
Citation: Di Ruberto, C.; Loddo, A.;

Putzu, L. On The Potential of Image

Moments for Medical Diagnosis. J.

Imaging 2023, 9, 70. https://doi.org/

10.3390/jimaging9030070

Academic Editor: William E. Higgins

Received: 3 February 2023

Revised: 24 February 2023

Accepted: 11 March 2023

Published: 17 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Article

On The Potential of Image Moments for Medical Diagnosis
Cecilia Di Ruberto 1,† , Andrea Loddo 1,*,† and Lorenzo Putzu 2,†

1 Department of Mathematics and Computer Science, University of Cagliari, Via Ospedale 72,
09124 Cagliari, Italy

2 Department of Electrical and Electronic Engineering, University of Cagliari, Piazza d’Armi,
09123 Cagliari, Italy

* Correspondence: andrea.loddo@unica.it
† These authors contributed equally to this work.

Abstract: Medical imaging is widely used for diagnosis and postoperative or post-therapy monitoring.
The ever-increasing number of images produced has encouraged the introduction of automated
methods to assist doctors or pathologists. In recent years, especially after the advent of convolutional
neural networks, many researchers have focused on this approach, considering it to be the only
method for diagnosis since it can perform a direct classification of images. However, many diagnostic
systems still rely on handcrafted features to improve interpretability and limit resource consumption.
In this work, we focused our efforts on orthogonal moments, first by providing an overview and
taxonomy of their macrocategories and then by analysing their classification performance on very
different medical tasks represented by four public benchmark data sets. The results confirmed that
convolutional neural networks achieved excellent performance on all tasks. Despite being composed
of much fewer features than those extracted by the networks, orthogonal moments proved to be
competitive with them, showing comparable and, in some cases, better performance. In addition,
Cartesian and harmonic categories provided a very low standard deviation, proving their robustness
in medical diagnostic tasks. We strongly believe that the integration of the studied orthogonal
moments can lead to more robust and reliable diagnostic systems, considering the performance
obtained and the low variation of the results. Finally, since they have been shown to be effective on
both magnetic resonance and computed tomography images, they can be easily extended to other
imaging techniques.

Keywords: medical diagnosis; medical imaging, image classification; feature extraction; moments

1. Introduction

Medical imaging is widely used to manage various types of pathologies for diagnosis
and postoperative or post-therapy monitoring. As a result, the number of biomedical
images has increased significantly, meaning that pathologists and doctors spend much time
searching for diseases in images that could be used to treat patients. This is even more
important considering that about 80% of biomedical images turn out to be benign [1]. More-
over, the manual interpretation of biomedical images is a time-consuming and challenging
task that requires experienced operators, but the results are still subjective, influenced
by the operator’s competence or level of fatigue. In contrast, accuracy and efficiency are
crucial in this field. Therefore, the development of automated tools capable of effectively
handling this massive number of images has become essential.

Computer-aided diagnosis (CAD) systems can assist pathologists and physicians in
diagnosing and postoperative or post-therapy monitoring. Such systems attempt to mimic
manual inspection [2] but can provide accurate results while reducing subjectivity and
speeding up the analysis process [3]. The growing need for automated approaches has
attracted the attention of many researchers in this field, who have proposed several CAD
systems based on image processing and machine learning techniques [4,5].
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Existing CAD systems can be more or less complex, depending on the medical task
and the type and quality of images to be analysed. In this study, we focused on methods
for direct image classification, which consists of two main steps: feature extraction and
classification. The first step generally consists of extracting a set of parameters from an
image to characterise the shapes, colour, and texture it contains [6]. In the second step,
the extracted features are used to build a model of known cases (during the training phase)
and provide a diagnosis of unknown cases (during the testing phase).

Since the advent of convolutional neural networks (CNNs) and in particular, with the
proposal of the most famous AlexNet [7] and very deep convolutional networks
(VGGNet) [8], many authors have focused on this approach as the sole method of diagno-
sis. In fact, CNNs can perform feature extraction and classification steps simultaneously
because of their internal structure.

Specifically, CNNs can be used as feature extractors by extracting activations from a
single layer or multiple layers that can globally describe the images [9]. Such features can
then be used to train standard machine learning models, such as ensemble techniques [10].
The use of CNNs in CAD systems dramatically simplifies the design and analysis work
but also leads to the development of much more complex CAD systems whose results
are often challenging to interpret [11]. For these reasons, many CAD systems still rely on
handcrafted features, especially global image descriptors such as texture features and or-
thogonal moments [6,9,10]. Texture feature methods compute simple or more sophisticated
statistical properties, e.g., co-occurrence matrices [12–14] or local binary patterns (LBP) [15].
Orthogonal moments are statistical measures for describing objects in images regardless
of their position, viewing angle, and illumination, due to their ability to represent global
features of an image [16]. In addition, they are less sensitive to noise and can represent the
properties of an image without redundancy [17,18].

Due to their significant properties, orthogonal moments have been widely used in
various tasks ranging from edge detection [19] to image classification [20]. In particular,
they have been applied in several CAD systems, from the diagnosis of breast masses in
mammographic images [21] to the analysis of liver textures in computed tomography (CT)
scans [22] or the study of ultrasound images of the prostate [23].

The first moments to be introduced were Hu’s moments [24] in 1962, and since then,
interest in this type of descriptor has grown considerably. Many works have followed to
propose different kinds of moments (circular or Cartesian) [16] or to present more efficient
and, at the same time, more accurate formulations [25].

In this work, we perform a detailed comparison between all the best-known types of
orthogonal moments in order to evaluate their effectiveness in diagnostics when applied to
very different medical images. This work is the first in which the performance of different
moments is compared on the same tasks. Indeed, most works in the literature exploit just
single moments [21,26–30] or a combination of moments [23,31–33] to solve a particular
problem. For completeness, we compare the performance of the moments with the best-
known texture features and deep features (extracted from pretrained CNNs). It is important
to note that deep features are used in this work without any explicit training or fine-tuning
of new learners.

Our contribution is fourfold: (i) we reviewed the state of the art on orthogonal mo-
ments by describing the main features and differences between them; (ii) we summarised
the main types of moments, emphasising their differences; (iii) we examined and compared
orthogonal moments in several medical diagnostic tasks; and (iv) we compared orthog-
onal moments with the best-known texture features and the latest CNNs features. Our
numerical experiments allow us to identify the most effective category of moments for the
tasks under consideration and also show a particularly encouraging behaviour. Indeed,
they confirm that CNNs perform excellently in all tasks, but orthogonal moments seem
competitive with them. The orthogonal moments have very little resource consumption, so
they can be considered a great alternative to well-known CNN-based descriptors. The rest
of this paper is organised as follows. Section 2 discusses related work and the role of
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orthogonal moments in the medical field. In Section 3, we describe orthogonal moments,
their categorisations, and their main properties. In Section 4, we describe the materials and
methods used in the experimental evaluation, then we present the results in Section 5.2 and
discuss them in Section 5.3. Finally, in Section 6, we summarise the content of the article
and outline directions for future work.

2. Related Works

The moments are statistical measures used to characterise a function, capture its most
important features, and thus obtain relevant information about an object. Hu was the first
to use the invariants of geometric moments in pattern recognition [24] and demonstrated
the discriminative power of these features in the case of recognition of printed capital letters.
Non-orthogonal moments have lost their attractiveness in favour of orthogonal moments
constructed in terms of orthogonal polynomials because the non-orthogonal property of
these invariant geometric moments causes information redundancy. It has been shown that
orthogonal moments are less sensitive to noise and have an efficient ability to represent
features with a low degree of information redundancy. Among the best-known are the
discrete Chebyshev moments [34], the discrete Krawtchouk moments [35], the Legendre
moments [36], and the Zernike moments [37]. For these reasons, orthogonal moments have
received a great deal of attention in recent years, and a large number of novel moments
have been proposed.

Recent surveys, such as those conducted by Qi et al. [38] and Singh et al. [16], have
reviewed various families of orthogonal moments, their theoretical foundations, imple-
mentation methods, and evaluation techniques for measuring their performance in various
image analysis tasks. In particular, the latter conducted a comprehensive review of methods
for achieving rotation invariance in orthogonal moments and transforms used for image
representation, including using rotationally invariant functions, the introduction of rotation
parameters, and the use of multiple basis functions.

Image moments have proven to be versatile tools with numerous applications. In qual-
ity assessment tasks, moments have been successfully used for the evaluation of authenti-
cally distorted images [39]. Additionally, they have also been applied to the recognition of
symmetric objects [40], which can be beneficial in robotics and object recognition applica-
tions in computer vision, image compression [41], or image watermarking [42].

However, moments find their most extensive application in the medical field. Their
usage encompasses a wide range of tasks, including the reconstruction of medical images
afflicted by noise, such as CT, magnetic resonance (MR), and X-ray images [43], the detection
of pathological conditions, such as brain tumours [44], and the classification of medical
images. Classification examples include the work of Wu et al. [23], which used moments to
describe the texture of CT liver images and to detect tumours in ultrasound prostate images.
Similarly, Iscan et al. [45] and Tahmasbi [21] used moments to detect tumours in brain and
mammography images, respectively. Further examples include the works using moments
to classify parasites in microscopy images by Dogantekin et al. [46] and spermatogonium
by Liyun et al. [47].

In recent decades, the use of moments as features in various applications has become
widespread. This popularity can be attributed to their ability to represent an image’s salient
features effectively. Numerous studies have employed different categories of moments
to serve as image descriptors to accomplish specific tasks. For example, Hu, Legendre,
and Zernike moments were investigated and compared to automatically classify boar sper-
matozoa acrosomes as intact or damaged [48]. In that work, images of boar spermatozoa
were then classified by k-nearest neighbour (k-NN) and multilayer perceptron classifiers.
Instead, in classifying histological images, Di Ruberto et al. [49] realised a comparative
evaluation of different moments, such as Hu, Legendre, and Zernike’s, and texture features,
such as local binary patterns and Haralick features. The best results are reported when the
orthogonal moments are combined with co-occurrence matrices.
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As far as Zernike moments are concerned, on the one hand, Tahmasbi et al. [21] used
them as descriptors for identifying breast masses based on their shape and edge charac-
teristics. The study involved extracting two sets of Zernike moments from preprocessed
images, each consisting of 32 moments with varying orders and iterations, and using them
at the feature selection stage. On the other hand, pseudo-Zernike moments were used to
classify leukocyte subtypes in Ryabchykov et al. [26], whereas Elaziz et al. [27] applied
fractional-order orthogonal descriptors for bacterial species recognition.

Regarding Chebyshev moments, they were evaluated by Mukundan [28]. The au-
thors explored 5× 5 neighbourhoods of pixels to encode texture information as a Lehmer
code, representing the relative strengths of the moments considered. The generated local
descriptors were then used to classify tissue images into six classes.

Krawtchouk moments were used alone for blind integrity verification of medical images
in Xu et al. [29] and combined in the extensive work of Batioua et al. [30]. The authors propose
new sets of separable discrete moments for 3D image analysis called TKKM (Tchebichef–
Krawtchouk–Krawtchouk moments) and TTKM (Tchebichef–Tchebichef–Krawtchouk mo-
ments). The study indicated that the proposed 3D separable moments significantly improved
representation capabilities compared to traditional Krawtchouk and Tchebichef moments.

Although Hu moments have the well-known problems of noise sensitivity and in-
formation redundancy caused by the nonorthogonality of the geometric basis [30], they
have been used with equal success. To cite some examples, Siti et al. [50] employed them
to classify breast cancer, Laine et al.applied Hu moments to classify the structure of large
populations of biopharmaceutical viruses at high resolution [51], and, more recently, in [52],
Hu moments were extracted from segmented ultrasound arterial wall images for assessing
the risk of atherosclerosis and predicting the chance of myocardial infarction.

To overcome the limitations of Hu moments and improve the performance further,
several works proposed combining heterogeneous types of moments, even with different
categories of descriptors. For example, in [31], Hu moments were combined with VGG16,
an off-the-shelf CNN, to automatically screen COVID-19 based on CT scans. Concerning
other combinations, Wu et al. [23] combined Legendre, Zernike, Krawtchouk, and Cheby-
shev moments to classify CT liver images. In contrast, Lao et al. [32] proposed a framework
for Alzheimer’s diagnosis based on combining the 3D discrete wavelet transform and 3D
moment invariants features from multimodality images. These features were first pro-
vided to a deep neural network with stacked autoencoders for dimensionality reduction,
and finally, a softmax regression made the final classification.

Furthermore, the combination of moments appeared beneficial also to improve and
speed up the medical image reconstruction of MR, CT, and mammography, as shown in [33].
In that work, an effective method for analysing different types of 2D and 3D medical images
based on the discrete orthogonal moments of Chebyshev, Krawtchouk, Hahn, Charlier,
and Meixner was presented.

Image moments have generally demonstrated versatility and usefulness in various
domains and applications. This makes them a valuable tool in the field of computer vision
and image processing, particularly with regard to medical tasks.

3. Overview of Moments

Moments can be defined as the projections of an image function onto particular kernel
functions and, mathematically, can be defined as follows.

A general moment M f
pq of an image f (x, y), where p, q are non-negative integers and

(p + q) is called the order of the moment, is defined as in Equation (1) [53]:

M f
pq =

∫ ∫
D

hpq(x, y) f (x, y)dxdy (1)

where hpq(x, y) is the kernel function (also known as the polynomial basis function) defined
on D.
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According to the mathematical properties of the polynomial basis used, we can recog-
nise various categories of moments, as shown in Figure 1.

Moments

Non-
orthogonal
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Complex 
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Rotational 
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Orthogonal
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Figure 1. A schematic classification of image moments.

Depending on whether the basis functions satisfy orthogonality, the image moments
can be classified into orthogonal moments or non-orthogonal moments. Orthogonality
means that two different basis functions of the set of basis functions are unrelated or are
“perpendicular” in geometric terms, which leads to no redundancy in the set of moments.
Some of the most popular non-orthogonal moments are geometric moments [54], rotational
moments [55], and complex moments [56].

Due to the nonorthogonality of the basis functions, a high information redundancy
and high noise sensitivity exist in such moments. As a result, image reconstruction from
these moments is quite difficult, and the image representation power is poor. In contrast,
orthogonal moments, built on a set of orthogonal polynomials, have received much at-
tention in recent years due to their ability to represent images with minimal information
redundancy and a high noise robustness [25]. Orthogonal moments can be divided into
those defined in either Cartesian coordinates, (x, y), or polar coordinates, (r, θ).

Orthogonal moments defined in polar coordinates are also called radial or circular
orthogonal moments. The kernel function of radial orthogonal moments is built on a
particular type of radial orthogonal polynomial and a complex exponential angular Fourier
factor. In addition to their image reconstruction property, the significant advantage of
radial orthogonal moments lies in their ability to achieve rotation invariance. In this regard,
there are mainly three types of orthogonal functions used as definitions, including Jacobi
polynomials, harmonic functions, and eigenfunctions.

Circular orthogonal moments based on Jacobi polynomials mainly include Zernike
moments [37], pseudo-Zernike moments [55], orthogonal Fourier–Mellin moments [57], Cheby-
shev–Fourier moments [58], Jacobi–Fourier moments [59], and pseudo Jacobi–Fourier moments [60].

Among the circular orthogonal moments derived from harmonic functions, there
are the radial harmonic Fourier moments [61], exponent Fourier moments [62], polar harmonic-
transform-based moments [63], i.e., polar complex exponential transform, polar cosine transform,
and polar sine transform. The most representative moments based on eigenfunctions are
the Bessel–Fourier moments [64].

The kernel functions of orthogonal moments defined in Cartesian coordinates are
constructed on normal orthogonal polynomials. The orthogonal moments defined in
Cartesian coordinates can be further divided into two types, continuous and discrete
orthogonal moments, depending on whether the kernel function hpq(x, y) is orthogonal on
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the continuous or discrete domain. The continuous orthogonal moments mainly include
Legendre moments [37] and Gaussian–Hermite moments [65], while the discrete orthogonal
moments are mainly composed of Chebyshev moments [34], Krawtchouk moments [35], Hahn
moments [66], and Racah moments [67].

All of the orthogonal moments mentioned above are restricted to being of integer
order since orthogonal polynomials should be of integer order (p, q) ∈ Z2. In recent
years, there has been a focus on investigating fractional-order domain [68–70]. In such
domain, a fractional-order parameter α ∈ R is introduced through certain suitable variable
substitution, e.g., x ← xα, y ← yα ∈ [0, 1] in Cartesian moments, and r ← rα ∈ [0, 1] in
circular moments. Thus, the order of the newly defined moments can be extended to the
real domain, e.g., (αp, αq, ) ∈ R2 for Cartesian moments and αr ∈ R for circular moments,
although so far, mostly the circular moments have been studied and extended to the
fractional domain [70,71], even in combination with colour information [72]. The fractional-
order category includes radial harmonic Fourier moments, the polar complex exponential
transform, the polar cosine transform, the polar sine transform and Jacobi–Fourier moments.
They can be described by a recurrence relation which guarantees a high noise robustness in
invariant image recognition [70,71].

In Table 1, we summarised the orthogonal moments analysed in this work, with the
appropriate reference and the year in which they were first proposed.

Table 1. The year when the moments were first proposed.

Ref. Descriptors Year

[37] Legendre moments 1980
[34] Chebyshev moments of the first order 2001
[34] Chebyshev moments of the second order 2001
[37] Zernike moments 1980
[55] Pseudo-Zernike moments 1988
[57] Orthogonal Fourier–Mellin moments 1994
[58] Chebyshev–Fourier moments 2002
[60] Pseudo-Jacobi–Fourier moments 2004
[59] Jacobi–Fourier moments 2007
[73] Fractional-order Jacobi–Fourier moments 2021
[64] Bessel–Fourier moments 2010
[61] Radial harmonic Fourier moments 2003
[62] Exponent Fourier moments 2014
[63] Polar complex exponential transform 2010
[63] Polar cosine transform 2010
[63] Polar sine transform 2010
[71] Fractional-order radial harmonic Fourier moments 2020
[68] Fractional-order polar complex exponential transform 2014
[68] Fractional-order polar cosine transform 2014
[68] Fractional-order polar sine transform 2014

4. Medical Image Classification

This section describes the materials and methods used to compare the above-mentioned
moment features for CT and MR images classification. In the following, we first describe
the data sets used in Section 4.1. Then, in Section 4.2, we list the moments and other features
used for comparison purposes and finally, the classification models in Section 4.2.

4.1. Data Sets

We now describe the four different reference data sets used in this work. Each one
is publicly available. One sample per class is illustrated in Figure 2. Emphysema-CT [74]
is a database of CT images created to develop texture-based CT biomarkers for detecting
and diagnosing chronic obstructive pulmonary diseases related to emphysema. It includes
115 high-resolution CT sections from which 168 square patches (of size 61 × 61) were
manually cropped and annotated by experienced clinicians into three main categories:
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normal tissue, centrilobular emphysema, and paraseptal emphysema, consisting of 59, 50,
and 59 samples, respectively.

(a) Emphysema-CT

(b) Brain-Tumor-MRI

(c) OASIS-MRI

(d) COVIDx CT-2A
Figure 2. Illustrations of the data sets classes. From left to right, (a) shows normal tissue, centrilob-
ular emphysema, and paraseptal emphysema; in (b): meningioma, glioma, and pituitary tumours.
(c) represents four classes of dementia: absent, very mild, mild, and moderate. Finally, (d) includes
COVID, normal, and pneumonia.

Brain-Tumor-MRI [75] is a data set of MR images containing different brain sections
from 233 patients, created to develop CAD systems to diagnose the presence of brain
tumours. Here, we used the axial sections subset containing 870 images of size 512× 512,
featuring three types of brain tumours: meningioma, glioma, and pituitary tumour. They
are present in 143, 436 and 291 samples, respectively.

OASIS-MRI [76] is also an MR image data set containing different brain sections but
was collected to study the clinical dementia rating. Again, we focused only on the axial
section images, for a total of 436 images of size 176× 208, divided into 336 representing
cognitively healthy individuals and 100 with subtypes of dementia (70 with very mild,
28 with mild, and 2 with moderate dementia).

COVIDx CT-2A [77] consists of 194,922 CT images of 3745 patients from 15 different
countries, aged 0–93 years (median age 51). Specifically, the CT images are provided with
size 512× 512 pixels and are annotated into three different classes: novel coronavirus
pneumonia due to SARS-CoV-2 viral infection, common pneumonia, and normal condition.
The available CT images were 3253, 873, and 816, respectively, for a total of 4942 images.

The summarising details for each data set are reported in Table 2.
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Table 2. The table provides information on the four different data sets used in this research. For
each data set, the following details are given: number and size of the images, number of classes, and
number of images per class.

Data Set No. of Images Size Classes No. of Images per Class

Emphysema-CT 168 61× 61 3 59–50–59
Brain-Tumor-MRI 870 512× 512 3 143–436–291
OASIS-MRI 436 176× 208 4 336–70–28–2
COVIDx CT-2A 4942 512× 512 3 3253–873–816

4.2. Methods

We evaluated different kinds of invariant moments in our experiments for a total of
20 descriptors that we grouped into four important classes, following what we reported
in Section 3:

• Cartesian moments: continuous Legendre moments (LM), discrete Chebyshev mo-
ments of the first order (CHM), discrete Chebyshev moments of the second order
(CH2M).

• Circular Jacobi polynomials based moments: Zernike moments (ZM), pseudo-Zernike
moments (PZM), orthogonal Fourier–Mellin moments (OFMM), Chebyshev–Fourier
moments (CHFM), pseudo-Jacobi–Fourier moments (PJFM), Jacobi–Fourier moments
(JFM), fractional-order Jacobi–Fourier moments (FrJFM).

• Circular eigenfunction-based moments: Bessel–Fourier moments (BFM).
• Circular harmonic-function-based moments: radial harmonic Fourier moments

(RHFM), exponent Fourier moments (EFM), polar complex exponential transform
(PCET), polar cosine transform (PCT), polar sine transform (PST), fractional-order ra-
dial harmonic Fourier moments (FrRHFM), fractional-order polar complex exponential
transform (FrPCET), fractional-order polar cosine transform (FrPCT), fractional-order
polar sine transform (FrPST).

A subset of the orthogonal moments representative of all the classes presented in the
taxonomy was chosen for this analysis. The order was set to 5 for all the moments. A higher-
order would have added irrelevant features or noise [25]. In addition, as mentioned earlier,
we also compared the performance of orthogonal moments with some texture and deep
features for completeness.

The texture features computed were the rotation invariant grey-level co-occurrence ma-
trix (GLCM) features as proposed in [78] and rotation-invariant LBP features [79]. GLCMs
were computed with d = 1 and θ = [0◦, 45◦, 90◦, 135◦]. We extracted thirteen rotation-
invariant features Harri [78] from them. The LBP map was extracted in the neighbourhood
identified by r and n equal to 1 and 8, respectively, and then converted to a rotationally
invariant feature vector LBPri [79].

The deep features were extracted from four off-the-shelf network architectures:
AlexNet [7], VGG19 [8], ResNet50 [80], and GoogLeNet [81]. In both AlexNet and VGG19,
we extracted features from the penultimate fully connected layer (fc7), which created a
feature vector of size h = 4096, while for ResNet50 and GoogLeNet, we extracted features
from the only fully connected layer present, which created a feature vector of size h = 1000.
Since all referenced CNN architectures were pretrained on the vast image data set Ima-
geNet [82], they had already learned sufficient representation and generalisation capability
for various visual recognition tasks [83,84]. Therefore, we directly extracted the features
without a fine-tuning process on the target data sets [83].

In order to perform a more detailed evaluation, the results of which are not related
to the capabilities of the individual classifier, we chose a single classification technique
from each of the following categories: numerical function models, instance-based models,
symbolic or logical models, probabilistic-based models and ensemble models. Therefore, we
selected five different classification models: support vector machine (SVM) [85], k-NN [86],
decision trees (DT) [87], naive Bayes (NB) [88] and bagged trees (BT) [88].
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5. Experimental Results

This section describes the experimental evaluation that was conducted and the re-
sults that were obtained. The purpose of this study was to analyse the performance of
moment-based features for the classification of medical images, as previously mentioned.
For this purpose, we conducted various experiments that involved the mentioned data
sets, from which the features were extracted and then used to build and test different
classification models.

5.1. Experimental Setup

To ensure a fair comparison, the experimental evaluation was performed using a
model validation procedure consisting of a k-fold cross-validation applied to the entire data
set. The training fold was used for data normalisation and hyperparameter optimisation for
each cross-validation. Therefore, the best hyperparameters were optimised for all classifiers
using a grid search.

Although we were not interested in the absolute best performance in terms of classifi-
cation, the optimisation process was repeated for each individual descriptor to determine
the best setting for each descriptor and its upper bound in terms of performance.

The classification performance was evaluated using only test fold data; the k-fold cross-
validation was repeated with k equal to 10. The performance of the learning models was
measured in terms of accuracy. The data sets were multiclass, so the accuracy was calculated
as a weighted average of the values computed on the individual classes. The accuracy per
class was computed according to the following Equation (2):

Accuracy =
TP + TN

TP + FP + TN + FN
(2)

where TP (true positive) and FP (false positive) provide the number of images correctly
and incorrectly classified as positive, respectively. On the other hand, TN (true negative)
and FN (false negative) indicate the number of images classified as negative, correctly and
incorrectly, respectively.

The experiments were performed on a workstation with the following hardware
specifications: an Intel(R) Core(TM) i9-8950HK @ 2.90 GHz CPU, 32 GB RAM, and an
NVIDIA GTX1050 Ti GPU with 4 GB of memory. All implementations and experimen-
tal evaluations were also performed in MATLAB R2021b. The source code with the
moment’s implementation is freely available and was partially written by the same au-
thors and available at http://bugs.unica.it/cana/software (accessed on 10 March 2023,
see the orthomoms package), and partly obtained from a previous research article [38]
https://github.com/ShurenQi/MomentToolbox (accessed on 10 March 2023).

5.2. Results

Here, we present a detailed account of the various experiments’ results.
For a precise evaluation of the individual descriptors, we report numerical tables de-

tailing the results of the single descriptor categories obtained with each classifier. The classi-
fier’s performance is briefly discussed later, as it is outside the scope of this work. To better
examine the achieved results, we also report the feature vector dimensions (size column).
We do not report the execution time since only some of the source code for the moment
computation is optimised, which would lead to timelines that could be misleading. A de-
tailed analysis of the execution time for our moments’ implementations has been reported
in our previous work [25].

Emphysema-CT. The Emphysema-CT data set appears to be the most complex, based
on the results obtained and shown in Table 3. Although the k-NN classifier performed
best with 11 out of 26 descriptors (all moments), the results were much more varied. None
of these 11 features was the absolute best, as deep features were in the top four, with the
AlexNet features extracted by the SVM classifier being the absolute best (78.9%).

http://bugs.unica.it/cana/software
https://github.com/ShurenQi/MomentToolbox
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Table 3. Results obtained on the Emphysema-CT data set with all the analysed features, for which we
report the categorisation (category column, CM—Cartesian moments, JM—Jacobian moments, BM—
Bessel–Fourier moments, HM—harmonic moments, DF—deep features, and TF—texture features),
the name (descriptor column), the feature size (size column), the accuracy obtained with all the tested
classifiers (SVM, k-NN, DT, NB, BT columns), and the average accuracy value (AVG column). On the
right (AVG cat.), we also report the average accuracy value of each category of features and on the
bottom (AVG row), we report the average accuracy per classifier.

Category Descriptor Size Classifiers AVG AVG Cat.SVM k-NN DT NB BT

CM
LM 28 71.4 68.5 64.9 63.7 64.3 66.6

68.4CHM 21 69.6 69.6 70.2 63.7 69.0 68.4
CH2M 21 69.6 71.4 70.8 67.3 72.0 70.2

JM

ZM 21 70.2 73.8 68.5 70.2 72.0 70.9

68.0

PZM 36 71.4 70.8 66.7 64.9 67.3 68.2
OFMM 66 70.8 72.0 68.5 61.9 66.7 68.0
CHFM 66 64.3 72.0 72.0 61.3 63.7 66.7
PJFM 66 69.0 72.0 70.2 59.5 69.6 68.1
JFM 66 69.6 70.8 69.6 61.9 67.9 68.0
FrJFM 66 66.1 73.8 69.6 61.3 61.3 66.4

BM BFM 66 69.6 68.5 67.3 60.1 69.0 66.9 66.9

HM

RHFM 66 68.5 72.0 69.6 64.3 73.2 69.5

67.7

EFM 121 67.3 70.2 67.3 63.7 67.9 67.3
PCET 121 65.5 67.9 70.8 58.9 69.0 66.4
PCT 66 65.6 72.0 69.0 60.7 66.7 66.8
PST 55 69.6 69.6 67.9 61.9 64.3 66.7
FrRHFM 66 70.2 70.8 73.2 66.7 75.0 71.2
FrPCET 121 66.7 75.0 70.8 58.9 69.0 68.1
FrPCT 66 64.9 70.2 67.9 61.9 63.1 65.6
FrPST 55 69.6 70.2 69.0 64.3 66.7 68.0

DF

AlexNet 4096 78.9 73.8 63.1 72.6 76.8 73.0

72.0VGG19 4096 76.8 70.8 63.1 70.2 79.2 72.0
ResNet50 1000 78.6 70.8 64.3 75.0 77.4 73.2
GoogLeNet 1000 76.8 66.7 61.9 72.0 71.4 69.8

TF LBP18 36 53.0 54.2 56.5 54.2 56.5 54.9 63.3HARri 52 76.8 70.2 64.3 69.6 77.4 71.7

- AVG - 69.6 70.3 67.6 64.3 69.1 -

On average, deep features were by far the best category with an accuracy of 72%,
followed by moments (Cartesian with 68.4%, Jacobian with 68%, Bessel–Fourier with 66.9%,
and harmonic with 67.7%), and the texture features were last with an average of 63.3%.

Despite the excellent average performance achieved by the deep features, the moments
were found to perform particularly well. The accuracy of 75% obtained by the BT classifier
with the FrRHFM features was only 3.9% lower than the absolute best obtained by the
features extracted from AlexNet (78.9%) and classified with the SVM. Specifically, FrRHFM
was composed of a total of 66 features, 4,030 less than those of AlexNet. The k-NN classifier
trained with FrPCET moments, consisting of 121 features, achieved the same accuracy
of 75%.

Brain-Tumor-MRI. Contrary to the results on the previous data set, the absolute
best results on Brain-Tumor-MRI were obtained by the k-NN classifier with 20 out of the
26 descriptors used (see Table 4). Apart from some exceptions caused by moments (JFM
better by 1.5% with the SVM, HARri better by 1.7% with the BT), three out of four features
extracted from the CNN (VGG19, ResNet50, GoogLeNet) gave better results with the SVM.
However, the difference was not significant, except for GoogLeNet, which outperformed
the k-NN classifier by 3.3% with the SVM.
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Table 4. Results obtained on the Brain-Tumor-MRI data set with all the analysed features, for which
we report the categorisation (category column, CM—Cartesian moments, JM—Jacobian moments,
BM—Bessel–Fourier moments, HM—harmonic moments, DF—deep features, and TF—texture fea-
tures), the name (descriptor column), the feature size (size column), the accuracy obtained with all the
tested classifiers (SVM, k-NN, DT, NB, BT columns) and the average accuracy value (AVG column).
On the right (AVG cat.), we also report the average accuracy value of each category of features and
on the bottom (AVG row), we report the average accuracy per classifier.

Category Descriptor Size Classifiers AVG AVG Cat.SVM k-NN DT NB BT

CM
LM 28 95.9 97.7 90.7 91.0 95.2 94.1

93.7CHM 21 94.6 97.9 89.7 91.0 94.7 93.6
CH2M 21 94.1 97.4 89.9 90.5 94.9 93.4

JM

ZM 21 93.4 93.3 90.2 89.7 93.4 92.0

91.8

PZM 36 94.1 94.9 90.5 89.9 94.8 92.8
OFMM 66 93.8 95.5 88.6 88.5 92.9 91.9
CHFM 66 93.7 96.2 87.1 87.7 93.7 91.7
PJFM 66 92.6 95.3 90.5 88.0 91.6 91.6
JFM 66 94.5 93.0 89.1 88.0 92.2 91.4
FrJFM 66 90.8 95.5 89.9 87.8 92.6 91.3

BM BFM 66 94.3 95.9 89.1 86.9 94.0 92.0 92.0

HM

RHFM 66 93.6 95.4 88.4 87.6 92.9 91.6

91.7

EFM 121 94.9 98.2 87.1 86.7 92.6 91.9
PCET 121 96.7 97.7 87.4 86.7 92.0 92.1
PCT 66 92.2 94.4 87.4 88.3 91.4 90.7
PST 55 93.4 95.3 89.7 87.0 93.4 91.8
FrRHFM 66 94.1 95.2 89.2 88.3 92.0 91.8
FrPCET 121 95.9 98.2 89.4 87.0 94.6 93.0
FrPCT 66 94.0 94.5 88.4 87.6 91.5 91.2
FrPST 55 91.7 93.6 89.8 87.5 92.4 91.0

DF

AlexNet 4096 94.6 94.7 88.6 83.9 93.1 91.0

90.8VGG19 4096 95.4 94.9 84.4 87.7 93.0 91.1
ResNet50 1000 95.7 95.9 88.5 87.4 93.8 92.3
GoogLeNet 1000 94.4 91.1 83.7 83.1 91.8 88.8

TF LBP18 36 92.3 93.6 89.4 77.1 90.3 88.5 90.3HARri 52 93.4 92.3 88.5 92.3 93.9 92.1

- AVG - 94.0 95.3 88.7 87.6 93.0 - -

On average, Cartesian moments were the best category with an accuracy of 93.7%,
followed by the remaining moments: in order, Bessel–Fourier (92%), harmonic (91.8%), and
Jacobian (91.7%). Thus, on average, all moments performed significantly better than the
deep (90.8%) and texture (90.3%) descriptors.

This data set further illustrated how moments could produce particularly high results
with few features. To give an example, the absolute best result was achieved by FrPCET
and EFM coupled with a k-NN classifier (both with 98.2% accuracy) with 121 features, and
the second best was achieved by CHM with a k-NN classifier (97.9% accuracy) with just
21 features.

OASIS-MRI. The first noteworthy observation from the OASIS MRI experiments is
that all results were between 75 and 80%, as shown in Table 5, with a few exceptions, all
provided by the NB classifier. In fact, it provided performance above 75% only with the
FrPCET moments and AlexNet, VGG19, and ResNet50 features. On average, the best
classifier was again the k-NN classifier, which performed best with 18 out of 26 descriptors,
with both texture features and 15 out of 20 moments.
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Table 5. Results obtained on the OASIS-MRI data set with all the analysed features, for which we
report the categorisation (category column, CM—Cartesian moments, JM—Jacobian moments, BM—
Bessel–Fourier moments, HM—harmonic moments, DF—deep features, and TF—texture features),
the name (descriptor column), the feature size (size column), the accuracy obtained with all the tested
classifiers (SVM, k-NN, DT, NB, BT columns) and the average accuracy value (AVG column). On the
right (AVG cat.), we also report the average accuracy value of each category of features and on the
bottom (AVG row), we report the average accuracy per classifier.

Category Descriptor Size Classifiers AVG AVG Cat.SVM k-NN DT NB BT

CM
LM 28 77.8 78.2 77.1 71.8 77.5 76.5

76.5CHM 21 78.0 77.6 77.1 72.9 77.1 76.5
CH2M 21 77.5 78.0 77.1 72.5 77.1 76.4

JM

ZM 21 77.3 78.2 77.1 70.6 77.3 76.1

76.3

PZM 36 77.1 78.4 77.1 72.0 78.2 76.6
OFMM 66 77.1 78.2 77.1 72.5 77.1 76.4
CHFM 66 77.1 80.0 77.1 71.3 77.1 76.5
PJFM 66 77.1 77.8 77.1 70.6 75.7 75.7
JFM 66 77.1 78.0 78.0 71.8 77.8 76.5
FrJFM 66 78.2 77.1 77.3 72.5 77.1 76.4

BM BFM 66 77.1 77.8 77.1 74.1 76.6 76.5 76.5

HM

RHFM 66 77.1 78.4 78.4 72.0 76.6 76.5

76.9

EFM 121 77.1 78.0 77.1 73.9 76.6 76.5
PCET 121 77.3 78.4 77.1 74.8 78.0 77.1
PCT 66 77.1 78.9 77.1 72.7 77.1 76.6
PST 55 77.1 79.4 79.6 72.7 79.1 77.6
FrRHFM 66 77.1 78.9 77.1 72.0 78.4 76.7
FrPCET 121 77.5 77.1 77.8 75.5 77.1 77.0
FrPCT 66 77.1 79.1 77.1 72.5 77.1 76.9
FrPST 55 77.3 78.2 79.1 72.2 77.1 76.8

DF

AlexNet 4096 77.1 77.1 76.8 77.3 77.1 77.1

76.9VGG19 4096 78.7 77.1 75.7 77.5 78.9 77.6
ResNet50 1000 77.1 77.3 75.7 75.5 77.1 76.5
GoogLeNet 1000 78.4 77.1 77.1 72.9 76.4 76.4

TF LBP18 36 77.1 77.3 77.1 72.0 75.5 75.8 75.7HARri 52 77.1 77.3 77.1 69.7 77.1 75.7

- AVG - 77.4 78.0 77.3 72.9 77.2 - -

The best categories were the harmonic moments and the deep features with a 76.9%
accuracy. However, unlike the previous data set, the categories were similar on average,
as the Cartesian and Bessel–Fourier moments reached an accuracy of 76.5%, the Jacobian
76.3%, and the texture features 75.7%.

In general, the moments produced excellent results on this data set as well. Particularly
noteworthy is the result obtained by the 66 features of CHFM with a k-NN classifier, which
was the best overall with an accuracy of 80%.

COVIDx CT-2A. Regarding the COVIDx CT-2A data set, all the classifiers achieved an
accuracy greater than 90% with any descriptor, except for the naive Bayes classifier, which
achieved exceptionally high results (greater than 90%) only with features obtained from
CNNs. As can be seen from Table 6, the best-performing classifier was the SVM, since it
was able to obtain the best result with 23 of the 26 descriptors used, as well as being the
best on average with an accuracy of 98.1%, 0.2% higher than the average accuracy obtained
by the BT.
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Table 6. Results obtained on the COVIDx CT-2A data set with all the analysed features, for which we
report the categorisation (category column, CM—Cartesian moments, JM—Jacobian moments, BM—
Bessel–Fourier moments, HM—harmonic moments, DF—deep features, and TF—texture features),
the name (descriptor column), the feature size (size column), the accuracy obtained with all the tested
classifiers (SVM, k-NN, DT, NB, BT columns) and the average accuracy value (AVG column). On the
right (AVG cat.), we also report the average accuracy value of each category of features and on the
bottom (AVG row), we report the average accuracy per classifier.

Category Descriptor Size Classifiers AVG AVG Cat.SVM k-NN DT NB BT

CM
LM 28 99.0 97.2 94.3 76.2 98.8 93.1

92.0CHM 21 99.0 96.9 93.9 72.0 98.7 92.1
CH2M 21 99.1 95.3 91.3 71.5 97.5 90.9

JM

ZM 21 98.9 95.4 92.2 72.2 97.7 91.3

91.7

PZM 36 99.0 96.7 93.4 75.8 98.4 92.7
OFMM 66 98.4 97.0 93.0 73.5 98.2 92.0
CHFM 66 98.3 97.0 92.8 72.5 98.2 91.8
PJFM 66 98.3 97.1 92.2 71.8 98.3 91.5
JFM 66 98.3 96.9 92.4 71.8 98.1 91.5
FrJFM 66 98.2 97.1 92.2 71.8 98.1 91.5

BM BFM 66 98.3 97.0 92.3 73.2 98.1 91.8 91.8

HM

RHFM 66 98.3 97.1 92.6 71.4 98.1 91.5

91.6

EFM 121 98.3 97.6 91.5 70.3 98.2 91.2
PCET 121 98.0 97.7 92.5 72.1 98.4 91.7
PCT 66 98.4 97.2 93.1 72.2 98.5 91.9
PST 55 98.5 97.0 92.2 71.9 98.4 91.6
FrRHFM 66 98.3 97.1 92.6 71.4 98.2 91.5
FrPCET 121 98.1 97.6 92.2 72.5 98.3 91.7
FrPCT 66 98.5 97.3 93.0 72.3 98.4 91.9
FrPST 55 98.5 97.0 92.2 71.8 98.3 91.6

DF

AlexNet 4096 97.5 97.5 97.4 97.4 97.5 97.5

96.0VGG19 4096 99.4 99.4 99.4 99.1 99.4 99.3
ResNet50 1000 95.8 95.8 95.6 95.0 96.5 95.7
GoogLeNet 1000 92.2 91.4 91.5 90.9 90.6 91.3

TF LBP18 36 98.4 98.0 95.0 74.1 97.9 92.7 92.4HARri 52 97.5 96.5 94.7 73.9 97.5 92.0

- AVG - 98.1 96.8 93.3 76.1 97.9 - -

Moreover, among the identified descriptor categories, the one that performed best
in this data set was the deep one, with an average accuracy of 96% among the features
extracted from the four CNNs, followed by the texture features with 92.6%, and the
Cartesian moments with 92%. In this context, it is crucial to note that the average of all the
descriptors (except the deep ones) was strongly influenced by the results obtained by the
naive Bayes classifier.

Therefore, we think it is particularly relevant to highlight, using the example of CH2M,
how, with only 21 features, we were able to obtain an accuracy of 99%, which is very
close to the best absolute performance of 99.4% obtained in this data set from the features
extracted from VGG19 and classified by an SVM.

5.3. Discussion

To better understand and analyse the results regarding the performance of the identi-
fied moment categories, we report a whisker plot with confidence intervals for each data
set in Figures 3–6.
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Figure 3. Average accuracy and standard deviation calculated on each descriptor category with the
best classifier on average, for the Emphysema-CT data set.
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Figure 4. Average accuracy and standard deviation calculated on each descriptor category with the
best classifier on average, for the Brain-Tumor-MRI data set.
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Figure 5. Average accuracy and standard deviation calculated on each descriptor category with the
best classifier on average, for the Axial OASIS-MRI data set.
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Figure 6. Average accuracy and standard deviation calculated on each descriptor category with the
best classifier on average, for the COVIDx CT-2A data set.
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To produce such plots, we again grouped and reported on the x-axis the descriptors
by categories: CM stands for Cartesian moments, JM for Jacobian moments, BM for Bessel–
Fourier moments, HM for harmonic moments, DF for deep features, and TF for texture
features. Each whisker along the y-axis represents the mean and standard deviation
(minimum and maximum) accuracy value for a specific category of descriptors. The
moments were generally very stable in each data set without considering the BM category,
which consisted of only one descriptor. In fact, all categories of moments had a relatively
low standard deviation, except for JM and HM in the Brain-Tumor-MRI (see Figure 4) and
OASIS-MRI (see Figure 5) data sets.

If in the first case, the standard deviation was still lower than that produced by the
deep features (1.20% and 1.75%, respectively, versus 2.1%), this trend was only partially
confirmed in the second case. In this case, the deep features had a standard deviation of
only 0.1% against 0.88% and 0.69%, respectively. In any case, these values were overall
acceptable, considering the intrinsic complexity of the classes of the different data sets and,
above all, the extremely small dimensions of their feature vectors compared to the deep
ones. Moreover, with respect to the large COVIDx CT-2A data set (see Figure 6), where
the classes were even closer, the deep features obtained unstable results (i.e., the standard
deviation was 3%).

Last but not least, the Emphysema-CT data set was the one that showed a more
pronounced difference between the deep features and the moments (see Figure 3). The mo-
ments performed better with the average best classifier (SVM) (FrPCET and FrRHFM
obtained 75% as single descriptors). However, the absolute best result was obtained by
the features extracted (with the k-NN classifier and BT, respectively) from VGG19 (which
exceeded the absolute best obtained by the moments by 4.2%). In any case, such a differ-
ence could be accepted since the goal was to verify how much the moments were able to
generalize their performance with respect to a specific task.

Considering the overall classification performance, recall that we optimized each
individual classification algorithm since we wanted to study the absolute best performance
of each descriptor. In this case, it can be observed that the naive Bayes classifier provided
the worst results, being the classifier with the lowest average accuracy for all data sets. This
trend was particularly emphasized for the COVIDx CT-2A data set, where the variance
between the results obtained with moments was about 20% smaller than that obtained with
deep features. However, even when observing the naive Bayes classifier in the other data
sets, its performance when trained with moments tended to be between 6% and 9% lower
than the best classifier. This behaviour is hypothetically due to the fact that naive Bayes
assumes that the features considered are linearly independent. This aspect has been verified
with deep features. In contrast, the features extracted with moments are highly correlated
with each other, as can be seen in the work of Putzu et al. [89], where it is highlighted that
feature selection applied to moments does not bring any benefit, unlike other categories of
descriptors. This aspect provides additional robustness to their performance.

Finally, some useful guidelines emerged from the results of this work:

• The moments offered comparable performance to deep features, despite being repre-
sented by order of magnitude fewer features than deep features.

• The moments provided extremely robust results, with a reduced standard deviation
per category in all the experiments performed.

• Cartesian and harmonic moments were behaved the best, both on average and in
terms of the number of absolute best results they offered in the different experiments.
They were also the most stable, with low standard deviations.

• There was no tendency for the moments to improve over the years; as mentioned
in the previous point, the Cartesian moments performed best among the older ones.
Moreover, the use of the fractional domain, one of the most recent innovations in the
field, did not bring any significant advantage, as can be seen by comparing against
the equivalent moments in the integer domain.
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• The naive Bayes classifier was not suitable for the task under consideration, especially
when trained by any category of moments, since the assumption that the features were
linearly independent was too strong for this type of descriptors.

• Although moments allowed high accuracies for the SVM, k-NN and BT classifiers,
the classifier that benefited the most from the moments was the k-NN classifier. It
achieved significant absolute best results in all data sets except COVIDx CT-2A, where
it had a marginal difference with the absolute top performer, the SVM.

6. Conclusions

This paper analysed the effectiveness of the best-known types of orthogonal moments
in diagnostics when applied to diverse medical images. We first reviewed the state-of-the-
art orthogonal moments, summarising their main categories and describing their main
characteristics and differences. We then presented their main areas of application, with a
particular emphasis on medical applications, which was the target of this work. We then
evaluated orthogonal moments in different medical diagnostic tasks, highlighting the per-
formance of orthogonal moments by comparing them with the best-known texture features
and the latest CNNs features. This evaluation was carried out with five different classifi-
cation techniques to guarantee that the results obtained were unrelated to the individual
classifiers’ capabilities.

After analysing the experimental results presented in Section 5.3, we found that
although CNNs showed impressive performance in all tasks, orthogonal moments proved
to be a strong competitor, with comparable or even better results in some cases. It is
worth noting that orthogonal moments require significantly fewer resources than CNNs,
allowing them to be used in time-critical applications. In addition to being computationally
expensive, deep learning approaches require large and diverse training sets and have
limited robustness to geometric transformations, requiring data augmentation strategies
to improve geometric invariance at the cost of time/space complexity. For these reasons,
handcrafted features, particularly orthogonal moments, remain highly competitive in these
domains. Orthogonal moments also outperform texture features, especially the well-known
LBP descriptors.

Comparing the orthogonal moments among themselves, we observed that those
defined in the Cartesian domain, although the least recent, performed the best. On the
other hand, the more recent ones, of circular type and belonging to the fractional domain,
did not seem to lead to further relevant benefits. It is not completely clear whether this
trend was due to the different formulations or whether it was due to the order of moments
used (see Section 4.2). From an empirical analysis, we observed that by increasing the order
of the moments, the added features were irrelevant or with a low predictive power, but a
thorough analysis of the moment order, even with fractional type orders, could be useful to
confirm this trend.

Therefore, a challenging future investigation could be related to Cartesian moments
on the fractional domain to see if they can bring more benefits to this task. Moreover,
given their high performance, a further analysis could be relevant to verify the benefits of a
combination of Cartesian moments. Another exciting direction of research could be related
to the use of colour information, which is crucial for medical image analysis applications,
but at the same time has been overlooked in the calculation of orthogonal moments.
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Abbreviations
The following abbreviations are used in this manuscript:

CAD Computer-aided diagnostic
CNN Convolutional neural network
VGGNet Very deep convolutional networks
LBP Local binary pattern
CT Computed tomography
MR Magnetic resonance
LM Continuous Legendre moments
CHM Discrete Chebyshev moments
CH2M Discrete Chebyshev moments of the second order
ZM Zernike moments
PZM Pseudo-Zernike moments
OFMM Orthogonal Fourier–Mellin moments
CHFM Chebyshev–Fourier moments
PJFM Pseudo-Jacobi–Fourier moments
JFM Jacobi–Fourier moments
FrJFM Fractional-order Jacobi–Fourier moments
BFM Bessel–Fourier moments
RHFM Radial harmonic Fourier moments
EFM Exponent Fourier moments
PCET Polar complex exponential transform
PCT Polar cosine transform
PST Polar sine transform
FrRHFM Fractional-order radial harmonic Fourier moments
FrPCET Fractional-order polar complex exponential transform
FrPCT Fractional-order polar cosine transform
FrPST Fractional-order polar sine transform
GLCM Grey-level co-occurrence matrix
SVM Support vector machine
k-NN k-nearest neighbour
DT Decision trees
NB Naive Bayes
BT Bagged trees
TP True positive
FP False positive
TN True negative
FN False negative
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