a. When the frequency amplitude is large in the beams of the double-

fixed, the shape of the time response of the system will entirely change and it will leave the 

harmonic state with a smooth and uniform curve. This theorem is the same in both macro and 
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microscale conditions, and it has nothing to do with scale effect and can be given as a general 

result. 

 

Fig 9a. Time response vs. large frequency amplitude 

including L*=10, f*=0.5, m=1, SS. 

 

Fig 9b. Time response vs. small frequency amplitude 

including L*=10, f*=0.1, m=1, SS. 
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Fig 10a. Time response vs. large frequency amplitude 

including L*=10, f*=0.5, m=1, CC. 

 

Fig 10b. Time response vs. small frequency amplitude 

including L*=10, f*=0.1, m=1, CC. 

As the last part of the study, Figures 11a and 11b are drawn out to reveal the effect of the 

frequency domain on the time response of the vibrating system. Figure 11a is dedicated to the 

two ends-clamped boundary conditions and Figure 11b is associated with the two ends-hinged 

boundary conditions. As it is vivid, in the hinged boundary condition, ascending the frequency 

amplitude leads to a growth in the number of motion cycles only and consequently to an 

increase in the frequency itself. But in Figure 11a, the result is different, and in the double- 

fixed ended beam, when the frequency amplitude is getting larger, the shape of the time 
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response also changes. The interesting thing to note in this figure is that when the beam crosses 

the allowed region of linear analysis, the response of the system varies. For the clamp boundary 

condition, linear analysis usually gives correct results until the transverse deflection is 

approximately 10-20 percent of the thickness (of course, it differs depending on several 

conditions). As one can see, from f*=0.2, a change in the system response is appearing. 

Physically, the system goes through chaos from the harmonic state. Therefore, when the beam 

is doubly clamped, and the frequency amplitudes are in the range of nonlinear analysis, the 

nonlinear frequency study is requestable. 

 

Fig 11a. Time response vs. frequency amplitudes  

including L*=10, lsr
*=0.2, ldr

*=0.2, m=1, CC. 

 

Fig 11b. Time response vs. frequency amplitudes  

-6

-4

-2

0

2

4

6

8

0 0.5 1 1.5 2 2.5

q(t)

t*

f*=0.1 f*=0.2 f*=0.3 f*=0.4

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5

q(t)

t*

f*=0.1 f*=0.2 f*=0.3 f*=0.4



including L*=10, lsr
*=0.2, ldr

*=0.2, m=1, SS. 

7 Conclusions 

The purpose of the choice of the current title was in light of two critical problems which have 

hardly ever been addressed in the literature. The researchers used to study the mechanics of 

microstructures on the basis of couple stress theories without taking into account any dynamic 

part inside the couple stress models. Most of the available literature included a static part for 

the micro-rotations only. But, here, we have studied the modified version of couple stress theory 

involving the dynamic effect of micro-rotations, namely micro-mass inertias. We assumed that 

this property could influence the mechanical response of a microstructure subject to dynamic 

conditions. Hence, we have engaged both static (SLS) and dynamic length scale parameters 

(DLS) in the couple stress model and showed that the DLS is really needful in some conditions. 

In addition to this, large amplitude and nonlinear natural frequencies have been investigated by 

establishing an analytical two-step process based on the Galerkin separation method and then 

the Homotopy perturbation technique to find out the time-dependent frequency response of the 

supposed micro-beam. According to the approximate analytical procedure, the obtained 

equation, which characterizes the large-amplitude frequency response of the beam, has been 

transformed into an ODE and thereafter solved with some routine mathematical operations. The 

solution process has also been verified by comparing the results with those of the FEM and a 

fairly good agreement has been witnessed. Our observations provide some new points presented 

as, 

*The greater the frequency amplitude, the higher the nonlinear natural frequencies. 

*The importance of the study of nonlinear frequency becomes remarkable when both SLS and 

DLS are getting bigger. 

*The higher the frequency amplitude, the different the time response of the clamped beam. 

*The greater the amount of SLS, the further meaningful the DLS. 

*Micro-mass inertia causes stiffness hardening into the material. 

*The increase in values of DLS similar to the SLS makes the material stiffer; however, the 

second parameter is more capable to differ the structural response. 

*The microstructural effect varies the time response of materials leading to phase difference. 

*The micro-mass inertia is becoming a vital factor when time goes higher. 

*The time history of vibrations could be different for large amplitude frequencies compared to 

small amplitudes. 



*Large amplitude-frequency analysis can be seriously required for clamped beams in both 

macro and micro scales. 

Appendix A 

Inserting Eq. (81) into Eq. (82) leads to, 
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If we rearrange Eq. (A-1) based on the C1, then put it into Eq. (A-2), 
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From Eq. (A-3) one can obtain C2 as, 
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And respectively C1 as, 
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The solution of integrals existed in Eqs. (A-4) and (A-5) can be seen below, 
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Finally, 
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Here, using Eqs. (A-6) and (A-7) one receives, 
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On the basis of the initial conditions mentioned by Eq. (72), one derives 
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It should be said that these processes will be redone for q2. By doing so, one derives 
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And based on Eq. (74) and the separation of secular terms, the nonlinear natural frequency will 

be attained. Then, the q2 is acquired as follows, 
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The general time response of the system can be drawn using Eq. (66). 
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