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Abstract

In the last sixty years there have been several attempts to build a measure of evidence
that covers, in a Bayesian context, the role that the p-value has played in the frequentist
setting. A prominent example is the decision test based on the Bayes Factor. Worth to
mention it is also the e-value, another Bayesian evidence measure on which the Full
Bayesian Significance Test procedure is based.

The aim of this thesis is to make a contribution to the Bayesian testing procedure of
precise hypotheses for parametric models. To this end we propose a Bayesian measure
of evidence, called Bayesian Discrepancy Measure, which gives an absolute evaluation
of the suitability of a hypothesis H in light of the prior knowledge about the parameter
and the observed data. The starting point is the idea that a hypothesis may be more or
less supported by the available evidence contained in the posterior distribution. Since
reference is made to a precise hypothesis H and no alternative against this hypothesis
is considered, we do not adopt the approach whereby there is no test that can lead
to the rejection of a hypothesis except by comparing it with an alternative one (the
Bayes factor in the Bayesian perspective and Neyman-Pearson-Wald in the frequentist
one). The proposed measure of evidence has the desired properties of invariance under
reparametrisations and consistency for large samples.

In this thesis we also show that it is possible to construct a testing procedure, based
on the Bayesian Discrepancy Measure, that allows to compare parameter functions from
two independent populations. This approach is flexible, as it can be adapted to take into
account different distributions and different parameter transformations. Moreover, we
address the problem of comparing k parameters, or their transformations, from inde-
pendent populations. This is not a simple extension of the procedure for two popula-
tions, due to the geometry of the hypothesis and the parameter space, and it therefore
demands a separate discussion. In conclusion, this methodologies enables us to tackle
some problems that are not yet covered in the literature.
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Chapter 1

Introduction

This thesis deals with the description and discussion of a new parametric test referred
to as Bayesian Discrepancy Test (BDT). Before giving a detailed description of the test,
and its development potential, it is useful to briefly review the history of the testing
procedures in order to highlight similarities and differences to the existing tests and thus
to determine its proper collocation in the literature.

In this regard it is appropriate to anticipate that the BDT is a test having a valuta-
tive nature, in the sense that it measures the conformity of the parametric hypothesis H
of interest by means of an appropriate evidence measure, called Bayesian Discrepancy
Measure (BDM), which does not fix or consider any alternative hypotheses to H .

In some way, with the BDT there is a return to the classical idea of testing, which
goes back to the pioneering work of K. Pearson, Yule, Gosset (“Student”), etc., and to
the fundamental contribution of Fisher who outlined the theory of pure significance.

1.1 A bit of history

In 1895, the journal Biometrika published K. Pearson’s work on what would become
known as the Chi-Square goodness of fit test and the Chi-Square Test of Independence
between two variables expressed in a contingency table. Shortly afterwards, in the period
1907-1911, the same journal accepted some articles by Gosset concerning the hetero-
geneity or bias test (spatial poissonianity test) and the paired “Student” test, a test for
comparing the averages of measurements carried out, under two different conditions, on
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2 Chapter 1

the same statistical units. It is known that modern statistical test theory has developed
from a frequentist perspective.

It was soon realised that the adopted procedures (and especially their logic) could
be extended to a much broader range of situations and models. The most capable and
ready to grasp its potential was Fisher who, in 1921, succeeded in giving an organic
theoretical framework to what is remembered as the theory of pure significance. Fisher
himself, more than anyone else, proposed and developed an impressive number of tests.

K. Pearson, Gosset and Fisher adopted a measure of evidence called p-value, which
is defined as the probability of obtaining a result at least as extreme as the one obtained, if
the null hypothesisH0 and all other premises of the model were indeed valid. According
to Fisher, ifH0 is true it is unlikely to obtain a low p-value. If this happens, either we are
in the presence of a rare event or H0 is false. About an experiment that had produced a
very small p-value, Fisher’s comment (see Fisher, 1956 p. 39) was

“The force with which such a conclusion is supported is logically that of the simple dis-
junction: Either an exeptionally rare chance has occurred, or the [. . . hypothesis H0 . . . ] is
not true”.

The expression “rare chance” refers to the (inevitably subjective) concept of the p-value
threshold. While arguing that the compatibility of observations with respect to other
hypotheses should not be excluded, Fisher always claimed that

“it should be noted that the null hypothesis is never proved or established, but is possibly
disproved, in the course of experimentation. Every experiment may be said to exist only in
order to give the facts a chance of disproving the null hypothesis”

see Fisher, 1935 p. 16. Thus he argued that the p-value was the absolute measure of
compatibility, i.e. the “closeness” of the observations with respect to the hypothesisH0.
Specifically, the test is the instrument pour excellence for falsifying theories by means
of experiments.

The incredible success of the significance test among the scientific community is
given by

(a) theoretical and analytical developments mainly due to Fisher himself;

(b) the relative simplicity of the test application due, certainly, to the possibility of pro-
viding it with a paradigmatic form;
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(c) the divulgative skills of the authors of the test. Fisher himself was the author of
highly appreciated manuals oriented towards researchers;

(d) the need of researchers to limit the time and cost of research, with the possibility of
access to procedures valid for small samples;

(e) the printing of statistical tables, by K. Pearson, Fisher, Yates, Sheppard, F. N. David,
Snedecor, etc.

Still in the frequentist field and oppositely to the pure significance theory, Neyman
and E. S. Pearson, in subsequent articles (1928-1932), set the foundations of what they
called hypothesis-testing theory. It should be noted that this proposal started out as an at-
tempt to develop the theory of pure significance and that, even today, Neyman-Pearson’s
theory adopts notions and terms that originated with the significance test.

After opposing the null hypothesis H0 with the alternative hypothesis H1, Neyman
and E. S. Pearson conceived the hypothesis test as a real decision betweenH0 andH1. It
was Neyman himself, in later articles, who named his theory as the theory of inductive
behaviour.

The test requires to fix pre-experimentally the probability α of rejecting H0 when
it is true (error of the first kind) and to determine, as a function of α and on the basis
of an appropriate optimality criterion, the partition {Aα

H0
,Rα

H0
} of the sample space,

whose elements are called acceptance and rejection regions of H0. If the observations
fall in Aα

H0
[in Rα

H0
] one accepts [one rejects] H0. The above criterion ensures that the

probability of accepting H0 when H0 is false (error of the second kind) is minimal.
The term pre-experimental, associated with the hypothesis test, indicates that the

regions Aα
H0

and Rα
H0

are established before the experiment is carried out and that, only
after the experiment is concluded, the test decides which hypothesis to assume. On the
contrary, note that the significance test is post-experimental, in the sense that the p-value
can only be calculated once the experiment is concluded. Note again that, unlike all
other tests in the literature (whether frequentist or Bayesian), the hypothesis test does
not include any measure of evidence.

A few years later, Neyman and E. S. Pearson were joined by Wald who, by making
hypothesis testing part of the more general decision theory under uncertainty, caused a
further departure from Fisher’s approach.
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According to the pioneers of the theory of statistical testing, K. Pearson, Gosset,
Yule and Fisher, a test had to consider only the hypothesis H0, without excluding the
compatibility of the observations with other unspecified hypotheses, and without thereby
leading to the specification of an alternative hypothesis H1. This fact was, in Fisher’s
opinion, “the serious nonsense” committed by Neyman and E. S. Pearson. Later on,
Fisher modified the theory of pure significance proposing the theory of significance in
which the alternative hypothesis H1 was also included.

The modifications, in practice, did not change the methodological structure of the test
in which the distribution of the test statistics, subordinate toH0, always plays an essential
part. This hypothesis now plays the role of a privileged hypothesis, while H1 intervenes
only at the moment of the calculation of the p-value. In this way, the test of significance
is not given the accentuated comparative character that is proper to hypothesis-tests and,
above all, is not led to deny the post-experimental and valutative characters of the test.
In conclusion, it is worth mentioning that after Fisher’s death in 1962, the significance
test was also known as Null Hypothesis Significance Test (NHST).

1.1.1 The Bayesian proposals

It took more than forty years to see the first attempts to construct a Bayesian test, a test that
required the elicitation of prior distributions (or that adopted default prior distributions),
that accepted the likelihood principle and that, in short, was fully based on the Bayesian
paradigm. In this regard, see the following comment made by Lindley, 1965 (preface p.
xi)

“. . . hypothesis testing looms large in standard statistical practice, yet scarcely appears as
such in the Bayesian literature.”

Among the Bayesian statisticians who dedicated themselves to this task, it should be
mentioned

• Lindley, 1965 who worked on “translating”, from a Bayesian perspective, some of
the more usual frequentist tests. He also developed the idea that under certain con-
ditions (for example, assuming a suitable non-informative distribution as a prior
distribution, etc.) frequentist and Bayesian tests provide the same inferential con-
clusions.
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• Guttman, 1970, Zellner, 1971, Box and Tiao, 1973, who redeveloped numerous
multivariate statistics tests from a Bayesian perspective and worked on the devel-
opment of predictive tests, see the summary due to Geisser, 1993.

• Box, 1980, revisiting Fisher’s p-value idea in a Bayesian key, proposed a method
for analyzing the conformity of the data to a given model through a new Bayesian
evidence measure called prior predictive p-value. Guttman, 1967 and Rubin,
1984, independently from each other, attempted to eliminate some of the prob-
lems by presenting a new measure, the posterior predictive p-value. This was
followed by some new proposals from Bayarri and Berger, 2000. One of them is
called conditional predictive p-value.

• Evans, 1997 who proposed a test that has a Bayesian version of the surprise index
as its measure of evidence. He relied on the work done by Weaver, 1948, 1963,
that brought the first frequentist surprise index definition, and Good, 1950 which
gave a second frequentist reformulation.

• J. O. Berger, 1985; J. O. Berger and Delampady, 1987; J. O. Berger and Sel-
lke, 1987 used the Bayes factor, a measure of evidence introduced by Jeffreys,
1939 to develop a Bayesian test comparing two hypotheses H0 and H1. O’Hagan,
1995 with the fractional Bayes factor and J. O. Berger and Pericchi, 1996 with
the intrinsic Bayes factor gave additional decisive contributions to the problem of
comparing nested models.

• Pereira and Stern, 1999 presented the Full Bayesian Evidence Test (FBST). It is
based on a Bayesian measure of evidence for precise hypotheses which aims to
provide a Bayesian alternative to significance tests. Their proposal involved the
definition of a subset of the parameter space called Highest Posterior Density Set
(HPDS) which, as stated by the authors, is “tangent” to the set defining the null
hypothesis H0. The measure of evidence in favour of H0 is the complement of
the posterior probability, i.e. its credibility, in the “tangent” region. Notice that
this first formulation received some criticism concerning the non-invariance of
the measure with respect to alternative parameterizations of the parameter space.
Madruga et al., 2003, inspired by Good’s concept of relative surprise, proceeded
to the introduction of a reference function to overcome this obstacle. In this way,
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the evidence measure is no longer based on the integration over the HPDS, but it
considers a new integration region called Highest Relative Surprise Set (HRSS).
For a full exposition of the FBST see Pereira and Stern, 2020.

The Bayesian tests for comparing parameters of independent populations, which are
endowed with a certain degree of generality and meet with a fair degree of success in
the world of research, are essentially these last two test in the list.

In some of the aforementioned attempts to construct Bayesian tests it is not uncom-
mon to encounter ideas and insights of interest. This is the reason why the Surprise
index, the Bayesian p-value proposals, the test based on the Bayes factor and the FBST
are given in Appendix A in a slightly more analytical form. For anyone wishing to de-
velop a Bayesian test an in-depth critical study of the history of the ideas that gave rise
to and developed Bayesian tests is advisable.

1.2 Some remarks

It is well known that, in the research world, the significance test and the hypothesis test
are by far the most popular tests. Moreover, it is a fact that prejudices and psychological
difficulties connected to the elicitation of prior distributions, or even to the adoption of
non-informative a priors, have been and still are a serious obstacle to the affirmation of
Bayesian procedures and to the development of Bayesian tests. This circumstance is the
real responsible for the use of frequentist tests by the Bayesian statisticians themselves
when working with biologists, doctors, psychologists, economists, who only know “clas-
sical” tools.

Over the past two decades, especially in the psychology field, following repeated
announcements of “new discoveries” or even “significant experimental results” that de-
molished established theories, succeeded by quick turnarounds, many attempts have been
made to address the distortions associated with the often clumsy use of the p-value. A
warning, addressed to researchers with limited statistical expertise, and not only to them,
is to be found in the essay/manifesto, see Benjamin et al., 2018, of only three pages signed
by no less than 72 authors. An essay which, in challenging aspects that may have been
considered long-established, makes it clear, already in the subtitle, that
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“We propose to change the default P-value threshold for statistical significance from 0.05
to 0.005 for claims of new discoveries.”

The trend, now dating back 30 years, to reduce the distances between opposing ap-
proaches and viewpoints has also affected the Fisher and Neyman - Pearson schools
up to the open proposal by Lehemann, Neyman’s student, for the unification of theo-
ries of significance and hypothesis testing (see Lehmann, 1993; Lehmann, 2011). A
visible manifestation of this widespread tendency is that in recent and less recent publi-
cations and, above all, in ordinary statistical practice, the Fisher and Neyman - Pearson
approaches are too often syncretically confused. One reason for this mixture is due to the
fact that the Neyman-Pearson approach does not require a measure of evidence; thus the
investigator, who often reasons in terms of evidence measures, is inclined to resort to the
p-value. Such a mixed approach, unable to capture the salient and distinctive method-
ological aspects of the two theories, fatally ends up with impoverishing and confusing
the same statistical analysis.

Prominent examples of this practice, which is now widespread, concern very expen-
sive trials requiring numerous statistical units; a typical one is the testing of new drugs.
In the design phase of the clinical experiment, i.e. ex ante, it is usual to resort to hypoth-
esis testing to establish the sample size to be adopted, after having preliminarily fixed
the first kind error, e.g. α = 0.01, and imposed a constraint on the error of the second
kind, e.g. β ≤ 0.15 (or, equivalently, to the power of the test η ≥ 1 − β). Once the
experiment is completed, when the results are evaluated, i.e. ex post, the significance
test is used (see Spiegelhalter, 2019).

The spirit of reconciliation between these approaches has also made its way among
Bayesians, with the imposition of an artificial distinction between Bayesian approaches.
The first is called objective Bayesian, which forbids the involvement in the analysis of any
information held by the investigator and which, consequently, prescribes the exclusive
use of non-informative default priors. The second, called subjective Bayesian, which
does not exclude the use of elicited priors.

Among objective Bayesians, there has arisen a large strand of studies with the inten-
tion of demonstrating the substantial correspondence between frequentist and Bayesian
results. Procedures involving the re-use of the data are not infrequent: in the first phase
the data are used to construct the prior, in the second, with the same data, inferences
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are made. This is all in the presence of more or less open violations of the likelihood
principle. See in this respect J. O. Berger and Sellke, 1987, O’Hagan, 1995, J. O. Berger
and Pericchi, 1996, Bayarri and Berger, 2000, as well as the extensive bibliography to
be found there.

1.3 Outline of the thesis

In Chapter 2 we define the Bayesian Discrepancy Measure, with the intent to make a con-
tribution to the Bayesian procedure of testing precise hypotheses for parametric models.
It is an evidence measure which allows one to evaluate the suitability of a given hypoth-
esis with respect to the available information (prior law and data). The definition of
the proposed index is presented for a scalar parameter of interest, both in the absence
or presence of nuisance parameters. In order to facilitate its comprehension, different
illustrative examples are discussed involving one or two independent populations. In
addition, a comparison between the Bayesian Discrepancy Test and the Full Bayesian
Significance Test is presented.

In Chapter 3 we extend this testing procedure allowing to compare parameter func-
tions from two independent populations. Some particular scenarios are developed ex-
plicitly and the related examples are presented. The proposed approach is flexible, as it
can be adapted to take into account different distributions and different parameter trans-
formations. In addition, this methodology enables us to tackle some problems that are
not yet covered in the literature.

In Chapter 4 we propose a general procedure, based on the BDT, for comparing
k parameters, or their transformations, from independent populations. The presented
approach is not a simple extension of the one outlined in the previous chapter since
the geometry of the hypothesis and the parameter space require the construction of an
entirely new approach. Once again, this methodology allows us to discuss problems not
yet addressed in the literature.

In Chapter 5 we deal with the demanding problem of testing partial correlation co-
efficients when considering a multivariate Gaussian model. This discussion is comple-
mented by several examples.

Finally, Chapter 6 contains conclusions and directions for further research.



Chapter 1 9

This work has led to the publications of the following short papers, see Bertolino,
Columbu, and Manca, 2022 and Manca et al., 2022. Further papers are under review,
see Bertolino et al., 2021 and Bertolino, Columbu, Manca, and Musio, 2022, 2023.
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Chapter 2

A new Bayesian Evidence Measure

Consider a parametric statistical model

F = {f(x|θ), x ∈ X ,θ ∈ Θ} (2.1)

indexed on the parameter θ, where Θ ⊆ Rp is the parameter space and X ⊆ Rk is
the sample space. Let g0 be a prior distribution over Θ ⊆ Rp that summarizes the
subject’s prior knowledge. Given datax = (x1, . . . , xn), consisting of n iid observations
dependent on the parameter θ, the posterior probability distribution is denoted by

g1(θ|x) ∝ g0(θ) · L(θ|x),

where L(θ|x) =
∏n

i=1 f(xi|θ) is the likelihood function. Assume that

(a) the model is identifiable;

(b) f(x|θ) have support not depending on θ, ∀ θ ∈ Θ;

(c) the operations of integration and differentiation with respect toθ can be exchanged.

We also assume a prior probability density g0(θ) following Cromwell’s Rule which
states that “it is inadvisable to attach probabilites of zero to uncertain events, for if the
prior probability is zero so is the posterior, whatever be the data. A probability of one
is equally dangerous because then the probability of the complementary event will be
zero” (see Section 6.2 in Lindley, 1991).

11



12 Chapter 2

First we discuss the case of a scalar parameter. Then we discuss the case of a scalar
parameter of interest in the presence of nuisance parameters.

2.1 The Bayesian Discrepancy Measure for a scalar pa-
rameter

Assume that k = p = 1. Given an iid random sample x = (x1, . . . , xn) from PX
θ ,

let L(θ|x) be the corresponding likelihood function based on data x and let g0(θ) and
g1(θ|x) be, respectively, the prior and the posterior distributions on Θ ⊆ R.
Moreover, given the posterior distribution functionG1(θ|x), the posterior median is any
real number m1 which satisfies the inequalities G1(m1|x) ≥ 1

2
and G−

1 (m1|x) ≤ 1
2
,

where G−
1 (m1|x) = lim

θ↑m1

G1(θ|x). In the case in which G1 is continuous and strictly

increasing we have m1 = G−1
1 (1

2
|x). We are interested in testing the precise hypothesis

H : θ = θH . (2.2)

In order to measure the discrepancy of the hypothesis (2.2) w.r.t. the posterior distribu-
tion, in the case Θ = R, we consider the following two intervals:

1. the discrepancy interval

IH =


(m1, θH) if m1 < θH

{m1} if m1 = θH ,

(θH ,m1) if m1 > θH

(2.3)

2. the external interval

IE =

{
(θH ,+∞) if m1 < θH

(−∞, θH) if θH < m1.
(2.4)

When m1 = θH , the external interval IE can be (−∞,m1) or (m1,+∞). Note that, by
construction, P(IH ∪ IE) = 1

2
(see Figure 2.1). If the support of the posterior is a subset

of R, the intervals IH and IE can be defined consequently.
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IHIE

m1

ΘH

HΘL

@AD

IH IE

HΘL

@BDm1

ΘH

Figure 2.1: Posterior density g1(θ|x), the corresponding discrepancy interval IH and external
interval IE when θH < m1 ([A]) and θH > m1 ([B]).

Definition 2.1. Given the posterior distribution function G1(θ|x), we define the Baye-
sian Discrepancy Measure of the hypothesis H as

δH = 2P(θ ∈ IH |x) = 2

∫
IH

dG1(θ|x). (2.5)

The measure can be also computed by means of the external interval as

δH = 1− 2P(θ ∈ IE|x) = 1− 2

∫
IE

dG1(θ|x), (2.6)

which can also be written as

δH = 1− 2min{G1(θH |x), 1−G−
1 (θH |x)}, (2.7)

where G−
1 (θH |x) = lim

θ↑θH
G1(θ|x). In the absolutely continuous case, this simplifies to

δH = 1− 2min{G1(θH |x), 1−G1(θH |x)}. (2.8)

Formulations (2.7) and (2.8) have the advantage of not involving the posterior median in
the integral computation. Furthermore, one can interpret the quantitymin{G1(θH |x), 1−
G1(θH |x)} as the posterior probability of a “tail” event concerning only the precise hy-
pothesis H . Doubling this “tail” probability, related to the precise hypothesis H , one
gets a posterior probability assessment about how “central” the hypothesis H is, and
hence how it is supported by the prior and the data.



14 Chapter 2

It is important to highlight that the hypothesis H induces the following partition

{
Θa = (−∞, θH), ΘH = {θH}, Θb = (θH ,∞)

}
(2.9)

of the parameter space Θ. Then formulations (2.7) and (2.8) can be equivalently ex-
pressed as

δH = 1− 2 ·min
a,b

{
P(θ ∈ Θa|x), P(θ ∈ Θb|x)

}
. (2.10)

The last formula can be naturally extended to the case where, besides the scalar parameter
of interest, nuisance parameters are also present. This issue will be developed in Section
2.2.

As pointed out before, the further θH is from the posterior median m1 of the dis-
tribution function G1(θ|x), the closer δH is to 1. It can then be said that H does not
conform to G1(θ|x). On the contrary, the smaller δH the stronger is the evidence in fa-
vor of H . Following this idea, we can define a general testing procedure by choosing a
certain threshold to establish how large the measure must be, before we can state that H
does not conform to the posterior distribution function.

Definition 2.2. The Bayesian Discrepancy Test (BDT) is the procedure based on the
Bayesian Discrepancy Measure (BDM) that rejects the hypothesis H when δH is higher
than some critical value ω ∈ {0.95, 0.99, 0.995, 0.999, . . . }.

As for all measures of evidence (Bayesian or frequentist), the chosen value for ω in-
evitably has a character of subjectivity. Fisher himself adopted a fixed level and, speak-
ing of the values at which the χ2-test statistic is significant at a given level, he justifies
his reasoning (see Lehmann, 1993) as follows “... we do not want to know the exact
value of P for any observed χ2, but, in the first place, whether or not the observed value
is open to suspicion. If P is between .1 and .9, there is certainly no reason to suspect
the hypothesis tested. If it is below .02, it is strongly indicated that the hypothesis fails to
account for the whole of the facts. We shall not often be astray if we draw a conventional
line at .05 and consider that higher values of χ2 indicate a real discrepancy”.

For a more detailed discussion on the threshold choice for the BDT see the remark
in Example 2.4.

Proposition 2.3. The following properties apply to the BDM, for a scalar parameter θ:
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(i) δH always exists and, by construction, δH ∈ [0, 1);

(ii) δH is invariant under invertible monotonic transformations of the parameter θ;

(iii) if θ∗ is the true value of the parameter and θH = θ∗, then δH ∼ Unif(·|0, 1), for
all sample sizes n; if θH ̸= θ∗, then δH

p→ 1 (consistency property).

Proof. (i) The first property follows immediately from the fact that in (2.5) the pos-
terior probability P(θ ∈ IH |x) ∈

[
0, 1

2

]
.

(ii) Let λ = λ(θ) be an invertible monotonic transformation of the parameter θ and
letK1 be the cumulative distribution function of the parameter λ. We denote with
λH = λ(θH) and we notice that m′

1 = λ(m1) thanks to the monotonic invariance
of the median. Suppose, for simplicity, that θH > m1. Then

δH = 2

∫ θH

m1

dG1(θ|x) = 2
∣∣∣ ∫ λH

m′
1

dK1(λ|x)
∣∣∣.

Therefore, the invariance of the BDM follows immediately from the invariance
of the median under invertible monotonic transformations. Notice that if instead
of the median m1 we consider, for example, the posterior mean E(θ|x), which is
not invariant under invertible monotonic reparametrizations, the property will not
hold in general. Moreover, E(θ|x) for some models may not even exist.

(iii) Let us examine the first part of the statement for which θH = θ∗. Suppose that
θH < m1. The BDM is defined as

δH = 2

∫ m1

θH

dG1(θ|x)

= 1− 2

∫ θH

−∞
dG1(θ|x)

= 1− 2 G1(θH |x).

(2.11)

Using the integral transform and the fact that we have supposed θH < m1, we
easly find that

G1(θH |x) =
∫ θH

−∞
dG1(θ|x) = W ∼ Unif

(
·
∣∣0, 1

2

)
.
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Then, since δH = 1− 2W , we find δH ∼ Unif(·|0, 1). A similar proof holds for
θH > m1. If, instead, θH ̸= θ∗ and n → ∞, under suitable regularity conditions
(see for instance Section 5.3.2, p. 287 in Bernardo and Smith, 1994) it is well
known that g1(θ|x) is concentrated around θ∗. In particular, the posterior median
m1 converges in probability to θ∗. Again, suppose for instance that θH < θ∗, then
limn→∞ δH = 2 limn→∞

∫ m1

θH
dG1(θ|x) = 2 · 1

2
= 1.

2.2 The Bayesian Discrepancy Measure in presence of
nuisance parameters

Suppose that p ≥ 2 and k ≥ 1. Let φ = φ(θ) be a scalar parameter of interest, where
φ : Θ → Φ ⊆ R. Let us further consider a bijective reparametrization θ ⇔ (φ, ζ),
where ζ ∈ Z ⊆ Rp−1 denotes an arbitrary nuisance parameter, which is determined
on the basis of analytical convenience (note that the value of the evidence measure is
invariant with respect to the choice of the nuisance parameter). We consider hypotheses
that can be expressed in the form

H : φ = φH , (2.12)

where φH is known as it represents the hypothesis that it is of interest to evaluate. The
transformation φ must be such that, for all θ ∈ Θ and for all φH ∈ Φ, it can always be
assessed whether φ is strictly smaller, strictly larger or equal to φH (i.e. φ < φH either
φ > φH , or φ = φH). Hypothesis (2.12) and transformation φ univocally identify the
partition

{
Θa, ΘH , Θb

}
of the parameter space Θ, with

Θa =
{
θ ∈ Θ | φ < φH

}
ΘH =

{
θ ∈ Θ | φ = φH

}
.

Θb =
{
θ ∈ Θ | φ > φH

} (2.13)

We call any hypothesis of type (2.12), which identify a partition of the form (2.13), a
partitioning hypothesis. It is easy to verify that many commonly used hypotheses are
partitioning. In this thesis we only consider hypotheses of this nature. In this setting, we
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express the BDM as

δH = 1− 2 ·min
a,b

{
P(θ ∈ Θa|x), P(θ ∈ Θb|x)

}
= 1− 2 ·

∫
IE

g1(θ|x) dθ,
(2.14)

where the external set is given by

IE = argmin
a,b

{
P(θ ∈ Θa|x), P(θ ∈ Θb|x)

}
. (2.15)

In the particular scenario where the marginal posterior

h1(φ|x) =

∫
φ(θ)=φ

g1(θ|x)dθ , ∀φ ∈ Φ,

of the parameter of interest φ can be computed in a closed form, the hypothesis (2.12)
can be easily treated using the methodologies seen in Subsection 2.1, i.e. the BDM is
computed by means of formula (2.5) or (2.6) applied to the marginal.
Properties reported in Proposition 2.3 naturally extend to the setting we just presented.

2.3 Illustrative examples

The simplicity of the BDT is highlighted by the following examples, some of which
deal with cases not usually considered in the literature. Examples 2.4 and 2.5 focus on a
scalar parameter of interest, while Examples 2.6, 2.7, 2.8, 2.9, 2.10 also contain nuisance
parameters. All of the codes for these examples can be found online in Manca, 2022.

In all of the examples we have adopted Jeffrey’s priors (see Yang and Berger, 1996
for a catalog of non-informative priors). Of course, other priors (objective or subjective)
could be equally used.

2.3.1 Examples of the univariate parameter case

Example 2.4. Exponential distribution
Let x = (x1, . . . , xn) be an iid sample of size n from the exponential distribution X ∼
Exp

(
x|θ−1

)
, with θ ∈ R+. We are interested in the hypothesis H : θ = θH . Assuming
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Figure 2.2: Posterior density function g1(θ|nx̄) and intervals IH = (m1, θH) and IE =

(θH ,∞), using data from Example 2.4.

a Jeffreys’ prior for θ, i.e. g0(θ) ∝ θ−1, the posterior distribution is given by g1(θ|x) ∝
θ−n−1 exp{−nx̄ · θ−1}, with x̄ the sample mean.

Figure 2.2 shows the posterior density function as well as the discrepancy and the
external intervals for H : θ = θH = 2.4 and the MLE x̄ = 1.2 for three sample sizes
[A] n = 6, [B] n = 12, [C] n = 24. In [A] we have a posterior median m1 = 1.27 and
δH = 0.832, while in [B]m1 = 1.23 and δH = 0.960, in [C]m1 = 1.22 and δH = 0.997.
In case [A] we do not rejectH while in [B] and in [C] we are led to reject the hypothesis.

Note that in all scenarios considered, we find the following relation between δH and
the p-value,

p-value = 1− δH (2.16)

(in [A] δH = 0.832 and p-value= 0.168, in [B] δH = 0.96 and p-value= 0.04, while
in [C] δH = 0.997 and p-value= 0.003). This result depends clearly on the use of the
Jeffreys’ prior, which is a matching prior for a scalar parameter (see Ruli and Ventura,
2021).

Remark 1. The fact that classical and Bayesian procedures, under certain conditions,
produce the same conclusions is well known (see, for instance, Lindley, 1965). The
linear relationship (2.16) also occurs in other simple cases. Even if it does not hold
for more complicated models and in general for proper priors, it suggests a relationship
between the traditional p-value levels of significance {0.05, 0.01, 0.005, . . . }, and the
critical values for the discrepancy measure {0.95, 0.99, 0.995, . . . }. In this thesis we
will not investigate the problem of the choice of the BDM threshold ω. Several aspects
about the choice of p-values thresholds have been considered in Benjamin et al., 2018
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Figure 2.3: BDM for n increasing and for different values of the MLE. Case [A] with
MLE = 0.8 (a), 1.2 (b), 1.6 (c) and case [B] with MLE = 3.2 (f), 3.6 (e), 4 (d).

and can be suitably extended to the BDM.

Finally, to conclude Example 2.4, it is useful to show the trend of the BDM when
varying n = 1, 2, . . . , 25 for six values of the MLE: (a) 0.8, (b) 1.2, (c) 1.6 (case [A])
and (d) 4.0, (e) 3.6, (f) 3.2 (case [B]), see Figure 2.3. In order to explain the difference
between the BDM trends in cases [A] and [B], consider that:

(i) in case [A] the posterior medianm1 < θH = 2.4, whereas in case [B]m1 > θH =

2.4;

(ii) δH is monotonically increasing, both with respect to n, and with respect to the
distance |m1 − θH |;

(iii) the posterior g1 always has a positive asymmetry, which decreases as n increases;

(iv) the trend difference of the BDM in cases [A] and [B] depends on the fact that the
posterior g1 has ‘small’ tails on the left-hand side of m1 and ‘large’ tails on the
right-hand side.

Moving forward in the discussion, in order to highlight the valutative nature of the
BDT, it is worth pointing out that it allows the separate and simultaneous testing of ℓ ≥ 2

hypotheses
Hj : φ = φj, j = 1, 2, . . . , ℓ , (2.17)
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as shown in Example 2.5. Remember that with the decisionist approach, among the
ℓ competing hypotheses, only one is accepted. On the contrary, under the valutative
approach that allows the valutation of a single hypothesisHj , it may happen that several
hypotheses are supported by the data, or even that all hypotheses must be rejected.

Example 2.5. In the 1700s, several hypotheses Hj : θ = θj were formulated about the
birth masculinity rate θ = M

M+F
. Among them we consider θ1 = 1

2
(J. Bernoulli), θ2 = 13

25

(J. Arbuthnot), θ3 = 1050
2050

(J. P. Süssmilch), θ4 = 23
45

(P. S. Laplace). We assume that the
gender of each newborn is modeled as a Bin(·|1, θ). Then, using data recorded in 1710
in London (see, for instance, Spiegelhalter, 2019), with 7640 males and 7288 females
(the MLE is θ̂ = 0.512) and assuming the Jeffreys’ prior Beta(θ|1, 1), we compute δHj

using the Normal asymptotic approximation

δHj
∼= 1− 2 ·

∫
IjE

g̃1
(
θ|θ̂, 1

n
θ̂(1− θ̂)

)
dθ, j = 1, 2, 3, 4,

with g̃1 the Normal distribution. Since δH1 = 0.996, δH2 = 0.955, δH3 = 0.079, δH4 =

0.132, we can conclude that the first two hypotheses has to be rejected, while there is not
enough evidence to reject the hypotheses made by Süssmilch and Laplace.

2.3.2 Examples of the more general case

The examples presented hereafter, can be distinguished by tests concerning a parameter
or a parametric function of a single population, and tests concerning the comparison of
two independent population parameters.

Tests involving a single population

Example 2.6. - Test on the shape parameter, mean and variance of the Gamma distribu-
tion
Let x = (x1, . . . , xn) be an iid sample of size n from X ∼ Gamma

(
x|α, β

)
, (α, β) ∈

R+×R+. We denote bymg the geometric mean of x. The likelihood function for (α, β)
is given by

L(α, β|x) ∝
(

βα

Γ(α)
·mα

g · e−x̄·β
)n

.
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For the fictitious data x = (0.8, 1.1, 1.2, 1.4, 1.8, 2, 4, 5, 8), we find that the MLEs are
α̂ = 1.921 and β̂ = 0.7572.

We are interested in testing the hypotheses [A] HA : α = αH , with αH = 2.5, [B]

HB : µ = µH , with µH = 6, and [C] HC : σ2 = σ2
H , with σ2

H = 2, where µ =
α

β
and

σ2 =
α

β2
denote the mean and the variance of X .

Adopting the Jeffreys’ prior for (α, β), i.e.

g0(α, β) = gα0 (α) · g
β
0 (β) ∝

√
α · ψ(1)(α)− 1 · 1

β
,

where ψ(1)(α) =
∑∞

j=0(α+j)
−2 denotes the trigamma function, the posterior for (α, β)

is given by g1(α, β | x) = k · gα0 (α) · g
β
0 (β) ·L(α, β|x), with normalizing constant k.

• Case [A]
The hypothesisHA identifies the vertical straight line of equationα = αH and two subsets
Θa = {(α, β) | α < αH} and Θb = {(α, β) | α > αH} (see Figure 2.4 [A]). Then we
can compute

P
(
(α, β) ∈ Θb | x

)
=

∫ ∞

αH

∫ ∞

0
g1(α, β | x) dβ dα

= k ·
∫ ∞

αH

∫ ∞

0

√
α · ψ(1)(α)− 1 · 1

β

(
βα

Γ(α)
·mα

g · e−x̄·β
)n

dβ dα

= k ·
∫ ∞

αH

√
α · ψ(1)(α)− 1 · Γ(nα)

Γ(α)n
·
(mg

n x̄

)nα
dα = 0.215,

and δH = 0.570, a value that does not allows for the rejection of HA.

• Case [B]

The hypothesis HB identifies the straight line of equation β = 1
µH
α in the αβ-plane (see

Figure 2.4 [B]) and the two subsets

Θc =
{
(α, β) | β > 1

µH
α
}

and Θd =
{
(α, β) | β < 1

µH
α
}

.

We have

P
(
(α, β) ∈ Θd | x

)
=

∫
Θd

g1(α, β | x) dα dβ = 0.012,
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Figure 2.4: Posterior density function g1(α, β|x) from Example 2.6 and corresponding sets of
the induced partition in the cases [A], [B] and [C].

and, since δH = 0.976, we reject HB .

• Case [C]
The hypothesisHC identifies the parabola of equation β = 1√

σ2
H

√
α, in the αβ-plane (see

Figure 2.4 [C]), and the two subsets

Θe =
{
(α, β) | β > 1√

σ2
H

√
α
}

and Θf =
{
(α, β) | β < 1√

σ2
H

√
α
}

.

We have
P
(
(α, β) ∈ Θe | x

)
=

∫
Θe

g1(α, β | x) dα dβ = 0.078.

Therefore δH = 0.846, and so we do not reject HC .

Example 2.7. - Test on the coefficient of variation for a Normal distribution
Given an iid sample x = (x1, . . . , xn) fromX ∼ N

(
x|µ, ϕ−1

)
, the parameter of interest

is ψ =

√
V ar(X)

| E(X) |
=

1

| µ |
√
ϕ

. We are interested in testing the hypothesis

H : ψ = ψH ,

with ψH = 0.1. If we consider the Jeffreys’ prior g0(µ, ϕ) ∝ ϕ−1 · 1R×R+ , the posterior
distribution is the Normal-Gamma density

(µ, ϕ) | x ∼ NG
(
µ, ϕ | η, ν, α, β

)
,
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Figure 2.5: Test on the coefficient of variation ψ of a Gaussian population. Data refers to
Example 2.7. In the plots, the sets Θa, Θb and ΘH are reported for n = 10 ([A]) and n = 40

([B]).

with hyperparameters (η, ν, α, β), where η = x̄, ν = n, α = 1
2
(n − 1), β = 1

2
ns2, and

density

g1(µ, ϕ | η, ν, α, β) = βα
√
ν

Γ(α)
√
2π
ϕα−1/2e−

νϕ
2
(µ−η)2e−βϕ.

We consider the particular case in which x̄ = 17 and s2 = 1.6 (so that the MLE is
ϕ̂ = 0.074) with two samples of size n = 10 (Figure 2.5 [A]) and n = 40 (Figure 2.5
[B]). In the µϕ−space, the hypothesis H is represented by the curve ϕ =

1

ψ2
H

µ−2 and

determines the subsets Θa and Θb visualized in Figure 2.5.

In case [A] we have

P
(
(µ, ϕ) ∈ Θb | x

)
=

∫
Θb

g1(µ, ϕ | η, ν, α, β) dµ dϕ = 0.215,

where g1(µ, ϕ | η, ν, α, β) is the Normal-Gamma density, so that δH = 0.570 and we
do not reject H . In case [B], we have P

(
(µ, ϕ) ∈ Θb | x

)
= 0.014 and, since δH =

0.972, we reject H . Therefore in such a case, with different sample sizes, the inferential
conclusions change.
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Example 2.8. - Test on the skewness coefficient of the Inverse Gaussian distribution
Let us consider a Inverse Gaussian random variable X with density

f(x | µ, ν) =
√

ν

2πx3
exp

{
− ν

2

(x− µ

µ
√
x

)2}
· 1R+(x),

where (µ, ν) ∈ R+×R+. The parameter of interest is the skewness coefficient γ = 3
√

µ
ν

and it is of interest to test the hypothesisH : γ = γH , where γH = 2. The Jeffreys’ prior
is

g0(µ, ν) ∝
1√
µ3ν

· 1R+×R+(µ, ν).

Given n observations, the posterior distribution of (µ, ν) is

g1(µ, ν|x) ∝

√
νn−1

µ3
· exp

{
−n ν

2
·
(
x̄

µ2
− 2

µ
+

1

a

)}
· 1R+×R+(µ, ν),

where x̄ and a are the arithmetic and harmonic mean, respectively.
We apply the procedure to the following precipitation data (inches) from Jug Bridge,

Maryland, analyzed in Folks and Chhikara, 1978 (p. 272):

1.01 1.11 1.13 1.15 1.16
1.17 1.17 1.20 1.52 1.54
1.54 1.57 1.64 1.73 1.79
2.09 2.09 2.57 2.75 2.93
3.19 3.54 3.57 5.11 5.62.

The hypothesis identifies in the parameter space Θ = R+ × R+ the subsets

Θa =
{
(µ, ν) ∈ Θ | 3

√
µ
ν
< γH

}
,

ΘH =
{
(µ, ν) ∈ Θ | 3

√
µ
ν
= γH

}
,

Θb =
{
(µ, ν) ∈ Θ | 3

√
µ
ν
> γH

}
.

We have that

P
(
(µ, ν) ∈ Θb | x

)
=

∫
Θb

g1(µ, ν|x) dµ dν = 0.078, (2.18)
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Figure 2.6: Test on the skewness of the Inverse Gaussian distribution with γH = 2. In the plot
the sets of the partition induced by H are reported. Data refers to Example 2.8.

see Figure 2.8, then we obtain δH = 0.844. This result indicates that we do not have
enough evidence to reject the hypothesis H .

Tests involving two independent populations

In this section we consider some examples concerning comparisons between parameters
of two independent populations.

Example 2.9. - Comparison between means and precisions of two independent Normal
populations
Let us consider a case study on the dating of the core and periphery of some wooden
furniture, found in a Byzantine church, using radiocarbon (see Casella and Berger, 2001,
p. 409). The historians wanted to verify if the mean age of the core is the same as the
mean age of the periphery, using two samples of sizes m = 14 and n = 9, respectively,
given by

core 1294 1279 1274 1264 1263 periphery 1284 1272 1256
1254 1251 1251 1248 1240 1254 1242 1274
1232 1220 1218 1210 1264 1256 1250

We assume that the age of the core X and of the periphery Y are distributed as

X ∼ N(x|µ1, ϕ
−1
1 ) and Y ∼ N(y|µ2, ϕ

−1
2 ),
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where V ar(X) = ϕ−1
1 and V ar(Y ) = ϕ−1

2 , and we assume that the data are iid condi-
tional on the parameters. We consider for (µi, ϕi) the Jeffreys’ prior

g0,i(µi, ϕi) ∝ ϕ−1
i · 1R×R+ , i = 1, 2.

We obtain x̄ = 1249.86, ȳ = 1261.33, d̄ = x̄ − ȳ = −11.48, while the MLEs for the
sample standard deviations are s1 = 23.43 and s2 = 12.51. The posterior distribution
for (µi, ϕi) is the Normal-Gamma law

(µi, ϕi) | x,y ∼ NG
(
µi, ϕi | ηi, νi, αi, βi

)
, i = 1, 2,

with hyperparameters η1 = x̄, ν1 = m, α1 = 1
2
(m − 1), β1 = 1

2
ms21 and η2 = ȳ,

ν2 = n, α2 =
1
2
(n− 1), β2 = 1

2
ns22, and density

g1,i(µi, ϕi | ηi, νi, αi, βi) =
βαi
i

√
νi

Γ(αi)
√
2π
ϕ
αi−1/2
i e−

νiϕi
2

(µi−ηi)2e−βiϕi , i = 1, 2.

The hypothesis of interest

HA : µ1 − µ2 = 0, ∀ϕ1 > 0, ∀ϕ2 > 0,

identifies the following subsets in the parameter space

Θa =
{
R2 × R2

+ | µ1 < µ2

}
,

ΘHA
=
{
R2 × R2

+ | µ1 = µ2

}
,

Θb =
{
R2 × R2

+ | µ1 > µ2

}
.

Then we can compute

P
(
(µ1, µ2, ϕ1, ϕ2) ∈ Θa | x,y

)
=

∫
Θa

2∏
i=1

g1,i(µi, ϕi | ηi, νi, αi, βi) dµ1 dµ2 dϕ1 dϕ2

=

∫
µ1<µ2

2∏
i=1

Γ(αi +
1
2
)

Γ(αi)

( νi
2πβi

)1/2[
1 +

νi
2βi

(µi − ηi)
2
]−(αi+

1
2
)

dµ1 dµ2

= 0.089,
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Figure 2.7: Comparisons between means ([A]) and precisions ([B]) of independent normal
populations for data in Example 2.9. For both cases we show the contour plots of the marginals
of µj ([A]) and ϕj ([B]), and the partition sets associated with the corresponding hypotheses.

so we have δH = 0.823, a value that do not lead to the rejection of the hypothesis. We
exploited the fact that the marginal of each µi is a Generalized Student’s t-distribution
(denoted by StudentG) with hyperparameters

(
ηi,

βi
νiαi

, 2αi
)
. Figure 2.7 [A] in the space

(µ1, µ2) shows the contour lines of the distribution

StudentG
(
µ1

∣∣ η1, β1
ν1 · α1

, 2α1

)
· StudentG

(
µ2

∣∣ η2, β2
ν2 · α2

, 2α2

)
.

Note that the homoscedasticity assumption is not necessary. Consider now the hypoth-
esis

HB : ϕ1 − ϕ2 = 0, ∀µ1, µ2,

which determines in the parameter space the subsets

Θc =
{
R2 × R2

+ | ϕ1 < ϕ2

}
,

ΘHB
=
{
R2 × R2

+ | ϕ1 = ϕ2

}
,

Θd =
{
R2 × R2

+ | ϕ1 > ϕ2

}
.

We have

P
(
(µ1, µ2, ϕ1, ϕ2) ∈ Θc | x,y

)
=

∫
ϕ1<ϕ2

2∏
i=1

βαi
i

Γ(αi)
ϕαi−1
i e−ϕiβi dϕ1 dϕ2 = 0.046,

from which it follows that δH = 0.908 and we reject the hypothesis H . To compute the
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Figure 2.8: Comparison of the shape parameters of two independent Gamma populations, using
data of Example 2.10. The sets Θa,Θb and ΘH of the partition are reported.

integral we have used the fact that the marginal of each ϕi has Gamma distribution with
parameters (αi, βi), i = 1, 2.

The contour lines of the law Gamma(ϕ1|α1, β1) ·Gamma(ϕ2|α2, β2), in the space
(ϕ1, ϕ2), are reported in Figure 2.7 [B].

Example 2.10. - Comparison between shape parameters of two Gamma distributions
Let us consider two iid Gamma populationsXi ∼ Gamma

(
αi, βi

)
, (αi, βi) ∈ R+×R+,

i = 1, 2, and let us consider two samples of sizes n1 = 9 and n2 = 12, respectively, with
sample means x̄1 = 2.811 and x̄2 = 1.973, and geometric means mg1 = 2.116 and
mg2 = 1.327.

We are interested in testingH : α1 = α2.The posterior distribution for (α1, β1, α2, β2)

is given by

g1(α1, β1, α2, β2|x1,x2) = g1,1(α1, β1|x1) · g1,2(α2, β2|x2),

where
g1,i(αi, βi|xi) = ki · g0,i(αi, βi) · L(αi, βi | xi),

with normalizing constant ki, i = 1, 2. Let Θa =
{
(α1, α2) ∈ R+×R+ | α1 > α2

}
and

Θb =
{
(α1, α2) ∈ R+ ×R+ | α1 < α2

}
(see Figure 2.8). In order to test the hypothesis
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H , we compute the probability

P((α1, α2) ∈ Θb | x1,x2)

=

∫
α1<α2

∫
R+×R+

g1,1(α1, β1|x1) · g1,2(α2, β2|x2) dβ1dβ2 dα1 dα2

=

∫
α1<α2

2∏
i=1

ki · g0,i(αi) ·
Γ(niαi)

Γ(αi)ni
·
(
mgi

njx̄i

)niαi

dα1dα2 = 0.311

and, since δH = 0.378, we do not reject H .

2.4 Comparison with the FBST

In this section we present a comparison of the FBST as presented in Pereira and Stern,
2020, which provides an overview of the e-value (see Section A.3.2).

2.4.1 Similarities and differences between the procedures

The most striking similarity between the FBST and the BDT is that both tests, fully
accepting the Likelihood Principle1, see Birnbaum, 1962, and relying on the posterior
distribution of the parameter θ ∈ Θ, are true Bayesian procedures. Furthermore, since
the FBST and the BDT do not demand the adoption of a prior distribution which assigns
positive probability for the subset ΘH , as the Bayes Factor does, they do not fall into
Jeffreys-Lindley’s paradox.

Another important similarity is that, asymptotically, both tests lead to the rejection
of the hypothesis H when it is false (i.e. when we test θH ̸= θ∗ where θ∗ is the true
value of the parameter). On the contrary, if θH = θ∗ they have a different asympototic
behaviour (see Proposition 2.3 for the BDM and Section A.3.2 for the e-value).

Certainly, the FBST has a more general reach than the BDT. Indeed, it examines the
entire class of sharp hypotheses, whereas the extension of the BDT to such hypotheses
is not straightforward and, currently, is limited to considering the subclass of the hy-

1de Finetti, 1979 states that “the likelihood principle ... simply states that the information available
from any set of observations is entirely contained in the corresponding likelihood function. Since this is,
in fact, the factor which transforms the prior opinion into the posterior, this is all we require and, indeed,
all we can ask for.”
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potheses expressed as H : φ = φH that are able to partition the parameter space Θ

as
{
Θa, ΘH , Θb

}
. Moreover, notice that while the integration sets Θa and Θb are de-

termined exclusively by the hypothesis, the tangential set T depends on the hypothesis,
the posterior density and the choice of the reference function. It is questionable, on the
other hand, whether the e-value is as easily computable as the BDM is in cases where
the parameter space has dimension higher than 1.

Unlike the BDM, the elimination of nuisance parameters is not recommended when
using the e-value. In fact, this measure is not invariant with respect to marginalisations
of the nuisance parameter and the use of marginal densities to construct credible sets
may produce inconsistency.

It is easy to see that one can create an analogy between the p-value, the e-value and
δH . Regarding frequentist p-values, the sample space is ordered according to increasing
inconsistency with the assumed null hypothesis H . The FBST, instead, orders the pa-
rameter space according to increasing inconsistency with the assumed null hypothesis
H based, in the first formulation, on the posterior probability density and, in the second
one, on the concept of statistical surprise. In the same way, it can be seen that the prob-
ability in (2.8) has to do with the posterior probability of exceeding θH in a direction in
contrast with the data (namely, the side where there is more posterior probability).

Another similarity occurs when considering the reference density r(θ) as the (possi-
bly improper) uniform density, since the first and second definitions of evidence define
the same tangent set, i.e. the HRSS and the HPDS coincide. Then, for a scalar parameter
θ, since the BDM is linked to the equi-tailed credible regions while the e-value is linked
to the HPDS, we have that if:

• g1(θ|x) is symmetric and unimodal, then ev(H) = δH ;

• g1(θ|x) is asymmetric and unimodal (for instance with positive skewness) and
m1 < θH [θH < m1], then ev(H) > δH [ev(H) < δH]. When m1 = θH we have
0 = δH < ev(H).

Simulation study

In order to determine the resulting false-positive rates of both the FBST and the BDT,
we conduct a simulation study for specific sample sizes.
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Let x = (x1, . . . , xn) be an iid sample of size n from the exponential distribution
X ∼ Exp

(
x|1/θ∗

)
, with θ∗ = 1.2. We are interested in testing the hypothesis H :

θH = θ∗ = 1.2. Assuming a Jeffreys’ prior g0(θ) ∝ θ−1, the posterior distribution is an
InvGamma(θ|n,

∑
xi); see Example 2.4.

Table 2.1 shows the simulation results for three different values of the threshold ω =

{0.90, 0.95, 0.99}, for S = 50000 simulations and D = 50000 posterior draws. Across
the different sample sizes considered, the false-positive rates are very similar for both
tests and, as we expect since we are using objective priors (see Bayarri and Berger, 2004),
they are close to the error of the first type α = {0.10, 0.05, 0.01}, related to ω. Similar
results, not reported here, were found adopting a Poisson model.

ω = 0.90 ω = 0.95 ω = 0.99

n n n

10 100 1000 10000 10 100 1000 10000 10 100 1000 10000
e-value
r(θ) ∝ 1

0.102 0.100 0.099 0.098 0.052 0.050 0.051 0.049 0.011 0.010 0.011 0.011

e-value
r(θ) = g0(θ)

0.101 0.102 0.100 0.098 0.051 0.050 0.051 0.049 0.010 0.010 0.011 0.011

δH 0.103 0.102 0.101 0.099 0.053 0.049 0.052 0.049 0.010 0.009 0.011 0.011

Table 2.1: False positive rates for different sample sizes n and different thresholds ω.

Some Examples

In order to compare the BDM and the e-value, let us consider different situations and
then examine the results.

Example 2.11. (Continuation of Example 2.4)
As a first comparative scenario, consider the test performed in Example 2.4 in which
θH = 2.4 and additionally the case in which θH = 0.7. Since the posterior g1(θ|x)
has a positive skewness and m1 < θH = 2.4 then ev(H) > δH , on the contrary, for
m1 > θH = 0.7 then ev(H) < δH . Indeed, we find the results reported in Table 2.2.

The differences between the e-value and δH , which in this example appear to be
modest, can actually become meaningful when the posterior has a greater asymmetry
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θH = 2.4 θH = 0.7
e-value

δH
e-value

δHr(θ) ∝ 1 r(θ) = g0(θ) r(θ) ∝ 1 r(θ) = g0(θ)
[A] n = 6 0.909 0.866 0.832 0.646 0.847 0.886
[B] n = 12 0.978 0.968 0.960 0.899 0.957 0.968
[C] n = 24 0.999 0.998 0.997 0.991 0.997 0.997

Table 2.2: The table shows, for the 3 different cases examined in Example 2.4, the values
of δH and of the e-value considering, as a reference distribution, both a flat reference
function and a Jeffreys’ prior.

and heavy tailes. In such case, comparing different hypotheses, the FBST always leads
to favour the hypothesis with higher density. Moreover, the e-value may be more or less
robust w.r.t. the position of θH , as it is highlighted in the example below.

Example 2.12. - Test on the mean of the Inverse Gaussian distribution
Consider a random variable X with Inverse Gaussian distribution X ∼ IG(x|µ, ν0),
µ ∈ R+ and ν0 known. Given an iid sample x of size n, the likelihood function for µ
is L(µ|x) ∝ exp

{
−nν0 ·

(
x̄

2µ2
− 1

µ

)}
. Adopting the Jeffreys’ prior g0(µ) ∝ 1√

µ3
, we

obtain the posterior

g1(µ|x) ∝
1√
µ3

· exp
{
−nν0 ·

(
x̄

2µ2
− 1

µ

)}
.

We are interested in testing the hypothesisH : µ = µH and we consider a sample of size
n = 8 for which x̄ = 4.2 and m1 = 4.483. For ν0 = 5, we choose to test HA : µ = 2.5

and HB : µ = 12. The results of the analysis are displayed in Table 2.3 and Figure 2.9.
If we choose ω = 0.95 as a rejection threshold in both cases, and with both references,
we are lead to opposite inferential conclusions.

Example 2.13. (Continuation of Examples 2.6, 2.7, 2.8)
Let us now compare the results obtained with the FBST and the BDT for the Examples
2.6, 2.7 and 2.8, when fixing a value of 0.95 as a rejection threshold.

The conclusions reached with the FBST and with the BDT for Example 2.6, which
can be seen in Table 2.4, are the same (for both reference functions considered) although,
in some cases, there are substantial differences between the values of the evidence mea-
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e-value
δHr(µ) ∝ 1 r(µ) = g0(µ)

HA : µ = 2.5 0.803 0.848 0.975
HB : µ = 12 1 1 0.907

Table 2.3: For the two different hypothesis examined in Example 2.12, the table shows
δH and the e-value considering, as a reference distribution, both a flat reference function
and a Jeffreys’ prior.
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Figure 2.9: Posterior density function g1(µ|x) associated to Example 2.12. In [A] we have
µH = 2.5 < m1, while in [B] µH = 12 > m1.

sures. To summarise, the hypothesis HB has to be rejected while not enough evidence
is available for the rejection of the hypotheses HA and HC .

Moving on to Example 2.7 we can say that the analysis of the findings with the two
different tests appears to be more complex than the previous one, see Table 2.5. In
case [A], for both BDT and FBST with the flat reference function, there is not enough
evidence to reject the hypothesis. On the contrary, if one considers the FBST with the
Jeffreys’ prior as reference function, one is led to reject this hypothesis. In case [B],
by rejecting the hypothesis, the BDT is in agreement with the FBST with the Jeffreys’
reference function in contrast to the FBST with the flat reference function for which there
is not enough evidence to reject it.

Finally, in the case illustrated in Example 2.8, the conclusion reached with the FBST
and with the BDT is the same (for both reference functions considered), i.e. there is no
enough evidence to reject the hypothesis (see Table 2.6). It should be noted that, again,
there are substantial differences between the values of the evidence measures.

The calculation of the FBST for a scalar parameter of interest without nuisance pa-
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e-value
δHr(θ) ∝ 1 r(θ) = g0(θ)

HA : α = 2.5 0.557 0.186 0.570
HB : µ = 6 0.984 0.963 0.976
HC : σ2 = 2 0.784 0.562 0.846

Table 2.4: The table shows the results of the Example 2.6 on the test on the shape param-
eter, mean and variance of the Gamma distribution. For the e-value we have considered,
as a reference distribution, both a flat reference function and a Jeffreys’ prior.

e-value
δHr(θ) ∝ 1 r(θ) = g0(θ)

[A] n = 10 0.364 0.999 0.570
[B] n = 40 0.924 1 0.972

Table 2.5: The table shows the results of the Example 2.7 on the test of the coefficient of
variation for a Normal distribution. For the e-value we have considered, as a reference
distribution, both a flat reference function and a Jeffreys’ prior.

e-value
δHr(θ) ∝ 1 r(θ) = g0(θ)

H : γ = 2 0.650 0.691 0.844

Table 2.6: The table shows the results of the Example 2.8 on the test of the skewness
coefficient of the Inverse Gaussian distribution. For the e-value we have considered, as
a reference distribution, both a flat reference function and a Jeffreys’ prior.
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rameters, has been carried out through the function defined in the ‘fbst’ package Kelter,
2022 for . Instead, tangential sets T and its integrals, for Examples 2.6, 2.7 and 2.8,
were determined by means of the Mathematica software. Browsing through the code
that leads to the calculation of these measures (see Manca, 2022), it is evident that more
work is required for the calculation of the integration region related to the FBST. In this
sense, the BDT appears to be easier to apply.
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Chapter 3

The Bayesian Discrepancy Test for the
comparison of two independent
populations

In this section we propose a general procedure, based on the BDT, for testing hypotheses
on the comparison of two parameters, or their transformations, from two independent
populations. This approach is flexible, as it can be adapted to take into account differ-
ent distributions and different parameter transformations. In addition, this methodology
enables us to tackle problems that are not yet covered in the literature.

In what follows, we propose to use the BDM for comparing means, variances, coeffi-
cients of variation, skewness and correlation coefficients of two independent populations.
The problem of comparing means and variances has been widely discussed in both the
frequentist and the Bayesian fields. Whereas the problem of comparing coefficients of
variation, although widely addressed in the frequentist paradigm, has had only few con-
tributions in the Bayesian one (see Bertolino, Columbu, Manca, and Musio, 2022 for all
the references). Additionally, to the best of our knowledge, the case of the comparison
of two skewness indexes treated here is completely original and has not been addressed
before.

37
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3.1 The procedure

Generalising the notation of the previous chapter, let us now fix that k = 1 and consider
two independent parametric models where each one has density f(xℓ|θℓ), ℓ = 1, 2.
Denoting with g0,ℓ(θℓ) a prior density, for a sample xℓ = {xℓ1 , . . . , xℓnl

} of nℓ iid ob-
servations the corresponding posterior density is

g1,ℓ(θℓ|xℓ) ∝ g0,ℓ(θℓ)Lℓ(θℓ|xℓ), ℓ = 1, 2.

Indicate with θ the joint parameter vector θ = (θ1,θ2) ∈ Θ1 ×Θ2 = Θ ⊆ Rp ×Rp of
the two populations parameters. We are interested in testing the hypothesis

H : φ1 = φ2, (3.1)

with φℓ = γ(θℓ), ℓ = 1, 2, being the parameter of interest, which identify the partition{
Θa, ΘH , Θb

}
of Θ where

Θa =
{
θ ∈ Θ

∣∣∣ φ1 < φ2

}
, Θb =

{
θ ∈ Θ

∣∣∣ φ1 > φ2

}
,

ΘH =
{
θ ∈ Θ

∣∣∣ φ1 = φ2

}
.

To perform the test we can then express the BDM as

δH = 1− 2 ·min
a,b

{
P(θ ∈ Θa|x1,x2) , P(θ ∈ Θb|x1,x2)

}
, (3.2)

where

P(θ ∈ Θj | x1,x2) =

∫
Θj

g1,1(θ1|x1) g1,2(θ2|x2) dθ1 dθ2, j = a, b. (3.3)

The evaluation of these probabilities demands the computation of multidimensional in-
tegrals that may not be possible to solve in a closed form. In such cases they can be
approximated using the Monte Carlo Integration method.

In the particular case in which the marginal posterior of the parameter of interest
φℓ ∈ Ξℓ ⊆ R can be computed in a closed form, as we have seen in Section 2.2, then
the hypothesis H : φ1 = φ2 induces a partition on the marginal parameter space Ξ =
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Ξ1×Ξ2 ⊆ R2, whereΞℓ is the marginal parameter space associated to the ℓ-th population
that can be directly used to compute the BDM.

With an appropriate change of notation, this procedure can be naturally extended to
the case in which k > 1.

3.2 Illustrative examples

We now consider a variety of distributions and parameters transformations and briefly
outline the case-by-case tools needed to calculate the BDM. In particular, we specify the
posterior distributions and the subsets of the parameter space that are needed to compute
the integrals specified in (3.3). In all the cases discussed, a Jeffreys’ prior has been
adopted.

Most of the codes for these examples can be found online in https://github.com/
maramanca/Chapter3 Example Thesis.

3.2.1 Skewness coefficients of two Inverse Gaussian populations

Let us consider two independent Inverse Gaussian random variablesXℓ ∼ IG(xℓ |µℓ, λℓ),
ℓ = 1, 2, i.e.

f(xℓ | µℓ, λℓ) =

√
λℓ

2πx3ℓ
exp

{
− 1

2
λℓ

(
xℓ − µℓ
µℓ
√
xℓ

)2}
,

where Xℓ ∈ R+ and (µℓ, λℓ) ∈ R+ ×R+. Given nℓ observations xℓ = (xℓ,1, . . . , xℓ,nℓ
),

the posterior distribution of the parameter vector with non-informative prior g0(µℓ, λℓ) ∝
1√
µℓ3λℓ

is

g1,ℓ(µℓ, λℓ | xℓ) ∝

√
λnℓ−1
ℓ

µ3
ℓ

exp

{
− nℓλℓ

2

(
x̄ℓ
µ2
ℓ

− 2

µℓ
+

1

aℓ

)}
, ℓ = 1, 2, (3.4)

where x̄ℓ and aℓ are the arithmetic and harmonic means respectively. We are interested
in comparing the skewness of the two populations. We recall that the skewness of a
real-valued random variable is defined as the third standardized moment. In this case it

https://github.com/maramanca/Chapter3_Example_Thesis
https://github.com/maramanca/Chapter3_Example_Thesis
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assumes the expression

φℓ = 3

√
µℓ
λℓ
.

The hypothesis H : φ1 = φ2 identifies in the parameter space Θ the subsets

Θj =
{
(µ1, λ1, µ2, λ2) ∈ R4

+

∣∣∣ µ1λ2 ≶ µ2λ1

}
, j = a, b.

Therefore, the BDM can be computed by means of formula 3.2. It is worth to notice that,
for this distribution, the measure of skewness is three times the coefficient of variation. A
test on the comparison of two skewness indices is then equivalent to testing the equality
of two coefficients of variation.

We present now an application to real data for the comparison of skewness indexes
of two Inverse Gaussian populations.

Example 3.1. In the engineering context, river flooding rates have significant economic,
social, political implications. The modelling and analysis of such data is an important
application of extreme value theory. We consider a study on the Floyd Ever Flood rate
data for the years 1935–1954. A more extended version of this dataset was analysed in
Mudholkar and Hutson, 1996 where it is shown that the exponentiated Weibull model
is appropriate for such data, more in general for extreme value analysis. The Inverse
Gaussian distribution belongs to this family. With this kind of data it is of interest to
compare the asymmetry of the two populations.

In the years 1935–1944 we have that n1 = 10 and with a sample skewness coeffi-
cient equal to 2.19 while in the second group, for the years 1945–1954, n2 = 10 and
sample skewness coefficient 5.20. As explained in the previous section, the computation
of δH depends on the evaluation of two four-dimensional integrals (see (3.3)), that can
be approximated through the Monte Carlo integration method. Furthermore, since the
posterior distribution is known up to a normalizing constant, it is not possible to sample
directly from it. We, therefore, applied the random walk Metropolis-Hasting algorithm
using a bivariate Normal proposal distribution. In order to obtain a chain that converges
to the target distribution, 9·105 samples were generated and reduced to 1.2·105 after con-
sidering a burn-in period and a chain thinning. We, finally, found that the discrepancy
measure is δH ≈ 1, then we can reject the hypothesis of the skewness indexes equality.
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3.2.2 Means of two Inverse Gaussian populations

We consider two independent Inverse Gaussian random variables as in section 3.2.1.
Now, we are interested in comparing the mean of the two populations. Starting from
formula (3.4) we compute the marginal posterior

µℓ | xℓ ∼ h1,ℓ(µℓ | xℓ)

=

∫
g1(µℓ, λℓ | xℓ) dλℓ

∝

√
1

µ3
ℓ

·
(
x̄ℓ
µ2
ℓ

− 2

µℓ
+

1

aℓ

)−n+1
2

.

(3.5)

In such case, φℓ = µℓ and the hypothesis H : µ1 = µ2 identifies in the marginal param-
eter space Ξ the partition

Ξa =
{
(µ1, µ2) ∈ R+ × R+ | µ1 < µ2

}
,

ΞH =
{
(µ1, µ2) ∈ R+ × R+ | µ1 = µ2

}
,

Ξb =
{
(µ1, µ2) ∈ R+ × R+ | µ1 > µ2

}
.

Then, after computing

P
(
(µ1, µ2) ∈ Ξj | x1,x2

)
=

∫
Ξj

2∏
ℓ=1

h1,ℓ
(
µℓ | xℓ

)
dµ1 dµ2 , j = a, b ,

we can evaluate the BDM as

δH = 1− 2 ·min
a,b

{
P
(
(µ1, µ2) ∈ Ξa | x1,x2

)
, P
(
(µ1, µ2) ∈ Ξb | x1,x2

)}
.

Example 3.2. We apply this procedure to a dataset collected for a study on the Hodgkin’s
disease (see Chhikara and Folks, 1989). Two groups of patients with active (n1 = 17)
and inactive (n2 = 28) Hodgkin’s disease are compared w.r.t. the level of plasma
bradykininogen. The outcome variable is measured in micrograms of bradykininogen
per milliliter of plasma. The sampled values can be considered as coming from two in-
verse Gaussian distributions. In the group of patients with active disease we have that
x̄1 = 4.241 while in the control group x̄2 = 6.791. The calculation of the BDM for the
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Figure 3.1: Contour plot for the posterior marginal distribution in Example 3.2.

equality of the means in the groups of hill and healthy patients yields δH = 0.995, and we
can reject the hypothesis . In Figure 3.1 are reported the contour lines of the joint poste-
rior distribution of µ1 and µ2 in formula (3.5). The partitioning subsets of the marginal
parameter space are also indicated. It is interesting to observe how, when comparing
the same samples in terms of their coefficients of variation (see Bertolino, Columbu,
Manca, and Musio, 2022), the two samples cannot be considered coming from different
populations.

3.2.3 Variances of two Gamma populations

Consider two independent random variables Xℓ, ℓ = 1, 2, with distributions

Xℓ ∼ Gamma
(
xℓ|αℓ, βℓ

)
=

βαℓ
ℓ

Γ(αℓ)
xαℓ−1e−βℓxℓ , Xℓ ∈ R+, (αℓ, βℓ) ∈ R+ × R+.

We are interested in performing a test on the equality of the variances, i.e. Var(X1) =

Var(X2)whereVar(Xℓ) =
αℓ

β2
ℓ
= φℓ. The posterior distribution of the parameter vector,

after assuming the Jeffreys’ prior (see Yang and Berger, 1996), takes the expression

g1,ℓ(αℓ, βℓ|xℓ) = kℓ · g(αℓ, βℓ) · L(αℓ, βℓ | xℓ)

∝ 1

βℓ

√
αℓψ(1)(αℓ)− 1

(
βαℓ
ℓ

Γ(αℓ)
gαℓe−x̄ℓβℓ

)n
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with kℓ the normalising constant. The hypothesis H : φ1 = φ2 identifies on the param-
eter space Θ the subsets

Θj =
{
(α1, β1, α2, β2) ∈ R2

+ × R2
+

∣∣∣ α1β
2
2 ≶ α2β

2
1

}
, j = a, b.

Therefore, the BDM can be computed by means of formula 3.2.

Example 3.3. We consider a study on the hydro-geologic effects of rocks fracturing,
associated with ground water yields in southwestern Virginia (see Wright, 1985). It
was found that wells in valleys subjected to fractured rocks, produce larger quantities of
water than wells in valleys subjected to unfractured rocks. The comparison was made
on the water accumulation (expressed in gal/min/ft) from n1 = 13 wells in the first
type of valleys and n2 = 12 in the second one. In this application, being aware of the
difference in terms of their means, we are interested in studying if the two populations
are different also with respect to their variability. In Chang et al., 2011 was observed that
the assumption of the Gamma distribution is appropriate for the two populations. In the
first group the sample variance was s21 = 0.098 while in the second one was s22 = 0.079.

Since the posterior distribution is known up to a normalizing constant, we used a
MCMC simulation technique with a bivariate Normal proposal distribution. The con-
vergence of the chain was obtained from 2.1 · 105 samples that were reduced to 5 · 104

after considering a burn-in period and a chain thinning. The BDM is δH = 0.185 and
therefore the hypothesis cannot be rejected.

3.2.4 Coefficients of variation of two independent populations

The case of two Normal populations

Consider two independent Gaussian random variables Xℓ ∼ N(xℓ|µℓ, ϕ−1
ℓ ), with Xℓ ∈

R and mean and precision (µℓ, ϕℓ) ∈ R×R+, for ℓ = 1, 2. Assuming the non-informative
Jeffrey’s priors

(µℓ, ϕℓ) ∼ g0,ℓ(µℓ, ϕℓ) ∝ ϕ−1
ℓ , ℓ = 1, 2,
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and given nℓ observations with sample means x̄ℓ and sample standard deviations sℓ, it is
known that the posterior distributions of the parameter vectors are Normal Gamma

(µℓ, ϕℓ) | x ∼ NG(µℓ, ϕℓ|ηℓ, νℓ, αℓ, βℓ), ℓ = 1, 2,

with hyperparameters ηℓ = x̄ℓ, νℓ = nℓ, αℓ = 1
2
(nℓ − 1), βℓ = 1

2
nℓs

2
ℓ .

The hypothesis H : φ1 = φ2, where φℓ = 1
|µℓ|

√
ϕℓ

, identifies in the parameter space
Θ the subsets

Θa =
{
(µ1, ϕ1, µ2, ϕ2) ∈ R2 × R2

+

∣∣ |µ1|
√
ϕ1 > |µ2|

√
ϕ2

}
,

ΘH =
{
(µ1, ϕ1, µ2, ϕ2) ∈ R2 × R2

+

∣∣ |µ1|
√
ϕ1 = |µ2|

√
ϕ2

}
,

Θb =
{
(µ1, ϕ1, µ2, ϕ2) ∈ R2 × R2

+

∣∣ |µ1|
√
ϕ1 < |µ2|

√
ϕ2

}
.

The BDM (as seen in (3.2)) requires the computation of

P
(
(µ1, ϕ1, µ2, ϕ2) ∈ Θj

∣∣∣ x) =

∫
Θj

2∏
ℓ=1

gℓ1(µℓ, ϕℓ| ηℓ, νℓ, αℓ, βℓ) dµℓ dϕℓ,

where j = a, b and g1,ℓ is the Normal-Gamma density. For this setting we present a small
simulation study to assess the false-positive rates of the BDT with varying sample sizes
and also an application to real data.

Simulation study
We conducted a simulation study for evaluating the false rejection rate in repeated sam-

pling when comparing CVs of two independent populations with the same distribution
assumptions. Letx1 = (x1,1, . . . , x1,n1) andx2 = (x2,1, . . . , x2,n2) be two iid samples of
size, respectively, n1 and n2 both taken from the Normal distributionX ∼ N(x|µ, ϕ−1).
We set µ = µ1 = µ2 = 3 and ϕ = ϕ1 = ϕ2 = 1 to have that φ1 − φ2 = 0. We are
interested in testing the hypothesis of equal CVs under this scenario. In Table 3.2.4 are
reported the rate of rejection values under the hypothesis of equal CVs. For three thresh-
olds ω = {0.90, 0.95, 0.99} we have considered S = 50000 simulations and computed
the BDM by taking D = 10000 posterior draws. The false positive rates obtained over
S resamplings are in agreement with the nominal accuracy typical of the first type error
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ω = 0.90 ω = 0.95 ω = 0.99

n1 10 10 100 1000 10 10 100 1000 10 10 100 1000
n2 10 50 100 1000 10 50 100 1000 10 50 100 1000

FPR 0.096 0.105 0.1 0.098 0.047 0.054 0.05 0.049 0.009 0.011 0.01 0.01

Table 3.1: False positive rates (FPR) for different sample sizes n1 and n2 and different
thresholds ω.

α = {0.10, 0.05, 0.001} that could be associated to ω. This result is not surprising given
the choice of objective priors (see Bayarri and Berger, 2004 and Hartigan, 1966 for other
choices of the prior).

Example 3.4. Anthropometric measures in Sardinian population

We consider a set of anthropometric measures concerning the Sardinian population.
The sample consists of 280 individuals of both sexes (140 males and 140 females) aged
20–25, that was collected between 1995–1998. We focus on the CVs comparisons among
men and women. The same data were presented and analysed in Marini et al., 2005,
where the bootstrap test for the difference of CVs developed in Cabras et al., 2006 was
applied to evaluate sexual dimorphism. Among the 20 measurements in the dataset, we
applied the BDT to a subsample of 10 which can be assumed to be normally distributed.
In Table 3.2.4 are reported the principal descriptive statistics together with the values
of the discrepancy measure associated to each anthropometric dimension considered.
Based on the BDM we conclude that only one hypothesis can be rejected, that is the
equality between the coefficients of variation for men’s and women’s skinfolds tricepts.
The final conclusions go in the same direction as Marini et al., 2005.
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Men Women
δHMean SD n1 CV Mean SD n2 CV

Weight 67.22 8.46 140 0.126 53.71 7.59 140 0.141 0.812
Breadths
Cephalic 15.10 0.64 141 0.042 14.53 0.58 172 0.040 0.550
Elbow 7.02 0.39 103 0.056 6.01 0.35 117 0.058 0.355
Circumferences
Midarm relaxed 26.91 2.60 139 0.097 23.47 2.01 134 0.086 0.831
Midarm tensed 30.83 2.74 139 0.089 25.28 2.15 133 0.085 0.388
Skinfolds
Biceps 4.10 1.79 137 0.437 6.08 2.51 133 0.413 0.420
Triceps 7.76 3.76 140 0.485 13.33 4.78 140 0.359 0.996
Subscapular 10.34 3.78 137 0.366 12.71 4.53 140 0.356 0.213
Suprailiac 9.23 4.34 140 0.470 10.21 4.48 140 0.439 0.507
Abdominal 12.15 6.52 97 0.537 12.77 5.74 111 0.449 0.848

Table 3.2: Dispersion dimorphism in a set of anthropometric dimensions and relative
BDM. Weight is expressed in kg; skinfolds in mm; all other measurements in cm.

The case of two Skew Normal populations

Consider two independent independent Skew Normal random variablesX1, X2 ∈ R, i.e.
Xℓ ∼ SN(xℓ | µℓ, σℓ, λℓ), ℓ = 1, 2 with density

f(xℓ|µℓ, σℓ, λℓ) =
2

σℓ
ϕ

(
xℓ − µℓ
σℓ

)
Φ

(
λℓ
xℓ − µℓ
σℓ

)
=

2

σℓ
√
2π
e
− (xℓ−µℓ)

2

2σ2
ℓ

∫ λℓ
xℓ−µℓ

σℓ

−∞

1√
2π
e−

t2ℓ
2 dtℓ,

where ϕ is the standard Normal probability density function and Φ is its cumulative
distribution function. The location and shape parameter are µℓ, λℓ ∈ R while σℓ ∈ R+ is
the scale parameter; hence, θℓ = (µℓ, σℓ, λℓ) ∈ R×R+×R is the ℓ-th parameter vector.

Given δℓ =
λℓ√
λ2ℓ + 1

, the expected value is E(Xℓ) = µℓ + σℓδℓ

√
2

π
and the variance is
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V ar(Xℓ) = σ2
ℓ

(
1− 2δ2ℓ

π

)
. Therefore, the coefficient of variation can be expressed as

CV (Xℓ) = φℓ =

√
σ2
ℓ

(
1− 2δ2ℓ

π

) / ∣∣∣∣∣µℓ + σℓδℓ

√
2

π

∣∣∣∣∣.
The ℓ-th Jeffreys prior is proportional to

θℓ ∼ g0,ℓ(θℓ) ∝
1

σℓ
g̃0,ℓ(λℓ),

where g0,ℓ(λℓ), the prior distribution of the shape parameter, is a generalized t-Student
distribution with location parameter µℓ = 0, scale parameter σℓ = 1

2
π and degrees of

freedom νℓ =
1
2

(see Bayes and Branco, 2007), i.e.

g̃0,ℓ(λℓ) =
1

B
(
νℓ
2
, 1
2

)√σℓ
νℓ

(
1 + σℓ

(λℓ − µℓ)
2

νℓ

)− νℓ+1

2

.

The posterior distributions of the parameter vectors is then

g1,ℓ(θℓ|xℓ) ∝
1

σnℓ+1
ℓ

g0,ℓ(λℓ)

nℓ∏
i=1

ϕ

(
xiℓ − µℓ
σℓ

)
Φ

(
λℓ
xiℓ − µℓ
σℓ

)
.

The hypothesis H : φ1 = φ2 identifies in the parameter space Θ the subsets

Θa =
{
θ ∈ R4 × R2

+

∣∣∣ φ1 < φ2

}
,

ΘH =
{
θ ∈ R4 × R2

+

∣∣∣ φ1 = φ2

}
,

Θb =
{
θ ∈ R4 × R2

+

∣∣∣ φ1 > φ2

}
,

where θ = (θ1,θ2) is the joint parameter vector.

Example 3.5. We compute the BDM to compare CVs of gene expression levels between
two groups of stage 4 high risk Neuroblastoma patients. How shown in Hossain and
Beyene, 2015 the possible asymmetry in the distribution of expression levels can justify
the assumption of a Skew Normal distribution, which may be a better fit for the expres-
sion profiles than the usual considered Normal distribution. The interest is to investigate
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Short survivors Long survivors
δHMean SD CV Mean SD CV

hsa-let-7g 5.10 1.25 0.245 5.04 0.87 0.173 0.733
hsa-miR-24 7.34 1.14 0.156 8.16 1.55 0.190 0.757
hsa-miR-455-3p 2.87 0.89 0.310 3.38 1.16 0.342 0.386
hsa-miR-485-5p 3.55 0.97 0.273 3.89 1.13 0.291 0.282

Table 3.3: Mean, standard deviation, coefficients of variation and δH of 4 differentially
expressed miRNAs in the Neuroblastoma study (Example 4).

the possible separation between two survivor profiles: short survivors (death within 36
months from diagnosis) and long survivors (alive with an overall survival time > 36
months). The dataset contains the gene profiles of 31 patients of whom 17 were short
survivors and 14 long survivors. Data is available online from the public genomics data
repository Gene Expression Omnibus (GEO) and accessible through GEO Series acces-
sion number GSE16444. In this analysis we consider a small selection of 4 miRNAs
among the 319 in the dataset. Also in this case we know the posterior distribution up to
a normalizing constant, hence we used a simulation technique through the random walk
Metropolis-Hasting algorithm with a bivariate Normal proposal distribution. In order to
obtain a chain that converges to the target distribution, 1.04 ·106 samples were employed
and reduced to 1.06 · 105 after considering a burn-in period and a chain thinning. In
Table 3.3 are reported the sample CVs and relative BDM for their difference. For each
of the miRNA analysed we cannot reject the hypotheses of equal CVs.

The case of two Negative Binomial populations

Let us consider two discrete Negative Binomial populations. It is known that, given
Xℓ|λℓ ∼ Poiss(xℓ | λℓ) with λℓ ∼ Gamma(λℓ | αℓ, βℓ), then the unconditional random
variables Xℓ follow a Negative Binomial distribution

Xℓ ∼ NB
(
xℓ

∣∣∣ βℓ
βℓ + 1

, αℓ

)
, ℓ = 1, 2
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with (αℓ, βℓ) ∈ R+ × R+. Its expected value, variance and coefficient of variation are

E(Xℓ) =
αℓ
βℓ
,

V ar(Xℓ) = αℓ
βℓ + 1

β2
ℓ

,

CV (Xℓ) = φℓ =

√
βℓ + 1

αℓ
.

Assuming the Jeffreys prior for λℓ (see Yang and Berger, 1996)

g0,ℓ(αℓ, βℓ) ∝
1

βℓ

√
αℓψ(1)(αℓ)− 1, ℓ = 1, 2,

where ψ(1)(αℓ) =
∑∞

j=0(αℓ + j)−2 is the PolyGamma function, the posterior distribu-
tions of the parameter vectors take the expressions

g1,ℓ(αℓ, βℓ | xℓ) ∝
∏

i(xiℓ + αℓ − 1)!

[(αℓ − 1)!]nℓ

[
βαℓ
ℓ

(βℓ + 1)αℓ+x̄ℓ

]n
1

βℓ

√
αℓψ(1)(αℓ)− 1.

The hypothesis identifies on the parameter space Θ the subsets

Θa =
{
(α1, β1, α2, β2) ∈ R2

+ × R2
+

∣∣∣ α2(β1 + 1) < α1(β2 + 1)
}
,

ΘH =
{
(α1, β1, α2, β2) ∈ R2

+ × R2
+

∣∣∣ α2(β1 + 1) = α1(β2 + 1)
}
,

Θb =
{
(α1, β1, α2, β2) ∈ R2

+ × R2
+

∣∣∣ α2(β1 + 1) < α1(β2 + 1)
}
,

Example 3.6. In the epidemiology context, when investigating the spreading dynamics
of an infectious disease, it is often of interest to model the number of new infections
(second cases) generated by an infectious subject. This kind of variable, in cases of
individual variability in the transmission patterns, is overdispersed and right skewed (see
Lloyd-Smith et al., 2005), therefore the negative binomial distribution is often considered
for its analysis. During the Sars-Cov-2 (COVID-19) pandemic many national health
systems have collected such kind of information considering contact tracing data to try
their best in catching the diffusion patwhays of the disease and the behaviours leading
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to its increase. In particular, differences in individual contact patterns were a symptom
of a superspreading phenomenon as was observed that a small number of infected could
causes most of the secondary infections. Looking at the recent literature we used two
published data on secondary cases of COVID-19 and compared their CVs through the
BDM. The first dataset considered comes from data tracing in two Indian states (see
Laxminarayan et al., 2020) from March to July 2020. It is a large dataset containing
the offspring distribution for 88,527 cases, with sample mean 0.48 and variance 1.15
resulting in a CV of 2.218. The second one contains 290 cases from Hong Kong (see
Adam et al., 2020) recorded from January to April 2020. In this case the observed mean
is 0.58 whereas the variance 1.29 leading to a sample CV of 2.217. This two coefficients
of variation are extremely close between each other and, as expected, we get to a small
BDM of δH = 0.00972. We therefore can not reject the hypothesis on the coefficients of
variation equality between the India and the Hong Kong samples.

Also for this last model, the application of Metropolis-Hasting algorithms was re-
quired. In order to obtain a chain that converged to the target distribution, 1.3 · 105

samples were employed and reduced to 105 after considering a burn-in period.

3.2.5 Correlation coefficients of two Normal populations

We consider two Normal independent bivariate populations Xℓ ∼ N2

(
xℓ | µℓ,Σℓ

)
with

Xℓ = (Xℓ1, Xℓ2) ∈ R2 and ℓ = 1, 2. Let µℓ = E(Xℓ) ∈ R2 be the vector of means and
let the covariance matrix be

Σℓ = V ar(Xℓ) =

(
σ2
ℓ1 ρℓσℓ1σℓ2

ρℓσℓ1σℓ2 σ2
ℓ2

)
,

with (σ2
ℓ1, σ

2
ℓ2) ∈ R2

+, and ρℓ ∈ (−1, 1). We are interested in comparing the correlation
coefficients, i.e. φℓ = ρℓ and therefore test the hypothesis

H : ρ1 = ρ2 . (3.6)
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Given nℓ observations for each of the two independent samples we assume the Jeffreys’
prior for the parameters (µℓ,Σℓ), corresponding to

g1,ℓ(µℓ,Σℓ) ∝ g0,ℓ(µℓ1, µℓ2, σ
2
ℓ1, σ

2
ℓ2, ρℓ) ∝ | Σℓ |−1=

1

σ2
1,ℓσ

2
2,ℓ

(
1− ρ2ℓ

) ,
ℓ = 1, 2, and determine the joint posterior distribution g1,ℓ

(
µℓ,Σℓ

)
. By marginalizing

out the nuisance parameters (µ1,l, µ2,l, σ
2
1,l, σ

2
2,l) we obtain the marginal posterior distri-

butions of the correlation coefficients

ρℓ | µ̂ℓ, Σ̂ℓ =

∫
g1,ℓ
(
µℓ,Σℓ | µ̂ℓ, Σ̂ℓ

)
dµ1,ℓ dµ2,ℓ dσ

2
1,ℓ dσ

2
2,ℓ

∝ 1

1− ρ2ℓ

∫
1

σ2
1,ℓσ

2
2,ℓ

· L
(
µ,Σ | µ̂, Σ̂

)
dµ1,ℓ dµ2,ℓ dσ

2
1,ℓ dσ

2
2,ℓ ,

and finally, following Bernardo and Smith, 1994 example 5.27, we find that

ρℓ | rℓ ∼ h1,ℓ
(
ρℓ | rℓ

)
∝ (1− ρ2ℓ)

1
2
(nℓ+1)

(1− rℓ ρℓ)
nℓ− 1

2

· 2F1

(
1
2
, 1
2
;nℓ − 1

2
; 1
2
(1 + rℓ ρℓ)

)
,

which depends only on the sample correlation coefficient rℓ. With 2F1(a · b; c; z) we
indicate the hypergeometric function.

Hypothesis (3.6) identifies, in the marginal parameter space Ξ = (−1,+1)2, the
partition

Ξa =
{
(ρ1, ρ2) ∈ (−1,+1)2 | ρ1 < ρ2

}
,

ΞH =
{
(ρ1, ρ2) ∈ (−1,+1)2 | ρ1 = ρ2

}
,

Ξb =
{
(ρ1, ρ2) ∈ (−1,+1)2 | ρ1 > ρ2

}
,

for which we have to compute the probabilities

P
(
(ρ1, ρ2) ∈ Ξj|xℓ,nℓ

)
=

∫
Ξj

2∏
ℓ=1

h1,ℓ
(
ρℓ | rℓ

)
dρ1 dρ2 , j = a, b ℓ = 1, 2.

and therefore the BDM.

Example 3.7. In a study on animal rights and human behaviours a questionnaire survey
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Figure 3.2: Contour plot for the posterior distribution in Example 3.7.

was conducted to measure ethical idealism, misanthropy and attitudes towards animal
rights and animal research (Wuensch et al., 2002) in a group of college students. They
were classified as being idealistic if their score on the idealism scale was greater than
the median score, and non-idealistic otherwise. The relationship between misanthropy
and support for animal rights was compared in these two groups. The observed sample
correlations between misanthropy and support for animal rights are for the non-idealist
r1 = 0.3814 with n1 = 63, and r2 = 0.0205 with n2 = 91 for the idealist.

In Figure 3.2 can be found the contour plots of the product h11
(
ρ1 | r1

)
·h21
(
ρ2 | r2

)
of

the two posterior marginals. We have that δH = 0.977, leading us to reject the hypothesis
H of equal correlation in the two groups.

3.2.6 Regression coefficients

Consider a simple linear regression model

Y = α + β x+ ε, (3.7)

with uncorrelated errors ε ∼ N
(
· |0, ϕ−1

)
, ϕ ∈ R+. Given an iid sample of size n, let

y = (y1, y2, . . . , yn)
⊤ and

X =

(
1 1 . . . 1

x1 x2 . . . xn

)⊤
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be, respectively, the corresponding vector of observations and the regression matrix. The
likelihood function is then

L(β, ϕ | X,y) ∝ ϕ
1
2
n · exp

{
− 1

2
ϕ (y −Xβ)⊤(y −Xβ)

}
. (3.8)

If we denote with β = (α, β)⊤, and we adopt the Jeffreys prior

(β, ϕ) ∼ g0(β, ϕ) ∝ ϕ−1 , (3.9)

the posterior distribution of (β, ϕ) is Normal-Gamma, i.e.

β, ϕ | X,y ∼ N2

(
β
∣∣ β̂, ϕ̂−1

(
X⊤X

)−1
)
·Gamma(ϕ | ζ̂ , λ̂) , (3.10)

where β̂ =
(
X⊤X

)−1
X⊤y, ϕ̂ = n ·

(
y⊤y − y⊤Xβ̂

)−1
, ζ̂ = 1

2
(n− 2) and λ̂ = n

2
ϕ̂−1

are the MLEs of the parameters. From (3.10) we find the marginal h1
(
β | X,y

)
of the

parameter β, i.e.

β | X,y ∼ StudentG
(
β
∣∣ β̂, λ̂, n− 2

)
, (3.11)

with

β̂ =
n
∑
xiyi −

∑
xi
∑
yi

n
∑
x2i − (

∑
xi)2

, λ̂ =
n∑
x2i

· n
∑
x2i − (

∑
xi)

2∑
y2i − α̂

∑
yi − β̂

∑
xiyi

,

and α̂ = ȳ − β̂x̄. Suppose, now, to be interested on the hypothesis

H : β1 = β2 , (3.12)

on the correlation coefficients of two simple regression models as (3.7). After consider-
ing two iid samples

dataℓ =
{
Xℓ,yℓ

}
, ℓ = 1, 2

from the two models, we denote with data = (data1, data2) the sample of all the ob-
servations. In order to evaluate hypothesis (3.12) we compute the marginal distribution
of each regression coefficient βℓ, ℓ = 1, 2 as in (3.11), where (β1, β2) ∈ Ξ = R2. The
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hypothesis (3.12) identifies a partition
{
Ξa,ΞH ,Ξb

}
of Ξ, where

Ξa =
{
(β1, β2) ∈ R2 | β1 < β2

}
,

ΞH =
{
(β1, β2) ∈ R2 | β1 = β2

}
,

Ξb =
{
(β1, β2) ∈ R2 | β1 > β2

}
.

Then, after computing the integrals

P
(
(β1, β2) ∈ Ξj | data

)
=

∫
Ξj

2∏
ℓ=1

h1,ℓ
(
βℓ | dataℓ

)
dβ1 dβ2 , j = a, b , (3.13)

we can evaluate the hypothesis (3.12) by means of the BDM as

δH = 1− 2 ·min
a,b

{
P
(
(β1, β2) ∈ Ξa | data

)
, P
(
(β1, β2) ∈ Ξb | data

)}
. (3.14)

Example 3.8. Consider the following iid observations from two independent populations

sample 1
(xi) 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
(yi) 2.0 2.3 3.0 3.5 3.8 5.2 6.6 7.0 7.1

sample 2
(xi) 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
(yi) 2.0 1.8 3.0 2.0 2.4 3.6 3.3 4.4 3.5

giving
(
β̂1, λ̂1, ν1

)
=
(
0.723, 12.66, 7

)
and

(
β̂2, λ̂2, ν2

)
=
(
0.267, 8.19, 7

)
. Thanks to

these samples it is possible to write the conjugate marginal distribution as

β1, β2 | data ∼ h1,1
(
β1 | X1,y1

)
· h1,2

(
β2 | X2,y2

)
,

whose contour lines are shown in Figure 3.3 on the left hand side.
Starting from (3.13) and (3.14) the hypothesis H : β1 = β2 can be evaluated by

means of the BDM. Since δH = 0.640, there is no enough evidence to reject the hypoth-
esis.
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Figure 3.3: Contour plots for Example 3.8.

Now, suppose to have larger samples with nA = nB = 36 iid observations and to
have obtained

(
β̂1, λ̂1, ν1

)
=
(
0.723, 50.63, 34

)
and

(
β̂2, λ̂2, ν2

)
=
(
0.267, 32.76, 34

)
.

The relative contour lines can be seen in Figure 3.3 on the right hand side. In this second
case, δH = 0.951 leading to the rejection of the hypothesis.
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Chapter 4

Comparing k independent populations
through the Bayesian Discrepancy
Measure

In this section we propose a general procedure, based on the BDT, for comparing k

parameters, or their transformations, from independent populations. The presented ap-
proach is not a simple extension of the one outlined in the previous chapter and, due to
the geometry of the hypothesis and the parameter space, it requires a great number of
details and clarifications. Once again, this methodology allows us to discuss problems
not yet addressed in the literature.

4.1 Problem setting

Let us consider k ≥ 3 independent populations P1, . . . ,Pk, each represented by the
parametric model

Yi ∼ f(yi | θi), i = 1, . . . , k, (4.1)

where the parameter θi ∈ Θi ⊆ Rp, p ≥ 1, and the iid random variables Y1, . . . , Yk
(discrete or continuous) have the same support X . Let ni be the number of observations
of the i-th population and N =

∑k
i=1 ni.

Given k populations, the data vector of all observations is y = (y1, . . . ,yk), with
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yi = (yi1, . . . , yini
) and, analogously, θ = (θ1, . . . ,θk) ∈ Θ = Θ1 × · · · × Θk is the

joint vector of all parameters θi.

The procedure we propose allows to compare k populations through a comparison
of some parameters of interest. In this regard, let us consider a differentiable function

ϕ : Θi −→ Φi ⊆ R

θi 7−→ φi = ϕ(θi), i = 1, . . . , k

for each population parameter θi, which gives the relevant parameter of interest φi
(where φi can be just one of the θi components). Let us further consider a bijective
reparametrization

θi 7→ (φi, ζi) , i = 1, . . . , k ,

for each model (4.1), where ζi ∈ Zi ⊆ Rp−1 is a nuisance parameter vector. Then the
vector of the parameters of interest is φ = (φ1, . . . , φk) ∈ Φ = Φ1 × · · · × Φk ⊆ Rk.

4.1.1 Prior, posterior and marginals

Given the i-th sample yi, consider the likelihood

Li
(
θi |yi

)
=

ni∏
j=1

f(yij|θi) , i = 1, . . . , k ,

and a prior distribution g0(θi) for each parameter vector θi. The corresponding i-th
posterior distribution is

θi|yi ∼ gi1(θi|yi) ∝ g0(θi) · Li
(
yi;θi

)
, i = 1, . . . , k .

Since the populations being compared are independent, we have

θ | y ∼
k∏
i=1

gi1(θi | yi) . (4.2)
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The marginal posterior distribution of the i-th scalar parameter of interest φi is then

hi1(φi|yi) =
∫
ϕ(θi)=φi

gi1(θi | yi) dθi. (4.3)

The independence of φi, for all i = 1, . . . , k, allows the factorization of the posterior
distribution as

φ | y ∼
k∏
i=1

hi1(φi | yi) . (4.4)

4.2 Comparison of k independent populations

By means of the BDT, we attempt to address and solve the classical problem of compar-
ing k populations. Therefore, we would like to test the hypothesis

H : φ1 = . . . = φk . (4.5)

In order to do this, let us consider an appropriate k-pla of known real constants c⊤ =

(c1, . . . , ck) ∈ Rk, where
∑k

i=1 ci = 0, and a linear combination of interest

ψ =
k∑
i=1

ciφi = c⊤φ , (4.6)

said contrast, with C .
=
{
c ∈ Rk :

∑k
i=1 ci = 0

}
. Testing (4.5) corresponds to test

Hc : ψ = 0 , (4.7)

for all c ∈ C since these two formulations are linked by the relationship

φ1 = · · · = φk ⇔ ψ = c⊤φ = 0 , ∀c ∈ C , (4.8)

for a proof see Casella and Berger, 2001 (chap. 11).
Despite the equivalence between the hypotheses, from the geometrical point of view

we can notice that H does not partition the space while Hc partitions the space for each
c ∈ C.
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4.2.1 Distribution of a fixed contrast

In the following, we will construct a step of the procedure that allows to test hypothesis
(4.7) and, consequently, hypothesis (4.5).

As said before, from a geometrical point of view, the contrast ψ = c⊤φ = 0 is, for a
fixed c ∈ C, one hyperplane of the hyperplanes star Sk passing through a straight line ℓH
identified by the hypothesis. Note that for each choice of c we have a different contrast.

Whatever the vector of contrasts c chosen, the hypothesis Hc induces the partition
{Γ1,ΓHc ,Γ2} of the space Φ, with

Γ1
.
=
{
φ ∈ Φ | c⊤φ > 0

}
ΓHc

.
=
{
φ ∈ Φ | c⊤φ = 0

}
.

Γ2
.
=
{
φ ∈ Φ | c⊤φ < 0

} (4.9)

Then the BDM is computed as

δHc(c) = 1− 2 min

{∫
Γ1

k∏
i=1

hi1(φi|yi) dφi ,
∫
Γ2

k∏
i=1

hi1(φi|yi) dφi

}
,

which depends from the vector of contrasts c chosen. The posterior distribution of the
contrast, resulting from the selected c, is

ψ | y ∼ p(ψ | y) =

∫
c⊤φ=ψ

k∏
i=1

hi1(φi | yi) dφi . (4.10)

In this way, thanks to the latter, it is possible to test hypothesis (4.7) by computing

δH = 1− 2 ·min

{∫ 0

−∞
p(ψ | y) dψ ,

∫ ∞

0

p(ψ | y) dψ
}
. (4.11)

Furthermore, it should be noted that the statistician, depending on his or her needs,
may not be interested in hypothesis (4.7) but rather in hypothesis

Hc : ψ = ψH ,

where ψH ̸= 0 is set by the statistician according to his purposes. The proposed proce-
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dure can easily deal with functions of interest of the form ψ = ψ(φ) by computing

δH = 1− 2 ·min

{∫ ψH

−∞
p(ψ | y) dψ ,

∫ ∞

ψH

p(ψ | y) dψ
}
.

It must be taken into account that the determination of p(ψ|y), using the (4.10), may
also turn out to be laborious. In such a case, it is possible to use a distribution p̃(ψ|y),
obtained by means of well-known simulation techniques. Instead of (4.2.1) we will then
have the estimate

δ̃H = 1− 2 ·
{∫ ψH

−∞
p̃(ψ | y) dψ ,

∫ ∞

ψH

p̃(ψ | y) dψ
}
.

4.2.2 The Optimality Criterion

In the space Φ ⊆ Rk, the hypothesis (4.7) for a fixed c is a straight line passing through
the origin, whose points are equidistant from the co-ordinate axes φi. Summarising

(a) if k = 2 then the hypothesis H partition the space of interest Φ and it is possible
to compute the BDM knowing distribution (4.4);

(b) on the contrary, if k ≥ 3, the hypothesis H does not partition the space Φ. In that
case, Φ can only be partitioned through a hyperplane with dimension k − 1.

In order to overcome the inconvenience that occurs when k ≥ 3, we formulated a
criterion that consists in taking a partitioning hyperplane of the star Sk for which

δH(c) = 1− 2 ·min
{
P(φ ∈ Γ1 | y) , P(φ ∈ Γ2 | y)

}
(4.12)

is highest. Hence, we seek to find

c∗ = argmax
c∈C

δH(c) . (4.13)

The vector c∗, which identifies the optimal contrast and for which the BDM is maximum
(optimal), is called optimal vector.

Let us now explain the reasoning behind this choice. The fact that to reject H :

φ1 = . . . = φk one must find at least one c ∈ C for which the related contrast is
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rejected (see formula (4.8)), implies that with this criterion we are selecting the ‘worst
possible’ c. In this way, if the contrast relating to c∗ is rejected, we have found at least
one contrast such that ψ = c⊤φ = 0 does not hold and therefore we can reject H .
Otherwise, if this is not the case, we cannot reject H since we are sure that all of the
other contrasts have a lower δH(c).

In order to simplify the illustration of the procedure for choosing the optimal contrast,
consider the situation for which k = 3. We write (4.4) as

h(φ1, φ2, φ3) = h11(φ1)h
2
1(φ2)h

3
1(φ3), φ1, φ2, φ3 ∈ R

and express the straight line ℓH as

ℓH : {φ1 = u, φ2 = u, φ3 = u}, ∀u ∈ R.

Let ζ(u) = h(u, u, u) be the profile curve of the hypersurface h(φ1, φ2, φ3) in corre-
spondence to the points of the line ℓH . We assume that the marginal distributions hi1 are
unimodal and differentiable almost everywhere, then it follows that the contour surfaces
of h(φ1, φ2, φ3) are convex. For the same reason, also ζ is differentiable and unimodal.

Inspired by the heuristic intuition, we make a conjecture about which vector c∗ is
supposed to maximise δH(c) and therefore maximises the difference

∣∣P(φ ∈ Γ1|y)− P(φ ∈ Γ2|y)
∣∣.

Conjecture 4.1. The optimal vector c∗ is the vector such that the straight line ℓH is tangent
with one of the level surfaces.

In fact, the straight line ℓH intersects each contour surface in at most two points, but
only one of them is intersected in only one point that we indicate with P ∗ = (u∗, u∗, u∗).
It is easy to deduce that u∗ is the maximum point of the profile curve ζ . Then, the optimal
vector c∗ is (up to a constant) the gradient of the function h(φ1, φ2, φ3) evaluated at the
point P ∗, i.e.

c∗ ∝ ∇⃗h(P ∗) =

{
∂h

∂φ1

,
∂h

∂φ2

,
∂h

∂φ3

} ∣∣∣∣
P ∗
.

The plane passing through ℓH and perpendicular to the gradient, providing the optimal
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contrast, has equation
c∗1 · φ1 + c∗2 · φ2 + c∗3 · φ3 = 0 . (4.14)

This plane identifies the optimal division
{
Γ∗
1,Γ

∗
Hc
,Γ∗

2

}
which can be expressed similarly

to (4.9).

4.3 Examples

We now present some examples that will hopefully clarify the procedure. Again here,
we have always adopted Jeffreys’ priors. All of the codes for the following examples
can be seen in Manca, 2023.

Example 4.2. (Poisson model)
For this example we consider the study examined by Girón et al., 2022 on potential car-
cinogenicity of several chemical compounds. From four Poissonian independent popu-
lations Yi ∼ Po(·|λi), i = 1, . . . , 4, are extracted n1 = 154, n2 = 19, n3 = 20, n4 = 11

iid observations with sums t1 = 34, t2 = 4, t3 = 6, t4 = 5. Let N =
∑4

i=1 ni = 204

and T =
∑4

i=1 ti = 49. These four groups are divided according to different doses of
methyl iodide with which some mices were treated with: zero (labeled as i = 1), low
(corresponds to 0.06 mmoles per kg of mouse and labeled as i = 2), medium (0.15
mmoles per kg, i = 3) and high (0.31 mmoles per kg, i = 4).

The hypothesis to be tested isH : λ1 = λ2 = λ3 = λ4. Assuming, the Jeffreys’ non-
informative prior for the parameter λi, the posterior hi1(φi|yi) is a Gamma distribution
with shape parameter αi = 1

2
+ ti and rate parameter βi = ni. Therefore, the posterior

distribution of the parameter of interest vector λ is

λ | y ∼
4∏
i=1

Gamma(λi | αi, βi) ,

and the profile distribution over the hypothesis H is

ζ(λ) ∝ λT−2 exp {−Nλ},

fixing that λ1 = λ2 = λ3 = λ4 = λ along ℓH . The maximum point of the profile curve
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ζ is λ∗ =
T − 2

N
= 0.23 and the intersection point between ℓH and a certain contour

surface is P ∗ = (0.23, 0.23, 0.23, 0.23). Then, the optimal vector c∗ is

c∗ ∝ ∇⃗h(P ∗) =

{
∂h

∂λ1
,
∂h

∂λ2
,
∂h

∂λ3
,
∂h

∂λ4

} ∣∣∣∣
P ∗

= (−0.648,−0.287, 0.292, 0.643)

and δH(c∗) = 0.894. Therefore the global hypothesis H cannot be strongly rejected.
This result is in agreement with the article.

The authors consider also a second example aiming to analyze the patient survival
after heart valve replacement operations in a sample of 109 patients along a certain period
of observation. The number of months after the operations are, in the four groups, n1 =

1259, n2 = 2082, n3 = 1417, n4 = 1647 while the number of deaths are t1 = 4, t2 = 1,
t3 = 7, t4 = 9. The intersection point is P ∗ = (0.00297, 0.00297, 0.00297, 0.00297),
the optimal vector is c∗ = (−0.033,−0.798, 0.323, 0.508) and δH(c∗) ≈ 1. Therefore
the global hypothesis H can be rejected. Again, this result is in agreement with the one
obtained by Girón et al., 2022.

Example 4.3. (Normal model)
From Ventura and Racugno, 2017, we consider a dataset reporting the resistance time
(in minutes) measured on professional cyclists in a particular training session, after the
ingestion of four different doses of caffeine (0, 5, 9, and 13mg). The aim of the analysis
is to assess whether there are significant differences between the endurance times after
caffeine consumption in different doses. It is assumed that Yi ∼ Normal(yi | µi, ϕi),
i = 1, . . . , 4 and that the populations are independent. We conduct two separate analyses:

• first, we perform a test on the means by considering the hypothesisH : µ1 = µ2 =

µ3 = µ4. Assuming, the Jeffreys’ non-informative prior for the parameter µi, the
posterior distribution of the vector parameter of interest is

µ | y ∼
4∏
i=1

StudentG
(
µi

∣∣∣ ηi, βi
νiαi

, 2αi

)
,

using the notation given in Example 2.9.

The intersection point is P ∗ = (55.18, 55.18, 55.18, 55.18) while the optimal vec-
tor is c∗ = (−0.862, 0.218, 0.358, 0.286) and δH(c∗) = 0.939. Therefore the
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global hypothesis H can be rejected. This result is in agreement with the p-value
that is equal to 0.00359.

• Second, we perform a test on the precisions by considering the hypothesis H :

ϕ1 = ϕ2 = ϕ3 = ϕ4. Assuming, the Jeffreys’ non-informative prior for the param-
eter ϕi, the posterior distribution of the vector parameter of interest is

ϕ | y ∼
4∏
i=1

Gamma(ϕi | αi, βi),

using again the notation given in Example 2.9. The intersection point is P ∗ =

(2781.503, 2781.503, 2781.503, 2781.503), while the optimal vector is

c∗ = (−0.824, 0.501, 0.065, 0.258)

and δH(c∗) = 0.0.5812. Therefore the global hypothesis H cannot be rejected.

Example 4.4. (Binomial model)
Finally, we consider an example from Nashimoto et al., 2013 that, with a frequentist test,
compares the proportions in five different groups concerning the effects of five training
methods (A, B, C, D, and E) on test scores. It is assumed that Yi ∼ Binomial(· | θi),
i = 1, . . . , 5 and that the populations are independent. For each group we have that ki
is the number of successes (the proportion of high scores) and ni is the number of the
observations.

groups
A B C D E

k 12 10 36 36 37
n 60 40 80 60 50

The hypothesis to be tested is H : θ1 = θ2 = θ3 = θ4 = θ5. Assuming, the Jeffreys’
non-informative prior for the parameter θi, the posterior distribution of the parameter of
interest vector θ is

θ | y ∼
5∏
i=1

Beta(θi | αi, βi),
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A B C D
B 0.999995 - - -
C 0.922 0.998 - -
D 0.9995 0.449 0.969 -
E 0.880 1 0.999 0.999998

Table 4.1: Values of δH for Example 4.4.

with αi = ki + 1/2 and βi = ni − ki + 1/2. The intersection point is

P ∗ = (0.45, 0.45, 0.45, 0.45, 0.45)

while the optimal vector is c∗ = (−0.627,−0.336,−0.005, 0.369, 0.598) and δH(c∗) ≈
1. Therefore the global hypothesis H can be rejected. This result is in agreement with
the one obtained by the authors of the paper.

As done in the paper under consideration, it may be of interest make a pairwise
comparison between groups. This means that one has to test the hypothesis H : θi = θj

with i ̸= j. The results are shown in Table 4.4, allowing us to conclude that we reject the
hypothesisH for groupsB–D andA-E. Less strongly, we can also reject the hypothesis
for groups A–C. These results are somewhat similar to those found by them, of course
it all depends on the threshold one chooses.
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The Bayesian Discrepancy Test for
Partial Correlations

Partial correlations coefficients express the relationships between two variables while
taking into account other confounding variables. In the context of the multivariate nor-
mal model we will focus on, a null partial correlation corresponds to a conditional inde-
pendence between two given variables.

In the frequentist framework expressing the evidence for or against conditional in-
dependence using a partial correlation is still in development and, in the Bayesian one,
methods for partial correlation estimation and testing are not completely developed for
the practical researcher’s use. One proposal that aims to overcome this problem is that
of Kucharskỳ, 2018, which constructs an analytical version of the default Bayes factor
for partial correlations.

5.1 Problem setting

The aim of this chapter is to use the BDT to perform a test on the partial correlation
coefficient. This is based on the promising work conducted by Kucharskỳ, 2018, where
the marginal distribution of this coefficient is derived starting from a particular parame-
terisation of the model and a certain prior distribution.

In this section, in order to provide a solid background to our application, we sum-
marise the work done by Kucharskỳ, 2018. The underlying idea is that partial correla-
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tion can be viewed from a perspective of linear regression, since the absence of a partial
correlation in multivariate normal data means conditional independence between some
variables given all the others. First, the case where only one conditioning variable is con-
sidered, afterwards, the discussion is extended to the inference on the partial correlation
in the situation where several conditioning variables are present.

5.1.1 The case of one conditioning variable

Let (X, Y, Z) be a multivariate normal random vector with mean µ = (µx, µy, µz) and
a variance-covariance matrix

Σ =

 σ2
x σxσyρxy σxσzρxz

σxσyρxy σ2
y σyσzρyz

σxσzρxz σyσzρyz σ2
z

 .

The partial correlation between the variables X and Y taking into account the variable Z
can be expressed as

ρxy.z =
ρxy − ρxzρyz√

(1− ρ2xz)(1− ρ2yz)
.

Given n observations of the multivariate random vector (X, Y, Z), they can be summa-
rized by data = (n, m̄, S), where m̄ = (x̄, ȳ, z̄) is a vector of sample means and

S =

 s2x sxsyrxy sxszrxz

sxsyrxy s2y syszryz

sxszrxz syszryz s2z

 .

is an average sum of squares and cross-products matrix. The sample partial correlation
is then

rxy.z =
rxy − rxzryz√

(1− r2xz)(1− r2yz)
.

A test on the partial correlation ρxy.z of X and Y conditioned on Z can be seen as a
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Figure 5.1: Bayesian graphical representation of the reparametrized model for the partial
correlation.

comparison of two linear models

M0 : X = α + β1Z + ϵ

M1 : X = α + β1Z + β2Y + ϵ,

where one tests whether the addition of a predictor Y improves the fit.

Kucharskỳ, 2018 (p. 11) states that it is necessary to specify the models M0 and M1

such that the Bayes factor depends only on the sample partial correlation by integrating
out the nuisance parameters. The aim is to express Σ such that the partial correlation
parameter ρxy.z appears in the matrix entries. This is done specifying the partial correla-
tion as a covariance between the residuals of X and Y after regressing them individually
on Z. The reparametrized model results in the Bayesian graphical model shown in Figure
5.1, which implies that now the variance-covariance matrix takes the form
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Σ =

 λ2x(1 + β2
x) λxλy(ξ + βxβy) λxσzβx

λxλy(ξ + βxβy) λ2y(1 + β2
y) λyσzβy

λxσzβx λyσzβy σ2
z

 ,

where

ξ = ρxy.z,

µx = E[X], µy = E[Y ], µz = E[Z], σ2
z = Var(Z),

λ2x = σ2
x(1− ρ2xz), λ2y = σ2

y(1− ρ2yz), βx =
ρxz√
1− ρ2xz

, βy =
ρyz√
1− ρ2yz

.

Prior specification

After this reparametrisation, the new model M1 is parametrized by a vector

θ = (µx, µy, µz, λx, λy, σz, βx, βy, ξ)

of 9 unknown parameters, while in the null model M0 the partial correlation ξ is set to
0, implying that

θ0 = (µx, µy, µz, λx, λy, σz, βx, βy).

The prior for the alternative model M1 is

g0(θ|M1) = B(1/2, α)−1(1− ξ2)α−1︸ ︷︷ ︸
g0(ξ)

· g0(θ0|M0) (5.1)

where g0(θ0|M0) = 13︸︷︷︸
g0(µ)

·λγ−1
x · λδ−1

y · σ−1
z · 12︸︷︷︸

g0(β)

is the prior on the 8 parameters for

the null model. The prior on the partial correlation ξ is a symmetric beta distribution
stretched in the interval (−1, 1) which is controlled by the hyperparameter α > 0 (fixed
by the researcher) and therefore is denoted as B∗(α).

Bayes factor

Since we are interested to compute the Bayes factor, we need to have the marginal
likelihood of the alternative model M1, for details of the challenging calculations see
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Kucharskỳ, 2018, p.17 – 24). It factors out as

f(data|M1) = f(data|M0) ·
∫
g0(ξ)fγ,δ(n, rxy.z | ξ)dξ, (5.2)

where
f(data|M0) · fγ,δ(n, rxy.z | ξ)

is the reduced likelihood after integrating out all the parameters besides ξ, with fγ,δ(n, rxy.z | ξ) =
(1− ξ2)1/2hγ,δ(n, rxy.z | ξ). The function

hγ,δ(rxy.z, n | ξ) = A(n, rxy.z | ξ) +B(n, rxy.z | ξ), (5.3)

i.e. it is a sum of an even function

A(n, rxy.z | ξ) = (1− ξ2)(n−γ−δ−1)/2
2F1

(n− γ − 1

2
,
n− δ − 1

2
;
1

2
; r2xy.zξ

2
)
,

where 2F1(a, b; c; z) is the Gaussian hypergeometric function, and an odd function

B(n, rxy.z | ξ) = 2rxy.zξ(1− ξ2)(n−γ−δ−1)/2Wγ,δ(n)

× 2F1

(n− γ

2
,
n− δ

2
;
3

2
; r2xy.zξ

2
)
,

whereWγ,δ(n) =
[
Γ
(
n−γ
2

)
Γ
(
n−δ
2

)]
/
[
Γ
(
n−γ−1

2

)
Γ
(
n−δ−1

2

)]
. In short, hγ,δ(n, rxy.z | ξ)

is of the form of the “reduced” likelihood of a Pearson’s correlation (see Ly et al., 2018,
p. 6) and it is the part of the reduced likelihood depending on the partial correlation ξ
given only the sample correlation rxy.z and the sample size n. In conclusion, Kucharskỳ,
2018 (p. 16-17) proves that the Bayes factor testing the nullity of a partial correlation ξ
can be expressed as

BF10 =
f(data|M1)

f(data|M0)
=

∫ 1

−1

g0(ξ)(1− ξ2)1/2hγ,δ(n, rxy.z | ξ)dξ

= B
(1
2
, α+

n− γ − δ

2

)
/B
(1
2
, α
)

× 2F1

(n− γ − 1

2
,
n− δ − 1

2
; α +

n− γ − δ + 1

2
; r2xy.z

)
,

(5.4)

where n > 3, and γ, δ, α > 0.
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5.1.2 The case of more conditioning variables

Now, we focus on the case in which the controlling variable is a vector Z, i.e. one wants
to compare two linear models

M0 : X = α + β1Z + ϵ

M1 : X = α + β1Z + β2Y + ϵ,

where Z = (Z1, . . . , Zk) and β1 = (β11, . . . , β1k), in order to test whether the addition
of the predictor improves the fit. Again, this can be seen as a test of the partial correlation
ξ of X and Y conditioned on Z.

The extension of the partial correlations model based on more controlling variables
can be done by including in the model more latent variables (for the details see Kucharskỳ,
2018, p. 24).

Bayes factor for k = 2

It can be proved that, for k = 2 conditioning variables, the marginal likelihood of the
alternative model M1 factors out as

f(data|M1) = f(data|M0) ·
∫ 1

−1

g0(ξ)(1− ξ2)2/2hγ,δ(n, rxy.z | ξ). (5.5)

Therefore, the Bayes factor testing the nullity of a partial correlation ξ can be expressed
as

BF10 =
f(data|M1)

f(data|M0)
=

∫ 1

−1

g0(ξ)(1− ξ2)2/2hγ,δ(n, rxy.z | ξ)dξ

= B
(1
2
, α+

n− γ − δ + 1

2

)
× 2F1

(n− γ − 1

2
,
n− δ − 1

2
; α +

n− γ − δ + 2

2
; r2xy.z

)
/B
(1
2
, α
)
,

(5.6)

where n > 3 and γ, δ, α > 0.
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Bayes factor generalization for k > 2

Kucharskỳ, 2018, based on the results of the partial correlation with one and two con-
ditioning variables, conjectures that the marginal likelihood of the alternative model
factors out as

f(data|M1) = f(data|M0) ·
∫
g0(ξ)fγ,δ(n, rxy.z | ξ)dξ, (5.7)

with fγ,δ(n, rxy.z | ξ) = (1 − ξ2)k/2hγ,δ(n, rxy.z | ξ) the reduced likelihood, where k is
the number of conditioning variables Z1, . . . , Zk and hγ,δ(r, n | ξ) is of the form (5.3).
Consequently, the Bayes factor for the partial correlation given k conditioning variables
is

BF10 =

∫ 1

−1

p(ξ)(1− ξ2)k/2hγ,δ(r, n | ξ)dξ

= B
(1
2
, µ
)

2F1

(n− γ − 1

2
,
n− δ − 1

2
; µ+

1

2
; r2xy.z

)
/B
(1
2
, α
)
.

(5.8)

where µ = α + n+k−γ−δ−1
2

. The conjecture is supported by a simulation given in
Kucharskỳ, 2018 at pp. 33–38. He also proved that the Bayes factor appears to be
invariant with respect to the correlation structure between the conditioning variables.

Marginal posterior of the Partial Correlation

The novelty produced by the work outlined until here, and that is of interest to us, is the
analytical form for the marginal posterior distribution of the partial correlation. With a
stretched beta prior on ξ symmetric around zero, the analytic marginal posterior of ξ is
expressed as

g1(ξ | n, rxy.z) =
g0(ξ)fγ,δ(n, k, rxy.z | ξ)∫
g0(ξ)fγ,δ(n, k, rxy.z | ξ)dξ

=
(1− ξ2)(2α+k−2)/2

BF10(rxy.z, n, k, α)B(1/2, α)
hγ,δ(rxy.z, n | ξ),

(5.9)

given the conjecture on the Bayes factor for partial correlation for k conditioning vari-
ables, see formula (5.8).
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Kucharskỳ, 2018 proves that setting γ = δ = k gives a predictive matching Bayes
factor (i.e such that p(data|M1) = p(data|M0), see Jeffreys, 1939; Ly et al., 2016)
following Jeffrey’s philosophy for constructing Bayes factors. This choice gives the
marginal posterior

g1(ξ | n, rxy.z) =
(1− ξ2)(2α+n−k−3)/2

B
(

1
2
, α+ n−k−1

2

)
2F1

(
n−k−1

2
, n−k−1

2
; α + n−k

2
; r2xy.z

)
· ×
[

2F1

(n− k − 1

2
,
n− k − 1

2
;
1

2
; r2xy.z ξ

2
)

+ 2 rxy.z ξ Wk,k(n) 2F1

(n− k

2
,
n− k

2
;
3

2
; r2xy.z ξ

2
)]
.

(5.10)

5.2 The BDT for the Partial Correlation

Given n observations of (X, Y,Z) and considering the same problem setting as in the
previous section, it is possible to outline a simple procedure for testing the partial cor-
relation coefficient using the BDM. Taking advantage of the results obtained there, in
particular the analytical expression of the marginal posterior of the partial correlation,
we want to test the hypothesis H : ρxy.z = 0, which corresponds to testing

H : ξ = 0,

after reparametrizing the model. The hypothesis H identifies in the marginal parameter
space Ξ = (−1, 1) the partition {Ξa,ΞH ,Ξb}, with

Ξa =
{
ξ ∈ Ξ | ξ < 0

}
,

ΞH =
{
ξ ∈ Ξ | ξ = 0

}
,

Ξb =
{
ξ ∈ Ξ | ξ > 0

}
.

Then, after computing

P
(
ξ ∈ Ξj | n, rxy.z

)
=

∫
Ξj

g1(ξ | n, rxy.z) dξ, j = a, b ,
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we can evaluate the BDM as

δH = 1− 2 ·min
a,b

{
P
(
ξ ∈ Ξa | n, rxy.z

)
, P
(
ξ ∈ Ξb | n, rxy.z

)}
.

5.2.1 Illustrative examples

In this section we present three examples in order to show the simplicity of the procedure
based on the BDM. These are all given in Kucharskỳ, 2018 (pp. 40 – 54).

Example 5.1. The first motivating example is presented to explain the functioning of
the Default Bayesian Test for Partial Correlations in the event that the original data are
not available. It provides a reanalysis of the results from Lleras et al., 2011 who tested
the hypothesis H : ξ = 0, where ξ is the partial correlation of a search time and rapid
resumption, conditioned on the age of the participants. Since the conditioning variable
is only one, then k = 1. For the analysis has been chosen a uniform prior, on the partial
correlation, between -1 and 1 which corresponds to set α = 1. Starting from a sample
partial correlation rxy.z = 0.01 and a sample size n = 40, the Default Bayes Factor is
BF10 = 0.200 indicating that the data are five times more likely to occur under the null
model M0 than under the alternative model M1. On the other hand, the p-value asso-
ciated with the partial correlation is p-value = 0.952, informing us that the hypothesis
H cannot be rejected at any reasonable α level. In agreement with this, we find that
δH = 0.047, suggesting that we do not have enough evidence to reject H .

Example 5.2. In a study conducted by Gottlieb and Lombrozo, 2018, the researchers
considered n = 317 partecipants who were asked to rate how some psichological topics
could be explained by scientific psychology (scientific possibility). They were also asked
whether they feel comfortable with science explaining the phenomenon (scientific dis-
comfort) and how much the phenomenon involves subjective experience (introspection-
phenomenology). The result of the survey was that the more a phenomenon requires
subjective experience, the smaller was the belief that it could be explained by science.
Since people could feel more discomfort with science explaining subjective phenomena,
the researchers realized that it might happen that the correlation between introspection-
phenomenology and scientific possibility could be influenced by their relationship with
scientific discomfort. Verifying if this intuition is true, can be done by the partial corre-
lation of the two variables by taking scientific discomfort as conditioning variable Z.
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Again, k = 1 and the resulting sample partial correlation is rxy.z = 0.027. For the
analysis has been again chosen a uniform prior on the partial correlation (α = 1) and the
Default Bayes Factor is BF10 = 0.189, indicating that the data are 1/0.189 = 5.3 times
more likely to occur under the null model M0 than under the alternative model M1. The
measure δH = 0.189, suggesting that we do not have enough evidence to reject H .

Example 5.3. Finally, we analyse a subset of a dataset, investigated in Soyyılmaz et al.,
2017, containing the responses of n = 43 first year psychology students about their sci-
entific thinking. The scores on three questionnaires are the 5 variables that are analyzed
as a network

• NFC, the Need For Cognition short scale which assess the tendency to enjoy en-
gagement in effortful thinking,

• SSE, the Scientific Self-Efficacy scale which has been developed to assess the con-
fidence in engaging in scientific inquiry,

and three subscales of the Epistemic and Ontological Cognition Questionnaire (EOCQ)

• EOCQa, regarding the certainty of knowledge,

• EOCQb, concerning the justification of knowledge by authority,

• EOCQc, regarding the personal justification of knowledge.

In this case k = 3 and for the analysis has been again chosen a uniform prior on
the partial correlation (α = 1). The results of the analysis are reported in Figure 5.2.1,
showing that the when the Bayes factor chooses the model M1 then the BDM rejects
the hypothesis H . This happens for the partial correlation on the couple of variables
(EOCQc, SSE) and (EOCQc, EOCQa) given all the others.
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NFC SSE EOCQa EOCQb

SSE
rxy.z 0.121 - - -
BF10 0.257 - - -
δH 0.533 - - -

EOCQa
rxy.z 0.130 0.081 - -
BF10 0.269 0.222 - -
δH 0.566 0.373 - -

EOCQb
rxy.z 0.163 0.286 0.917 -
BF10 0.321 0.925 0.405 -
δH 0.675 0.919 0.767 -

EOCQc
rxy.z 0.097 0.416 -0.304 -0.001
BF10 0.233 6.156 1.136 0.197
δH 0.438 0.991 0.937 0.004

Table 5.1: Bayes factor and BDM for Example 5.3.
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Chapter 6

Conclusions & Discussion

Several attempts have been made, over the last sixty years, to construct a measure of
evidence that covers, in the Bayesian context, the role that the p-value has played in the
frequentist setting. The goal of this thesis was to contribute to the Bayesian testing pro-
cedure for precise hypotheses by defining a new measure of evidence on which a testing
procedure that is general is based, in contrast with the frequentist field where the testing
procedures are ad hoc as they depend on the particular case study under consideration.

In this regard, this thesis proposed and investigated the use of a new evidence mea-
sure, known as BDM, to test precise hypotheses for parametric models. It should be kept
in mind that the BDM has an exclusively evaluative nature of the null hypothesis, un-
like most of the measures of evidence present in the literature which have a comparative
nature as the null hypothesis is placed against an alternative one.

The outline of the thesis is as follows. Chapter 2 dealt with its definition in the
univariate case in absence or presence of nuisance parameters. In Chapter 3 and 4 was,
respectively, presented the application on the comparison between two and k parameters,
or their functions, from independent populations. Last, Chapter 5 discussed the use of
the BDT for testing partial correlations when considering a multivariate Gaussian model.

Overall, it has been shown that the BDT represent a flexible procedure that allows
hypotheses to be tested intuitively and rather easily in different contexts. Furthermore, it
became clear that this methodology allows us to address some problems not yet explored
in the literature, as the test on the comparison of two skewness indexes. As we have seen,
the Bayesian test that most closely resembles the BDT is the FBST defined in Pereira and
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Stern, 2020. It must be emphasised that the BDM is much easier and faster to calculate
than the e-value, the evidence measure on which the FBST is based, when the parameter
space has dimension greater than 1. Furthermore, the BDM is invariant with respect to
the marginalisations of the nuisance parameter, unlike the e-value for which the use of
marginal densities to construct credible sets can produce inconsistency.

On the other hand, it should be highlighted that the extension of the BDM definition
from the univariate case to the multi-parameter case is not straightforward due to the non-
trivial problem of defining the median in multiple dimensions. This prevents an elegant
and unified definition of the measure as the one provided by the FBST that examines
the entire class of sharp hypotheses, not only considering the subclass of the hypotheses
expressed as that are able to partition the parameter space as the BDT does. A similar
problem arises with regard to the impossibility of the direct extension of the procedure
for comparing two populations to the comparison of k. This is due to the fact that, in the
latter case, the hypotheses do not partition the parameter space leading to the need for a
conjecture to find the best partitioning hyperplane.

Nevertheless, this method has a considerable potential for development. Some of the
main extensions concerning the BDT based approach include:

• tests on the regression coefficients of linear models and generalized linear models;

• goodness-of-fit tests for model validation and selection;

• predictive tests;

• parametric tests for non-regular models (Pareto, Cauchy, Laplace, etc.).

Another interesting extension of the work done in this thesis, and in particular Chap-
ter 5, is the use of the BDM as a sequential method for Gaussian graphical model selec-
tion. Let’s see in detail what it is.

Graphical models are a way of representing conditional independence relationships
between variables. A graphical model consists of a vertex set V = {1, . . . , p} (which
correspond to the variables X1, . . . , Xp), and an edge set E which contains edges of the
form (i, j) where i, j ∈ V .

Let now be X = (X1, . . . , Xp) ∼ Np(x | µ,Σ) a p dimensional normally distributed
random vector. Let also consider the inverse covariance matrix or precision matrix Θ =
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Σ−1, whose elements are indicated by θij with i, j = 1, . . . , p. The lack of an edge in
the graph, i.e. (i, j) /∈ E, specifies a conditional independence relationship between the
variables Xi and Xj . In fact, there exists a close link between graphical models and the
precision matrix in the case of Gaussian random variables. This can be summarized by
saying that

θij = 0 ⇐⇒ Xi ⊥ Xj | X−(i,j), (6.1)

that is, zero entries in the precision matrix correspond to conditional indipendence of
some variables given all the others. We may then write this expression in terms of partial
correlations, i.e.

θij = 0 ⇐⇒ ρXiXj .X−(i,j)
= 0. (6.2)

Then main goal of graphical models is to identify the graph that best represents the vari-
ables based on certain observations. The space of possible graphical models is too large
to compare every model in a fully Bayesian way. For this reason, have been introducted
some search algorithms which choose a subset of the models among all the models to be
compared, and hopefully this subset contains some good or the ‘best’ model (however
one defines ‘best’). One Bayesian way to do this is sequentially removing the edge which
maximises the Bayes factor score. A possible alternative to the usage of the Bayes factor
score in model search algorithms, can be the usage of the BDM for Gaussian graphical
model selection in the p > 2 case. One can start by using the BDM to test the hypothesis
H : θij ̸= 0 or, equivalently, H : ρXiXj .X−(i,j)

= 0, thanks to (6.2). From these one
would obtain a δij , for each θij , which can be used to make a model search algorithm.
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Appendix A

Short references to some statistical tests

The appendix provides a concise exposition of some statistical tests expressing ideas,
which are more or less shareable, that inspired the definition of the measure of evidence
under study in this work. The terminology adopted in this appendix will be the same as
the one used in the thesis. Therefore, with evident meaning of the symbols, it will be
referred to

F = {f(x|θ), x ∈ X ⊆ Rk,θ ∈ Θ ⊆ Rp} (A.1)

as the family of distributions indexed by the parameter θ. The prior distribution will be
denoted by g0(θ) and the posterior distribution, given the vector x = (x1, . . . , xn) of

iid observations dependent on θ, will be g1(θ) =
g0(θ)

∏n
i=1 f(xi|θ)
m(x)

, where m(x) =∫
Θ

∏n
i=1 f(xi|θ) g0(θ) dθ is the marginal or prior predictive distribution. The corre-

spondent distribution function will be denoted by G1(θ|x).

A.1 Measures of surprise

The degree of incompatibility between the data and a certain hypothesised model H is
quantified by means of surprise measures, without any reference to alternative models
(see Bayarri and Berger, 1997). From a frequentist perspective, a traditional measure of
surprise is the p-value.
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A.1.1 Surprise indices

The first frequentist surprise index definition, other than the usual p-values, was for-
mulated by Weaver, 1948, 1963; this was followed by a second frequentist reformula-
tion due to Good, 1956, 1981, 1983, 1985, 1989. Later on Evans, 1997 introduced a
Bayesian version of this index, through the concept of relative surprise. The latter for-
mulation is central in this discussion because it will be seen to be the foundation of the
Full Bayesian Significance Test (see Section A.3). For the sake of expositional clarity,
we present Weaver’s and Good’s ideas that are necessary to understand Evans’ thinking.

The word “surprising” is used to denote the feeling one gets observing the data once
a model or hypothesis, reflecting the knowledge previously possessed, is formulated.
According to Good, the main function of a feeling of surprise could be to make a person
reconsider the validity of previous assumptions they have; it could lead them to change
their subjective (personal) probabilities of various assumptions and possibly leading to
the consideration of assumptions that were not previously considered.

Weaver’s Surprise Index

Weaver, 1948 first clarifies the concepts meanings of interesting, rare and surprising
events. A rare event, due to the frequentist definition of probability, is an improbable
event. An improbable event is not always an interesting event. In fact, a rare event is in-
teresting depending on whether the subject consider it interesting or not (it often depends
on the experiment type). Furthermore, he observes that a surprising event occurs when
its probability is not small in an absolute sense, but is small relative to the probability of
any other alternative event. He points out that since the concept of probability coincides
with that of degree of rarity, then a surprising event is a rare event but the vice versa
does not apply.

In order to ease the comprehension of these concepts, he considers two examples.
The first one involves a single 13-card bridge hand. There may appear(

52

13

)
= 635, 013, 559, 600

different hands, all with equal probability 1/635, 013, 559, 600. Although each hand has
small probability, thus each one is a rare event, it doesn’t necessarily mean that each is
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interesting. An interesting result would be represented by 13 ♠, but there is no reason
to determine that the result is surprising. One could, instead, lump uninteresting events
together and treat them as a single alternative event. In this way, the probability of the
interesting event is much smaller than the alternative event. The result is that when an
improbable event is so interesting that all its alternatives are grouped together as “dull”
events as to be indistinguishable, then the interesting event may be a surprising event.
The second example involves the tossing of a metal disc that can land in the following
three positions: head, cross or edge. Assume that the thickness of the coin has been
adjusted in such a way that it lands on the edge with a probability of one over a billion.
This result is then improbable, rare, interesting and surprising. The surprise occurs
because not only the probability of the event is low, but it is actually small compared to
the other outcomes.

In order to make the concept of surprising event more precise, Weaver introduced
the definition of Surprise Index of an event. This is an index that aims to measure how
surprised the subject should be by the occurrence of a particular event. He considered
an experiment having a discrete finite set of possible outcomes A1, . . . , An having prob-
abilities p1, . . . , pn, where pi can be seen as the observed value of a random variable P
(which takes values p1, . . . , pn with probabilities p1, . . . , pn). The surprise index, asso-
ciated with the i-th occurring outcome Ai, is

(S.I.)i =
E(P )
pi

=

∑n
j=1 p

2
j

pi
,

where E(P ) “is the average amount of probability one can expect to realize per trial of
the experiment in question”(1). In short, the surprise index compares the observed value
of the random variable P to its expectation. If the ratio is large, then one has the right to
be surprise.

Good, 1956 argues that the surprise index is open to two criticisms. The first criti-
cism involves the fact that the index changes when, in the discrete case, the results of an
experiment are grouped together in a new manner and, in the continuous case, there is a
change of the independent variable (then the surprise indices and the observed surprise
will generally change due to the Jacobian factor). The second criticism concerns the fact

1)Weaver, 1948.
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that the numerator of the index is in some way arbitrary. Regarding the first criticism he
considers 20 flips of an unbiased coin which would lead to 220 different results. The two
results

HTHTHTHTHTHTHTHTHTHT

and
HTTHTHHHTTHHHHTTTHTH

have the same surprise index although it would seem that the former is more surprising.
The author points out that this perception is partially due to the fact that the first result is
“simpler”. In fact, if we would separate the simpler outcomes from the less simple ones
into distinct groups, the first one would have a higher index of surprise than the second
as expected. The vagueness of the definition of this index, according to Good, is due to
the difficulty of measuring “the simplicity”. However, he tries to defend the connection
between surprise and simplicity by stating that maybe the main function of surprise is to
lead us to reconsider the validity of some hypotheses we had previously accepted; in the
sense that we tend to be surprised when we find evidence against that accepted hypoth-
esis. Formally, he means that we tend to be surprised if E occurs when the likelihood
ratio P(E|H ′)/P(E|H) is large for the hypothesisH previously considered valid andH ′

very simple. Although he attempts to find these arguments, in conclusion, he stresses
that since a satisfactory measure of simplicity has not been found, it is unlikely that a
satisfactory measure of surprise can be defined.

In order to overcome the second critical issue, as will be seen in the next section, he
generalizes the definition of surprise index.

Good’s Surprise Index

Good (1982) underlines that the Weaver’s index for the i-th outcome can also be written

as
∑

j Ej(Pj)
pi

where Ej denotes an expectation over the j-th random variable. The
author points up that this index coincides with the ratio between the Gini’s index of
homogeneity ρ =

∑
j p

2
j (the “repeat rate” in Turing’s terminology) and pi. He also

states that for continuous distributions one works with probability densities instead of
probabilities, but the surprise index is then invariant only under linear transformations
of the independent variable. Formally, if the experiments consists in the measurement
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of a continuous vector or scalar variable with a differentiable distribution Good, 1956
defines the surprise index as

E(P ∗|H)

p
,

where H is a simple statistical hypothesis, P ∗ is the random variable that is the proba-
bility density of the original random variable and p is a realization of P ∗.

Good described and improved his proposal in several articles, see Good (1956, 1982,
1983), generalizing the definition due to Weaver, 1948 and suggesting a “continuum”(2)

of indices of surprise. He considered u experiments combined into one, where a finite (or
enumerable) set of mutually exclusive and exhaustive possible outcomesA1, A2, A3, . . .

has probability pi = P(Ai|H), i = 1, 2, . . . and H is a simple statistical hypothesis.
The surprise index associated with the i-th occurring outcome Ai is defined as

λu =

(
E[P u]

)1/u
pi

=

(∑
j p

u+1
j

)1/u
pi

, (u > 0).

In the continuous case,

λu =

(
E
[
P ∗u])1/u
p∗

=
G.E.(P ∗)

p∗
, (u > 0),

whereG.E. indicates the “geometric expectation”. Note that Weaver’s index is obtained
for u = 1.

The limit for u −→ 0 of the surprise index just defined, gives

λu
u−→0−−−→ λ0 = p−1

i exp

{∑
j

Ej
[
log(Pj)

]}
,

and the limit for u −→ ∞ gives

λu
u−→∞−−−−→ λ∞ = p−1

i max pj.

If the results of several statistically independent experiments are combined into a single

2)Good, 1983.
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experiment, it can be seen that λu is multiplicative. The logaritmic transformation of λu
gives the Logaritmic Surpise Index Λu = log λu which is additive. Good reminds that
the expression Λu+ log pi is sometimes called Renyi’s generalized entropy due to Rényi
et al., 1961 which did not mention surprise indexes because he was unaware of Good,
1956. For u −→ 0 the Logaritmic Surpise Index tends to

Λ0 = − log pi +
∑
j

Ej[log(Pj)]

= − log pi +
∑
j

pjlog(pj)

where the first term is the information provided by the event Ai and the second is the
entropy of the experiment (expected amount of information from the experiment).

The author concludes that thanks to this interpretation Λ0 and λ0 are, respectively,
the most natural additive and multiplicative surprise indexes. Furthermore, this consid-
eration is supported by the fact that E(Λ0) = 0 and it is reasonable to demand that the
expected log-surprise is equal to 0 before the experiment is done.

Good, 1983 suggested the possibility, after an observation is made, of selecting one
hypothesis among a group of them (or estimating a parameter, which is logically the
same thing), by a principle of least surprise. The surprise of a certain hypothesis Hk is
be denoted by

λu(Hk) =

(∑
j P(Ej|Hk)

u+1
)1/u

P(Ei|Hk)
, (u > 0).

Then, he underlined that the expression 1/λu(Hk) provides a generalization of the Barndorff-
Nielsen, 1976 plausibility function P(Ei|Hk)

supjP(Ej |Hk)
since the latter coincides with 1/λ∞(Hk).

Taking advantage of this relation he proposed to select the hypothesis the maximizes the
plausibility function by minimizing a surprise index, which corresponds to a generaliza-
tion to Barndorff-Nielsen procedure. Finally, he claimed that a continuum of procedures
for estimation or hypothesis choice could be obtained in this way, calling the core idea as
principle of least surprise. When u = 0 this principle consists of choosing the hypothesis
Hk that maximizes

logP(Ei|Hk)−
∑
j

P(Ej|Hk) log(P(Ej|Hk)).
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Evans’ relative surprise

Following Good’s work on the concept of surprise, Evans considers the issue of de-
termining Bayesian inference methods using the notion of relative surprise, see Evans,
1997. This paper’s main argument is that, when applied to a Bayesian model, a modi-
fied version of surprise provides a conceptual basis for the development of a variety of
estimating, hypothesis testing, model checking, and model selection techniques.

Assume to observe data x from a statistical model and choose a prior distribution
on the model parameter. Following Good’s principle of least surprise, Evans proposed
to arrange the elements of the parameter space Θ in the following order: if the relative
increase in belief for θ1 is, from a priori to a posteriori, greater than the corresponding
increase for θ2, then θ1 is strictly preferred over θ2. Basically, inference is made by
using a preference ordering that favours θ1 over θ2 when

g1(θ1|x)
g0(θ1)

>
g1(θ2|x)
g0(θ2)

.

Maximizing the ratio
g1(θ|x)
g0(θ)

as a function of θ yields the least relative surprise esti-

mate, i.e. a value θ∗ ∈ Θ that has the greatest relative increase in belief from a priori to
a posteriori.

Suppose we want to test a precise hypothesis H : θ = θ0 with θ0 ∈ Θ, this means
that we want to assess H using the evidence provided by the data. The preference or-
dering that we have just introduced, leads to compare the relative increase in belief for
θ0, from a priori to a posteriori, with the increase for each of the other possible values
in Θ. Then, if the increase for θ0 is small compared to the others, then the data suggests
that θ0 is surprising and we have evidence against the hypothesis. Evans proposed to
make this comparison by computing the observed relative surprise at θ0, which is the
posterior probability of obtaining a relative increase larger than that observed for θ0

P
(
g1(θ|x)
g0(θ)

>
g1(θ0|x)
g0(θ0)

∣∣∣ x) .
If this value is high, then the data suggests that θ0 is surprising and we have evidence
against the hypothesis.
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Reminding to Good’s principle of least surprise, we can select a certain hypothe-
sis H : θ = θ0 which minimizes the observed relative surprise at θ0 ∈ Θ. Hence,
minimizing the probability

P
(
g1(θ|x)
g0(θ)

>
g1(θ0|x)
g0(θ0)

∣∣∣ x) ,
we find the least relative surprise estimate θ0, that is the value most supported by the
evidence and therefore the least surprising.

In his paper, Evans introduced also the definition of an α-relative surprise region

Cα(x) =

{
θ0 ∈ Θ

∣∣∣ P(g1(θ | x)
g0(θ)

>
g1(θ0|x)
g0(θ0)

∣∣∣ x) ≤ α

}
,

which corresponds to the set of all the values belonging to Θ for which the observed
relative surprise is no greater than α.

A.1.2 Bayesian p-value proposals

Box, 1980, revisiting Fisher’s p-value idea in a Bayesian key, proposed a method for
analyzing the conformity of the data to a given model through a new Bayesian evidence
measure called prior predictive p-value. This approach has been called model criticism,
where the criticism of the model occurs by contrasting data and prior information. Al-
though this is an attractive method, it presents some difficulties in numerical processing.
Guttman, 1967 and Rubin, 1984, independently from each other, attempted to eliminate
some of the problems by presenting a new measure, the posterior predictive p-value,
which did not come without criticism. In addition, this was followed by some new pro-
posals from Bayarri and Berger, 2000. One of them is called conditional predictive p-
value and is presented in the following discussion. As mentioned at the beginning, note
that tests based on surprise measures does not involve any alternative statistical model
that is, therefore, not specified and that does not enter into the analysis.
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Prior predictive p-value

Consider a parametric statistical model (A.1). Suppose we want to test the hypothesis

H : X ∼ f(x|θ0), with θ0 ∈ Θ, (A.2)

then the prior predictive distribution can be seen as a natural tool to quantify the surpise.
In fact, given the observed data x0 under the null model, small values of m(x0), the
probability of observing x0, indicates a surprising result.

In order to clarify the analogy between Box measure and Fisher’s p-value, it is use-
ful to remind the definition of the latter. It measures the plausibility of a model or an
hypothesis (A.2) and it is defined by

p = Pf(·|θ0)
(
t(X) ≥ t(x0)

)
, (A.3)

where T = t(X), with t : X −→ R+, is a statistic that constructs an ordering on X .
The inequality t(x′) > t(x′′) means that x′ is further from H than x′′. In this way, the
statistic T checks the compatibility of the model with the observed data.

Box proposed that the plausibility of a model or an hypothesis of the type (A.2),
would be measured by the index

pprior = Pm(·)
(
m(X) ≤ m(x0)

)
, (A.4)

where m(·) is the prior predictive distribution. It is easy to see an analogy with Fisher’s
p-value. Whereas in (A.3) the sample distribution conditional on the hypothesis H is
employed, in (A.4) the probability is calculated by using the prior predictive distri-
bution. Furthermore, it can be noticed that pprior is calculated assuming the statistic
T = 1/m(X), hence in (A.4) there is a flip of the inequality direction compared to that
in (A.3).

The approach proposed by Box is to interpret a small value of pprior as experimental
evidence against the assumptions made, as it emphasizes a surprising result based on
the observations made. In this way, 1− pprior and 1/pprior can be used as a measures of
surprise. In fact, note that 1− pprior is for Evans, 1997 the observed surprise.

This index has several weaknesses, three of which relate to model checking and are
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presented below:

(i) as pointed out by Piccinato, 2009, the first one arises because one considers events
that are different from those actually observed. In fact while X = x0 is observed,
the integration is performed in the sample space, i.e. over the set {x : m(X) ≤
m(x0)};

(ii) the second one, highlighted by Bayarri and Berger, 2000, is “The main weakness
of pprior for pure model checking is its dependence on the prior π(θ); in essence,
m(x) measures the likelihood of x relative to both the model and the prior, and
an excellent model could come under suspicion if a poor prior distribution were
used”;

(iii) to solve problem (ii), Bayarri and Berger, 2000 pointed out that one might con-
sider noninformative priors, but this would cause a third problem. In fact, since
noninformative priors are typically improper, it is not guaranteed that the marginal
m(x) would be proper, leading to the impossibility of calculating pprior.

Posterior predictive p-value

In order to overcome difficulty (iii) mentioned in the previous section, many Bayesian
statisticians proposed to consider the posterior predictive distribution

mpost(x|x0) =

∫
Θ

f(x|θ) dG1(θ|x0)

in place of the prior distribution function, where f(x|θ) =
∏n

i=1 f(xi|θ). The first ones
to use this method were Guttman, 1967 and Rubin, 1984.

Using this trick, the fact that g0(θ) is improper does not imply that mpost(x|x0) is
improper too. This approach led to the definition of the posterior predictive p-value as

ppost = Pmpost(·|x0)
(
m(X) ≤ m(x0)

)
. (A.5)

In this case, however, there is another problem related to the double use of the data. In
fact, they are first used to convert the prior g0(θ) into a proper distribution g1(θ|x0), in
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order to determine the posterior predictive distribution mpost(x|x0), and then to com-
pute the probability Pmpost(·|x0)

(
m(X) ≤ m(x0)

)
.

Conditional predictive p-value

Another variant, which avoids the suspicion of double use of the data, was proposed
by Bayarri and Berger, 2000. They work on the u-conditional predictive p-value, whose
underlying idea is to operate a conditioning not with respect to the whole result X = x0,
but with respect to u(X) = u0, where u(X) is an appropriate statistic. In this way,

pcpred(u) = Pm(·|u0)
(
t(X) ≥ t(x0)

)
, (A.6)

where
m(t|u) =

∫
Θ

f(t|u;θ) dG1(θ|u)

assuming that

g1(θ|u) =
f(u;θ) · g0(θ)∫

Θ
f(u;θ) dG0(θ)

is proper and where, with an abuse of notation, f(t|u;θ) and f(u;θ) indicate the condi-
tional and marginal distributions of T and U under H .

The idea they suggest, for the continuous data, is to choose the conditional statistic
as the conditional MLE for θ

θ̂cMLE(x) = argmax f(x|t,θ) = argmax
f(x;θ)

f(t;θ)
.

The conditional predictive p-value is therefore

pcpred = pcpred(θ̂cMLE).

This proposal has also been subject to some criticics see, among others, Piccinato,
2000:

“One standard criticism to checking a given model is that models can only be compared
and cannot be assessed singly”

and also
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“The difficulty lies in defining a convincing standard for comparisons across different situ-
ations for judging when the compatibility is too low to try to improve the model”

and

“In any case, I think that integrating over the sample space after knowing the data will
always introduce too much noise; after all, p-values are still p-values”.
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A.2 Bayesian decision-making tests: the Bayes factor

The most widely used Bayesian test is, without any doubt, the one that has the Bayes
factor as its measure of evidence. This test, which involves a system consisting of at
least two point or interval hypotheses, is decisionist in its nature. In contrast with the
significance testing, Bayes factors support the evaluation of evidence in favor of a null
hypothesis, rather than only allowing the null to be rejected or not rejected. In partic-
ular, it is a method for testing hypotheses by evaluating decisions through selected loss
functions.

A.2.1 Bayes factor and odds

Consider a parametric statistical model of the type (A.1). Suppose one wishes to test
two parametric hypothesis

H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1, (A.7)

with H0 the null hypothesis, H1 the alternative one, and where Θ0 ∪ Θ1 = Θ ⊆ R
and Θ0 ∩Θ1 = ∅. The purpose of the test is to establish whether the true value of the
parameter θ is an element of the subset Θ0 or Θ1.

In the Bayesian framework, for an observed sample x ∈ X it can be seen that

P(H0|x) =
P(H0) · P(x|H0)

P(H0) · P(x|H0) + P(H1) · P(x|H1)

=
(
1 +

1

O(H0)
· 1

B0,1(x)

)−1

,

(A.8)

whereO(H0) =
P(H0)

P(H1)
is the prior odd and the ratioB0,1(x) =

P(x|H0)

P(x|H1)
is the so called

Bayes factor. It is a measure of the experimental evidence in favour of the hypothesis
H0 or against the hypothesis H1 given data x. Given the posteror odd

O(H0|x) =
P(H0|x)
P(H1|x)

,
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the relation
O(H0|x) = B0,1(x) · O(H0) (A.9)

holds. In this perspective, the Bayes factor is the multiplicative factor that transforms
the prior odds into the posterior odds.

Equation (A.9) has a clear decision-making meaning that can be briefly summarised.
The idea behind the test is that if B0,1(x) > 1 [< 1] then

O(H0|x) > O(H0) [O(H0|x) < O(H0)],

and the experiment giving x is said to increase our preferences in favour of hypothesis
H0 [H1].

For simplicity, let us assume that θ ∈ Θ ⊆ Rp with p = 1 and that the hypothesis to
be tested is of the type simple hypothesis vs composite hypothesis, i.e.

H0 : θ = θ0 vs H1 : θ ̸= θ0. (A.10)

Concerning other systems of hypotheses from the literature, such as

(i) composite hypothesis vs composite hypothesis

H0 : θ ∈ (−∞, a] vs H1 : θ ∈ (a,∞)

or
H0 : θ ∈ [a, b] vs H1 : θ ̸∈ [a, b],

(ii) simple hypothesis vs simple hypothesis

H0 : θ = θ0 vs H1 : θ = θ1,

where θ0 ̸= θ1,

we will limit ourselves to a few remarks. The case of more than two hypotheses will not
be considered as, for instance,

H0 : θ = θ0, H1 : θ < θ0, H2 : θ > θ0.
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The approach based on Bayes factors is fully justified in the context of decision the-
ory. Limiting to a comparison of only two hypotheses {H0 vs H1}, the decision-making
scheme involves: (a) the decisions {d0, d1}, where the former consists of accepting H0

and the latter H1; (b) the states of nature {Θ0,Θ1}, i.e. it is true that θ ∈ Θ0 or it is true
that θ ∈ Θ1; (c) the loss system for which

• making the decision dj when θ ∈ Θ1−j is true, correspond to a loss lj(θ) > 0,
j = 0, 1. (For the sake of simplicity, assume that losses do not depend on θ);

• making the decision dj when θ ∈ Θj is true, does not cause any loss.

Provided we have the prior distribution function G0(θ), the observed sample x and thus
the posterior distribution function G1(θ|x), it is possible to express the posterior risk,
associated with decision dj , as

ρ1(dj|x) = Eθ(lj|x) = lj ·
∫
Θ1−j

dG1(θ|x) = lj · P(H1−j|x) j = 0, 1. (A.11)

Set up in this way, the optimal decision problem is brought back to the Bayesian
posterior risk comparison. Thus, the following procedure is adopted

ρ1(d0|x)
ρ1(d1|x)

 < 1 take decision d0

≥ 1 take decision d1

(A.12)

or, equivalently,

O(H0|x) =
P(H0|x)
P(H1|x)

 ≥ l0
l1

take decision d0

< l0
l1

take decision d1.
(A.13)

For a detailed discussion of the decision-making procedure underlying the Bayes factor
test, see Bernardo and Smith, 1994, J. O. Berger, 1985 and Piccinato, 2009.

In the practice of Bayes factor analysis, the system of hypotheses that is most con-
sidered and most challenging is (A.10). The fact that H0 is a point hypothesis and H1 is
a diffuse hypothesis makes it appropriate to elecitate the parameter in two stages. In the
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first phase, the prior probabilities of the hypotheses are elicited

π0 = P(H0), 1− π0 = P(H1).

In the second step the elicitation of the prior density g0(θ) subordinate to H1, i.e. on the
space Θ∖ {θ0}, is provided with

∫
Θ
g0(θ)dθ = 1.

The prior distribution function of the parameter θ is then

G0(θ) = π0 · 1(θ0,∞)(θ) + (1− π0) ·
∫ θ

−∞
g0(t) dt, (A.14)

with π0 ∈ (0, 1). Therefore, the posterior distribution function can be written as

G1(θ) = π1 · 1(θ0,∞)(θ) + (1− π1) ·
∫ θ

−∞
g1(t|x) dt. (A.15)

where g1(θ|x) ∝ g0(θ) · f(x|θ) and the posterior probabilities of the hypothesis are

π1 = P(H0|x) =
π0 · f(x|θ)

π0 · f(x|θ) + (1− π0) ·mg0(x)
, 1− π1 = P(H1|x).

Hence, it can be seen that

P(H0|x)
P(H1|x)

=
π1

1− π1
=

π0
1− π0

·B0,1(x),

where B0,1(x) =
f(x|θ0)∫

Θ f(x|θ)dG0(t)
= f(x|θ0)

mg0 (x)
. In this way, decision (A.13) corresponds to

B0,1(x) =
f(x|θ0)
mg0(x)

 ≥ l1
l0
· 1−π0

π0
take decision d0

< l1
l0
· 1−π0

π0
take decision d1.

(A.16)

Notice that hypotheses of kind (i)-(ii) do not require a two-step elicitation of this type.

The main shortcoming of the test based on Bayes factors is that it does not allow the
use of improper prior distributions as this would lead to the Jeffreys-Lindley’s paradox
described in the next section. The need to not give up improper priors gave rise to the
development of the fractional Bayes factor by O’Hagan, 1995 and the intrinsic Bayes
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factor by J. O. Berger and Pericchi, 1996, both of which are marked by the more or
less open violation of the likelihood principle. The weaknesses of the aforementioned
approaches underlie our preference for the BDT, which does not suffer from the described
drawbacks.

A.2.2 The Jeffreys-Lindley’s paradox

The Jeffreys-Lindley’s paradox, which has generated an interesting and fierce theoretical
debate, has a dual interpretation (see Robert, 2014). On one hand, it results in the differ-
entiation between frequentist and Bayesian statistics; on the other hand, it indicates the
difficulty of using improper priors during testing.

The first interpretation focuses on the fact that the Jeffreys-Lindley’s paradox is ac-
tually a counterintuitive situation of the statistical hypothesis testing problem, where the
Bayesian and frequentist approaches give different results for certain choices of the prior
distribution. The problem of this disagreement, already discussed by Jeffreys himself in
his book Jeffreys, 1939, became known as the Jeffreys-Lindley’s paradox after Lindley
referred to it as a paradox, in Lindley, 1957. The context of the paradox, as set out by
Lindley, is to consider a sample of size n from a normal distribution N(x|θ, σ2) with
known variance σ2, and to perform a statistical hypothesis testing on the mean, of the
sort seen before

H0 : θ = θ0 vs H1 : θ ̸= θ0. (A.17)

Summarizing the dataset into the sample mean (a sufficient statistic)

X̄n ∼ N
(
x̄n

∣∣∣ θ, σ2

n

)
,

under the null hypothesis, leads to the t-statistic

Tn =
X̄n − θ0
σ/

√
n

∼ N(tn | 0, 1).

Therefore, in the frequentist framework, the test is conducted by evaluating

p-value = P(|Tn| > |tn|) = 1− 2Φ(|tn|),
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while the Bayesian approach to the hypothesis-testing problem relies on the Bayes factor.
If we choose a normal prior θ ∼ N(θ|θ0, σ2), then the Bayes factor is

B0,1(tn) =
√
1 + n exp

{
− t2n

2

n

1 + n

}
,

giving the measure of the experimental evidence in favour of the hypothesisH0 or against
the hypothesisH1, given the data. The paradox occurs when, for a fixed tn and for almost
any choice of the prior distribution, one makes the sample size n tend to infinity. While
the p-value is constant in n, the Bayes factor tends to infinity. This implies that, if we are
in a certain experimental situation, the frequentist approach could lead to rejecting H0,
while the Bayesian approach always leads to accepting H0, regardless of the particular
experiment. The differing results do not represent a real disagreement between the two
methods, since they answer fundamentally to different questions. On one hand we check
if the result tn is ”significant” by a frequentist test of H0, indicating sufficient evidence
to reject H0 at a certain α-level; on the other hand, through the Bayes factor, we check
if the posterior probability of H0 given tn is high, indicating strong evidence that H0 is
in better agreement with tn than H1.

The second problem occurs when using improper distributions in Bayesian hypoth-
esis testing procedures, particularly when the two hypotheses have different dimensions
as in (A.17), i.e. for a point-null hypothesis tested against a composite alternative hy-
pothesis. A drawback arises when the variance of a conjugate prior goes to infinity, i.e.
if one considers a flat prior distribution. Such an improper prior can be expressed as

g0(θ) ∝ k · h(θ)

where h(θ) is a positive non-integrable function on Θ, the constant k cannot be deter-
mined and the Bayes factor

B0,1(x) =
L(θ0|x)

k ·
∫
θ ̸=θ0 L(θ|x) · h(θ) dθ

depends on it. Moreover, the posterior probability of the null hypothesis P(H0|x) can-
not be calculated since it depends on the Bayes factor, as seen in equation (A.8). This
problem can be seen as the focus shifting from the asymptotic trend of the sample size
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to the variance of the prior distribution. Let us return to the normal framework and now
consider only one observation from N(x | θ, σ2) with a prior θ ∼ N(θ | θ0, nσ2). Then,

B0,1(x) =
√
1 + n exp

{
− (x− θ0)

2

2σ2

n

1 + n

}
,

which again tends to infinity as n grows, no matter what the value of the observation x is.
Similarly to the previous case, as highlighted in Robert, 2014, the phenomenon exhibited
therein is not paradoxical in the least and can be explained by noticing that the prior gets
more and more diffuse with increasing n, leading to the inconvenient result that the only
relevant prior information becomes that θ could be equal to θ0. In conclusion, as Robert,
2014 underlines that

“There is therefore a deep coherence in the selection of the null hypothesisH0 in this case:
being completely indecisive about the alternative hypothesis means we could and should not
choose this alternative. It is not possible to pick the alternative hypothesis of an undefined
value of θ when opposed to the very special value θ0 if we want to be “completely non-
informative” about θ under H1. This analysis of the Jeffreys- Lindley paradox is justifying
(further) the prohibition of the use of improper priors for testing point-null hypotheses”.
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A.3 Full Bayesian Significance Test

The Full Bayesian Significance Test (FBST ) has been introduced by Pereira and Stern,
1999 as a Bayesian measure of evidence for precise null hypotheses. The test is presented
as a “Bayesian alternative approach to significance tests or, equivalently, to p-values”.
The authors modify the definition in progress with the publication of several articles, see
Madruga et al., 2003, Pereira et al., 2008, Pereira and Stern, 2020.

Among the Bayesian methods currently present in literature, the FBST test is the one
that is most similar to the test that this thesis aims to present and discuss.

A.3.1 FBST definition

The FBST is presented as a Bayesian alternative to significance test of precise null hy-
pothesis. Let us consider a parametric statistical model (A.1) under appropriate regular-
ity conditions. In order to define the FBST procedure for a precise hypothesis H : θ ∈
ΘH , consider

g∗ = supΘH
g1(θ|x) and T = {θ ∈ Θ | g1(θ|x) > g∗},

where T is called tangetial set or highest posterior density set (HPDS) as it is the “High-
est Posterior Density Region” that is “tangent” to the set that defines the null hypothesis.

The Bayesian evidence value against H , is defined by the authors as the posterior
probability of the tangential set T , i.e.,

ev = Pr(θ ∈ T |x) =
∫
T

g1(θ|x) dθ, (A.18)

while the Bayesian evidence value supporting H is ev = 1 − ev. The FBST procedure
rejects H whenever ev is small.
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Figure A.1: Tangential set when [A] p = 1 and [B] p = 2.

The computation of ev needs numerical optimization and integration. Since it is
not always possible to calculate some of these integrals, it is often necessary to employ
simulation methods to approximate them. Pereira and Stern, 1999 underline that “This
methodology takes into account only the location of the maximum likelihood under the
null hypothesis, making it consistent with the Benefit of the Doubt juridical principle”,
also known as the Onus Probandi juridical principle3. Accordingly, a working hypothesis
is not rejected if there is not sufficient evidence against it.

Concerning the use of an alternative hypothesis in the procedure mentioned above, it
is underlined that the alternative hypothesis is as important as the null hypothesis unlike
the classical p-value that does not consider it. This claim is supported by the fact that
“as the full parameter space is used in the computation of ev, the alternative hypothesis
is always intrinsically considered”, see Pereira et al., 2008.

They also suggest an equivalent formulation of ev where the normalized likelihood,
if available, can be used in place of the posterior distribution. This can be useful when
it is assumed that the consistency between the data and the null hypothesis should not
involve prior opinion about the parameter.

A.3.2 FBST invariance

The authors underline that, in statistical procedures, two types of invariance are required:
invariance with respect to the null hypothesis parameterization and invariance with re-

3It states that “There is no liability as long as there is a reasonable basis for belief, effectively placing
the burden of proof (Onus Probandi) on the plaintiff, who, in a lawsuit, must prove false a defendant’s
misstatement, without making any assumption not explicitly stated by the defendant, or tacitly implied by
existing law or regulation”, see Madruga et al., 2003
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spect to the parameter space parameterization. The FBST procedure, in its original for-
mulation outlined in A.3.1, fulfills the first requirement but not the second.

In order to make the procedure invariant with respect to alternative parameterizations
of the parameter space, Madruga et al., 2003 introduced a second definition. They set a
reference function r(θ) on the parameter space Θ where the prior was defined. Then,
they consider the “surprise function” relative to a suitable reference function r(θ) to be

chosen, i.e. s(θ) =
g1(θ|x)
r(θ)

and require that

θ∗ = arg max
θ∈ΘH

s(θ|x) = arg max
θ∈ΘH

g1(θ|x)
r(θ)

, s∗ = s(θ∗) = sup
θ∈ΘH

s(θ).

Essentially, they introduce an ordering of the parameter spaceΘ following the procedure
proposed by Evans (see Section A.1.1), which is based on Good’s principle of least
surprise. In fact, θ∗ is the least relative surprise estimate, i.e. the value in ΘH that
is least supported by the data. The evidence against H provided by the sample x is
calculated using the highest relative surprise set (HRSS)

T (s∗) = {θ ∈ Θ|s(θ) > s∗},

which includes all parameter values θ that attain a larger surprise function value than the
supremum s∗ of the null set. Finally, the e-value, that represents the Bayesian evidence
against H , is defined as

e-value = ev(H) = W (s∗) =

∫
T (s∗)

g1(θ|x) dθ.

On the contrary, the e-value in support of H is ev(H) = 1− ev(H), which is evaluated
by means of the set T (s∗) = Θ \ T (s∗) and the cumulative surprise function W (s∗) =

1−W (s∗). In conclusion, the FBST is the procedure that rejects H whenever ev(H) is
large.

As pointed out in Pereira and Stern, 2020 (Section 3.2) “the role of the reference
density is to make ev(H) explicitly invariant under suitable transformations of the coor-
dinate system”. Notice that the first non-invariant definition of this measure corresponds
to the use of a flat reference function r(θ) ∝ 1. Some of the suggested choices for the
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reference function are the use of uninformative priors such as “the uniform, maximum
entropy densities, or Jeffreys’ invariant prior” (see Pereira and Stern, 2020, Section 3.2).

Asymptotic properties

Consider the cumulative distribution of the evidence value against the hypothesis ev(H),
that is V (c) = Pr(ev(H) ≤ c). Under appropriate regularity conditions, for increasing
sample size, Pereira and Stern, 2020 provide a proof for the following statements.
Given θ∗ the true value of the parameter:

• if θH ̸= θ∗ then ev(H)
p→ 1, that is, V (0 ≤ c < 1) → 0;

• if θH = θ∗ then
V (c) ≈ Ft−h[F

−1
t [c]],

where t = dim(Θ), h = dim(ΘH) and Fν is the cumulative χ2-distribution with
ν degrees of freedom.
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