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The flow of a thin film coating the underside of an inclined substrate is studied. We10

measure experimentally spatial growth rates and compare them to the linear stability11

analysis of a flat film modeled by the lubrication equation. When forced by a stationary12

localized perturbation, a front develops that we predict with the group velocity of13

the unstable wave packet. We compare our experimental measurements with numerical14

solutions of the non-linear lubrication equation with complete curvature. Streamwise15

structures dominate and saturate after some distance. We recover their profile with a 1D16

lubrication equation suitably modified to ensure an invariant profile along the streamwise17

direction and compare them with the solution of a purely two dimensional pendent drop,18

showing overall a very good agreement. Finally, those different profiles agree also with a19

2D simulation of the Stokes equations.20

1. Introduction21

A thin film coating a flat substrate in a position where gravity tends to pull off the22

fluid may lead to amplifying disturbances of the interface, possibly leading to dripping.23

For thin films flowing down the underneath of inclined surfaces, a complete description of24

this phenomenon remains to be assessed and we aim at having a detailed characterization25

of the intermediate steps leading from a flat film to the dripping of drops.26

A horizontal flat interface separating a heavier fluid and a lighter fluid in two semi-27

infinite regions will deform with time if the overlaying fluid is the heaviest one (Rayleigh28

1882; Taylor 1950). Adding surface tension stabilizes the small-scale disturbances of29

the interface, but large-scale disturbances are always unstable (Chandrasekhar 1961).30

The instability is driven by a competition between gravity, which pulls the heavy fluid31

down and surface tension that tends to restore a flat interface and pushes it back. This32

instability is of prime concern when coating surfaces e.g. with paint or lubricants as33

coating irregularities or detachment of droplets may appear. As such, many studies have34

focused on means of controlling or suppressing the growth of pendant drops. This can be35

achieved, for example, by surface tension gradients arising from a temperature difference36

across the thin film or from the evaporation of the solvent in a multicomponent liquid37

(Burgess et al. 2001; Weidner et al. 2007; Alexeev & Oron 2007; Bestehorn & Merkt 2006).38

The Rayleigh-Taylor instability can also be controlled by high-frequency vibrations of the39

substrate (Lapuerta et al. 2001; Sterman-Cohen et al. 2017) or by the application of an40

electric field (Barannyk et al. 2012; Cimpeanu et al. 2014).41
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When the film is located underneath a substrate, its thickness is limited by gravity42

to typically a few millimeters, and the flow is thus strongly confined which enhances43

viscous dissipation. In this situation, regular patterns ranging from hexagons to squares44

are observed (Fermigier et al. 1992). This problem is usually tackled by assuming that the45

wavelength of the perturbations is larger than the film thickness and that the Reynolds46

number based on the film thickness is small, leading to the lubrication approximation,47

(Kapitza 1965; Chang 1994; Babchin et al. 1983). These patterns are periodic non-linear48

structures composed of a repetition of lenses that, assuming a linearized expression of49

the curvature, do not saturate but slowly grow algebraically (Lister et al. 2010). For50

sufficiently small initial thicknesses, and considering instead the full curvature, the lenses51

asymptotically approach axisymmetric pendant drop shapes (Marthelot et al. 2018).52

Spontaneous sliding of the droplets across the planar surface of the substrate can occur53

(Glasner 2007) due to a symmetry-breaking instability (Dietze et al. 2018).54

When the substrate is tilted, the film is still unstable but has a smaller growth rate55

as gravity is projected orthogonally to the substrate. The tangential component of the56

gravity then induces a flow that advects perturbations and, depending on the inclination57

angle and the film thickness, the instability can switch from convective to absolute58

(Brun et al. 2015): these authors experimentally show the agreement between the linear59

prediction of the onset of the absolute instability and the onset of dripping. Inertial effects60

and viscous extensional stresses are added to the latter stability prediction by Scheid et al.61

(2016). Kofman et al. (2018) demonstrate using a hierarchy of computational models that62

the absolute regime does not predict the onset of two-dimensional dripping satisfactorily.63

To date, experiments are mostly transient in nature since a finite volume of fluid was64

released (Fermigier et al. 1992; Brun et al. 2015), with the noticeable exceptions of Rietz65

et al. (2017), in which the wall normal gravity component is replaced by a centrifugal66

acceleration, and Charogiannis et al. (2018). The difference between transient release67

dynamics and alimented flows appears to be significant. For the classical Rayleigh-Taylor68

instability under a flat ceiling, permanent-fed experiments through a porous supply have69

been mostly done in a horizontal annular geometry, which effectively mimicks a one70

dimensional substrate (Limat et al. 1992; Abdelall et al. 2006). This latter configuration71

gives rise to a particularly rich and complex dynamics of interacting dripping drops or72

continuous columns (Pirat et al. 2004; Brunet et al. 2007), and may even lead to massive73

dripping within corrugated sheets (Yoshikawa et al. 2019).74

We thus propose a new experimental set-up, combining a permanent liquid supply to75

a tilted and flat coated surface, in contrast to recent studies on cylindrical and spherical76

substrates displaying a stabilizing effect on the film thanks to drainage-induced thinning77

and stretching (Balestra et al. 2018a,b). In order to overcome the limitation of a transient78

experiment, we impose constant flow rate so that the flow can reach a steady state or79

an asymptotic behavior. The Reynolds number of our flow is as small as possible, using80

very viscous oils, as simple non-inertial models already incur complex non-linearities.81

The experiment allows us to explore a wide range of parameters, i.e. all angles from82

vertical to horizontal and large variations of the film thickness. In this experiment we83

can observe a whole variety of patterns, from almost unperturbed flat films to heavy84

rains of oil droplets (Lerisson et al. 2019). In particular, we study the stability of the flat85

film solution, and identify a range of parameters within which the film destabilizes into86

long rivulet structures.87

In this work, we study the steady patterns emerging from natural and external forcing,88

describing the behavior of such a thin film continuously flowing under an inclined89

flat substrate with a combination of experiments, numerical simulations and linear90

stability theory. The experimental set-up is first described in section 2 together with91
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the measurement techniques, which are illustrated by a first spatially forced film, as92

well as the necessary scalings. Section 3 is devoted to a theoretical spatial stability93

analysis, which is compared to experimental measurements. Section 4 is devoted to the94

measurements of a freely flowing film together with numerical simulations. Again, the95

results are compared to the predictions of a local linear stability analysis. We finally96

discuss the nature of fully nonlinear static rivulet solutions, which naturally emerge in97

these steady patterns. We show that they have the shape of purely two-dimensional (2D)98

pendent drops, known to adopt the shape of an Elastica. In this paper, we only focus on99

steady flows; the dynamics and transients that lead to those patterns are not investigated.100

2. Methods101

2.1. Experimental apparatus102

The experiment (fig. 1) consists in injecting a Newtonian fluid on the underside of an103

inclined flat substrate with a constant flow rate. The substrate is a glass plate (dimensions104

600x300mm) attached on an orientable structure, forming an angle θ with the vertical105

axis. In the present study, θ is varied from 20◦ to 55◦. The fluid is silicon oil (Bluestar106

Silicons 47V1000) of measured viscosity µ = 1089 mPa.s, density ρ = 974 kg.m−3,107

kinematic viscosity ν = µ/ρ = 1.12 10−3 m2.s−1 and surface tension γ = 21 mN.m−1.108

The fluid is injected through a horizontal slit shaped inlet from a closed reservoir fully109

filled with oil and connected to an open reservoir. The open reservoir, placed above the110

inlet, is constantly filled and the height of the liquid is kept constant with an overflow.111

The oil flowing down the substrate is collected in a home reservoir and loops back during112

the experiment. The flow rate is set by varying the height-difference H between the closed113

reservoir and the open reservoir, giving an upper bound of 1.7 10−3kg.s−1 (corresponding114

to a film of equivalent thickness hN = 1.5 mm) and down to arbitrary low flux values.115

The flow rate is measured by weighting the oil leaving the substrate (during 3 minutes).116

Before any experiment, the substrate is pre-wetted to ensure a zero contact angle (total117

wetting). All the experimental results presented here are measured on stationary films,118

i.e. the thickness reaches a stationary state. A forcing blade, consisting of a laser-cut119

rectangle with a sinusoidal long edge (sketched fig. 1 (b)), can be placed just below120

the inlet. The blade does not occlude the flow and is spaced from the glass by lateral121

spacers. An acute angle (about 30◦) is introduced between the blade and the glass. The122

liquid fully fills the created gap underneath the blade and slightly spreads spanwise.123

The blade is always larger than the initial inlet and the lateral spreading remains in124

the sinusoidal part. The modified width W ∗i is measured systematically, resulting in a125

new equivalent thickness hN . The sinus has a peak-to-peak amplitude of 0.5 mm and the126

spacers of 1 mm which should be projected with the acute angle, giving a perturbation127

of amplitude ≈ 250µm The blade acts as a new initial condition and is taken as a new128

inlet reference for the flow.129

We measure the film thickness ĥ with a confocal chromatic sensor (STIL CCS) located130

on the upper (dry) side of the substrate. The sensor gives a point thickness measurement131

at an acquisition rate of 500 Hz. The sensor is attached on 2-axis linear stage and we132

perform horizontal scans of length L̂s = 200 mm in the ŷ direction (4 seconds per scan).133

The sensor performs two scans back and forth and returns to its initial position; we134

thus obtain the thickness profile twice. We compute the difference between these two135

measurements and remove errors by discarding values with a difference greater than136

50µm and values where the variation between successive points is larger than 500µm.137

We map the whole substrate every 10, 30 or 50 mm in the x̂ direction. The optical138
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Figure 1: (a) Sketch of the experimental apparatus, (b) details of the forcing blade used to
perturb the film and (c) picture of the experimental apparatus. Rivulets can be oberved
under the glass plate.

measurement cannot access to film thickness distributions with a surface steepness higher139

than 40 degrees, following the STIL CCS specifications.140

In addition, we set-up an other acquisition method based on the absorption of a colored141

liquid. The same silicon oil is mixed with Sudan Black B that has a peak of absorption142

at 595 nm. A flat screen of light covers the whole glass plate. A camera (Nikon D850143

with a Nikon 50mm lens) is then attached on the structure at 85 cm from the glass plate,144

giving a resolution of 7.6 px.mm−1. The luminance measured by each pixel is related to145

the thickness with the Beer-Lambert’s law (Limat et al. 1992) :146

ĥ(x̂, ŷ, t̂) =
1

C
log

(
I0(x̂, ŷ)

I(x̂, ŷ, t̂)

)
, (2.1)

where I0 is the initial luminance measured without any liquid, I the luminance at time147

t and C, a constant value that is determined with a calibration procedure that consists148

in measuring the luminance through a known wedge.149

Finally, we can enhance optically film perturbations and identify phases and patterns.150

The visualization technique is based on the distortion of a regular grid through the151

transparent liquid film. The grid has been fixed to a square light screen, placed behind152

the glass plate. In order to reduce the parallax effect, we placed the camera at a distance153

of 5 m from the plate.154

2.2. Scalings155

The reduced capillary length is given by a balance between surface tension and gravity156

projected perpendicularly to the substrate. In order to conveniently scale the in-plane157
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Figure 2: Film thickness for θ = 39◦ and hN = 1515µm (u = 1.5), forcing at the
optimal wavelength λf = 8.90. The thickness is measured with the absorption method
and normalized by the flat film thickness hN .

(x̂, ŷ) length scales, we define the reduced capillary length `∗c :158

`∗c =
`c√
sin θ

, (2.2)

where `c =
√
γ/ρg = 1.49mm is the capillary length. With the angle variation, it gives159

a range for the reduced capillary length of 1.85mm < `∗c < 2.54mm. For a given volumic160

flow rate q, we can define the Nusselt flat film thickness hN , used to define the wall-normal161

(ẑ) length-scale:162

hN =

(
3νq

Ŵig cos θ

) 1
3

, (2.3)

which is the constant thickness of an equivalent flat viscous film of width Ŵi, assuming163

a half plane Poiseuille flow in the ex direction and no flow in the ey and ez direction. In164

this study, hN is varied from 0.5mm to 1.5 mm.165

3. Forced dynamics166

For a certain range of θ and hN , the flat film is convectively unstable (Brun et al. 2015);167

perturbations grow and are advected downstream. We first study the film response to a168

spatially periodic forcing.169

3.1. Experimental results170

We place a horizontal blade with a sinusoidal-shaped edge against the substrate. The171

height of the liquid film is imposed by the distance separating the blade and the substrate.172

The blade is located just below the inlet (at x = 0) and imposes an inlet condition173

with dimensionless horizontal wave vector kf and corresponding wavelength λf in the y174

direction, with kf = 2π/λf . We design a set of blades for a range of spacings that goes175

from 5 cm to 1 cm, leading to a variation of the horizontal wave vector 0.32 < kf < 1.44176

for an inclination angle θ = 20◦, and 0.15 < kf < 0.75 for θ = 39◦.177

Figure 2 shows a typical measurement of the entire film thickness h by absorption,178

with hN = 1515µm and θ = 39◦. The film is flowing in the positive x direction. The179

sinusoidal shape of the forcing propagates downwards, forming mainly streamwise phase180
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(a)

(b)

(c)

Figure 3: Evolution of the film thickness for θ = 20◦ and hN = 560µm (u = 12.5) and
forced wavelengths : (a) λf = 4.37, (b) λf = 7.87, and (c) λf = 19.67. The thickness is
measured using the CCS scanning every 10 mm (in dimensionless form δx = 10mm/`∗c =
3.9). The red line shows the imposed inlet thickness at x = 0.

lines. The amplitude of the response grows with x between x = 0 and x = 50 in a self181

preserving manner. Between x = 50 and x = 200, the amplitude reaches a plateau and182

the shape is no longer sinusoidal. Beyond x = 200, the shapes start to develop streamwise183

oscillations. These oscillations are unsteady and their occurrence is not studied here. The184

flow rate and inclination angle chosen for this particular case of fig. 2 are larger than the185

ones considered in the rest of the study, in which the responses are always stationary.186

We first focus on the spatial growth phase. We follow the evolution of the thickness187

for several position x between x = 19.7 and x = 118 for different wavelengths and a fixed188

flow rate. We observe three regimes.189

Case (a) of figure 3 shows the forcing propagating downstream with a decreasing190
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amplitude, until vanishing around x = 50. The film is then flat except on its lateral191

sides where thickness perturbations with respect to a flat condition propagate and grow.192

In cases (b,c), the forcing propagates in all the domain with an amplitude that slightly193

increases in the streamwise direction. On the lateral sides, the signal is deformed and this194

deformation propagates inward. In case (c), the profile never follows the forced wavelength195

but follows λf/2; similarly the obtained pattern is deformed when penetrating away from196

the lateral sides.197

3.2. Linear stability198

We compare these experimental results to the linear prediction obtained from the199

dispersion relation of the linearized thin film equation. The non-linear thin film equation200

is based on the assumption that the orthogonal derivatives (ẑ) are much larger than the201

in-plane (x̂, ŷ) derivatives. We define the characteristic time scale τ :202

τ =
ν`2c

h3Ng sin2 θ
. (3.1)

Spatial direction x̂ and ŷ are non-dimensionalized by `∗c , thickness ĥ by hN and time t̂
by τ :

x = x̂/`∗c , (3.2)

y = ŷ/`∗c , (3.3)

h = ĥ/hN , (3.4)

t = t̂/τ. (3.5)

Following previous works (Ruschak 1978; Wilson 1982; Kheshgi et al. 1992; Weinstein &203

Ruschak 2004), the full curvature term is retained. In non-dimensional form, the equation204

reads:205

∂h

∂t
+ ˜̀

c
∗

cot (θ)h2
∂h

∂x
+

1

3
∇ · (h3(∇h+∇κ)) = 0, (3.6)

where ∇ operates in the (x, y) plane, ˜̀
c
∗

= `∗c/hN and κ is the mean curvature:206

κ =

∂2h
∂x2 (1 + ∂h

∂y

2
) + ∂2h

∂y2 (1 + ∂h
∂x

2
)− 2∂h∂x

∂h
∂y

∂2h
∂x∂y(

1 + ∂h
∂x

2
+ ∂h

∂y

2
) 3

2

. (3.7)

207

In the following, we focus on the emergence of steady states in response to a stationary208

forcing. We thus assume no time variations and we consider a stationary perturbation209

with respect to the flat film condition. Introducing h = 1+εh′ with a steady perturbation210

h′ ∝ eik·x where k = (kx, ky), eq. (3.6) is linearized to obtain the dispersion relation :211

i

3
(|k|2 − |k|4) + cot θ ˜̀

c
∗︸ ︷︷ ︸

u

kx = 0 (3.8)

where u is the coefficient of a linear phase advection which corresponds to the surface212

film velocity that advects the linear perturbations downstream.213

We neglect the lateral side and assume the forcing and the response to be homogeneous214

and purely in the spanwise direction i.e. Im(ky) = 0 and ky = kf . For each forcing215

wavelength 2π/ky, we thus obtain the corresponding spatial growth rate kx(ky) by solving216
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the equation :217

(k2y − k4y) + (k4x + k2x + 2k2xk
2
y)− 3iukx = 0. (3.9)

which is a fourth-order polynomial in kx which can be solved for as a function of ky.218

Among all the four roots of the complex polynomial, we discard solutions which have219

Re(kx) 6= 0 i.e. solutions that oscillate along the streamwise direction. There is only220

one branch that corresponds to a purely growing downstream amplified spatial wave221

(Re(kx) = 0). The maximum growth rate is not attained exactly at ky = 1/
√

2, as for222

the temporal growth rate Brun et al. (2015) but it deviates by no more than 0.2% for the223

considered cases in this study (see fig. 12 in appendix A). In such convective situation224

where we have u > cg0 with u = 12.5 (fig. 3) and the absolute group velocity cg0 = 0.54225

(Brun et al. 2015), the streamwise growth of spanwise wavenumbers strongly resembles226

their temporal growth, a property alike Gaster transformation (Gaster 1962), though not227

directly related to it.228

Experimentaly, we measure the spatial growth rate and compare it to Im(kx) by229

measuring the amplitude A(x) defined by :230

A(x) =

√√√√∫ ŷ=0.8L̂s

ŷ=0.2L̂s

(
ĥ(x, y)− hN

)2
dŷ, (3.10)

along the x direction. Results corresponding to the three cases presented in fig. 3 are231

plotted in figure 4 (a), (b) and (c) (black crosses) in log scale as a function of x along232

with the theoretical prediction (red lines) normalized by the first measurement. Case (a)233

shows an exponentially decreasing amplitude up to x = 40 before saturating to a lower234

noisy value. The decrease is well captured by the linear prediction (3.9). Case (b) shows235

an exponentially increasing amplitude all over the x measurement range which is well236

predicted by the theory. In case (c) the amplitude is also following an exponential increase237

but at a rate that is much faster than the prediction for the corresponding wavelength;238

we also plot the growth predicted for the super-harmonic wavelength (λ = λf/2) that239

almost perfectly matches the experimental measurement.240

The measurements are summarized on figure 4 (d) where we plot the growth rates241

for 0 < ky < 2. The predicted growth rate (red line, solution of eq. (3.9)) is in excellent242

agreement with the experimental data (crosses). In addition, we plot in yellow the solution243

of eq. (3.9) for ky = 2kf . The measured points labeled A, B and C corresponds to the244

full measurements showed in (a), (b) and (c).245

The linear dispersion relation shows a cut-off wavenumber at ky = 1, corresponding246

to a dimensional wavelength of 2π`∗c . So when we increase the angle θ, the range of247

unstable wavelength decreases. The spatial growth rate kx is a decreasing function of u248

which depends on the two parameters, hN and θ. Increasing θ (toward a more horizontal249

substrate) leads to a decrease of u and an increase of kx. If the forced wavelength is250

unstable, its amplitude grows and saturates close to the inlet. Similarly, increasing hN251

leads to a decrease of u and an increase of kx, while the dimensional velocity of the252

flat film surface is however increased. This comes from the time scale that is inversely253

proportional to h3N : while perturbations are advected faster with an increase of hN (that254

would lead to a smaller spatial growth rate), they are amplified even more (resulting in255

the spatial growth rate eventually to increase).256

4. Natural dynamics257

Even without the inlet device shown in fig. 1(b), thickness perturbations with respect258
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(a) (b)

(c) (d)

B

A

C

BA

C

Figure 4: (d) Theoretical (red curve) and experimental (black crosses) spatial growth
rates as a function of the forcing wavelength ky; yellow curve is the theoretical prediction
for the harmonic (2ky). (a),(b) and (c) Experimental amplitudes (crosses) and theoretical
prediction (red lines) for the three cases presented in fig. 3. The yellow line in (c) is the
prediction for the harmonic 2ky. The corresponding measurements are reported as points
A, B and C on (d).

to the flat film grow from the sides and may invade the entire domain (as shown in fig. 5259

(a), (c) and (e)). Far from the sides, the film thickness is constant for all x in (a) and (c).260

In case (e), the perturbation invades the entire film. The side perturbations penetrate261

inside while also being advected downstream. In case (b), (d) and (f), we perturb the262

film by placing a small cylinder (of diameter 2 mm) in the middle of the film and close263

to the inlet. The perturbation is stationary and propagates both downstream and in the264

spanwise direction. The perturbation amplitude grows with the streamwise direction and265

high amplitude variations cannot be captured in (f).266

In this context of highly advected perturbations, we look for the steady front of the267

region invaded by the perturbation.268

4.1. ”Spatio-spatial” stability analysis269

Instead of focusing on the spatio-temporal growth and propagation of this wavepacket270

in two dimensions of space, we assume steady patterns and only consider a ”spatio-271

spatial” wavepacket growth. The classical absolute/convective calculation can be gener-272

alized to the streamwise spatial growth of spanwise spatially periodic disturbances. In273
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Evolution of the film thickness without forcing in case of : (a) hN = 678µm,
θ = 20◦ (u = 10.3), (c) hN = 1142µm, θ = 20◦ (u = 6.1), (e) hN = 726µm, θ = 40◦

(u = 3.0), and with a stationary localized forcing in case of : (b) hN = 1334µm, θ = 20◦

(u = 5.2), (d) hN = 390µm, θ = 40◦ (u = 5.7), (f) hN = 1357µm, θ = 30◦ (u = 2.7).
The red lines are the theoretical predictions for the front propagation computed with the
help of eq. (3.9).

this analogy, x plays the role of time and kx that of the complex frequency while ky is274

the complex spatial wavenumber; the dispersion relation (3.9) now takes into account for275

complex wavenumbers, D(kx, ky, u) = 0.276

We can make an analogy with a spatio-temporal analysis, where the front is defined by277

a particular ray x/t = v for which the perturbation is marginally stable, as t→∞ (Huerre278

& Monkewitz 1990; Van Saarloos 2003; King et al. 2016). In this approach, the front is279

the velocity, i.e. the amount of space per unit of time, at which the perturbation spreads280

in the domain while being advected. Here, we look for the front angle y/x = tan(φ) ,281

i.e. the amount of spanwise space per unit of streamwise space, separating the perturbed282

domain from the region where the perturbation does not propagate, as x→∞.283

We then numerically determine the angle φ for which ∂Im(kx)
∂Im(ky)

= tan(φ), imposing284

∂Re(kx)
∂Im(ky)

= 0. It consists in the extraction of the relevant roots from a complex 4-th285
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order polynomial, which is performed using the built-in Matlab function fsolve for a two286

variables system. For a given u, we increase y/x and plot Im(kx)− y/xIm(ky), tracking287

the saddle points in the complex ky plane until we find the ones that have a zero spatial288

growth rate Im(kx) = 0 and a non-zero Re(ky). According to Barlow et al. (2015) and289

Huerre & Monkewitz (1990), we verified that the maximum growth rate in the spatial290

dispersion i.e. ∂Im(kx)
∂Re(ky)

= 0 is a contributing saddle point and identified its locus as y/x291

is varied, which implies that it contributes to the asymptotic behavior of the solution.292

The results are shown in the appendix A in figure 11 where the dependency of the front293

angle φ on the velocity u is given in blue.294

In fig. 5 (a), (c) and (e), we assume the system to be dominantly perturbed by the295

lateral side of the film, at the worst position i.e. at the inlet, and that this perturbation296

excites all wavelengths. We thus define two front lines (drawn in red) that follow the front297

propagation angle φ and which start from the inlet sides. All the considered perturbation298

waves that are able to go within those two front lines are stable, while all the perturbation299

waves that propagate outside are unstable. Those front lines thus separate the region300

where the side perturbations have invaded the domain (outside the lines) from the region301

where they have not (within the lines).302

In fig. 5 (b), (d) and (f), we perturb the system and therefore draw the red front303

lines starting from the edge of the perturbing cylinder. Similarly, the front lines separate304

an inner region where the perturbation spreads from an outer a region where it cannot305

invade.306

In the first two cases (a) and (c), the lines well predict the limit of penetration for the307

perturbations. This validates our hypothesis that the perturbation is mostly composed308

of spanwise waves that are mostly excited by the side boundary condition.309

Moreover, the unstable waves have a vanishing growth rate close to the front lines310

which qualitatively explains the vanishing amplitude of the perturbation approaching311

the front. Similarly, at a fixed x position and varying the y position, the wavelength312

is not constant, which is qualitatively expected from the front velocity criterion that is313

different for each wavelength. From the calculation, fast propagating waves have a larger314

wavelength than slow propagating ones, which is what we qualitatively observe.315

In the last case (e), the lines cross before the x end of the experiment and the film316

is fully invaded downstream. We also see perturbations growing above the lines. The317

presence of imperfections within the inlet slit is evidenced here thanks to large growth318

rates for this set of parameters, i.e. at large angle θ and high initial thickness hN . This319

faults the assumption of a system solely perturbed on the sides of the inlet.320

In the forced cases (b), (d) and (f), the agreement between the observed front and the321

prediction is good. Note that the perturbation coming from the sides enters downstream322

in the measured region in case (f).323

4.2. Non-linear simulations324

In this section, we perform numerical simulations of the thin film equation with325

complete curvature (3.6). Numerical simulation are performed with the finite element326

software COMSOL. In COMSOL, the equation is solved for a thickness h and a curvature327

κ. In the numerical method, we use a time marching technique and an additional term is328

added to eq. (3.6) in order to account for the outlet condition, imposed using a sponge329

method and resulting in the following equation to be numerically solved:330

∂h

∂t
+

1

3
∇ · (h3(uex +∇h+∇κ)) = M(x)h. (4.1)

The function M(x) is a mask function for the sponge method that relaxes the thickness331
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(a) (b) (c)

Figure 6: Comparison of experiment (black circles) and numeric (blue lines) for (a) hN =
1142µm θ = 20◦ (u=6.1), (b) hN = 678µm θ = 20◦ (u=10.3), (c) hN = 726µm θ = 40◦

(u=3.0).

to 0 (Högberg & Henningson 1998):332

M(x) =
1 + tanh(x− 6Lx/7)

2
. (4.2)

This avoids reflection effects from the outlet.333

The domain is a rectangle of dimension Lx × Ly with Dirichlet boundary conditions.334

On the lateral boundaries and on the outlet, the thickness h and the curvature κ are set335

to zero. Before the outlet, 10% of the domain is damped by a sponge method. The inlet336

imposes a jet function J(y) (Monkewitz & Sohn 1988) that reproduces the experimental337

inlet conditions:338

J(y) =
1

1 +

(
exp

(
2|y|
Wi

)2
− 1

)Nj
, (4.3)

of parameters Nj = 20 and width Wi = Ŵi/`
∗
c . The inlet curvature imposed is computed339

from the inlet thickness distribution, setting the streamwise curvature to zero. The initial340

condition for the thickness follows the jet function on the y direction:341

h(x, y, t = 0) = J(y)(1−M(x)), (4.4)

and the initial curvature is computed from the initial thickness.342

The triangular mesh is created in COMSOL with the largest element smaller than ˜̀
c
∗
.343

We use cubic elements for the thickness and the curvature, and the time solver uses a344

fully implicit method. A simulation consists in a time stepping of the equations until a345

stationary solution is obtained. A typical simulation lasts Tf = 1000τ .346

On figure 6, we plot transverse profiles (along the y direction of the thickness h at347

three x positions obtained numerically (blue curves) and experimentally (black dots) for348

three couples (hN , θ). Figures 6 (a) and (b) share the same angle θ while figures 6 (b)349

and (c) share the same hN (i.e. the same flow rate). In all figures and simulations, the350

film thickness is stationary, even though the liquid is flowing downstream.351

Figures 6 (a) and (b) are similar and the numerical prediction is in remarkably good352

agreement (the only fitting parameter being the inlet jet width that fits the experimental353

inlet). The thickness goes to zero on lateral boundaries and equals 1 in the center. The354

film span decreases with increasing x. A perturbation grows equally from the sides with an355
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oscillatory shape and spreads with increasing x. The perturbation grows and penetrates356

inside the film with increasing x.357

On figures 6 (c), the agreement is good on the sides. The sensor is unable to measure358

steep films but the lateral peaks are well predicted by the simulation. However, the359

central part of the film, that remained flat in the other cases, is now perturbed. This360

perturbation is not captured by the simulation as there are no variations at the inlet361

(except at the sides) while, in the experiment, the inlet generates noise at the center.362

At x = 216, the sensor is unable to measure steep films, but the lateral peaks captured363

are well predicted by the numerical simulation. The experiment is supposed to be in364

total wetting condition (zero contact angle) since the substrate is pre-wetted, avoiding365

any contact line dynamic as in the simulated equation. The lateral sides of the film are366

free to move and relax to very thin film thicknesses where the temporal evolutions are367

very small (scaling with h3), and the validity of this side dynamics is confirmed by the368

good agreement.369

As seen before, side perturbations penetrate inside the film with increasing x and have,370

in fig. 6 (c), invaded all the film downstream. The non-linear simulations capture the peak371

positions contrarily to the linear prediction that only captures the front position. The372

peak amplitudes are also captured and we observe that they saturate, which cannot be373

described by a linear theory.374

It is remarkable to note the validity of the thin film equation with complete curvature375

in cases where the assumptions implied by this equation are not obviously satisfied, for376

instance in presence of order one slopes (Krechetnikov 2010).377

Increasing hN or θ leads to an increase of the peak numbers and their penetration.378

However, we do not observe strong variations of the maximum peak amplitude when379

varying the parameters. The next section will focus on the saturated amplitude and the380

associated streamwise structures.381

5. Non-linear saturated rivulet solutions382

Downstream, as shown in the full profile fig. 2, the system exhibits long structures383

called rivulets.384

5.1. Non-linear structures385

To study these structures, we look at the most unstable forcing, i.e. at the wavelength386

at which the growth rate is maximum. We plot in figure 7 a comparison between387

numerical and experimental results. We measure in (a), the maximal & minimal values388

of the thickness along x. Again, we note a good agreement between experiment and389

simulations. The amplitude increases as the structures penetrate downstream to reach390

a saturated value at large x. We choose a streamwise position where the structures are391

saturated and do not vary with x (x = 200). We compare these saturated rivulets with the392

simulation (fig. 7 (b)) and find a good agreement. We then vary the parameters (θ, hN ).393

The measurements are plotted in figure 7 (c) for 10 different equivalent film thicknesses394

hN and two angles θ (a total of 20 cuts). As the linearly most unstable wavelength395

λmax depends on the angle, the abscissa is non-dimensionalized by λmax. Except from396

the sides, all the curves collapse to the same profile, which suggests the existence of a397

unique, universal and attracting, rivulet shape.398

5.2. Range of possible rivulets399

In contrast to section 3, we now consider the case of a high amplitude forcing. We400

use a comb-like blade, with constant spacing, placed at the inlet. The comb teeth (Fig.401
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(a)

(b)

(c)

Figure 7: (a,b) Comparison of an experimental cut (black circles) of parameters θ =
39◦, hN = 1515µm, forced at the dominant wavelength λmax and the same parameters
numerical simulation (blue line). (a) shows a projection of the maximal and minimal
thickness over y, along x and (b) is a transverse cut at x = 156. (c) compares 20 transverse
measurement cuts at x = 156 and x = 187 for a range of hN and two differents angle
(θ = 26◦, 39◦). The y axis is non-dimensionalized by the dominant wavelength. The
darkness of each curve is proportional to hN .

8 (a)), of width l̂t = 2 mm, are parallel to the glass plate and cover the inlet injection402

slit. The teeth are placed l̂dt = 5 mm downstream of the inlet and present a thickness403

of t̂t = 1 mm. The comb occludes the inlet in correspondence of the teeth and covers404

the latter as it is welled up by capillarity. We focus on the observed spanwise peak-405

to-peak distance Lobs of the obtained periodic structures. We fix θ = 55◦, and hN =406

0.4 lc = 594µm and look at a regular grid through the thin film. The resulting distorted407

pattern clearly captures the presence of rivulets. We define Kobs = 2π/Lobs; in Fig. 8408

(a) a typical pattern is visualized, for a forcing of kf = 0.41. We identify the presence409

of peaks, following the yellow lines; in this case the observed spacing is half the forced410

one (super-harmonic). Fig. 8 (b) shows Kobs as a function of the forced wavenumber.411

The three solid lines correspond to the cases Kobs = 2 kf (super-harmonic, orange line),412

Kobs = kf (fundamental harmonic, red line), Kobs = kf/2 (sub-harmonic, blue line); the413

experimental results are reported with black dots. The spacing is the same as the forced414

one, for kf = 0.47, 0.55, 0.71, 0.76, 0.78. In the case kf = 0.95, 1.19 the periodic structures415

length is twice the forced one (sub-harmonic). We note a transition from Kobs = 2 kf to416

Kobs = kf for 0.41 < kf < 0.47, and to Kobs = kf/2 for 0.78 < kf < 0.95. In Fig. 8417

(c) we plot the three dispersion relations for the fundamental harmonic, sub-harmonic418

and super-harmonic. The fundamental harmonic dispersion relation intersects the super-419
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Figure 8: (a) Detail of the comb-like blade and rivulets visualization using the distortion
technique, for θ = 55◦, hN = 0.4 lc = 594µm, kf = 0.41 (u = 1.9). The forcing comb
is placed over the inlet (red lines on the top of the figure); the white lines represent
the film thickness. The dashed yellow lines have been added in post-processing to
highlight the rivulets peaks. In this case, we have Kobs = 2 kf (b) Kobs as a function
of the forcing wavenumber kf ; the black dots are the experimental results. (c) Linear
dispersion relations for the fundamental harmonic, super-harmonic and sub-harmonic. In
both figures, the solid lines are respectively Kobs = 2 kf (super-harmonic, orange line),
Kobs = kf (fundamental harmonic, red line), Kobs = kf/2 (sub-harmonic, blue line); the
grey shaded area is the region in which the fundamental harmonic has the highest growth
rate.

harmonic at k
(1)
f = 1/

√
5 ' 0.45, and the sub-harmonic at k

(2)
f = 2/

√
5 ' 0.89. The420

grey-shaded areas in fig. 8 (b-c) identify the region in which the fundamental harmonic421

has a greater growth rate, (k
(1)
f < kf < k

(2)
f ). In this region we experimentally observe422

Kobs = kf . The film selects the most unstable harmonic among the unstable ones. Even423

in presence of a high amplitude forcing, the linear theory well predicts the resulting424

pattern. In particular, there is a narrow range of possible rivulets, of periodic length425 √
5π < Ly < 2

√
5π. In the following, we focus on the wavelength that has the maximum426

growth rate in the linear dispersion relation, i.e. Ly = 2π
√

2 ' 8.89.427

5.3. The optimal rivulet428

In Sec. 5.1, the simulations indicate the emergence of a rivulet state which is invariant429

both in time and along the streamwise direction. Exploiting the time invariance, the430

steady version of the general thin film equation eq. (3.6) could be solved but it remains431

an elliptic non-linear PDE in (x, y). Under the assumption ∂
∂x �

∂
∂y , this equation can432

be further parabolized and marched downstream in x to yield the fully developed x and433

t invariant rivulet profile. Alternatively, we preferred to exploit directly the streamwise434

x-invariance observed sufficiently downstream and solve the naturally parabolic time435

evolution towards the steady rivulet profile. However, the resulting one-dimensional436

problem in y satisfies the conservation of mass in the cross-section; on the other hand,437

in the initial two-dimensional problem the flow rate, and not the mass, is conserved, for438

each transversal section. We refer to the first case as closed flow condition, and to the439

second as open flow condition. Here, the concepts of open and closed flow conditions440

slightly differ from the definitions given in Kalliadasis et al. (2011), in which they relate441
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to the streamwise boundaries, since, in our case, the flow is perpendicular to the wavy442

profile. In order to impose the open flow condition in the one-dimensional problem in y,443

we start from the Stokes equations in (y, z), complemented by the boundary conditions.444

We impose the constraint on the tranverse flow rate (in the x direction) by introducing a445

parameter σ(t) in the continuity equation, i.e.
∂uy

∂y + ∂uz

∂z = σ, relaxing the hypothesis of446

mass conservation in the cross-section. The derivation of the thin film equation follows447

the classical one and leads to the following equation to be numerically solved:448

∂h

∂t
+

1

3

∂

∂y

[
h3
(
∂κ

∂y
+
∂h

∂y

)]
= σh, (5.1)

with periodic boundary conditions at the border of the domain y ∈ [0, 2π
√

2]; the449

curvature can be expressed as κ = ∂2h
∂y2 /(1 + ∂h

∂y

2
)3/2.450

We consider the adimensionalized Nusselt streamwise velocity profile (Kalliadasis et al.451

2011) at each spanwise location:452

uN (y, z, t) = cot(θ)l̃∗c
1

2
z(2h(y, t)− z). (5.2)

The flow rate can be expressed as:453

q(t) =

∫ 2π
√
2

0

{∫ h(y)

0

uN (y, z, t)dz

}
dy. (5.3)

Starting from a flat film (i.e. h(y, t = 0) = 1), the initial flow rate is qi =454

(1/3)2π
√

2 cot(θ)l̃∗c . At each time t the flow rate is required to stay constant and455

equal to its initial value qi; this condition can be achieved by imposing the correct value456

of σ at each time t. In the equation q(t) = qi the term cot(θ)l̃∗c simplifies and so both457

the flow rate constraint and the adimensionalized equation eq. (5.1) are independent on458

the angle θ and l̃∗c .459

The numerical implementation is based on a Fourier spectral method for the spatial460

derivatives, and on a second-order Crank-Nicolson scheme, implemented in the built-in461

MATLAB routine ode23t, for the time integration. At each time step the value of σ is462

obtained iteratively imposing the condition on the flow rate. The numerical simulation is463

stopped at t = t∗, when the L2 norm of the difference between two successive time steps464

‖ δh ‖L2= 1/δt ‖ h(t+ δt)− h(t) ‖L2 is less than a fixed tolerance ε = 10−6. During the465

simulation σ is always smaller than 10−2 and approaches 10−6 when the simulation is466

stopped. In fig. 9 (a) we see the evolution of the maximum and minimum thickness of the467

rivulet profile (red lines). The maximum thickness over the domain reaches a constant468

value maxy(h) = 1.71. The minimum thickness is decreasing and decays with the law469

miny(h) ∼ t−1/2 (black dotted line in fig. 9 (a), as already observed in Yiantsios & Higgins470

(1989). In fig 9 (b) the rivulet profiles for different models are reported. The red solid line471

indicates the model defined above. We can distinguish between two regions: a side lobe,472

characterized by a very low thickness, and a central lobe, in which the maximum thickness473

is localized. The limit of these regions is defined by the position ymin of the minimum474

thickness; this position is slowly moving. The evolution of the central lobe reveals that475

in a large region near the maximum thickness the profile reaches a saturated state,476

while near the minimum thickness the shape is slowly evolving. The comparison with the477

two-dimensional (x, y) simulations of the lubrication equation (black circles) shows a very478

good agreement between the two models, in particular in terms of maximum thickness and479

central lobe profile. We define the equivalent Nusselt thickness h̄N of the rivulet profile480
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Figure 9: (a) Evolution of the maximum and the minimum thickness for the one-
dimensional model, open flow condition (red lines) and closed flow condition with
h(y, t = 0) = 0.54 (black lines). The dashed lines are the long-time behavior of
the maximum and minimum thickness. (b) Rivulets profile for different models: one-
dimensional open flow model (red solid line), closed flow model with initial condition
h(y, t = 0) = 0.54 (black dashed line), two-dimensional thin film equation (black circles),
and one-dimensional open flow model with linearized curvature (blue dashed line). The
vertical black dotted lines identify the minimum thickness locations, that separate the
side lobes region and the central lobe.

as the mean of the thickness accross the width of the rivulet (h̄N = (1/Ly)
∫ Ly

0
hdy),481

when t = t∗. The equivalent Nusselt thickness of our computed solution is h̄N = 0.54.482

In fig. 9 (a-b) we show the case of closed flow condition (obtained imposing σ = 0 in eq.483

(5.1), with the fictitious initial thickness h(y, t = 0) = 0.54 (black lines). The comparison484

reveals that the long-time behavior of the maximum and minimum thickness of the two485

models is the same, and the profiles are perfectly matching.486

The hypothesis of the existence of a saturated state in the streamwise direction487

is confirmed by our one-dimensional analysis, which agrees with the two-dimensional488

simulations and consequently with the experimental profiles. Thanks to the chosen489

adimensionalization, the profile does not depend on the flow parameters, and is therefore490

unique for all the flow conditions. The agreement between the open and closed flow491

models is related to the evolution of the rivulet profile at long times. The flow rate492

can be seen as the sum of two contributions, one given by the side lobes region and493

the other by the central lobe. At long times the relative evolution of the thickness in494

the central lobe is negligible, in particular in the regions in which the thickness is high.495

Conversely the side lobe regions are draining. From a more physical point of view, we496

expect the film to continue thining until intermolecular forces arise (≈ 100nm), which497

can either lead to de-wetting (as in thermocapillary or Marangoni instability (Scheid498

2013)) or to more complex phenomena (Boos & Thess 1999; Craster & Matar 2009). The499

physics at the molecular scale is out of the scope of this paper. The flow rate is related500

to the cube of the thickness; the contribution of the side lobes region and near ymin501

(h ∼ 10−1) is negligible compared to the contribution near the maximum height (h ∼ 1).502

When the central lobe has saturated, the overall flow rate evolution becomes extremely503

small. Consequently, σ ' 0, and the mass is eventually also conserved. This leads to a504

good agreement between open and closed flow conditions with appropriate parameters,505

h(y, t = 0) = 0.54.506

The present study can be repeated in the case of linearized curvature, i.e. κ = ∂2h
∂y2 ,507
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which is reported in fig. 9 (b), for the one-dimensional open flow case (blue dashed508

line). The model with linearized curvature shows a different profile, and in particular the509

maximum thickness is underestimated. The use of linearized curvature may indeed lead510

to a non-correct evaluation of the equivalent Nusselt thickness and the flow rate.511

5.4. The two-dimensional static pendent drop512

In this section we analyze the static equilibrium of a two-dimensional pendent drop.513

We consider a two-dimensional thin liquid film on the underside of a wall; we define a514

coordinate system (y, z), where z is the normal direction to the substrate. We introduce515

a curvilinear abscissa ŝ on the interface, and the angle ψ between the interface and the516

substrate.517

The pressure drop at the interface is given by the Laplace law:518

p̂ = p̂0 − γ
dψ

dŝ
at ẑ = ĥ(ŝ), (5.4)

where γ is the surface tension, and p̂0 the exterior pressure. The normal to the substrate519

component of the momentum equation reads:520

∂p̂

∂ẑ
= −ρg sin(θ)ẑ. (5.5)

We derive with respect to ŝ the equation (5.4) and we substitute the pressure gradient521

eq. (5.5) :522

γ
d2ψ

dŝ2
= −ρg sin(θ)

dẑ

dŝ
at ẑ = ĥ(ŝ), (5.6)

Using the geometrical relation dĥ
dŝ = sin(ψ), the equation in dimensional forms reads:523

d2ψ

dŝ2
= − 1

`∗2c
sin(ψ). (5.7)

We adimensionalize ŝ with respect to the reduced capillary length `∗c and recover the524

pendulum equation:525

d2ψ

ds2
= − sin(ψ). (5.8)

526

As first pointed out by Maxwell (1875), there is an analogy between the shape of the527

interface of a pendent drop and the large deformations of a compressed elastic rod (the528

‘elastica’). Both phenomena are described by the pendulum equation (Duprat & Stone529

2015; Zaccaria et al. 2011; Roman et al. 2001).530

We compare the central lobe of the rivulet profile with a two-dimensional pendent531

drop in total wetting conditions, i.e. ψ(0) = 0 and h(0) = 0. The thickness and the532

corresponding spanwise location are recovered integrating dh
ds = − sin(ψ) and dy

ds =533

cos(ψ). The last boundary condition is relative to the initial curvature of the profile:534

dψ
ds (0) = ψ′0. The simulation is stopped when a second zero of the thickness h(s∗) = 0535

is reached; the width ∆Ly between the two zeros is the lateral size of the pendent drop.536

We obtain a family of profiles depending on ψ′0. Each profile has a different maximum537

height and width ∆Ly, and thus in equivalent flow rate qs = q/ cot(θ)l̃∗c (that can be538

evaluated using eq. (5.2),(5.3)). According to fig. 10 (a), the flow rate monotonically539

increases with the initial curvature: for each value of ψ′0, there is a unique value of the540

flow rate. Increasing ψ′0 leads to an increase of the maximum thickness and a decrease541

of ∆Ly. We choose the initial curvature to obtain the correct rivulet flow rate (i.e.542
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Figure 10: (a) Evolution of the equivalent flow rate qs = q/ cot(θ)l̃∗c with the initial
curvature, for different two-dimensional pendent drops, using the pendulum equation;
the red dashed lines identify the flow rate and the initial curvature for the rivulet profile.
(b) Rivulet profile for the one-dimensional open-flow model (red line), pendulum equation
(black diamonds), and Stokes equations (blue crosses).

qs = (1/3)2π
√

2 ' 2.96). In this way ,we neglect the flow rate in the side lobes regions.543

The value of the initial curvature that ensures the correct flow rate is ψ′0 = 0.86. In fig. 10544

(b) the solution (black diamonds) is compared with the solution of the one-dimensional545

open flow thin film equation (red solid line, already shown in fig. 9 (b)). The pendulum546

equation result agrees with the rivulet profile; the maximum height is maxy(h) = 1.713,547

the first minimum thickness is located at ymin = 1.77 and ∆Ly = 5.346, close to the548

thin film equation values (hmax = 1.7096, ymin = 1.74, ∆Ly = 5.405). In the thin film549

equation results, the side lobes regions are draining; the minimum location is moving and550

∆Ly is slowly getting closer to the value identified with the pendent drop analogy.551

As a final point, we compare the results with a direct numerical simulation of the 2D552

Stokes equation in the (y, z) plane. Using the built-in COMSOL Multiphysics moving553

mesh solver for the Stokes equations, we study the evolution in the (y, z) plane of a554

static two-dimensional pendent drop on the underside of a flat wall. The domain is a555

rectangular box of lateral size Ly = 2π
√

2, in which periodic conditions are imposed on556

the sides. On the upper boundary we apply a no-slip condition, while on the lower one557

the free-interface conditions. Moreover, the lower boundary is free to deform and move558

according to the interface deformation. The initial condition is given by the initial mesh,559

which vertical size is equal to h(x, t = 0) = h̄N (1 + A cos(2πy/Ly)), where A = 10−3;560

h̄N = 0.54 is the equivalent Nusselt thickness that gives the correct flow rate at long561

times. The results (blue crosses in fig. 10 (b)) agree with the previous models.562

While the side lobes region is characterized by a slowly decreasing small thickness,563

the central lobe saturates. The shape of the central lobe is governed by the statics of564

the interface, and in particular by the equilibrium of hydrostatic pressure and capillary565

effects, described by the pendulum equation. This balance perfectly predicts the rivulet566

profile.567

6. Conclusion and discussion568

In this work, we have built a novel experiment of a continuously flowing viscous film569

below an inclined flat substrate.570



20

We first verified the validity of the simplest thin film equation with a quantitative571

comparison with experimental thickness profiles obtained with a forcing at the inlet. We572

measured the perturbation penetration based on a calculation of the front angle, using573

a standard method (spatial theory) with a novel approach (two dimensional ”spatio-574

spatial” theory). We found a good agreement with our experiment meaning that the front575

velocity is dictated by the linear behavior (Van Saarloos 2003). This front calculation was576

similar to previous temporal studies of the front velocity below a horizontal substrate577

(Limat et al. 1992) and of absolute to convective transition below a tilted substrate (Brun578

et al. 2015). In our case, we exploited the steadiness of the experimental film response to579

compute a time-independent linear response.580

The flow was modeled by a thin film equation, with a low Reynolds number and a581

curvature term that is not simplified. Numerical simulations showed a good agreement582

with our experiment. In this equation, short waves were linearly inherently damped by583

surface tension and non-linear structures quickly saturate when the film becomes thinner.584

The most unstationary structures are spanwise invariant, as they have an oscillating585

phase when advected downstream. However, those spanwise structures are non-linearly586

damped by the system which selects streamwise structures, i.e. stationary rivulets. We587

observed that the linear wavelength selection mechanism still applies when the film is588

strongly forced with a non-sinusoidal function. The selected wavelength is chosen among589

the spatial period of the forcing and its multiples. This selection implies a narrow range590

of possible rivulets, centered around the most unstable linear wavelength. Within this591

range we studied the rivulet that has the same period as the most unstable linear wave.592

We showed that the rivulet profile can be recovered with a flow rate-preserving (open flow593

condition), one dimensional lubrication equation in the spanwise direction accounting for594

the full curvature. We managed to obtain exactly the same profile without the open flow595

condition but with an appropriate initial condition that matches the correct final flow596

rate (closed flow condition). We compared the obtained central rivulet profile with a 2D597

pendent drop in total wetting and obtain a perfect agreement. The rivulet shape results598

from a perfect balance between gravity and surface tension of a two-dimensional drop.599

We then compare the different models with a 2D DNS of a Stokes flow in a periodic600

domain and find a good agreement.601

In conclusion, we found a wide range of parameters for which rivulets are quasi-602

saturated and steady while the flat film is linearly convectively unstable. In this case,603

the thin film is unlikely to drip even though the flat film is linearly unstable. In the604

whole scenario of dripping of an overhanging liquid, these results suggest that a thin605

film would not immediately go from a flat state to a dripping state, but rather go by606

an intermediate state. In a certain range of parameters, the final state would be rivulets607

that are exactly two-dimensional pendent drops. The dripping might be linked to the608

secondary instability i.e. the stability of the rivulet itself, more than to the stability of609

the flat film. In this process, we saw that the dripping could be stabilized by rivulets,610

but, dripping might also be enhanced by rivulets, that could act as a catalyst.611
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Appendix A. spatio-temporal theory619

The purpose of this appendix is to show the close link between the ”spatio-spatial”620

dispersion relation kx(ky) properties and those of the temporal dispersion relation ω(k).621

We begin by comparing the spatial growth rate −Im(kx(ky)) to its temporal approx-622

imation Im(ω(ky))/u in figure 12 (a). For high values of u (the one considered in the623

present study), the spatial growth rate is very well predicted by the temporal growth624

rate of a wave advected at the velocity u. We observe a small shift of the dominant625

wavenumber that we plot as a function of u on figure 12 (b); the temporal approximation626

for the dominant wavenumber is valid in our range of u.627

In a spatio-temporal theory, we compute the maximum velocity cg0 at which an628

unstable wavepacket can propagate, and similarly to the temporal growth rate prediction,629

we will assume this wavepacket to be advected at velocity u. Due to the isotropy of630

the dispersion relation, except within the purely non-dispersive ukx advection part, the631

prediction obtained in one dimension of space immediately translates to 2D, i.e. an632

initially isotropic wavepacket grows with a circular edge invading the flat film at a front633

velocity of (u cos(α) + cg0)eα in any eα direction.634

With the ansatz h′ ∝ e(kx−ωt) in equation 3.6 , the spatio-temporal dispersion relation635

reads :636

ω(k) =
i

3
(|k|2 − |k|4) + cot θ ˜̀

c
∗︸ ︷︷ ︸

u

kx. (A 1)

637

We assume ω and k to be complex :

ωr =
1

3
kr
(
ki(4k

2
r − 2)− 4k3i + 3u

)
, (A 2)

ωi =
1

3

(
−k4i + k2i (6k2r − 1) + k2r − k4r

)
. (A 3)

We then look for a real group velocity cg = ∂ωi

∂ki
, imposing ∂ωi

∂kr
= 0 which implies if638

kr 6= 0:639

kr =

√
6k2i + 1

2
, (A 4)

and then :640

cg =
1

3
(32k3i + 4ki). (A 5)

In order to determine the fastest velocity at which a perturbation can invade the
domain i.e. the front velocity cg0, we look for the velocity on rays where the spatio-
temporal growth rate is equal to zero i.e. (Van Saarloos 2003; King et al. 2016) :

ωi|cg = ωi − cg0ki = 0, (A 6)

cg0 =
1

3

√
34 + 14

√
7√

27
≈ 0.54. (A 7)

This calculation was done in (Duprat et al. 2007; Brun et al. 2015) and was applied in641

(Limat et al. 1992) to compute the front velocity of the perturbation in the horizontal642

case θ = π/2.643

In the present study, we can focus on a perturbation composed of waves that have644
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Figure 11: Prediction of the front angle φ as a function of u according to the ”spatio-
spatial” theory described in the body of the text (blue curve) and the spatio-temporal
theory (dashed red curve).

(a) (b)

Figure 12: (a) Comparison of spatial growth rate to rescaled temporal growth rate ω/(3u)
for different u (from curve with highest to lowest growth rate, u = 0.6; 1.5; 3; 5). (b)
Comparaison as a function of u of the dominant wavenumber Re(ky) from the spatial
theory (blue) and the temporal theory (red).

their wavevectors (and their group velocity) along the spanwise y direction, k = (0, ky)645

and cg = cgey. The fastest group velocity cg0 and the downstream advection u are now646

orthogonal and we define the front angle as :647

φ = arctan
cg0
u
. (A 8)

The resulting φ obtained with the spatio-temporal theory is plotted figure 11 along648

with the front angle computed from the ”spatio-spatial” theory used in the study.649



23

REFERENCES

Abdelall, F.F., Abdel-Khalik, S.I., Sadowski, D.L., Shin, S. & Yoda, M. 2006 On the650

Rayleigh–Taylor instability for confined liquid films with injection through the bounding651

surfaces. International journal of heat and mass transfer 49 (7-8), 1529–1546.652

Alexeev, A. & Oron, A. 2007 Suppression of the Rayleigh-Taylor instability of thin liquid653

films by the Marangoni effect. Physics of Fluids 19 (8), 082101.654

Babchin, A.J., Frenkel, A.L., Levich, B.G. & Sivashinsky, G.I. 1983 Nonlinear saturation655

of Rayleigh–Taylor instability in thin films. The Physics of fluids 26 (11), 3159–3161.656

Balestra, G., Kofman, N., Brun, P-T, Scheid, B. & Gallaire, F. 2018a Three-657

dimensional Rayleigh–Taylor instability under a unidirectional curved substrate. Journal658

of Fluid Mechanics 837, 19–47.659

Balestra, G., Nguyen, D. M-P & Gallaire, F. 2018b Rayleigh-Taylor instability under a660

spherical substrate. Physical Review Fluids 3 (8), 084005.661

Barannyk, L.L., Papageorgiou, D.T. & Petropoulos, P.G. 2012 Suppression of Rayleigh–662

Taylor instability using electric fields. Mathematics and Computers in Simulation 82 (6),663

1008–1016.664

Barlow, N.S., Helenbrook, B.T. & Weinstein, S.J. 2015 Algorithm for spatio-temporal665

analysis of the signalling problem. IMA Journal of Applied Mathematics 82 (1), 1–32,666

arXiv: http://oup.prod.sis.lan/imamat/article-pdf/82/1/1/9949961/hxv040.pdf.667

Bestehorn, M. & Merkt, D. 2006 Regular surface patterns on Rayleigh-Taylor unstable668

evaporating films heated from below. Physical review letters 97 (12), 127802.669

Boos, W. & Thess, A. 1999 Cascade of structures in long-wavelength Marangoni instability.670

Physics of Fluids 11 (6), 1484–1494.671

Brun, P-T, Damiano, A., Rieu, P., Balestra, G. & Gallaire, F. 2015 Rayleigh-Taylor672

instability under an inclined plane. Physics of Fluids 27 (8), 084107.673

Brunet, P., Flesselles, J. M. & Limat, L. 2007 Dynamics of a circular array of liquid674

columns. European Physical Journal B 55 (3), 297–322.675

Burgess, J.M., Juel, A., McCormick, W.D., Swift, J.B. & Swinney, H. L. 2001676

Suppression of dripping from a ceiling. Physical review letters 86 (7), 1203.677

Chandrasekhar, S. 1961 Hydrodynamic and hydromagnetic stability . Clarendon Press: Oxford678

University Press.679

Chang, H. 1994 Wave evolution on a falling film. Annual review of fluid mechanics 26 (1),680

103–136.681

Charogiannis, A., Denner, F., van Wachem, B.G.M., Kalliadasis, S., Scheid, B. &682

Markides, C.N. 2018 Experimental investigations of liquid falling films flowing under an683

inclined planar substrate. Physical Review Fluids 3 (11), 114002.684

Cimpeanu, R., Papageorgiou, D.T. & Petropoulos, P.G. 2014 On the control and685

suppression of the Rayleigh-Taylor instability using electric fields. Physics of Fluids 26 (2),686

022105.687

Craster, R.V. & Matar, O.K. 2009 Dynamics and stability of thin liquid films. Reviews of688

modern physics 81 (3), 1131.689

Dietze, G.F., Picardo, J.R. & Narayanan, R. 2018 Sliding instability of draining fluid films.690

Journal of Fluid Mechanics 857, 111–141.691

Duprat, C., Ruyer-Quil, C., Kalliadasis, S. & Giorgiutti-Dauphiné, F. 2007 Absolute692
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