
 

 

 

 

 

 
Ph.D. DEGREE IN 

MATHEMATICS AND COMPUTER SCIENCE 

Cycle XXXV 

 
 
 

TITLE OF THE Ph.D. THESIS 

Machine learning techniques for sensor-based household activity recognition and 

forecasting 

Scientific Disciplinary Sector(s) 

INF/01 

 
 

Ph.D. Student: Marco Manolo Manca 
 

Supervisor Prof. Daniele Riboni 
 

Co-Supervisor Prof. Ernesto Bonomi 
 
 
 
 

 
  Final exam. Academic Year 2021/2022  

Thesis defence: April 2023 Session 





Abstract

Thanks to the recent development of cheap and unobtrusive smart-home sensors,

ambient assisted living tools promise to offer innovative solutions to support the

users in carrying out their everyday activities in a smoother and more sustainable

way. To be effective, these solutions need to constantly monitor and forecast the

activities of daily living carried out by the inhabitants. The Machine Learning field

has seen significant advancements in the development of new techniques, especially

regarding deep learning algorithms. Such techniques can be successfully applied to

household activity signal data to benefit the user in several applications.

This thesis therefore aims to produce a contribution that artificial intelligence

can make in the field of activity recognition and energy consumption. The effective

recognition of common actions or the use of high-consumption appliances would lead

to user profiling, thus enabling the optimisation of energy consumption in favour of

the user himself or the energy community in general. Avoiding wasting electricity

and optimising its consumption is one of the main objectives of the community. This

work is therefore intended as a forerunner for future studies that will allow, through

the results in this thesis, the creation of increasingly intelligent systems capable of

making the best use of the user’s resources for everyday life actions.

Namely, this thesis focuses on signals from sensors installed in a house: data from

position sensors, door sensors, smartphones or smart meters, and investigates the

use of advanced machine learning algorithms to recognize and forecast inhabitant

activities, including the use of appliances and the power consumption. The thesis is

structured into four main chapters, each of which represents a contribution regarding

Machine Learning or Deep Learning techniques for addressing challenges related to

the aforementioned data from different sources.

The first contribution highlights the importance of exploiting dimensionality re-

duction techniques that can simplify a Machine Learning model and increase its



efficiency by identifying and retaining only the most informative and predictive

features for activity recognition. In more detail, it is presented an extensive exper-

imental study involving several feature selection algorithms and multiple Human

Activity Recognition benchmarks containing mobile sensor data.

In the second contribution, we propose a machine learning approach to forecast

future energy consumption considering not only past consumption data, but also

context data such as inhabitants’ actions and activities, use of household appli-

ances, interaction with furniture and doors, and environmental data. We performed

an experimental evaluation with real-world data acquired in an instrumented envi-

ronment from a large user group.

Finally, the last two contributions address the Non-Intrusive-Load-Monitoring

problem. In one case, the aim is to identify the operating state (on/off) and the

precise energy consumption of individual electrical loads, considering only the ag-

gregate consumption of these loads as input. We use a Deep Learning method to

disaggregate the low-frequency energy signal generated directly by the new genera-

tion smart meters being deployed in Italy, without the need for additional specific

hardware.

In the other case, driven by the need to build intelligent non-intrusive algo-

rithms for disaggregating electrical signals, the work aims to recognize which ap-

pliance is activated by analyzing energy measurements and classifying appliances

through Machine Learning techniques. Namely, we present a new way of approach-

ing the problem by unifying Single Label (single active appliance recognition) and

Multi Label (multiple active appliance recognition) learning paradigms. This com-

bined approach, supplemented with an event detector, which suggests the instants

of activation, would allow the development of an end-to-end NILM approach. The

proposed approach exploits feature extraction techniques that allow the detection

of both activated/deactivated appliances and all active appliances, given the aggre-

gated current and voltage signals.

All the proposed techniques have been experimented with real-world data,

achieving promising results. Hence, the contributions presented in this thesis pave

the way to innovative applications and future research directions. Furthermore, all

the algorithms presented below and the analyses performed can, with appropriate

additions and modifications, provide continuous monitoring of activities or energy

consumption, useful for the user to monitor expenditure and for the energy supplier
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to optimise incoming load.
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Chapter 1

Introduction

The recent development of new and effective machine learning techniques has en-

abled several novel applications to support the user in everyday life. One of the

fields in which these techniques see an interesting and useful application is the one

of smart homes. In fact, machine learning is an efficient solution to many prob-

lems of ambient assisted living, providing powerful tools for activity recognition and

monitoring of usage of household appliances. Ambient intelligence-enabled smart

homes would provide an effective support to everyday life, and in some cases may

reduce the environmental impact. Sensors installed in homes are an excellent source

of data useful for training new algorithms capable of predicting users’ activities,

routines, and habits. Smart meters, position sensors, door sensors and smartphones

provide signals and data that, when processed by artificial intelligence algorithms,

may increase the ability to monitor and predict the inhabitants’ behaviour.

However, existing sensor-based activity recognition systems are prone to several

issues regarding limited accuracy of predictions, complexity of the trained model,

and overfitting. This thesis provides innovative contributions to the above men-

tioned limitations of sensor-based activity recognition and forecasting, proposing

novel techniques for feature extraction and supervised reasoning with sensor data.

Furthermore, all the proposed algorithms have been tested on real-world datasets,

which highlights the applicability of our research and the direction to follow in future

developments of the field.

The main topics covered in this work are four. Chapter 3 concerns Human Ac-

tivity Recognition and provides an analysis of the various feature selection methods

that can be used to tackle this problem. Sensor-based Human Activity Recognition
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(HAR) is a growing research field that deals with automatically identifying the ac-

tivities a user is performing based on the analysis of data collected from a variety

of sensors [1]. HAR systems have several important applications in different areas

including ambient assisted living [2], activity monitoring for health assessment [3],

assistance for child and elderly care [4] as well as assistance for people with cognitive

disorders [5]. In particular, sensors fitted in mobile devices (accelerometers, gyro-

scopes, etc.) have now reached widespread adoption and allow to envisage intelligent

monitoring systems that can seamlessly track daily activities, in a non-intrusive way,

and help users to make better decisions about their future actions [6]. However, such

an automatic decision support capability is still limited, despite the increasing ca-

pacity of processing data from smart devices. Furthermore, the exploitation of HAR

systems in real-world scenarios not only demands high recognition accuracy but also

poses multiple challenges in terms of power consumption and robustness with re-

spect to different context conditions [7, 8], soliciting further research efforts in this

field.

Sensors installed in a house can be used to collect data in order to predict

future energy consumption. The power forecasting field addresses this problem; in

Chapter 4, our work offers a solution to this problem by training a machine learning

algorithm with data from various types of sensors. In recent years, there has been

increasing interest in forecasting electricity consumption in residential buildings [9,

10, 11]. Indeed, homes are a major source of energy consumption, especially in

urban areas. Forecasting energy consumption in buildings may thus help improving

the smart grid, reducing costs and emissions. Energy forecasting is also useful to

support human activities in ambient intelligence systems [12].

An alternative to power forecasting, in terms of user benefit, can be provided by

electricity monitoring. Non-Intrusive Load Monitoring (NILM), or load disaggrega-

tion, aims to identify the operating state (on/off) and precise energy consumption

of individual electrical loads, considering only the aggregate consumption of these

loads as input. The NILM technique was introduced by Hart’s pioneering work in the

mid-1980s [13]. In fact, he was the first to use measured active and reactive power

time series to estimate the on/off status of individual devices. In Chapter 5 our work

aims to present a deep learning based algorithm for disaggregating electrical power

on filtered signals from a household smart meter. This method could be useful for

monitoring electricity consumption for the consumer himself, thereby optimising the
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electrical load in the grid and the household’s consumption. Research on this topic

has had a strong push in the last decade, due to new requirements in power grid

management systems and thanks to the developments in machine learning and deep

learning techniques.

One of the main sub-tasks of Non-Intrusive Load Monitoring (NILM) is appliance

recognition. Its aim is to recognize which appliance is activated by analysing energy

measurements and classifying appliances through machine learning techniques. This

task can be approached in two ways: the first one is to recognise a single appliance

by using its activation signals, the second one is to recognise which appliances are

on and which are off by analysing the aggregated electrical signals. Several works

address these issues [14, 15, 16]; however, research works concentrate on addressing

them independently of each other. In Chapter 6 we try to solve the two problems

simultaneously by combining two deep neural networks and the use of some feature

extraction techniques allow us to understand which appliances are being activated

and which are already active by knowing the aggregated current and voltage values.

All the proposed techniques have been experimented with real-world sensor data.

The results that we obtained are promising, and claim for further investigation of

the proposed methods. The thesis concludes in Chapter 7 with concluding remarks

and promising directions for future work.
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Chapter 2

State of the art

The purpose of this chapter is to report the main works presented in the literature on

the topics covered in this thesis. The literature described in this chapter is intended

to give a general overview of the topics studied in the remainder of this document;

however, a more specific state of the art will be provided in each subsequent chapter.

2.1 Feature selection on human activity recogni-

tion

More and more often in the field of research, one has to deal with a large amount

of data and, for this reason, new feature selection techniques are always being re-

searched in order to better manage the available data. Even in the field of HAR,

several works have investigated effective feature selection methods. Chetty G. et al.

[17] in their work use an information theory-based feature classification algorithm to

recognise human activity from the inertial sensors of smartphones. Gupta P. et al.

[18] similarly use feature selection techniques called Relief-F and sequential forward

floating search (SFFS) to increase the performance of their activity recognition al-

gorithm, which uses data from a body-worn wireless accelerometer. Some works,

such as that of Ahmed N. et al. [19], combine a Support Vector Machine classifier

with a hybrid feature selection system, which includes a filter and wrapper method,

with the aim of recognising human activity from smartphone data. Amjad et al.

[20] also presents a two-level hierarchical method for human activity recognition

using a set of wearable sensors. In their work, they investigate feature extraction
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methods based on atomic scores, testing on signals from smartphones, smartwatches

and smart glasses.

In the same context, there are also several comparative studies that provide an

idea of which feature selection techniques are most effective to use in this field.

For example, Chong J. et al. [21] analyse the effects of different feature subsets

on the predictive performance of the most popular Machine Learning algorithms;

the main objective is to identify which combination of feature subset and predictive

algorithm performs best for the prediction of activity classes from raw acceleration

data. Amezzane et al. [22] in their work also present a comparison of feature

selection methods with the aim of reducing the training and classification time, of the

algorithms that can be used in the field of HAR, as much as possible. Also Suto J. et

al. [23] present a paper in which common filter feature selection techniques compared

with a Bayesian wrapper feature selection method in order to demonstrate that the

wrapper technique outperforms filter algoritmhs in the case of HAR problems.

In other cases, machine learning techniques are used for feature selection. Chen

et. al [24] in fact adopt Random Forest to select important features in the classifi-

cation of human activity and other financial assets. Bashar S. K. et al. [25] on the

other hand use neighbourhood component analysis to select a subset of important

features from the available parameters in the time and frequency domain; then the

classification of human activities is carried out using a dense neural network. Game

theory can also be used in the field of feature selection, in fact Guha R. et al. [26]

developed a method, called Cooperative Genetic Algorithm, with the aim of select-

ing the most important features for visual human action recognition, in order to

improve accuracy and lower the activity recognition time.

2.2 Power forecasting

In recent decades, the energy problem has certainly attracted research interest and

many important works have been provided about power forecasting. In this context,

Völker et al. [27] provide a comprehensive review of the state of the art of smart

meter data analysis applications and try to provide an overview of the technological

foundations and the impact on future developments.

Many works have investigated algorithms for predicting energy consumption.

Dong et al. [28] propose a short-term consumption forecasting algorithm for res-
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idents using reactive power. Haq et al. [29] use a hybrid algorithm that exploits

machine learning techniques to predict electricity consumption of household appli-

ances and peak demand.

Several researches in this field also use some deep learning techniques to predict

energy consumption. An example is the work of Shi et al. [30] in which a deep

neural network based on pooling is trained to cluster a group of customers’ load

profiles into a pool of inputs. S. Ai [31] also exploits a neural network ensamble

to obtain the electricity demand forecasts of multiple households in three scenarios,

optimising potential network configuration set, forecasting single household power

demand, and refilling missing data.

2.3 Non-intrusive-load-monitoring

Recently, the literature has seen an incremental interest in the NILM problem. In

fact, several works attempt to tackle this problem using increasingly sophisticated

techniques. Deep learning is one of the most widely used methodologies to solve the

disaggregation problem, exploiting neural networks of various types.

Harell A. et al. [32] use a casual 1-D convolutional neural network on low-

frequency data in order to disaggregate the aggregate power of 20 sub-meters. They

also investigate the benefit of using all four energy components, current, active

power, reactive power, and apparent power, available in NILM datasets. Similarly, in

the work of Kelly J. et al. [33] the disaggregation of the electrical power is performed

by three different neural networks. The first one is a recurrent neural network called

’Long Short-Term Memory’ (LSTM), the second one is a denoising autoencoder and

the last one is a regressor that predicts the activation and deactivation time of each

appliance and thus provides the average power consumption per single appliance.

The combination of sliding windows and two Recurrent neural networks is used in the

work of Krystalakos O. et al. [34], their proposal disaggregates the electrical power

signal of 5 different appliances by knowing the aggregated low-frequency signal. The

implemented technique is tested on a real-world dataset.

In [35], Gomes E. et al. propose the application of the pinball quantile loss

function to guide deep neural networks, such as Convolutional Neural Networks and

Recurrent Neural Networks, to tackle the power disaggregation problem.

Another approach used in the field of NILM is the Bayesian one, for instance
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Culiere F. et al. [36] use a Bayesian model of temperature-dependent electricity

consumption. This model allows the heating component to be disaggregated from

the electrical load curve in an unsupervised manner.

2.4 Appliance recognition

As already described in the Introduction to this thesis, appliance recognition is an

important branch of NILM, which is why much of the literature in this field uses

techniques very similar to those described in the previous section. The use of ma-

chine learning techniques is certainly the route taken most often by researchers in

this field. Both de Paiva Penha D. et al.[37] and Rehmani M. et al. [38] use such

techniques for the recognition of residential equipment. The former train a con-

volutional neural network and test the proposed algorithm on a real low-frequency

dataset, the latter evaluate the effectiveness of the most commonly used deep learn-

ing techniques on a set of real datasets.

In a different way but in the same context, Nalmpantis C. et al. [39] focus their

work on the dimensionality reduction by using a technique called Signal2Vec; in this

way they analyse multi-label NILM systems and propose a framework capable of

offering cost-effective solutions.

The above-mentioned works share the intention to recognise the activation status

of all devices in a home, but this is not the only approach with which to tackle

the problem of appliance recognition. In fact, there is a different approach, which

consists to recognise a single appliance by knowing the activation signal. Faustine A.

et al. [40, 41] in two papers studied important feature extraction techniques, namely

Weighted Recurrence Graphs, to train a Convolutional Neural Network capable of

recognising which household appliance was switched on. Their methods are validated

on real high-frequency datasets containing the current and voltage signals of each

household appliance.



Chapter 3

Exploiting feature selection in

human activity recognition:

methodological insights and

empirical results using mobile

sensor data

Human Activity Recognition (HAR) using mobile sensor data has gained in-

creasing attention over the last few years, with a fast-growing number of reported

applications. The central role of machine learning in this field has been discussed

by a vast amount of research works, with several strategies proposed for processing

raw data, extracting suitable features, and inducing predictive models capable of

recognizing multiple types of daily activities. Since many HAR systems are imple-

mented in resource-constrained mobile devices, the efficiency of the induced models

is a crucial aspect to consider. This chapter highlights the importance of exploiting

dimensionality reduction techniques that can simplify the model and increase effi-

ciency by identifying and retaining only the most informative and predictive features

for activity recognition. More in detail, a large experimental study is presented that

This chapter is published as M. M. Manca, B. Pes and D. Riboni, ”Exploiting Feature Selection
in Human Activity Recognition: Methodological Insights and Empirical Results Using Mobile Sen-
sor Data”, in IEEE Access, vol. 10, pp. 64043-64058, 2022, doi: 10.1109/ACCESS.2022.3183228.
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encompasses different feature selection algorithms as well as multiple HAR bench-

marks containing mobile sensor data. Such a comparative evaluation relies on a

methodological framework that is meant to assess not only the extent to which each

selection method is effective in identifying the most predictive features but also the

overall stability of the selection process, i.e., its robustness to changes in the in-

put data. Although often neglected, in fact, the stability of the selected feature

sets is important for a wider exploitability of the induced models. Our experimen-

tal results give an interesting insight into which selection algorithms may be most

suited in the HAR domain, complementing and significantly extending the studies

currently available in this field.

3.1 Introduction

In recent years, several machine learning approaches have been explored for the

automatic classification of daily living activities based on mobile sensing [42, 17,

43, 44, 45]. The overall process involves different steps, including the cleansing of

raw data to remove noise and artifacts, and the extraction of high-level features

that can be useful to discriminate among the considered activities [46]. A common

methodology for feature extraction relies on segmenting the sensor data, e.g., the tri-

axial acceleration signals, into time windows that are subsequently mapped, through

proper functions, into a set of meaningful features. Different types of mapping

approaches have been explored based on the application scenario [47], resulting in

time-domain, frequency-domain, or other types of features that can be finally fed

to a classifier to induce the HAR model. Automatic feature extraction based on

deep learning methods has also been recently investigated [7]. Both the features’

definition and the choice of the classifier may significantly affect the performance of

the recognition system, as witnessed by a vast amount of literature in the field [3,

6, 47].

The computational efficiency of the HAR system is another important aspect

to consider when dealing with mobile devices that may have limitations in terms

of processing capability as well as energy consumption. From this point of view,

it may be convenient to contain the dimensionality of the feature vectors used at

the classification stage, as discussed in some recent studies [18, 48, 19]. The feature

extraction process can indeed result in a large number of features, especially in a
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multi-sensor system where the feature sets generated from the single sensors can be

fused to create feature vectors of high dimensionality [49]. In such a scenario, it can

be useful to apply automatic techniques to identify and select the most important

features for prediction, in order to simplify the activity recognition models, decrease

overfitting, and reduce computations. Indeed, it has been observed that not all

the extracted features have the same importance in the classification of physical

activities [46, 50]. Some features may be redundant, weakly relevant, or even ir-

relevant/noisy for a specific task, suggesting that feature selection techniques could

be effectively employed to reduce the data dimensionality and improve the HAR

system’s efficiency without compromising the final prediction accuracy.

However, not much research has so far explored the potential of feature se-

lection in this field. Most emphasis has been given to investigating which classi-

fication methods and strategies may be best suited for inducing the HAR mod-

els [3, 47, 51, 52], while few studies have compared the impact of different feature

selection algorithms on such models [21], gaining insight into which heuristics may

be most effective in selecting reduced subsets of discriminative features. To make a

contribution in this direction, we present here an extensive comparative study that

encompasses several selection approaches and investigates their behavior on typical

HAR datasets extracted from mobile devices, like smartphones and smartwatches,

where recognition performance and computational efficiency need to be jointly op-

timized.

More in detail, extending our previous research in this field [53], this work pro-

vides a two-fold contribution. First, a general methodological framework is presented

that allows evaluating the effectiveness of the feature selection process along with

two directions: i) the capacity of the algorithm of identifying the most important

features for activity prediction, and ii) the stability of the selected feature subsets,

i.e., their robustness to perturbations in the input data. This way we can better

understand the suitability of a given selection method for the considered application

scenario. Indeed, identifying feature subsets that are both highly predictive and sta-

ble is important for a wider exploitability of the induced models, as highlighted in

recent literature [54, 55].

Leveraging such a framework, we carried out an experimental evaluation for dif-

ferent levels of dimensionality reduction, i.e., for different percentages of selected

features, in order to find an optimal trade-off between the number of features used
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for prediction and the resulting classification performance. Specifically, our study

includes selection methods that are representative of different heuristics: univariate

approaches, which assess every single feature independently of the others; multi-

variate approaches, which capture the inter-dependencies among the features; filter

approaches, which carry out the selection process without interacting with the learn-

ing algorithm; embedded approaches, which exploit the features’ weights derived by

a proper classifier to assess the relevance of the features. Such a comprehensive

evaluation has been performed in conjunction with learning algorithms that have

proven highly effective in this domain, such as Support Vector Machines and Random

Forest.

The experimental study has been conducted on five HAR datasets extracted from

mobile sensor data [56, 57, 58, 59, 60], both using a single sensor type (accelerometer)

or different types of sensors (accelerometer, gyroscope, magnetometer). Further,

the considered benchmarks present different levels of dimensionality, ranging from

about 150 features to over a thousand features, which has allowed us to explore the

behavior of the considered selection algorithms across different feature spaces.

Overall, the results of our experiments show that the feature selection process

can reduce the original dimensionality to a great extent without any degradation

in the final recognition performance, which confirms the importance of introduc-

ing an automatic dimensionality reduction step into any mobile sensing processing

pipeline. By jointly evaluating the predictive performance and the selection stability,

we also obtained some interesting insights into which methods may be best suited

in the considered domain. To the best of our knowledge, this is the first work that

evaluates several feature selection approaches in this field based on different real-

world benchmarks. Moreover, in this work we investigate the stability of selection

methods, which is neglected by most of the existing studies.

The remainder of this work is structured as follows. Section 3.2 gives some

background concepts on feature selection and discusses its applications in the HAR

field. Section 3.3 describes the adopted methodological framework and the specific

selection algorithms chosen for the experimental study. The characteristics of the

considered datasets are illustrated in Section 3.4. Section 3.5 presents the experi-

mental analysis and, finally, Section 3.6 further discusses the main findings and gives

some concluding remarks as well as directions for future work.
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3.2 Background concepts and related work

In the last two decades, several research efforts have focused on devising proper

methods for handling high dimensional datasets [61]. Feature selection plays an

important role in such a context as it can discard irrelevant and redundant infor-

mation, as well as noisy factors, with significant benefits in terms of computational

efficiency, model interpretability and data understanding [62]. As summarized be-

low, a wide variety of feature selection methods can be found in the literature, with

some promising applications also in the HAR field [17, 18, 48, 19, 21, 63, 64, 65, 22,

24, 25, 66, 67, 23].

3.2.1 Background on feature selection

In the context of supervised learning tasks, like those considered in this chapter, the

available selection techniques can be broadly distinguished into three categories [62,

68]:

• Filters methods, that conduct the selection process as a pre-processing step,

without interacting with the learning algorithm used at the model induction

stage, thus leading to a classifier-independent selection outcome. Only the

intrinsic characteristics of the training data are taken into account to estimate

the relevance of the features, i.e., the extent to which they can be useful in

separating the different classes. This can involve the individual evaluation of

every single feature, based on its correlation with the class attribute, or the

evaluation of subsets of features, within which the reciprocal correlation among

the features is also considered to minimize redundancy (but at an increased

computational cost).

• Wrapper methods, that search for the feature subset that can optimize the

predictive performance of a given classifier. In this case, the learning algo-

rithm itself is employed as an evaluation function to assess each candidate

subset of features. Such an approach involves inducing a model from each

subset and measuring the resulting performance through a proper validation

protocol (e.g., a cross-validation procedure internal to the training set). The

computational cost of the selection process is hence dependent on the classi-

fier’s intrinsic efficiency, as well as on the search strategy used to build the
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candidate subsets (e.g., an evolutionary search or a greedy stepwise search),

with an overall burden generally higher than the one of filter methods.

• Embedded methods, that leverage the intrinsic capacity of some classification

algorithms (e.g., Perceptron classifiers or linear Support Vector Machines clas-

sifiers) to assign weights to the features, without requiring a systematic search

through different candidate subsets, as in the case of wrappers. In terms of

computational cost, this approach often provides a reasonable trade-off be-

tween filters and wrappers, with results that have proven quite satisfactory in

multiple scenarios.

Several studies have investigated the potential and the drawbacks of the dif-

ferent selection methods proposed so far [69, 70]. Due to their reduced compu-

tational requirements, filter and embedded methods have found wider adoption in

high-dimensional problems, with a variety of algorithms available that support both

univariate and multivariate selection processes, as better discussed in section 3.3.

Hybrid and ensemble techniques, that properly integrate different selection methods,

have also been studied with promising results in recent years [62, 71, 72]. There

is, however, no selection approach that outperforms the others in all situations and

choosing the most appropriate method for a given task remains often difficult [73].

3.2.2 Feature selection in the HAR field

Feature selection methods falling in the filter category have been generally preferred

in the HAR field. For example, [63] and [64] have investigated the use of MRMR

and CFS filters [61], which are designed to search for subsets of features that are

highly correlated with the target class but not correlated with each other. Such a

subset-oriented evaluation tries to reduce redundancy and can be an effective and

viable solution when the original dimensionality is not too high. A more efficient

ranking-based filter is exploited in [17], where every single feature is weighted ac-

cording to an information theoretical criterion, known as Information Gain, with an

overall ordering of features based on the resulting weights. Such an approach allows

discarding the features that are less useful in discriminating the target class and has

proven well suited even in the presence of very high dimensionalities. Ranking-based

filters have also been applied in [65], where the Chi-Squared, Fisher score, and Re-

liefF methods are employed to weight the features and arrange them in decreasing
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order of relevance. A comparison between ranking-based and subset-oriented filters

is presented in [48], which emphasizes that the filter-selected, classifier-independent,

feature subsets have potentially broad exploitability in smartphone-based HAR.

Fewer applications can be found in this field for the embedded methods and

the wrapper methods [22, 24, 25]. Specifically, given the higher computational cost

of wrappers, they have been mainly applied after preliminarily reducing the data

dimensionality by means of a filter, as in [19] and [66]. Some direct comparisons

between filter and wrapper approaches are presented in [18, 67, 23]; in such studies,

however, the dimensionality of the original feature space is relatively low, which can

make acceptable the higher computation time required by wrappers.

Despite an increasing amount of research pointing out the benefits of feature

selection in HAR applications, there is a lack of comparative studies that exten-

sively evaluate the strengths and weaknesses of the different selection approaches in

this field. At the time of writing, the largest experimental comparison is presented

in [21], where ten different selection algorithms (seven filters, two wrappers and one

embedded method) are evaluated on a single sensor dataset involving 206 attributes

(both time-domain and frequency-domain features); interestingly, the feature sub-

sets selected using efficient filter methods are found to outperform those produced

by wrappers that, even though potentially able to produce superior results, are more

prone to the problem of overfitting.

Finally, to the best of our knowledge, only the impact of feature selection on the

performance of HAR models has been considered so far, without investigating the

stability of the selection process, i.e., its sensitivity to changes in the input data,

which may critically affect the robustness of the induced models. Taking such an

aspect into account, this work presents a wide comparative analysis that comple-

ments the studies available in this field, encompassing several selection methods and

several benchmarks, as detailed in the following sections.

3.3 Methodological framework

Our methodological framework is meant to be general enough to be implemented

with different selection methods as well as different learning algorithms. Specifically,

it relies on a ranking-based selection approach that allows controlling the level of

dimensionality reduction at a fine-grained level, in order to find the optimal trade-off
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between model efficiency and classification performance. This is indeed a primary

concern in the application domain here considered. Further, as anticipated above,

our methodology involves evaluating both the predictive power and the stability

of the selected feature subsets, which is important to understand the extent to

which these subsets can be truly relevant for the task at hand, regardless of the

specific composition of the training data. All the steps of the adopted methodology

are outlined in what follows, along with a description of the specific methods and

settings chosen for the comparative analysis.

3.3.1 Ranking-based feature selection and performance

evaluation

As a general framework for a wide comparison, we chose a ranking-based selection

approach [62] that is flexible enough to encompass the use of different selection

algorithms, including filter methods, that assign weights to the features based on

their degree of correlation with the class (i.e., the activity to be predicted), and

embedded methods, that rely on the features’ weights derived by a proper learning

algorithm. The assigned weights, regardless of how they are calculated, can be used

to obtain a ranked list in which the N features of the data at hand (D) appear in

decreasing order of relevance, i.e., from the most important (rank 1) to the least

important (rank N), as schematized in Figure 3.1. Such a list can then be cut at a

suitable threshold point (n) to select a subset of highly relevant features, i.e., the n

top-ranked features.

Figure 3.1: The adopted ranking-based selection approach

Considering only these features, an activity recognition model can be induced

from D by training any suitable classifier. The adopted ranking-based selection
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framework is indeed not tied to a specific classification method, which makes it

potentially suitable for a variety of implementation scenarios, as discussed in sec-

tion 3.5 (where different implementation settings are explored). The performance of

the resulting models is evaluated on a separate set of test records that are structured

to contain only the features previously selected from D (to avoid any selection bias,

in fact, the test records must not be used in the feature selection process).

The best level of dimensionality reduction, i.e., the optimal value of the cut-off

threshold in Figure 3.1, may vary depending on the specific task at hand. The

effect of modifying such a threshold is explored experimentally in our study, which

encompasses different values of n and evaluates their impact on the final recognition

performance. This approach allows discarding the unnecessary features in a cost-

effective way, especially when the data dimensionality makes impractical the direct

adoption of wrapper-based search strategies (but such strategies, if needed, could be

subsequently applied for refining the outcome of the selection process and optimizing

it for the chosen classifier).

3.3.2 Stability evaluation

Recent literature has highlighted the importance of investigating the stability of

feature selection with respect to variations in the input data [54, 74]. For a stable

method, we expect to obtain (almost) the same outcome when the original set of

training instances is somewhat perturbed (e.g., randomly removing a given percent-

age of records).

Evaluating stability essentially involves two aspects [75]: (i) a procedure to create

multiple sample sets from the available data, and (ii) a consistency index to quantify

the sensitivity of the selection process to sample variation. More in detail, given a

dataset D with R instances and N features, a number K of reduced datasets Di

(i=1,2,. . . ,K) are drawn, each containing a fraction f of the original instances.

The chosen selection algorithm is then applied to each Di, obtaining an output Oi

(i=1,2,. . . ,K) that may depend on Di’s specific composition. A proper similarity

measure is finally used to assess the pairwise similarity between the outputs Oi: the

more their average similarity, the more stable the selection method.

In our framework, each output Oi takes the form of a feature subset Si containing

n of the original features (selected according to the approach explained previously),

for a total of K subsets of the same size. To evaluate how similar these subsets are to
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each other, we rely on a consistency index known as Kuncheva measure [76], which

has proved to be suitable in the context of high dimensional problems. Specifically,

given a pair of subsets Si and Sj, their similarity is measured as follows:

simij =
|Si ∩ Sj| − n2/N

n− n2/N
(3.1)

where |Si ∩ Sj| is the number of features that are common to Si and Sj. The

similarity simij essentially measures the degree of overlap between the two subsets,

with a proper correction reflecting the probability that a feature is included in both

subsets simply by chance (such a probability increases as the subset size n approaches

the original dimensionality N).

The resulting similarity values are then averaged across all pair-wise comparisons

to assess the overall degree of consistency among the K subsets:

simavg =
2

K(K − 1)

K−1∑
i=1

K∑
j=i+1

simij (3.2)

This average similarity can be assumed as a measure of the stability level of the

selection process. Since simij and simavg may vary in dependence on the size n

of the selected subsets, our experimental study investigates the stability trend for

feature subsets of increasing size, as shown in Section 3.5.

3.3.3 Methods and settings

For implementing the methodological framework presented above, we considered

some popular selection algorithms that are representative of different feature weight-

ing paradigms. In particular, we employed five univariate methods, that weigh every

single feature independently of the others, and five multivariate methods, that are

able to capture the interdependencies among the features.

Specifically, among the univariate techniques, we chose:

• Chi Squared (χ2), that leverages the well-known chi-squared statistic to eval-

uate how relevant a feature is with respect to the class [69]. Specifically, once
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a feature has been discretized into I intervals, its χ2 value is obtained as:

χ2 =
I∑

i=1

C∑
j=1

(Aij − Ri·Bj

R
)2

Ri·Bj

R

(3.3)

where R is the total number of instances, C the number of classes, Ri the

number of instances in the ith interval, Bj the number of instances in the jth

class, and Aij the number of instances in the ith interval and jth class.

• Information Gain (IG), that measures the extent to which the class entropy

decreases when the value of a given feature is known: the greater the decrease

in entropy, the more discriminative the feature [77]. Namely, by denoting as

H the entropy function, we can derive the IG value for a feature X as:

IG(X) = H(Y )−H(Y |X) (3.4)

where H(Y ) is the entropy of the class Y before observing X, while H(Y |X)

is the conditional entropy of Y given X [78].

• Symmetrical Uncertainty (SU ) and Gain Ratio (GR), that in turn rely on

the IG measure but include suitable correction factors that try to compensate

for the IG ’s bias toward features with more values [79]. Specifically, after

computing the IG value for a feature X, the corresponding SU and GR values

are obtained as follows:

SU(X) =
2 · IG(X)

H(X) +H(Y )
(3.5)

GR(X) =
IG(X)

H(X)
(3.6)

where H(X) and H(Y ) denote the entropy of, respectively, the feature X and

the class Y .

• OneR (OR), that weights each feature based on the accuracy of a simple

classification rule built on that feature, according to the approach originally

proposed in [80]. More in detail, for each of the available features, the algo-

rithm creates one rule by determining the most frequent class for each feature’s

value (a rule is simply a set of attribute values bound to their majority class).
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The prediction accuracy of each rule is then computed, and the features are

ranked according to the quality of the corresponding rules.

Among the multivariate techniques, we considered two Relief -based selectors [81]

and three SVM -based selectors [82]. More in detail, we chose:

• ReliefF (RF ), that evaluates the strength of the features according to their

ability to discriminate between data instances that are near to each other

(nearest neighbors) in the feature space. Basically, in the original two-class

formulation, a sample instance Ri is extracted from the training set, and its

features’ values are compared to the corresponding values of the instance’s

nearest hit H (neighbor from the same class) and miss M (neighbor from the

opposite class). A weight W is then iteratively computed for each feature X,

starting from an initial value W (X) = 0:

W (X) := W (X)− diff(X,Ri, H)

r
+

diff(X,Ri,M)

r
(3.7)

where r is the number of randomly drawn instances and diff is a function that

computes the difference between the value of X for Ri and H as well as for

Ri and M . The underlying assumption is that a “good” feature should have

the same value for data points of the same class and different values for data

points of different classes. Such a binary formulation can be easily extended to

deal with multi-class problems [81]. In turn, ReliefF-weighted (RFW ) adopts

a similar strategy but weighting the neighbors by their distance.

• SVM-AW, that relies on a linear SVM classifier, which has an embedded ca-

pability of assigning a weight to each feature based on how it contributes to

the hyperplane decision function induced by the classifier. This function can

indeed be written as follows:

f(X) = W · X + b (3.8)

where X is the N -dimensional vector of input features, W is a weight vector,

and b is a bias constant. The weight Wj assigned to the jth feature can be

interpreted as a measure of the strength of the feature; specifically, the SVM-

AW algorithm considers the absolute value of this weight (AW ) [82].
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• SVM-RFE, that, in turn, exploits a linear SVM but adopts a recursive fea-

ture elimination strategy that iteratively removes the features with the lowest

weights and repeats the weighting process on the remaining features. In our

study, two versions of this approach are evaluated: RFE10, where the per-

centage p of features removed at each iteration is set to 10%, and RFE50,

where this percentage is 50% (in the special case where p = 100%, SVM-RFE

reduces to SVM-AW as no iteration occurs).

As regards the computational complexity of the above techniques, it depends on

both the number of features (N) and the number of instances (R). In particular, it

can be shown that the number of operations is of the order of N ·R for the univariate

approaches [83], while the multivariate approaches have a higher computational

cost. Indeed, in the worst case, the number of operations is of the order of N · R2

for the Relief -based methods while it is of the order of max(N,R) · R2 for SVM-

RFE. However, efficient implementations exist that optimize the nearest-neighbor

calculations involved in ReliefF as well as the kernel-matrix calculations involved in

SVM-RFE [84].

Furthermore, note that some of the above techniques (χ2, IG, GR, SU, RF, and

RFW ), which only rely on the data’s intrinsic characteristics, fall in the category

of filter methods, while others (OR, SVM-AW, RFE10, and RFE50 ) leverage the

features’ weights derived by a suitable classifier and can be thus categorized as em-

bedded methods. Irrespective of the specific algorithm used to derive the features’

weights, the final selection is carried out according to the approach shown in Fig-

ure 3.1, i.e., by retaining a number n of top-ranked features; such a number is varied

in our experiments encompassing different percentages of selected features, from 5%

to 90%.

As learning algorithms to induce the activity recognition models, we chose, after

a series of preliminary experiments, an SVM classifier with a polynomial kernel of

degree 2 and a Random Forest classifier, which proved to be a suitable option for

the considered benchmarks (described in Section 3.4). For both classifiers, as well

as for the different selection methods, we leveraged the implementations provided

by the WEKA machine learning library [85].

More in detail, we trained the SVM classifier using the well-known Sequential

Minimal Optimization (SMO) algorithm [86]. For the Random Forest classifier, we

relied on 100 unpruned trees, each built using log2(n)+1 random features at the split-
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ting stage, according to commonly adopted settings [87]. TheWEKA ChiSquaredAt-

tributeEval, InfoGainAttributeEval, SymmetricalUncertAttributeEval, GainRatioAt-

tributeEval, and OneRAttributeEval were used to implement the univariate methods

χ2, IG, SU, GR, and OR, respectively. For the Relief -based methods, we employed

the ReliefFAttributeEval function, with and without instance weighting (for RFW

and RF respectively). Finally, for the SVM -based selection methods, i.e., SVM-

AW and SVM-RFE, we exploited the SVMAttributeEval function, properly setting

the percentage of features to be removed at each iteration. Each of these feature

weighting functions was used in conjunction with the Ranker search method that

allows selecting a specified number of top-ranked features.

3.4 Datasets

For our comparative study, we used five datasets meant for mobile human activity

recognition. Specifically, one of these datasets contains data acquired from a fitness

watch and a mobile phone, three of them contain smartphone sensor data, and

the last one contains body-worn sensor data. In each dataset, data instances are

labeled with the corresponding activities, which are primarily sport/fitness activities

and activities of daily living. The high-level characteristics of these experimental

benchmarks are summarized in Table 3.1.

The COSAR dataset [56, 44] was collected in experiments concerning the recog-

nition of 10 different activities: brushing teeth, climbing up and down, riding bycicle,

standing still, jogging and strolling, walking downstairs and upstairs, writing on

blackboard. These activities were carried out by 6 volunteers wearing two accelerom-

eters: the first one located inside the left pocket and the second one on the right

wrist. In addition, a GPS receiver in the left pocket tracked the person’s location.

Overall, the dataset consists of 5 hours of activity data, sampled at a frequency

of 16Hz, and each activity instance has a time extension of 1 second, for a total

of 18000 instances (divided into 13500 training records and 4500 test records, as

reported in Table 3.1).

The second dataset (HAR) [57] was collected from 30 volunteers wearing a

smartphone on the waist, as described in [88]. Inertial data were acquired from the

smartphone’s 3-axial accelerometer and 3-axial gyroscope at 50 Hz. Each subject

carried out six activities: walking, walking upstairs and downstairs, sitting, stand-
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Table 3.1: Datasets used in the experimental study.

Dataset Number of records Number of features Number of classes Sensors

COSAR∗ 18000 (13500 training + 4500 test) 148 10 2 accelerometers

HAR ∗∗ 10299 (7352 training + 2947 test) 561 6 1 accelerometer, 1 gyroscope

HAR ALL ∗∗∗ 5744 (4252 training + 1492 test) 561 6 1 accelerometer, 1 gyroscope

HAPT ∗ ∗ ∗∗ 10929 (7767 training + 3162 test) 561 12 1 accelerometer, 1 gyroscope

DSA ∗ ∗ ∗ ∗ ∗ 9118 (6838 training + 2280 test) 1170 19 5 accelerometers, 5 gyroscopes, 5 magnetometers

∗ Everywarelab Activity Recognition Dataset

∗∗ Human Activity Recognition Using Smartphones Dataset

∗ ∗ ∗ Smartphone Dataset for Human Activity Recognition in Ambient Assisted Living

∗ ∗ ∗∗ Smartphone-Based Recognition of Human Activities and Postural Transitions Dataset

∗ ∗ ∗ ∗ ∗ Daily and Sports Activities Dataset

ing and laying. Raw data were filtered to remove noise and sampled using a 50%

overlapping sliding window of 2.56 seconds, resulting in a total of 10299 instances

(partitioned into 70% training data and 30% test data).

The third dataset (HAR ALL) [58] is an extension of the HAR dataset de-

scribed above; indeed, it was obtained by carrying out similar experiments and

contains the same activities, as described in [2]. 30 subjects participated in the

experiments, resulting in a collection of 5744 records.

In turn, the HAPT dataset [59] is an updated version of the HAR dataset

that contains an extended set of activities, including postural transitions: walk-

ing, walking upstairs and downstairs, sitting, standing and laying, stand-to-sit and

stand-to-lie, sit-to-stand and sit-to-lie, lie-to-sit and lie-to-stand. This benchmark,

described in detail in [43], is considered especially challenging due to the highly

imbalanced activity distribution (given the lower frequency of postural transitions).

The last dataset we considered is (DSA) [60], previously used in various research

works including [89] and [90]. It contains 19 daily and sport activities: sitting, stand-

ing and lying on back and on right side, ascending and descending stairs, standing

and moving around in an elevator, walking in a parking lot and on a treadmill (in flat

and 15° inclined positions), running on a treadmill, exercising on a stepper and on a

cross trainer, cycling on an exercise bike in horizontal and vertical positions, rowing,

jumping and playing basketball. The activities were carried out by 8 subjects and the
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total duration of each activity was 5 minutes per subject. Data were acquired at a

sampling rate of 25 Hz, using five body-worn orientation trackers, each containing a

3-axial accelerometer, a 3-axial gyroscope and a 3-axial magnetometer. The sensor

signals were divided into 5-second segments, yielding a total of 9120 instances (480

per activity).

As we can see in Table 3.1, the five considered benchmarks have quite differ-

ent dimensionalities, due to the different numbers of sensors involved as well as to

the different set of high-level features computed for each sensor signal (after seg-

menting it into time windows). Specifically, for each window, feature vectors were

computed in the time and frequency domains (Fast Fourier Transform was applied

to sensor signals to transform data in the frequency domain). Several statistical

measures were computed for each window: some of them, e.g., mean, standard de-

viation, Kurtosis, and min/max values, were extracted for all five datasets, while

others have been used only in some of them. Note that we maintained the features’

definitions employed in the original studies in which the datasets were published, in

order to avoid introducing any bias and make the experiments fully repeatable. See

Appendix A for more details on the extracted features.

3.5 Experimental analysis

Leveraging the activity recognition benchmarks described in the previous section,

we conducted an extensive experimental study aimed at investigating the extent to

which the original feature space can be reduced without degrading the final predic-

tive performance. The overall analysis, in terms of both capacity of discriminating

the classes and selection stability, has been carried out for different levels of di-

mensionality reduction, according to the methodological framework detailed in Sec-

tion 3.3. The main experimental results are summarized in Figures 3.2, 3.3 and 3.4,

each containing ten charts that compare the behavior of the considered selection

methods.

Specifically, Figure 3.2 and Figure 3.3 show a comparison in terms of F-score,

which is a performance metric widely employed in activity recognition tasks. Defined

as the harmonic mean between the model sensitivity (i.e., the fraction of positive

instances classified correctly) and the model precision (i.e., the fraction of correct

predictions among all the instances assigned to the positive class), the F-score takes
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Figure 3.2: F-score performance of the SMO classifier, in conjunction with the
univariate (on the left) and the multivariate (on the right) selection methods.

both the false positives and the false negatives into account, providing a reliable

estimate of the model ability to recognize a given class (considered as positive). By

measuring the average F-score across the different classes, we obtained an overall
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Figure 3.3: F-score performance of the Random Forest classifier, in conjunction with
the univariate (on the left) and the multivariate (on the right) selection methods.

evaluation of the recognition performance of the induced models. For model induc-

tion, as anticipated in Section 3.3.3, we employed both the SMO (Figure 3.2) and
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Figure 3.4: Stability trend for the univariate (on the left) and the multivariate (on
the right) selection methods.

Random Forest (Figure 3.3) classifiers, in conjunction with ten different selection

methods.
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More in detail, for both the univariate (χ2, IG, SU, GR, OR) and the multivariate

(RF, RFW, RFE10, RFE50, SVM-AW ) selection techniques, Figures 3.2 and 3.3

show the F-score trend for different percentages of selected features (the abscissa 100

corresponds to the model induced on the whole dataset, without any dimensionality

reduction). In absolute terms, the COSAR dataset is the one where both SMO

and Random Forest achieve the lowest recognition performance, due to the intrinsic

difficulty of discriminating multiple activities using features extracted only from

accelerometer signals. In the other four datasets, where we have a multi-sensor

scenario (as detailed in Table 3.1), the average F-score is generally better, sometimes

above 0.9, with quite similar trends for the two classifiers.

But the most interesting observation, for the purpose of our study, is that no

significant degradation in performance is observed when the original dimensional-

ity is reduced, regardless of the specific characteristics of the dataset at hand. In

particular, 10-20% (or even less) of the original features may be sufficient, for some

selection methods, to obtain recognition performances comparable to those achieved

using the whole dataset. This reveals the appropriateness of introducing a suitable

feature selection step into any activity recognition protocol in order to simplify the

final models and make them more efficient.

When comparing the different selection techniques, the multivariate approaches,

which can capture the inter-dependencies among the features, turn out to be overall

more effective in terms of F-score. In particular, among the SVM -based methods,

RFE10 and RFE50 sometimes have slightly superior performances but at a higher

computational cost than the simpler SVM-AW, whose behavior is still satisfactory.

As regards the Relief -based multivariate approaches (RF and RFW ), quite good

performance can be obtained with at most 20% of the features. Among the uni-

variate methods, on the other hand, SU and GR overall exhibit the worst behavior,

with an unsatisfactory performance for some datasets, especially when small feature

subsets are selected. For the other univariate approaches, i.e., χ2, IG and OR, fea-

ture subsets containing (at most) 20% of the features turn out to be sufficient to

obtain quite good F-score values.

Overall, the strong potential of feature selection in this domain is witnessed

by both Figures 3.2 and 3.3, despite some small differences between the curves

reported for the SMO and Random Forest classifiers. However, as recognized by

recent literature in the feature selection field, e.g., [54, 62, 91, 75], a good selection
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method should not only be effective (in terms of final predictive performance) but

also as stable as possible to avoid that the selected subsets depend too much on

the specific composition of the training data, thus becoming less useful in future

applications of the model.

The results of the stability analysis we have performed on the five considered

benchmarks (COSAR, HAR, HAR AAL, HAPT, DSA) are shown in Figure 3.4,

where the stability trend is reported for different percentages of selected features, ac-

cording to the methodology detailed in sub-section 3.3.2; specifically, such a method-

ology has been here implemented with the settings K = 20 and f = 0.80, which

have proven suitable in similar studies [54, 62].

A first point to highlight regarding Figure 3.4 is that the differences observed

in terms of stability are generally higher than those observed in terms of F-score

(Figure 3.2 and Figure 3.3), revealing that some selection methods systematically

exhibit a more stable behavior across the different datasets. In particular, χ2 and

IG turn out to be the most stable of the univariate approaches, followed by OR,

while SU and GR have shown significantly lower stability in some datasets; GR, in

particular, appears to be the least robust method in the univariate group. Among

the multivariate approaches, on the other hand, the Relief -based methods (i.e.,

RF and RFW ) have proven to be very stable, with similar trends for all levels of

dimensionality reduction. Conversely, the SVM -based methods appear to be less

robust, especially RFE10 and RFE50, whose stability is always lower than the one

of the simpler SVM-AW.

Overall, the univariate χ2, IG and even OR show a quite good trade-off between

F-score and stability and may therefore be an option to consider when inducing

activity recognition models from mobile sensor datasets like those considered in our

study. As well, the multivariate Relief -based approaches exhibit a good behavior

when jointly considering both predictive performance and stability, at least for sub-

sets containing more than 10% of the original features. It is worth mentioning,

nevertheless, that the least stable methods could be made significantly more ro-

bust when implemented in a bootstrap-based ensemble version [62], thus envisaging

margins of improvement for some selection techniques (but at the expense of the

computational cost of the feature selection process).

Based on a wide set of experiments, the above results consolidate the findings

of our preliminary study in this field [53], showing that feature selection can be
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effectively exploited to reduce the dimensionality of mobile sensor datasets, leading

to robust and more efficient recognition models.

3.6 Discussion

The experimental analysis here presented complements and extends the findings of

recent comparative studies conducted on similar activity recognition benchmarks

[48, 65, 92, 21], providing stronger evidence of the suitability of the filter selection

paradigm in this field.

Specifically, [48] discusses the advantages of leveraging classifier-independent se-

lection approaches that can identify feature subsets conveying useful information

for targeted populations and applications, regardless of the chosen classifier and the

specific implementation settings. Compared to our work, the dataset considered

in their study is relatively low-dimensional, with only seventy-six features, which

allows efficiently using subsets-oriented filters (CFS, FCBF ), along with a multi-

variate ranker (ReliefF ), while the ranking-based approach is usually preferred in

the presence of higher dimensionalities [65, 92]. Both subset-oriented filters (CFS,

MRMR) and ranking-based filters (Information Gain, Gain Ratio, Symmetrical Un-

certainty, ReliefF ), along with wrapper and embedded methods, are also evaluated

in [21], using a single sensor dataset involving 206 attributes (both time-domain

and frequency-domain features), with empirical evidence of the effectiveness of the

simpler univariate rankers in yielding good feature subsets for HAR models.

Through wider experiments on five high-dimensional benchmarks, our study has

presented a more in-depth evaluation of the ranking-based selection approach, with

both univariate and multivariate techniques, showing that they can be effectively

employed in conjunction with different classifiers (see Figures 3.2 and 3.3). Actually,

besides filters that inherently perform a classifier-independent selection, our exper-

iments also encompass ranking methods that leverage some learning algorithm to

compute the features’ weights, as in the case of the SVM -based selectors. The final

subsets produced by these methods, of the embedded category, are often used like

those produced by filters, i.e., as a reduced feature space to train any potentially

suitable classifier. However, as shown in Figure 3.4, this kind of ranker has proved

to be overall less stable.

Our study has also shown that the adopted ranking-based approach allows to
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Table 3.2: HAPT dataset (1 accelerometer, 1 gyroscope, 561 features): different
levels of dimensionality reduction and corresponding F-score performance.

Number of features (χ2 feature selection) Features by sensor type F-score (SMO classifier)

29 (5%) accelerometer: 29, gyroscope: 0 0.58

57 (10%) accelerometer: 57, gyroscope: 0 0.82

85 (15%) accelerometer: 81, gyroscope: 4 0.85

561 (100%) accelerometer: 348, gyroscope: 213 0.86

control the level of dimensionality reduction in a fine-grained way, in order to find

the optimal trade-off between the number of the selected features and the resulting

classification performance. Indeed, as discussed in Section 3.5, the original dimen-

sionality can be reduced to a very great extent, with a final recognition performance

similar to that achieved with the full feature set.

To provide concrete examples of such a dimensionality reduction, Tables 3.2 and

3.3 show the SMO classifier’s F-score (averaged across the different classes, as in

Figures 3.2 and 3.3) for the two multi-sensor benchmarks with the highest numbers

of features/classes. Specifically, besides the full feature set, three feature subsets

with smaller cardinality are considered, as selected by one of the univariate rankers

that have shown the best tradeoff between predictive performance and stability,

namely χ2 (which also has a reduced computational cost compared to the multi-

variate ranking methods). As we can see, in the HAPT dataset (Table 3.2), only

15% of the original features are sufficient to obtain a final performance comparable

to that achieved using the whole feature set, while 10% of the features turn out to

be as predictive as the whole feature set in the DSA dataset (Table 3.3). Further-

more, interesting insight can be gained into the extent to which each sensor type

contributes to the optimal set of features, with clear evidence of the high discrimina-

tive power of the features extracted from the accelerometer signals (that, however,

are not sufficient to obtain the highest F-score values). This kind of analysis can

leverage different ranking methods, as previously observed in Figures 3.2 and 3.3,

and allows the design of fast-response recognition systems where only a reduced set

of highly discriminative features need to be computed at operation time.

Overall, our results clearly show how beneficial feature selection can be in sensor-

based activity recognition. However, some limitations exist in the current study that

will be addressed in further investigations. Indeed, the explored ranking-based selec-
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Table 3.3: DSA dataset (5 accelerometers, 5 magnetometers, 5 gyroscopes, 1170
features): different levels of dimensionality reduction and corresponding F-score
performance.

Number of features (χ2 feature selection) Features by sensor type F-score (SMO classifier)

30 (2.5%) accelerometer: 25, magnetometer: 5, gyroscope: 0 0.82

59 (5%) accelerometer: 44, magnetometer: 15, gyroscope: 0 0.86

117 (10%) accelerometer: 71, magnetometer: 42, gyroscope: 4 0.89

1170 (100%) accelerometer: 390, magnetometer: 390, gyroscope: 390 0.89

tion approach, although effective and generally more efficient than subset-oriented

selection methods, may be sub-optimal in the presence of some degree of redun-

dancy among the features. Hence, the potential impact of feature redundancy in

this field should be better analyzed, for example by exploring hybrid selection strate-

gies that first reduce the data dimensionality through a simple and efficient ranker

and then further refine the resulting subset through a more sophisticated search

strategy that can remove highly correlated features [61]. But this would increase

the computational cost of the selection process, requiring careful cost-benefit anal-

ysis. Although some recent works have applied a hybrid selection approach in the

HAR field [66, 19, 93], there is a lack of comparative studies that investigate the

effects of different hybrid strategies in terms of final recognition performance as well

as selection stability and computational efficiency.



Chapter 4

Towards context-aware power

forecasting in smart-homes

Forecasting future power consumption in residential buildings is important to

optimize the power grid, to assist inhabitants in everyday activities, and to save

energy. Several machine learning methods have been proposed to predict future

electricity consumption in smart homes based on the history of past consumption

data acquired from smart meters. However, the increasing availability of smart home

sensors can provide insights about the routines and activities of inhabitants, that

may be exploited to provide more accurate predictions. In this chapter, we propose

a machine learning approach to forecast future energy consumption considering not

only past consumption data, but also context data such as inhabitants’ actions and

activities, use of household appliances, interaction with furniture and doors, and

environmental data. We performed an experimental evaluation with real-world data

acquired in an instrumented environment from a large set of users. The results of a

comparison with two baseline methods show that our approach is promising.

This chapter is published as E. Cuncu, M. M. Manca, B. Pes, D. Riboni, ”Towards Context-
aware Power Forecasting in Smart-homes”, in Procedia Computer Science, vol. 198, pp. 243-248,
2022, doi: https://doi.org/10.1016/j.procs.2021.12.235.
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4.1 Introduction

Several machine learning models have been proposed in the literature to forecast

electricity consumption in smart homes. A review of the main artificial intelligence

techniques applied to the problem of electrical forecasting in buildings is proposed

in [9]. Ahmad et al. describe in detail the performance of Artificial Neural Net-

work and Support Vector Machines, comparing them with classical models such as

ARIMA. Similar work has been done by Camara et al. [10], who use two approaches

to forecast residential energy consumption. Specifically, they compare predictive

performances of Seasonal ARIMA model with Artificial Neural Network, based on

historical energy consumption. Mocanu et al. [94] compare three machine learning

techniques for time series prediction of energy consumption. Namely, they compare

the Conditional Restricted Boltzman Machine (CRBM) with both Artificial Neural

Networks and Hidden Markov Models. Their work focuses on CRBM for energy

forecasting, using load profiles on measured data.

Other researchers applied deep learning techniques to forecast energy consump-

tion. In their work, Dey et al. [11] provide a comparison between classical time-series

forecasting algorithms and a Group Method Data Handling (GMDH) neural net-

work. In that work, the objective was twofold: forecasting energy consumption,

and gaining insights about the behaviour and lifestyles of users. Bhatt et al. [95]

trained a Convolutional Recurrent Neural Network to find an energy consumption

prediction model under different climatic conditions.

Most existing energy forecasting methods rely only on the history of power con-

sumption data, sometimes extended with external data such as temporal information

and weather forecasts [96]. A few studies investigated the use of heterogeneous sen-

sor data to improve energy forecasting in smart buildings [97]. Ziekov et al. use

wireless sensors, called ZeeBee, to record the electricity consumption in each socket

in the smart home. They then apply the collected data to their forecasting methods.

One example is the work of Barbato et al. [98], in which a system for predicting the

usage states of household appliances is proposed. Dobbe et al. [99] used Bayesian

estimation for identifying the optimal number of sensors for the energy forecast-

ing task. Namely, they provide simulation results considering two types of sensors:

magnitude sensors and PMUs. Their employment leads to the collection of the volt-

age magnitude and angle values. In [100], Truong et al. proposed an algorithm to
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predict users daily habits and the interdependency of used devices employing the

Gibbs sampling procedure. For example, the probability of using a single household

appliance during an entire day is used to predict future consumption.

The limitations of the sensors described so far may be related to the fact that

they all involve previous electricity consumption. In our work, the sensors used are

independent of any energy consumption.

We believe that the increasing availability of sensors in smart homes could pro-

vide a valuable data source for improving the forecast of power consumption. In

particular, energy consumption is strongly influenced by human activities and other

contextual conditions. Hence, heterogeneous context data, including the observation

and forecast of human activities, may increase the precision of future energy predic-

tion systems. As a first contribution in this direction, we present a multilayer energy

forecasting system that includes context data and activities in the forecasting pro-

cess. Our system acquires raw sensor data from the smart home infrastructure. It

adopts complex reasoning algorithms to recognize actions, activities, and tasks from

raw data, and a feature extraction algorithm to build feature vectors using a sliding

window. A collaborative learning approach is used to anonymously share context-

aware energy data. Those data are used for training machine learning algorithms,

including classifiers and regressors, to solve different energy prediction tasks. We

implemented a prototype of our system, and performed experiments with a large set

of real-world data. The experimental results show that our method clearly improves

two baseline algorithms.

The rest of the chapter is structured as follows. Section 4.2 illustrates the archi-

tecture of our system. Section 4.3 explains the methods for feature extraction and

power load forecasting. Section 4.4 presents our experimental evaluation and the

achieved results. Section 4.5 concludes the work.

4.2 System overview

Figure 4.1 illustrates an overview of our system. The smart home is instrumented

with various sensors to collect data about the inhabitant activities and the environ-

mental conditions. Sensors include position sensors to detect movement of people in

the home, and other sensors to detect the interaction with instruments, doors, and

items.
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Figure 4.1: System overview.

The infrastructure also includes one power meter that periodically detects in-

stantaneous electricity consumption at the apartment level.

All raw data produced by those sensors are communicated to a ‘semantic in-

tegration’ software layer, which is in charge of assigning a semantics to the data

according to a sensor vocabulary. That layer relies on a position table, storing the

relative position of each sensor in the home, to determine the position of inhabitants

based on fired sensors. Raw sensor data preprocessed by the semantic integration

layer are called ‘sensor event records’.
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A module for activity segmentation and recognition processes the stream of sen-

sor event records for recognizing the activities that are occurring in the home, as

well as the actions that compose those activities. That module includes algorithms

to segment the activities and identify their start and end time. Indeed, several

research efforts have been spent in the last two decades to devise algorithms for

activity recognition and segmentation based on sensor data. Different effective so-

lutions to this problem have been proposed, which adopt data-driven [101, 102],

knowledge-driven [103, 104], or hybrid methods [105, 106]. Since the goal of this

work is power forecasting, in this section we assume the existence of an effective

module for action/activity segmentation and recognition, but we do not make any

assumption about the actual implementation of that module.

Recognized activities, actions, and sensor event records, including power meter

readings, are sent to the module for ‘feature extraction’, presented in Section 4.3.1.

The latter is in charge of extracting statistical features from the data using a fixed-

size sliding window. A feature vector is computed for each window.

Feature vectors are communicated to the ‘context-aware power forecasting’ mod-

ule, presented in Section 4.3.2. That module is in charge of providing a forecast of

future electricity consumption in the smart home. To this aim, the module uses a

supervised machine learning algorithm trained on an anonymous dataset acquired

in different smart homes.

4.3 Methods

In this section, we present our methods for feature extraction and power load fore-

casting in smart homes.

4.3.1 Feature extraction

For each sliding window of x minutes, the module for feature extraction computes

the following features:

• Time: the time of the day at the beginning of the window, computed as the

number of minutes passed after midnight;

• Temperature: the average temperature registered by a given environmental

sensor;
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• Activity: for each recognized activity, the number of minutes of that activity

execution;

• Presence: for each presence sensor, the number of activations during the win-

dow, which is the number of times the sensor has recorded an activity;

• Door: for each door sensor, the number of its activations;

• Action and Task: for each recognized action or task, the number of its execu-

tions;

• Trend: the trend of power consumption, computed through linear curve fitting;

• Previous consumption: average electricity consumption during the previous

time window;

• Current consumption: average electricity consumption during the current time

window.

In addition, the module computes a further value, named ‘Future consumption’;

i.e., the average power consumption in the following time window. Of course, that

value can be computed only with a delay. Feature vectors with future consumption

information are communicated to the Training dataset database in anonymous form

to enlarge the training set.

4.3.2 Power forecasting

The power forecasting module adopts a classical machine learning approach to pre-

dict future electricity consumption. Indeed, it uses a dataset of feature vectors,

computed as explained in Section 4.3.1 and labeled with the ‘Future consumption’

value, to train a machine learning algorithm. At run-time, the module uses the

trained model to predict future consumption considering unlabeled feature vectors

received from the ‘feature extraction’ module.

The module supports the following kinds of prediction tasks.

• Exact power consumption: in this task, the goal is to predict the average elec-

tricity consumption during the next time window. For this task, the module

uses a regression machine learning algorithm. More precisely, the module uses
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the Random Forest technique, an ensemble learning method that combines

many decision trees via bagging [107]. It was decided to use 100 trees and

100 predictors for each split, which is the best performing configuration for

this model.

• Power change: in this task, the goal is to predict whether the average electricity

consumption during the next time window will be larger or smaller with respect

to the current one. Being a binary classification task, in this case the module

uses a Logistic Regression classifier, namely a logistic regression model with

ridge estimator [108].

All experiments were performed using WEKA software.

The prediction of energy consumption in both regression and classification cases

would be valuable information in a real world scenario. In fact, it would make it

possible to optimise the load of electricity fed into the grid, thus preventing waste

and pollution.

4.4 Experimental evaluation

In this section, we report our experimental evaluation and the achieved results.

4.4.1 Dataset and experimental setup

We performed our experiments using a dataset acquired and labeled by researchers

of the Center for Advanced Studies in Adaptive Systems1 (CASAS) of Washington

State University. The data were acquired from smart home sensors while different

categories of people, including persons with cognitive diseases, were carrying out

everyday tasks [109]. Since we do not target persons with cognitive disabilities, in

our experiments we used only the data acquired from cognitively healthy subjects.

Totally, we acquired data from 305 subjects, each performing activities in the smart

home for approximately 4 hours. The CASAS smart home is a two-story apartment.

The first floor of the apartment consist of a kitchen, living room and a dining area,

while bathroom and two bedrooms are located at the second floor.

1http://casas.wsu.edu/

http://casas.wsu.edu/
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The smart home is equipped with several passive infrared (PIR) motion sensors

mounted on the ceiling to track the user’s position. It is instrumented with sev-

eral sensors, including item sensors to detecting the usage of selected kitchen tools,

door sensors, burner sensors, hot and cold water sensors, temperature sensors. It

also includes a whole-apartment electricity usage meter. In total, the smart-home

includes 52 motion sensors, 18 door sensors, 10 item sensors, and one smart meter.

The dataset is labeled with the activities, actions and tasks performed by the user.

We have experimented our method using different sizes of the sliding window,

ranging from 5 minutes to 150 minutes. For building the feature vectors, we used

the raw sensor data and the ground truth annotations of actions, activities and

tasks. We have one feature for time, 5 features for average temperature values in

different rooms of the home, 52 features for presence sensors, 18 features for door

sensors, 16 features for activities, 13 features for tasks, 12 features for actions, one

feature for trend, one feature for previous consumption, and one feature for current

consumption.

We ordered the feature vectors according to the start time of the corresponding

sliding window; we used the first half of them as the training set, and the second

half as the test set.

The Figure 4.2 represents the average energy consumption for each user, the

horizontal line in blue indicates the average value of all averages. It seems evident

from the graph that the consumption values are distributed rather evenly.

Figure 4.2: Average Consumption Values per subject.
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4.4.2 Results

We have compared our method with two baselines. The first one, named ‘stationary’,

assumes that the average power consumption in the next time window is exactly the

same of the current one. The second baseline, named ‘trend prediction’, assumes that

power consumption in the home follows a linear trend. Hence, with this baseline,

we forecast the average consumption in the next time window based on the linear

interpolation of the power consumption readings of the current window. For the

sake of this work, we do not apply feature selection techniques.

The experimental results are shown in Figures 4.3 and 4.4. The results of

the ‘Exact power consumption’ task, shown in Figure 4.3, are expressed in terms of

Pearson correlation coefficient [110].With this evaluation metric it was possible to

see how well the algorithm estimated the energy consumption trend, not just the

exact consumption value. The results show that our method clearly outperforms

the baselines with time windows of 100 minutes or less. With longer time windows,

the ‘stationary’ baseline achieves results close to the one of our methods.

The results of the ‘Power change’ task, shown in Figure 4.4, are expressed in

terms of accuracy; i.e., the percentage of correctly classified labels. Accuracy is an

adequate metric in our case, since classes (‘increase’ vs ‘decrease’) are balanced. For

this experiment, we did not use the ‘stationary’ baseline, since it could not predict

neither an increase or a decrease of power consumption. Results show that our

method clearly outperforms the ‘trend prediction’ baseline.

Figure 4.3: Experimental results: exact power consumption
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Figure 4.4: Experimental results: power change

4.5 Discussion

An algorithm capable of predicting future electricity consumption in a smart home

was presented in this chapter. The strategy of sliding windows as a feature extrac-

tion method led to promising results. Two types of approaches were evaluated; in

one case, the focus was to estimate the actual consumption, tackling a regression

problem; in the other case, the problem was studied from a classification point of

view, determining a prediction of an increase or decrease in consumption.

To benchmark our algorithm, we used a public dataset to train and test the

models. The calculated evaluation metrics allow us to confirm the validity of our

strategy.
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Deep learning based non-intrusive

load monitoring with low

resolution data from smart meters

A detailed knowledge of the energy consumption and activation status of the elec-

trical appliances in a house is beneficial for both the user and the energy supplier,

improving energy awareness and allowing the implementation of consumption man-

agement policies through demand response techniques. Monitoring the consumption

of individual appliances is certainly expensive and difficult to implement technically

on a large scale, so non-intrusive monitoring techniques have been developed that

allow the consumption of appliances to be derived from the sole measurement of

the aggregate consumption of a house. However, these methodologies often require

additional hardware to be installed in the domestic system to measure total energy

consumption with high temporal resolution. In this chapter we use a deep learning

method to disaggregate the low frequency energy signal generated directly by the

new generation smart meters deployed in Italy, without the need of additional spe-

cific hardware. The performances obtained on two reference datasets are promising

and demonstrate the applicability of the proposed approach.

This chapter is published as M. M. Manca, L. Massidda, ”Deep learning based non-intrusive
load monitoring with low resolution data from smart meters”, in Communications in Applied and
Industrial Mathematics, vol. 13 (1), pp. 39-56, 2022, doi: https://doi.org/10.2478/caim-2022-0004.
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5.1 Introduction

Implementing an effective NILM technique for domestic and industrial use is a valu-

able resource for both the consumer and the utility. For a domestic user, for ex-

ample, the knowledge of the consumption of household appliances over time pro-

motes greater awareness of energy consumption, allowing an informed choice of

consumption habits[111]. It can be used to rationally distribute and/or reduce load

throughout the day, to effectively manage home automation systems, to participate

in demand response programs [112, 113]. For utility companies on the other hand,

the knowledge of the habits and needs of individual users allows the offer of per-

sonalized services, a better segmentation of users [111] and a better scheduling of

supply [114, 115], greater accuracy in the prediction of consumption, and facilitates

the implementation of demand response strategies.

Recent work on the subject can be divided into two main groups, distinguished

by the sampling frequency of the signals used for analysis. The first group of these

papers is based on the availability of power data measured at high sampling rates

(from 50Hz to over kHz), obtained through dedicated hardware, with which to ob-

tain the identification of switching events [116, 117]. The second group, which also

represents the most current line of research, is based on lower frequency aggregate

load analysis methods, obtained with dedicated hardware or directly from the smart

meter with sampling periods ranging from 1s to 1 hour. This approach has been

shown to be effective in obtaining, sometimes with reasonable accuracy, an esti-

mate of the energy consumed by appliances with higher power demand even if used

occasionally [118, 119, 120, 121].

NILM studies have tested both supervised and unsupervised approaches, de-

pending on the information available and the predictive algorithm implemented.

Supervised methods require a data set labeled with sub-metered devices, which is

not always available. Unsupervised methods can be implemented without any prior

knowledge of the environment, but the user is usually required to match the patterns

identified by the algorithm to the appliances.

Early NILM studies were primarily based on hidden Markov models (HMM),

which are typically used for probabilistic modeling of time series data [122, 123],

these techniques are commonly inefficient when the number of devices increases and

also suffer from high computational complexity [111].
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A different approach is that of optimization methods, where the main idea is to

find the optimal combination of the individual devices that make up the aggregated

signal. The increased complexity resulting from a large number of devices and

the loss of temporal continuity are two major drawbacks to using these techniques

[124]. Thermal type loads, moreover, can be effectively disaggregated using Bayesian

techniques [125].

Machine learning-based (non deep) approaches require manual feature construc-

tion using domain expert knowledge. These solutions have lower computational

complexity than deep learning approaches and in some cases have yielded encour-

aging results. Numerous techniques for both regression and classification are used,

such as K Nearest Neighbours [126], Support Vector Machines [127, 128], and es-

pecially tree-based methods that achieve performance comparable to newer deep

learning techniques [129, 130, 131].

All machine learning methods require the practitioner to define descriptive fea-

tures of the load that are then processed by regression or classification algorithms.

In the deep learning approach, feature synthesis becomes an integral part of the

machine learning process; in fact, the first layers of the deep network are used for

processing the raw signal to obtain meaningful features that are then processed by

subsequent layers.

A widely used approach is Convolutional Neural Networks (CNN), in which the

first layers consist precisely of convolution layers that operate as filters on the raw

signal [33, 132, 133, 134]. Subsequent layers use other types of layers such as pooling

layers, normalization layers, and fully connected layers. The most common approach

involves the use of 1d convolution modules that receive as input a time sequence

of the aggregated load signal and return as output, the value of the load of one or

more appliances, or the identification of its activation state, for a portion of the

input sequence or even for just the midpoint of the interval.

Recurrent Neural Networks, are a type of deep learning architecture designed for

temporal sequences, in which the basic concept is that information about previous

states is part of the input for the next state. The most recent versions of this type

of network are represented by the Gated Recurrent Unit (GRU) and Long Short

Term Memory (LSTM) architectures. Several architectures with different complex-

ity have been tested in the literature for NILM, in which usually the first layers are

convolutional layers anyway, with performance comparable to that obtained with
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convolutional networks [33, 34, 135, 136].

Another architecture studied in the literature is autoencoders (AE), an architec-

ture consisting of an encoder, which compresses the input signal to a representation

on a latent space and then reconstructs the signal itself using a portion of the net-

work called a decoder. The latent space representation of the aggregate consumption

signal can be used to extract information about the consumption of individual ap-

pliances [33, 137, 138].

More recent developments for processing sequential data include architectures

that implement the attention mechanism, which, unlike recurrent architectures, uses

all previous states of an encoder to construct the input for the decoder, in an overall

sequence-to-sequence configuration [139, 140].

In [141] we used techniques from semantic image segmentation to build a deep

learning model using convolutional networks for load disaggregation on a low fre-

quency signal. The model proved to be very effective in disaggregating the loads

of a house even in the case, more interesting from the application point of view,

in which the neural network is applied to the load of a house not present in the

dataset used for the training of the model. We have also experimented with net-

work ensembling techniques to further improve the already good accuracy achieved

by the network [142]. One of the peculiarities of the proposed model is the use of

data with a reduced sampling rate (1 min) for both training and testing, in order to

allow a possible application of the technique to measurements coming directly from

the smart meter without the use of dedicated monitoring hardware.

Most of the techniques proposed in the literature in fact assume the availability

of a measurement of total consumption of the user with a sampling rate higher than

that generally obtainable from smart meters installed by the distributor, so they

require a minimum of intrusiveness for the user as it is often necessary to equip the

house with a measurement system of total instantaneous power dedicated to the

disaggregation application.

Our interest is instead to evaluate the applicability of the methodology devel-

oped to the measurement signal obtainable from new generation smart meters being

deployed throughout Europe. In particular, in this work we want to verify the appli-

cability of the model for a Chain 2 signal, the channel of communication on conveyed

waves (PLC-C) adopted in the second generation smart meters distributed in Italy

[143, 144]. The Chain 2 signal combines a quarter-hourly consumption measure-
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ment with a signal for load variation events; a measurement of the instantaneous

load is sent every time it crosses pre-set threshold values. In this chapter, we will

demonstrate that the approach we have developed is also applicable to this type of

signal by allowing both user-side and utility-side load disaggregation without the

need for dedicated measurement hardware. We will apply the neural network to two

datasets in which the aggregated signal is filtered to reproduce a Chain 2 type signal

and we will verify the achievable performance. To our knowledge this is the first

work to propose a disaggregation on the signal directly obtained from a commercial

smart meter.

The chapter is structured as follows: the problem is formulated in Section 5.2.1,

the methodology proposed for its solution is described in Section 5.2.2, Section 5.3

describes numerical experiments conducted on a reference dataset, the results of

which are presented in Section 5.4; conclusions are drawn in Section 5.5 where some

possible further developments of this research are presented.

5.2 Materials and methods

5.2.1 Problem formulation

If y(t) represents the total active electrical power consumed at instant t, and we

denote by yi(t) the active power absorbed by the appliance with index i at the

same instant, the total load can be expressed as the sum of the absorptions of the

individual appliances and an unmeasured portion:

y(t) =
N∑
i=1

yi(t) + e(t) ∀t ∈ (0, T ) (5.1)

where N is the number of appliances considered and e(t) is the unidentified residual

load.

The problem is to get the values of yi(t) when only the measure of y(t) is known,

that is to get an approximation of F (y(t)):

[y1(t), y2(t), . . . , yi(t), . . . , yN(t)] = F (y(t)) (5.2)

where F is the operator that, when applied to the total active power, returns N
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distinct values that are the best estimate of the power absorbed by individual ap-

pliances. Note that, in general, yi(t) does not represent all electrical appliances, but

a fraction of all those present in a house. The unknown term e(t) thus takes into

account loads due to unmonitored devices. The task of finding an approximation

of the operator F can be set up as a supervised learning problem when simultane-

ous measurements of aggregate load and consumption of individual appliances are

available.

If, as in our case, we are primarily interested in cumulative consumption and

activation times, the estimated consumption hatyi(t) of individual devices can be

approximated by a function that is constant over the activation period of the device:

ŷi(t) = piâi(t) (5.3)

where pi is the average consumption of the appliance i and the âi(t) is an estimate

of the state of activation of the individual appliance at the time t, which has a unit

value if the appliance is in operation and zero value otherwise.

Therefore, the method we propose seeks to obtain the most accurate possible

estimate of the state of activation of the appliances starting from the aggregate

load,

[â1(t), â2(t), . . . , âi(t), . . . , âN(t)] = Fa(y(t)) (5.4)

and obtains an estimate of consumption using Equation 5.3 after knowing the aver-

age nominal consumption of the appliances examined.

5.2.2 Methodology

In [141] we proposed a methodology to obtain the Fa using a convolutional neural

network architecture we called Temporal Pooling NILM (TP-NILM) an adaptation

of the network called PSPNet (Pyramid Scene Parsing Network) proposed by Zhao

et al. in [145] for the semantic segmentation of images.

The general scheme follows the classical approach to semantic image segmenta-

tion, where we have an encoder, which allows to increase the feature space of the

signal at the cost of a reduction in its temporal resolution, and a decoder module

that reconstructs an estimate of the activation state of the device at the same reso-

lution as the original signal. In addition to these, there is a module called Temporal
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Pooling that performs feature aggregation at different resolutions, generating a tem-

poral context, which spans long periods without completely losing resolution in the

signal description.

The network layout is shown in Figure 5.1.

Unlike other approaches presented in the literature, in this case the model tries

to recognize only the activation periods of the appliances under consideration and

does not try to reconstruct the detail of their absorption over time. The task is less

related to the characteristics of the individual appliance, so a model trained on a

few users can provide reasonable results even on a user, and on an appliance, that

does not enter the training set, but that retains absorption characteristics typical of

the appliance class to which it belongs.

The network weights are obtained by gradient descent optimization. The loss

function is a binary Cross-Entropy applied to each of the output channels that

measures the difference between the activations estimated by the network âi(t) and

the actual activations ai(i) for each device examined and for each instant of the

time period under consideration. The network was implemented using the PyTorch

library [146].

5.2.3 Chain 2 protocol

In 2019, the EU revised its energy policy framework through the Clean Energy

for All Europeans package, marking a significant step toward implementing the

Union’s energy strategy. The importance of smart metering in delivering energy

efficiency and empowering consumers by enabling their active participation in the

electricity market is reaffirmed, also through the coupling of smart meters with

consumer energy management systems. The directive states, among other things,

that smart meters must send information about consumption to end-users: historical

consumption and near real-time consumption [147].

The second generation Smart Meters distributed in Italy provide the possibility of

communication with a user device through the new channel called Chain 2 on power

line (PLC-C), compliant with standard [148]. Some works have already described the

potential of this technology and presented the communication properties between

the in-home device and the smart meter [143].

The transmission of data occurs both synchronously and asynchronously; these

types of transmission are used for communication between the smart meter and the
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Figure 5.1: Outline of the network architecture used

in-home device enabling the user to monitor consumption. In the first type the

power signal is sent every 15 minutes to the device, while in the second one the

last active power sample is sent to the device when fixed thresholds are exceeded.
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The operation of sample acquisition by the in-home device is described in detail in

standard [149].

In Figure 5.2 the signal of the power measurements at 1 min intervals is shown

together with the synchronous signal, sent every quarter of an hour, and with the

asynchronous signal, sent each time the power crosses a pre-defined thresholds, uni-

formly distributed with a constant step equal to 500 W for the example. The data

volume to be communicated is clearly lower with respect to the power measurements

at a constant sampling rate.

Figure 5.2: Chain 2 filtering on load signal with power thresholds at 500 W intervals.
Blue dots represent the load measurements with 1 min sampling rate, green dots are
the power measurements at the constant rate of 15 min, orange dots are the power
measurements sent to the user each time the power absorbed crosses a threshold, in
this case the thresholds are set to [500, 1000, ..., 3500].

5.3 Experimental setup

We apply the TP-NILM architecture to two reference datasets, the UK-DALE

dataset [150] and the REFIT dataset [151], to evaluate the accuracy in the dis-



62 CHAPTER 5. DL BASED NILM WITH LOW RESOLUTION DATA

aggregation of an always-on appliance, such as the refrigerator, and two household

appliances whose activation can be deferred, such as dishwasher and washing ma-

chine, which are therefore interesting in a perspective of energy management. Th

aggregate load for these dataset is available at a constant sampling rate. The time

series is filtered to simulated a Chain 2 signal. A time series with a constant sam-

pling rate of 1 min is then reconstructed from the filtered signal and use as the

input for the neural network. We then test the effectiveness of the disaggregation

for different values of the preset thresholds for the Chain 2 filter.

5.3.1 UK-DALE dataset

The UK-DALE dataset contains the aggregate and individual appliance signals from

5 different households in the United Kingdom. All aggregate loads were sampled at

a frequency of 1Hz, unlike the individual appliance signals where the frequency was

1/6Hz.

The duration of the recordings is not the same in all the houses in the dataset,

and the appliances in each house are also different. For this reason, after a careful

analysis of the dataset, it was decided to use only houses 1, 2 and 5 for the purpose

of the experiment being the only houses equipped with all the appliances considered.

5.3.2 REFIT dataset

Similarly to the previous case, the REFIT dataset contains the aggregate and indi-

vidual appliance electricity consumption of 20 homes in United Kingdom. In this

case the data is collected with a uniform frequency of 8 Hz for both aggregate and

individual appliance consumption.

The timeline is not the same for all the houses in the dataset, but the records

manage to cover a time span of two years. The richness of the data therefore allowed

a considered choice of houses to be used for the experiments proposed in this work.

A total of 15 houses were used, but unlike the previous case they were divided among

the appliances of interest. The latter are however the same as those chosen for the

UK-DALE case, i.e. fridge, dishwasher and washing machine.
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5.3.3 Chain 2 filtering

The power measurements for the Chain 2 signal useful for disaggregation purposes

are of two types: an instantaneous load signal emitted at a constant rate every 15

min, and a signal in which the value of instantaneous power is transmitted whenever

the power itself crosses fixed power values. For the second signal the possible values

of the instantaneous load are divided into bins of fixed width (300 W is the default

setting for the smart meter). Every time the instantaneous consumption belongs to

a different bin than the last value communicated, the measurement of instantaneous

power is transmitted.

Algorithm 1 Calculate Chain 2 signal

Input: aggregate, threshold
Output: filtered aggregate
filtered aggregate=aggregate
l=0
for i=0:length(filtered aggregate) do
if ⌊filtered aggregate[i] ÷ threshold⌋ ̸= l then
l= ⌊filtered aggregate[i] ÷ threshold⌋

else
filtered aggregate[i]=NaN

end if
end for
filtered aggregate[every 15 min]=aggregate[every 15 min]

The aggregate consumption signal for households is filtered to reproduce a Chain

2 type signal according to the Algorithm 1.

The threshold value, i.e., bin width, is a smart meter parameter configurable by

the utility, and clearly influences the amount of data transmitted and the richness

of the signal useful for a disaggregation algorithm.

Figures 5.3 and 5.4 show the data volume of aggregated, filtered and unfiltered,

signals from some houses used in this work in the UK-DALE and REFIT case

respectively. It is evident from the figures that in the cases examined, the threshold

value has a limited influence on the overall volume of data, especially when compared

to the amount of unfiltered signal data.
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Figure 5.3: Number of samples for different threshold values of the Chain 2 filter
in UK-DALE dataset. A logaritmic scale was used and the percentages represent
the increase in the number of samples compared to the number obtained with the
default threshold value.

Figure 5.4: Number of samples for different threshold values of the Chain 2 filter
in REFIT dataset. A logaritmic scale was used and the percentages represent the
increase in the number of samples compared to the number obtained with the default
threshold value.

5.3.4 Preprocessing

Before training and using the neural network, the data from the two datasets were

subjected to a pre-processing phase. As a first step, the power values of each appli-

ance were extracted and sub-sampled at a frequency of 1/60 Hz, using the average

power value in each time interval considered. Consequently, the aggregated signal

was also resampled with the same approach and using the same frequency value.
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The aggregated signal was then filtered to generate a Chain 2 signal, and the

output of the filtering was resampled over a period of 1 minute, propagating the last

valid observation forward to the next valid one, in order to make it homogeneous

and usable with the network.

The activation status of the individual appliances was then calulated with a

threshold method, similarly to [33], since it appears to provide good results in terms

of accuracy for both datasets [152]: each appliance is considered to be in operation

when a certain threshold is exceeded for a fixed time interval, the Table 5.1 describes

the thresholds and time intervals chosen, for UK-DALE dataset, taken from [33] and

Table 5.2 the values for REFIT dataset as proposed in [152].

Table 5.1: Parameters used to derive the activation status of household appliances
from measurements of the absorbed power for UK-DALE

Fridge Dishwasher Washing
Machine

Max. power (W) 300 2500 2500
Power threshold (W) 50 10 20
OFF duration (min) 0 3 30
ON duration (min) 1 30 30

Table 5.2: Parameters used to derive the activation status of household appliances
from measurements of the absorbed power for REFIT

Fridge Dishwasher Washing
Machine

Max. power (W) 300 2500 2500
Power threshold (W) 20 30 20
OFF duration (min) 1 27 13
ON duration (min) 10 23 27

To facilitate convergence and lower the computational cost, the data were nor-

malised by dividing each power value by a fixed value of 2000W. In addition, the

time sequence of values was divided into windows of length 512 minutes, used as

input to the neural network, which provides an output of 8 hours (480 minutes).

The 32 minutes of difference between input and output constitute a leading and a

trailing edge of 16 minutes each, due to the convolution filters for which no padding

was applied.
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Finally, in order for the input values to have zero mean, the average power value

in each considered interval is subtracted from the signal values.

5.3.5 Training and testing

The techniques described so far have the main goal of predicting the activation status

of three fixed appliances, fridge, washing machine and dishwasher, by knowing the

aggregate signal of a household. For this purpose the Convolutional Neural Network

shown in Figure 5.1 was trained.

To evaluate the effectiveness of the proposed methodology, the network was

tested on the two datasets described above, UK-DALE and REFIT.

In both cases, the network was tested on houses not contained in the training set.

In this way, it is possible to assess the generalisation capacity of the model presented,

i.e. the ability of the network to disaggregate the consumption of appliances in house

that do not belong to the training set and for which the time series of the appliance

consumption are used for the sole purpose of performance assessment.

Regarding the UK-DALE dataset, the network was trained using the training

portion of House 1 and House 5 and it was tested using the entire time series of

House 2. Table 5.3 summarizes which portions of the dataset were used for the

training, validation and testing phases.

Table 5.3: Training, Validation and Testing dataset composition for the UK-DALE
dataset case.

Training Validation Testing
House 1 80 % 20 % -
House 2 - - 100 %
House 5 80 % 20 % -

Concerning the REFIT dataset, in accordance with [135], it was decided to use

different houses for each appliance in the different phases of training, validation and

testing. Table 5.4 summarizes which houses were chosen.

Note that during the training phase the input signal was not filtered with the

Chain 2 protocol.

In both cases the Adam optimisation algorithm was used to optimise the param-

eters of the neural network with a gradient descent approach, the learning rate was

set at 5 · 10−5 and the batch size at 32. In order to avoid the overfitting an early
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Table 5.4: Training, Validation and Testing dataset composition for the REFIT
dataset case.

Training (80%) and Validation (20%) Testing
Fridge 2, 5, 9, 12 15
Dishwasher 1, 3, 5, 6, 7, 9, 10, 11, 13, 15, 16 18, 20 2
Washing Machine 1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21 6

stopping strategy was adopted. The parameters described were not the only ones

used, but they were the ones that gave good results in terms of convergence times

and accuracy obtained.

5.3.6 Postprocessing

The output of the network is an array of values that varies in the range (0, 1) and

represents the probability that the appliance is turned on. The appliance is rated

as switched on if the probability exceeds an arbitrated threshold which has been

set at 0.5. An estimate of the power consumption related to the appliance is also

calculated, it is a constant value equal to the average power consumption of each

appliance multiplied by the duration of its operation.

5.3.7 Performance evaluation

The performance of the network was evaluated both for identifying the activation

status of each device and for estimating power consumption. Several metrics were

used for this purpose.

Let ai(t) be the activation state of the i-th appliance at time t, which is equal to

1 if the appliance is on or 0 if it is off, and let yi(t) the value of the power consumed

at the same time. Then we can denote with âi(t) and ŷi(t) the model predictions of

the quantities described above. The metrics for evaluating the model’s predictions

refer to a time series tk with k ∈ [0, Ns).

We can also define by True Positive (TP) the number of times the model correctly

predicts the activation state of an appliance when it is switched on, by True Negative

(TN) the number of times the appliance is correctly evaluated as switched off. While

we can define with False Positive (FP) the number of instances in which the appliance

is evaluated as on when it is off and with False Negative (FN), on the contrary, the

number of times it is evaluated as off despite being on.
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Then we can define the following metrics.

Accuracy =
TP + TN

TP + TN + FP + FN
(5.5)

Precision =
TP

TP + FP
(5.6)

Recall =
TP

TP + FN
(5.7)

F1 = 2
Precision×Recall

Precision+Recall
(5.8)

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(5.9)

As can be seen, the Equation 5.5 of Accuracy represents the ratio of the num-

ber of correctly evaluated instances to the total number of predicted instances. On

the other hand Precision, in Equation 5.6, is defined as the ratio between TP and

the total number of times the appliance is evaluated to be switched on, while Re-

call, as described in Equation 5.7, defines the ratio between the number of times

the appliance is rated in operation and the total number of times it is actually in

operation.

The F1 measurement defined in Equation 5.8 is the weighted average of Precision

and Recall, varying in a range between [0, 1] and high values of this score indicate a

better ability to identify the state of the appliance. Finally the Matthews Correlation

Coefficient is defined in Equation 5.9, whose values are in the range [−1, 1]. A value

equal to 1 denotes an exact classification, 0 denotes a random prediction while a

value equal to −1 indicates a totally wrong classification.

Note that the metrics defined so far have been used to assess performance in terms

of predicting the activation state of an appliance, thus relating to a classification

problem. Regarding the estimation of the energy consumed, the accuracy of the

proposed methodology has been measured in terms of Mean Absolute Error (MAE)

and Signal Aggregate Error (SAE), defined by the equations below.

MAEi =
1

Ns

∑
j

ŷi(tj)− yi(tj) (5.10)
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SAEi =

∑
j ŷi(tj)−

∑
j yi(tj)∑

j yi(tj)
(5.11)

MAE, defined in Equation 5.10, measures how much on average the estimated power

deviates from the measured power at each instant, while SAE, defined in Equation

5.11, estimates the relative error of the predicted energy over the entire time interval

considered.

The methodology we propose estimates instantaneous consumption by assuming

a constant value during the appliance’s activation cycle; this is a good approximation

in the case of appliances with on/off operation such as the fridge, while it will result

in higher values for MAE in the case of appliances with variable absorption during

their activation, such as the dishwasher and washing machine. The MAE metric is of

little significance to us; we report it to allow easier comparison with other methods

proposed in the literature.

5.4 Results

The performance of the TP-NILM network was examined for the two UK-DALE

and REFIT datasets, evaluating its accuracy both on the original signal and on the

one filtered with the Chain 2 protocol with different threshold values. The results

for the three appliances considered for the UK-DALE dataset are shown in Table

5.5, Table 5.6 reports the performance obtained on the REFIT dataset.

In both datasets it is possible to see that the accuracy depends on the value of

the threshold chosen for filtering. The maximum levels of accuracy are reached with

the unfiltered signal, as expected, however filtering according to the Chain 2 scheme

still allows an effective disaggregation as long as the threshold values are not too

high.

The results show that the proposed approach enables to obtain a very accurate

disaggregation of the consumption of the appliances considered for both datasets,

even using a low frequency sampling and a Chain 2 type signal. The threshold, set

for the event based component of the signal, is also a threshold for the appliances

that can be disaggregated, an appliance that has a power consumption, when turned

on, lower than or close to the threshold value cannot be disaggregated, because the

consumption signal generated by it is filtered in the processing of the Chain 2 signal.
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In fact, it can be seen that the accuracy in the disaggregation of the fridge, falls

for threshold values higher than 50W, since the absorption of the same, when the

compressor is active, is slightly higher than 100W, typically. For the dishwasher, in

both datasets, maximum accuracy can be obtained for threshold values up to 300W.

For the washing machine, in both datasets, the maximum tolerable threshold is

100W; a threshold of 300W results in a significant deterioration of the performance

of the proposed algorithm. Among the various metrics proposed we note the good

values for the estimate of the activation state, the MAE has instead modest values,

as it was deliberately chosen not to have an exact estimate of the instantaneous

absorption as this information has little practical relevance. Much more important

is the estimate of the total energy absorbed, whose accuracy is measured by the

SAE has excellent values for the three appliances for thresholds up to 100W.

Therefore, the Chain 2 signal can be directly used for load disaggregation as

long as the chosen threshold is commensurate with the power level of the house-

hold appliance, and disaggregation can then be realized directly from smart meter

measurements without the need to install additional measurement hardware.
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Figure 5.5: Example of load disaggregation for the UK-DALE dataset case. The
graphs show the aggregate load and the load of each appliance as solid lines while
the disaggregated estimate of the loads is represented by a shaded area. The first
plot represents the estimate for the original (unfiltered) input signal while the other
three are related to the threshold values chosen to perform the experiments.

Figure 5.5 shows an example application of the network for the UK-DALE case,

the portion of the load signal was chosen so that the three appliances examined were

simultaneously activated. The figures show the aggregate signals and actual con-

sumption of the appliances superimposed on the estimate of activations and average

consumption obtained with the proposed algorithm. As said, the algorithm allows

to obtain a direct estimate of the activation status starting from the aggregate signal

only, eventually filtered with the Chain 2 protocol. The estimate of the absorbed

power is obtained, as said, considering a constant average power for the activation

period, as is also evident from the graphical representation. In this example we can

see the degradation of the disaggregation estimate for the refrigerator already for

low thresholds, the good accuracy in the disaggregation of the dishwasher, indepen-

dent of the threshold value adopted, and the sudden degradation in the estimation

of the absorption of the washing machine for thresholds above 100W.
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Tables 5.5 and 5.6 also report the results obtained from the most recent works

in the literature that have examined the two datasets. This is not a fair compari-

son, as all the cited methods use the signal at the maximum sampling rate, which

would not be possible to obtain from a smart meter, and therefore require additional

measurement hardware for their application. Nevertheless, the performance of our

proposed architecture is aligned with the performances of the best results in the

recent literature.

In the comparison with the literature, our architecture obtains the worst perfor-

mance according to the F1 metric in the case of the refrigerator, for both datasets.

The reason is related precisely to the sampling of the signal, which we recall, even

in the unfiltered case is limited to a rate of 1 min in our case, this signal does not

allow the network to effectively detect the initial transient due to the compressor

switching on. However, it should be noted that the performanche in terms of SAE

for the refrigerator are nonetheless excellent. The value of F1 is lower than the

best results in the literature also in the case of the washing machine in the REFIT

dataset, which is compensated by the excellent performance in terms of SAE in this

case as well.

5.5 Discussion

The results presented in the previous Section show that with a reasonable choice

of filter parameters an accurate disaggregation is achieved with a significant reduc-

tion in the volume of data transmitted, thus realizing an effectively non-intrusive

consumption monitoring, feasible both on user and utility side. These results also

highlight how rich in information the electrical signal of consumption can be, and

emphasise the need for special attention in the protection of sensitive information

that can be derived from it. The limitations we see are typical of supervised ap-

proaches, which are highly dependent on the available data. The acquisition of

labeled datasets is certainly expensive, but in principle the algorithm proves to be

valid, and it is possible to think of its scalability when more complete datasets were

available to facilitate the training of models.
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Table 5.5: TP-NILM performances on House 2 of the UK-DALE dataset. NF (No
Filter) represents network performances using the original aggregate signal.

Prec. Rec. Acc. F1 MCC MAE SAE

Fridge

Krystalakos et al. [34] GRU 0.46 0.75 0.60 0.57 - 51 0.26
Krystalakos et al. [34] s2p 0.42 0.74 0.54 0.53 - 51 0.29
Yue et al. [139] - - 0.81 0.77 - 25.49 -
Rafiq et al. [153] - - - 0.87 19.61 0.467
Zhou et al. [154] 0.75 0.73 - 0.74 - 39.33 -
Song et al. [135] - - - 0.94 - 22.35 0.12
Piccialli et al. [140] - - - 0.87 - 13.24 -
Puente et al. [155] 0.97 0.96 - 0.97 - - -

TP-NILM No filter 0.87 0.89 0.90 0.89 0.79 17.35 −0.05
TP-NILM T=50W 0.87 0.83 0.89 0.85 0.76 18.36 −0.05
TP-NILM T=100W 0.70 0.70 0.77 0.70 0.52 27.67 0.01
TP-NILM T=150W 0.78 0.76 0.83 0.77 0.64 23.07 −0.03
TP-NILM T=200W. 0.67 0.68 0.75 0.67 0.47 29.51 0.02
TP-NILM T=250W 0.67 0.66 0.75 0.67 0.46 29.68 −0.01
TP-NILM T=300W 0.64 0.63 0.73 0.63 0.41 31.60 −0.01

Dishwasher

Krystalakos et al. [34] GRU 0.62 0.42 0.97 0.50 - 24 0.07
Krystalakos et al. [34] s2p 0.47 0.43 0.96 0.45 - 21 0.07
Yue et al. [139] - - 0.97 0.67 - 16.18 -
Rafiq et al. [153] - - - 0.81 15.27 0.323
Zhou et al. [154] 0.88 0.86 - 0.87 - 118.1 -
Song et al. [135] - - - 0.87 - 20.95 0.69
Piccialli et al. [140] - - - 0.72 - 7.26 -
Puente et al. [155] 0.73 0.90 - 0.81 - - -

TP-NILM No filter 0.82 0.85 0.99 0.83 0.83 30.95 0.04
TP-NILM T=50W 0.81 0.87 0.99 0.84 0.84 30.89 0.07
TP-NILM T=100W 0.81 0.85 0.99 0.83 0.82 31.08 0.05
TP-NILM T=150W 0.82 0.86 0.99 0.84 0.83 30.82 0.05
TP-NILM T=200W 0.81 0.85 0.99 0.83 0.82 30.56 0.05
TP-NILM T=250W 0.79 0.87 0.99 0.83 0.83 31.63 0.10
TP-NILM T=300W 0.80 0.82 0.99 0.81 0.80 31.45 0.02

Washing machine

Krystalakos et al. [34] GRU 0.22 0.54 0.96 0.31 - 30 0.58
Krystalakos et al. [34] s2p 0.26 0.55 0.97 0.35 - 17 0.28
Yue et al. [139] - - 0.97 0.33 - 6.98 -
Rafiq et al. [153] - - - 0.77 14.42 0.512
Zhou et al. [154] 0.74 0.99 - 0.85 - 55.90 -
Song et al. [135] - - - 0.88 - 12.27 0.26
Piccialli et al. [140] - - - 0.69 - 6.57 -
Puente et al. [155] 0.43 0.40 - 0.41 - - -

TP-NILM No filter 0.76 0.92 0.99 0.83 0.84 9.57 0.21
TP-NILM T=50W 0.78 0.87 0.99 0.82 0.82 9.24 0.12
TP-NILM T=100W 0.82 0.81 0.99 0.82 0.82 8.64 −0.01
TP-NILM T=150W 0.89 0.65 0.99 0.75 0.75 7.88 −0.28
TP-NILM T=200W 0.88 0.53 0.99 0.66 0.68 7.89 −0.40
TP-NILM T=250W 0.91 0.41 0.99 0.56 0.61 7.43 −0.55
TP-NILM T=300W 0.92 0.20 0.99 0.32 0.43 7.15 −0.78
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Table 5.6: TP-NILM performances on House 15 (Fridge case), House 2 (Dishwasher
case) and House 6 (Washing Machine case) of the REFIT dataset.

Prec. Rec. Acc. F1 MCC MAE SAE

Fridge

Song et al. [135] - - - 0.95 - 20.15 0.13
Pan et al. [156] - - - - - 16.77 0.10
Murray et al. [132] CNN - - 0.77 0.93 - 8.56 -
Murray et al. [132] GRU - - 0.64 0.85 - 13.30 -
D’Incecco et al. [133] CNN - - - - - 20.02 0.33

TP-NILM No filter 0.81 0.79 0.89 0.80 0.73 9.37 −0.02
TP-NILM T=50W 0.69 0.71 0.83 0.70 0.58 14.05 0.03
TP-NILM T=100W 0.61 0.64 0.78 0.62 0.48 17.33 0.06
TP-NILM T=150W 0.61 0.64 0.79 0.63 0.48 17.21 0.05
TP-NILM T=200W. 0.59 0.63 0.78 0.61 0.45 18.15 0.07
TP-NILM T=250W 0.59 0.63 0.78 0.61 0.45 18.06 0.06
TP-NILM T=300W 0.57 0.60 0.76 0.58 0.42 19.08 0.06

Dishwasher

Prec. Rec. Acc. F1 MCC MAE SAE

Jiang et al. [134] - - - 0.60 - 17.66 -
Cimen et al. [136] - - - 0.78 - 13.35 -
Song et al. [135] - - - 0.88 - 12.34 0.60
Pan et al. [156] - - - - - 4.80 0.17
Murray et al. [132] CNN - - 0.83 0.82 - 82.74 -
Murray et al. [132] GRU - - 0.85 0.82 - 73.53 -
D’Incecco et al. [133] CNN - - - - - 12.26 0.26

TP-NILM No filter 0.79 0.86 0.98 0.82 0.81 61.91 0.09
TP-NILM T=50W 0.79 0.86 0.98 0.82 0.81 62.18 0.09
TP-NILM T=100W 0.78 0.86 0.98 0.82 0.81 62.39 0.10
TP-NILM T=150W 0.78 0.86 0.98 0.82 0.81 62.70 0.11
TP-NILM T=200W 0.78 0.86 0.98 0.82 0.81 62.97 0.11
TP-NILM T=250W 0.78 0.86 0.98 0.82 0.81 62.98 0.12
TP-NILM T=300W 0.77 0.87 0.98 0.82 0.80 63.38 0.12

Washing machine

Prec. Rec. Acc. F1 MCC MAE SAE

Jiang et al. [134] - - - 0.75 - 3.91 -
Cimen et al. [136] - - - 0.94 - 8.70 -
Song et al. [135] - - - 0.89 - 8.88 0.22
Pan et al. [156] - - - - - 5.88 0.13
Murray et al. [132] CNN - - 0.72 0.79 - 71.99 -
Murray et al. [132] GRU - - 0.69 0.86 - 79.33 -
D’Incecco et al. [133] CNN - - - - - 16.85 2.61

TP-NILM No filter 0.79 0.89 0.99 0.84 0.84 8.54 0.13
TP-NILM T=50W 0.87 0.89 0.99 0.88 0.87 7.96 0.03
TP-NILM T=100W 0.90 0.87 0.99 0.89 0.88 7.66 −0.03
TP-NILM T=150W 0.91 0.79 0.99 0.85 0.85 7.38 −0.13
TP-NILM T=200W 0.92 0.66 0.99 0.77 0.78 6.99 −0.28
TP-NILM T=250W 0.93 0.54 0.99 0.69 0.71 6.74 −0.42
TP-NILM T=300W 0.95 0.40 0.99 0.57 0.62 6.36 −0.58



Chapter 6

Appliance Recognition with

combined single- and multi-label

approaches

The problem of appliance recognition is one of the most relevant issues in the

field of Non-Intrusive-Load-Monitoring; its importance has led, in recent years, to

the development of innovative techniques to try to solve it. The use of methods such

as V-I trajectory, Fryze Theory Decomposition and Weighted Recurrence Graph

have proved effective in recognising both single (Single Label) and multiple active

appliances (Multi Label). This chapter presents a new way of approaching the prob-

lem by unifying Single Label and Multi Label learning paradigms. The proposed

approach exploits feature extraction techniques which allow the detection of both

activated/deactivated appliances and all active appliances given aggregate current

signal. We evaluate the proposed approach on a PLAID dataset. The obtained re-

sults indicate combining single-label and mult-label learning strategies for appliance

recognition provides improved classification results with an F-score of 0.91.

This chapter is published as M. M. Manca, A. Faustine, L. Pereira ”Appliance Recog-
nition with Combined Single- and Multi-label Approaches”, in Proceedings of the 9th ACM
International Conference on Systems for Energy-Efficient Buildings, Cities, and Transporta-
tion (BuildSys ’22). Association for Computing Machinery, New York, NY, USA, 388–392.
https://doi.org/10.1145/3563357.3566153



76 CHAPTER 6. APP-R WITH COMBINED SINGLE- AND MULTI-LABEL APPROACHES

6.1 Introduction

The applicance recognition problem, described in the Introduction of this thesis,

can be approached from two perspectives: in the Single-Label approach, the goal

is to recognize appliances using the individual device’s on/off signals; on the other

hand, in the Multi-Label approach, the aggregate signal is used to understand which

devices are activated and which are not. [37]-[38]-[39]

A major challenge is to solve the two problems simultaneously; many works offer

interesting solutions by addressing these with innovative feature extraction and clas-

sification techniques, but in a separate way. It has been shown how using Weighted

Recurrence Graphs can help increase the performance of classification algorithms

about appliance recognition [41], as well as using pre-processing techniques based

on Fryze theory decomposition [40].

In order to provide a more accurate classification, deep neural networks are

increasingly being used in the NILM [33]-[141]; their effectiveness is, however,

undoubtedly constrained by the availability of rich data. For this reason, high-

frequency signal data are often used, allowing for more efficient training of this

network. [157]-[158]

The main focus of this chapter is to open up a new challenge, namely to tackle

the two problems mentioned above using a single algorithm capable of combining the

two tasks in such a way that the information sharing of the two models can increase

performance. So far, a combined algorithm has been created and tested that would

homogeneously share information from the two models. Still, it would be of great

interest to create one that would allow the exchange of information between the two

in an optimized manner. The proposed method was tested on the publicly available

Plug-Load Appliance Identification Dataset (PLAID) [159].

6.2 Methodology

The proposed work aims to detect which appliance m has been switched on or off

and simultaneously estimate the state sm(t) of all M appliances from the aggregate

current and voltage signal x(t), for m = 1, . . . ,M . The aggregate signal can be
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described by 6.1:

x(t) =
M∑

m=1

ym(t) · sm(t) + σ(t) (6.1)

where ym(t) represents the individual appliance measurements and σ(·) the noise

contribution.

6.2.1 Problem formulation

The problem can be formulated as follows: let A ∈ RT×d1 be the set of the

input features obtained from the measurements of the switched-on or switched-

off appliance, computed from the aggregate signal like the difference between

the before and after the event; let X ∈ RT×d2 be the aggregated signal val-

ues after an event; M = {1, . . . ,M} the set of indices representing each appli-

ance; Y ∈ RT×M the set of each appliance measurement composing the aggre-

gate signal and s(t) = [s1(t), . . . , sM(t)] the vector containing the state of each

appliance at time t ∈ {1, . . . , T}, where sj(t) ∈ {0, 1}. Then, given a dataset

D = {a(t),m,x(t), s(t)|a(t) ∈ A,m ∈ M,x(t) ∈ X, t = 1, . . . , T}, the aim is to

train a classifier that can predict at the same time t which appliance m is activated

and the state vector s(t) using a(t), x(t). It is important to note that whenever

at instant t∗ one of the m devices is switched on or off, the current and voltage

consumption are added or subtracted to the aggregate consumption x(t∗). Hence,

this work assumes that appropriate information sharing during the training phase

of both models will allow each task to be solved more efficiently. We will refer to

the first task as Single Label problem and the second one as Multi Label problem.

6.2.2 Pre-processing and feature extraction

In this work, features derived from the current and the voltage of switching appli-

ances on/off were used in the Single Label case; features derived from the aggregate

current and aggregate voltage were used in the Multi Label case. In both cases,

these are high-frequency measurements and one-cycle steady-state current i(t) and

voltage v(t) signals were used, extracted as in [41], [160].

With the application of Fryze Theory Decomposition, which has been shown to

improve performances because it can provide a distinctive feature for classification

[161], these features are subsequently used to calculate the decomposed current
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features, i.e. given the signals i(t) and v(t), it is possible to decompose i(t) into two

components via 6.2:

i(t) = ia(t) + if (t) (6.2)

where ia(t) and if (t) represent respectively the active and non-active components of

the current.

Once this is done, the Piece-wise Aggregate Approximation is used to reduce the

dimensionality of the feature to a predetermined w, set to 50 in our work.

To the current signals thus obtained the Euclidian distance function is then

applied:

djk = ∥i(t)j − i(t)k∥2

In this way, the relationship between active and non-active current is measured.

These distances can also be interpreted as the entries of the distance similarity

matrix D ∈ Rw,w for the points i(t)1, . . . , i(t)w:

D =


0 d12 · · · d1w

d21 0 · · · d2w
...

...
. . .

...

dw1 dw2 · · · 0


Finally, this matrix is used to calculate the Weighted Recurrence Graph matrix

WRG = [rjk] with:

rjk =

{
δ if τ > δ

τ otherwise

where τ =
⌊
djk
ϵ

⌋
and the parameters δ and ϵ are chosen, in our case, both equal to

10.

This matrix is then used as input for the classifier, which in our case is a Con-

volutional Neural Network. The described algorithm is summarized in Figure 6.1.

6.2.3 Combined model

The main part of this work is to give an idea of how the two problems can be

approached from a multi-task perspective using a single algorithm. The idea was,

therefore, to train two different classifiers, one for the single-label case and one for
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the multi-label case, which would share the information of the respective features

in the learning phase. We propose two CNNs with the same structure for both

problems, the only difference being the output size. Each classifier consist of four-

stage CNN layer each with 16, 32, 64 and 128 feature maps, 1× 1 strides and each

layer uses a 3× 3 filter size. The four layers are followed by a batch normalization

layer and a Relu activation function, and the last layer is followed by an adaptive

average pooling layer with an output size 1 × 1. The output layer consists of two

fully connected layers with hidden size, 1024 and M , in the Single Label case, or

2M , in the Multi Label case, where M is the number of available appliances. For

both cases, the final predictions are obtained by applying the logarithmic softmax.

In the first case, the algorithm’s output can be interpreted as a vector whose

components represent each appliance’s logarithm of the probability of activation

or deactivation. Similarly, in the second case, the output represents two vectors

containing the logarithm of the probability of each device being switched on or off.

To allow the parameters of the two models to share information during the

learning phase, backpropagation was used to optimise a combined objective function

defined by the equation:

Lcomb(m, m̂, s, ŝ) = Lsl(m, m̂) + Lml(s, ŝ) (6.3)

where Lsl, Lml represent the loss function in the Single-Label and in the Multi-Label

case respectively. For both cases, the Negative Log-Likelihood Loss function is used

[162].

The mini batch Stochastic Gradient Descent with a momentum of 0.9 and lerning

rate of 0.001 is used to train the single-label model and an Adam optimizer with the

same learning rate and betas of (0.9, 0.98) is used to train the multi-label model.

The combined model is then trained for 300 iterations using a batch size equal to

16 and to avoid the over-fitting we used an early-stopping with patience where the

training phase is stopped once the validation performances don’t change after 100

iterations.

The use of a combined loss to allow simultaneous training between the two models

can be improved by introducing some penalty parameters to be added during the

learning phase. Although the results of our approach, described in the Section 6.4,

are interesting, the purpose of this work is to propose a new approach to the problem
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and offer an idea for an improvable solution.

6.3 Evaluation

6.3.1 Dataset

The proposed algorithm was tested on the PLAID dataset. This public dataset con-

tains records, collected at high frequency (30kHz), measuring the individual current

and voltage of 17 devices and the aggregate current and voltage of the combination

of 13 of these. The data was collected at 65 locations in Pittsburgh, Pennsylvania

(USA). In order to test our algorithm, 1046 activation and deactivation current and

voltage measurements were extracted from 12 different individual appliances. This

set of 2092 samples was used for the single-label part of our model. Each of these

samples corresponds to the aggregated current and voltage measurements; when one

or more devices are switched on or off consecutively, resulting in 2092 aggregated

current and voltage samples used for the multi-label part of the model. The Figure

6.2 shows an example of the signals used, namely, a Fan current activation cycle,

a Vacuum current activation cycle and the two appliances aggregated current cycle

are illustrated.

The Figure 6.3 summarises the distribution of extracted appliances and the num-

ber of active appliances in the 2092 samples.

6.3.2 Performance metrics

In order to evaluate the performance of our model, several metrics were used. The

four main metrics used are Recall, Precision, and F1 score [163, 164]. These metrics

were calculated to monitor the performance of the individual appliances in the two

models to understand where one model could perform better than the other and

study a way to combine the two strategies

Recallmacro =
1

M

M∑
i=1

Recall(i) (6.4)

Precisionmacro =
1

M

M∑
i=1

Precision(i) (6.5)
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F1macro =
1

M

M∑
i=1

F1(i) (6.6)

where Recall(i), Precision(i), F1(i) are the metrics computed for the i-th appliance

and M is the number of total appliances.

6.3.3 Training and testing

Our approach is benchmarked using the multi-label stratified 3-fold Cross Validation;

in this way, in addition, to avoid overfitting, the label percentages in each fold are

fixed.

Although the classifiers’ training phase takes place simultaneously and optimises

the same loss function, it should be emphasised that the single-label classifier is

trained using only the features extracted from the current and voltage signals of the

appliance switched on or off. In contrast, the multi-label classifier uses the features

from the aggregated signals.

During the test phase, predictions are computed considering the maximum loga-

rithmic softmax output, and 30% of the data for each fold is used. The predictions

of each fold are then merged into a single sequence to assess average performances.

6.4 Results

The Figure 6.4 represents the performances for each appliance of the two simultane-

ously trained models, and it contains the metrics described in the previous Section.

As can be seen by looking at the values of the metrics, for some appliances, there

is a difference in performance between the two tasks (for instance, Fan or Blender);

our idea is that by properly combining the two classification strategies the model

with the better performance can help increase the performance of the other.

Although not comparable, the two classifiers have similar good characteristics

from the point of view of general performance. The Table 6.1 summarises the general

performance.

A miss-classification error analysis was also carried out to understand whether

the switching on or off of some appliance could cause errors not common to both
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Table 6.1: Generalisation performances between Single Label model and Multi Label
model on the PLAID dataset.

Single Label Model Multi Label Model

Recallmacro 0.913 0.889
Precisionmacro 0.913 0.944
F1macro 0.910 0.915

models and, in this way, to think about how the model that makes mistakes could

learn from the model that does not make mistakes.

Figure 6.5 illustrates the number of these errors, they are divided into errors

committed only by one model and common errors; more precisely, errors committed

only by the single-label model but not by the multi-label model (Only SingleLa-

bel Errors), those committed by the multi-label model but not by the single-label

model (Only MultiLabel Errors), and those committed by both algorithms (Common

Errors) are counted.

It can be seen from the graph that in the case of the Laptop, for example, the

multi-label model makes many more errors than the single-label model; appropriate

information sharing between the two models could lead to a reduction in the number

of errors.

The confusion matrix related to the predictions of the single-label model, illus-

trated in Figure 6.6, points out, for example, that a good number of errors made

by the classifier are related to the Air Conditioner and also that most of these are

related to deactivation events. In this case, the multi-label model could help the

single-label classification.

6.5 Discussion

In this chapter, we proposed an approach to address two types of appliance recog-

nition problems simultaneously; single and multi-label appliance recognition. The

work aims to motivate the search for a model capable of sharing information between

two classifiers under training to improve appliance recognition.

Our approach, albeit in a primitive form, was tested on the public dataset PLAID

to prove its effectiveness. In fact, from the results obtained, it seems that the

proposed method can offer an excellent basis to address and solve the problem. In



6.5. DISCUSSION 83

addition, we think the proposed approach could also be used to improve the event

detection algorithm, which will likely pave the way toward end-to-end NILM.
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Figure 6.1: Block diagram of the proposed algorithm. The dotted block shows the
training phase of the two classifiers, in which they learn by using the same combined
loss function.
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Figure 6.2: Extracted activation currents for two different events and the extracted
aggregate current for these two events.

Figure 6.3: Appliances distribution on the extracted 2092 events (on the left) and
the active appliances distribution (on the right).
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Figure 6.4: Per-appliance F1 score, Recall and Precision on the PLAID dataset.
Single Label (left), Multi Label (right).
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Figure 6.5: Number of incorrect predictions (during the testing phase) divided into
errors committed by the Single Label model only, the Multi Label model only and
those committed by both models (Common Errors).
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Figure 6.6: Confusion matrices of Single Label model predictions. On the top only
the predictions for activation events are considered, on the bottom only the predic-
tions for deactivation events.
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Conclusion

Recent advances in mobile sensor technology have opened up growing opportunities

for HAR applications in a variety of fields, from personal wellness to health mon-

itoring. However, as data collection becomes easier and easier, fully exploiting the

available data to build reliable models for activity recognition remains challenging.

Further, when dealing with wearable devices, the issues of limited resources and

energy consumption cannot be neglected, posing additional requirements in terms

of efficiency of the induced models. In such a perspective, feature selection may

have an important role since it can significantly reduce the data dimensionality by

removing irrelevant and noisy features.

In the Chapter 3, we have explored the potential of feature selection in the HAR

field, leveraging five public mobile sensor datasets with heterogeneous characteristics

and relying on a methodological framework that considers both the predictive power

and the stability of the selected features subsets (i.e., their robustness to perturba-

tions in the input data). Ten different selection methods have been comparatively

evaluated, revealing the suitability of univariate ranking approaches, such as Chi

Squared and Information Gain, as well as of some multivariate approaches, such

as ReliefF, which exhibit a quite good trade-off between recognition performance

and selection stability. Encompassing different levels of dimensionality reduction,

our analysis has shown that the original number of features can be reduced to a

very large extent in all the considered benchmarks, without any worsening of per-

formance.

Such a large comparative study gives evidence of the potential benefits of sys-

tematically exploiting feature selection when inducing HAR models, also providing
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methodological insights into how to evaluate the robustness of the selection outcome

and choose the optimal level of dimensionality reduction. This line of research is

worthy of further investigation, given the lack of such kind of comparative studies

in this field.

As future work, our study will be enlarged to better investigate the extent to

which the behavior and the stability pattern of a given selection algorithm may

depend on the underlying feature extraction strategy (i.e., the type and number of

features extracted for each sensor). Furthermore, the ranking-based selection frame-

work here adopted will be compared with different and more sophisticated method-

ological approaches, including hybrid techniques that exploit different heuristics at

different stages of the selection process and ensemble techniques that suitably com-

bine the outcome of different selectors.

In the Chapter 4, we have presented a preliminary context-aware system for en-

ergy consumption forecasting in smart homes. Our system acquires context data

from heterogeneous smart homes sensors. Those data are processed by artificial

intelligence algorithms to recognize current activities, actions, and tasks. We col-

lect the raw and inferred data using a sliding window approach, and we extract

feature vectors including power consumption information. Those data are shared in

anonymous form to train machine learning algorithms, which are used for energy

forecasting tasks. An experimental evaluation with real world data shows that our

approach is promising.

The work presented can be extended and improved in several directions. Feature

selection methods could be applied to reduce overfitting and reduce the computa-

tional cost of our methods. Activity forecasting methods could be introduced to

improve the system accuracy. Experiments with long-term observations in different

smart homes, as well as comparison with other approaches, should be performed to

better assess the effectiveness of our system.

The contribution presented in Chapter 5 addressed the disaggregation of the

loads of some household appliances of interest, starting from the signal that is di-

rectly provided by the second generation smart meters deployed in Italy, without the

need of additional hardware for the measurement of the aggregated load, therefore

with a fully non-intrusive procedure. We applied a deep learning methodology based

on convolutional neural networks to two reference datasets, for which we filtered the

aggregate load signal simulating the Chain 2 protocol, used in smart meters.
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Clearly, extensions and additions can be applied to the proposed work. In par-

ticular, it might be interesting to modify the trained classifier so that it is able to

predict the activation state of a larger number of appliances in order to increase the

applicability of the work to a real case. Furthermore, it would be worth trying to

use a different dataset between the training set and the test set, which would assess

the generalisation capacity of the techniques adopted.

Finally, the work presented in the Chapter 6 is intended to encourage the com-

bined approach of two interrelated problems. One of the strategies to be applied

for future work is to consider a linear combination of the two loss functions instead

of the sum to train the classifiers. The coefficients of the combination could be

considered as weights or penalty factors or not less than trainable parameters. Such

approaches, moreover, could be validated using different datasets in addition to the

one proposed, e.g. a dataset that allows the use of Time-Series cross-validation and

enables an approach much closer to the real case. A post-processing step could be

helpful to improve the performance of the proposed model by considering the pre-

dictions of one of the two classifiers and checking that they are somehow compatible

with the predictions of the other classifier.

In conclusion, this thesis aims to pave the way for the development of new intel-

ligent systems that combine human activity recognition and electricity consumption

monitoring to help users avoid waste and improve their quality of life and the world

around them. The combination of these two fields of research can be used by en-

ergy communities to better manage the production and consumption of energy from

renewable sources, as predicting consumption and recognising a user’s activities in

real time would allow them to optimise incoming electrical loads. Furthermore,

the results obtained could help the development of systems capable of advising the

exchange of energy between users of the same energy community. Certainly, the

methods presented in this work can be refined and tested on combined datasets;

an important research direction to be addressed would be to combine human activ-

ity recognition with electrical signal disaggregation in a single algorithmic system.

Indeed, activity recognition would add useful information for monitoring electrical

power. On the other hand, power monitoring would also allow users to make imme-

diate future activity and consumption decisions. For this reason, the results of this

thesis can be considered for strategic developments in the field of decision making

for future activities, whether energy-related or not. An interesting opportunity is of-
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fered by the crossover between machine learning and game theory; the contribution

that the two approaches can make to the problem would be remarkable.



Appendix A

Feature description

In this appendix, our aim is to give an overview of the statistical measures that

were computed to build the feature vectors of the considered datasets (i.e., COSAR,

HAR, HAR AAL, HAPT, DSA).

All the measures are listed in Table A.1, with the corresponding formula. Note

that the third column of the table cites the datasets that use the measure and, in

brackets, the number of times it was calculated.

In each formula of the table, the variable x represents the signal. Depending on

the dataset used and the feature calculated, this signal x can be understood as an

acceleration, an inclination, an angular velocity, a magnitude signal, or a Jerk signal

(that is the first time derivative of the acceleration).

As mentioned in Section 3.4, the signals were segmented into sliding windows for

feature extraction; specifically, all the measures reported in Table A.1 are calculated

on windows containing a number of observations denoted by M .

It should also be considered that the sensors used in the experiments (accelerom-

eters, magnetometers, and gyroscopes) acquire the three spatial components of each

signal; thus, in some measures, x can represent the component on the X, Y or Z

axes of the considered signal. Other features, such as correlation and covariance,

are calculated using two or more components on the axes; therefore, in the formulas

it has been necessary to differentiate these components, indicating with x1, x2 and

x3 the components on the X, Y and Z axes respectively. Some other features, such

as median and percentiles, are calculated using the window signal values sorted in

ascending order, so we have indicated the ordered values differently using x̃.

As already pointed out in Section 3.4, the feature vectors were computed in both
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Table A.1: Statistical measures used for feature extraction.

Measure Formula Datasets

Mean x̄ =

M∑
k=1

x(i)

M
COSAR (14), HAR (46), HAR ALL (46), HAPT (46), DSA (45)

Standard Deviation s =

√√√√√ M∑
i=1

(x(i)− x̄)2

M
HAR (33), HAR ALL (33), HAPT (33)

Variance s2 =

M∑
i=1

(x(i)− x̄)2

M
COSAR (14), DSA (45)

Covariance Covj,k =
M∑
i=1

(xj(i)− x̄j)(xk(i)− x̄k) COSAR (18)

Correlation Corj,k =

M∑
i=1

(xj(i)− x̄j)(xk(i)− x̄k)

√√√√√√
M∑
i=1

(xj(i)− x̄j)
2(xk(i)− x̄k)

2

COSAR (18), HAR (15), HAR ALL (15), HAPT (15)

Median m =

x̃(M+1
2

) if M is odd

x̃(M
2
)+x̃(M

2
+1)

2
if M is even

COSAR (14), HAR (33), HAR ALL (33), HAPT (33)

Min/Max Values min = min
i=1,...,M

{x(i)}; max = max
i=1,...,M

{x(i)} COSAR (40), HAR (79), HAR ALL (79), HAPT (79), DSA (90)

90th Percentile p90 = x̃(0.90 ·M) COSAR (14)

Harmonic Mean h = M
M∑
i=1

1

x(i)

COSAR (2)

Signal Energy SEj =
∑M

i=1 |Xj(i)|2 HAR (159), HAR ALL (159), HAPT (159)

Entropy Ej = −
M∑
i=1

|Xj(i)|2
M∑
k=1

|Xj(k)|2
log2


|Xj(i)|2

M∑
k=1

|Xj(k)|2

 HAR (33), HAR ALL (33), HAPT (33)

Skewness Sk =

M∑
i=1

1

M
(x(i)− x̄)3

√√√√√√√


M∑
i=1

1

M
(x(i)− x̄)2


3

HAR (13), HAR ALL (13), HAPT (13), DSA (45)

Kurtosis Kur =

M∑
i=1

1

M
(x(i)− x̄)4


M∑
i=1

1

M
(x(i)− x̄)2


2 − 3 COSAR (14), HAR (13), HAR ALL (13), HAPT (13), DSA (45)

Autoregressive Coefficients
If xj(i) =

p∑
i=1

ϕkxj(i− k) + ϵ(i) is the Autoregressive Model,

then ϕk are the Autoregressive Coefficients

HAR (80), HAR ALL (80), HAPT (80)

Interquartile Range IqR = Q3 −Q1, Q1 and Q3 are the first and third quartile. HAR (33), HAR ALL (33), HAPT (33)

Signal Magnitude Area SMA = 1
M

M∑
i=1

|x1(i)|+ |x2(i)|+ |x3(i)| HAR (17), HAR ALL (17), HAPT (17)

Angle A(i) = arccos x3(i)√
x1(i)2+x2(i)2+x3(i)2

HAR (7), HAR ALL (7), HAPT (7)

Autocorrelation Auto(k) = 1
M−k

M−k−1∑
i=0

(x(i)− x̄)(x(i− k)− x̄) DSA (450)

Peaks

Let be SDFT (k) =
M∑
i=1

x(i)e−j2πki/M

the k-th element of the 1-D M -point Discrete Fourier Transform,

then Peaks are the maximum five Fourier peaks.

DSA (225)

Frequency Peaks The frequency values that correspond to the Fourier Peaks DSA (225)

the time domain and the frequency domain; some measures in fact, e.g. Entropy,

have been calculated in the frequency domain; consequently, in Table A.1, the fre-

quency signal is indicated with the capital letter X, to distinguish it from the signal

x in the time domain.



Bibliography

[1] E. De-La-Hoz-Franco, P. Ariza-Colpas, J. M. Quero, and M. Espinilla,

“Sensor-based datasets for human activity recognition - a systematic review

of literature,” IEEE Access, vol. 6, pp. 59 192–59 210, 2018.

[2] K. D. al., “Activity recognition based on inertial sensors for ambient assisted

living,” in 2016 19th International Conference on Information Fusion (FU-

SION, 2016, pp. 371–378.

[3] J. Qi, P. Yang, A. Waraich, Z. Deng, Y. Zhao, and Y. Yang, “Examining

sensor-based physical activity recognition and monitoring for healthcare using

internet of things: A systematic review,” Journal of Biomedical Informatics,

vol. 87, pp. 138–153, 2018.

[4] K. de Barbaro, “Automated sensing of daily activity: A new lens into devel-

opment,” Developmental psychobiology, vol. 61, no. 3, pp. 444–464, 2019.

[5] E. Khodabandehloo, D. Riboni, and A. Alimohammadi, “Healthxai: Collabo-

rative and explainable ai for supporting early diagnosis of cognitive decline,”

Future Generation Computer Systems, vol. 116, pp. 168–189, 2021.

[6] W. S. Lima, E. Souto, K. El-Khatib, R. Jalali, and J. Gama, “Human activity

recognition using inertial sensors in a smartphone: An overview,” Sensors,

vol. 19, p. 3213, 2019.

[7] F. Demrozi, G. Pravadelli, A. Bihorac, and P. Rashidi, “Human activity recog-

nition using inertial, physiological and environmental sensors: A comprehen-

sive survey,” IEEE Access, vol. 8, pp. 10 816–21 083, 2020.



96 BIBLIOGRAPHY

[8] B. Nguyen, Y. Coelho, T. Bastos, and S. Krishnan, “Trends in human activity

recognition with focus on machine learning and power requirements,” Machine

Learning with Applications, vol. 5, no. 100072, 2021.

[9] A. Ahmad, M. Hassan, M. Abdullah, H. Rahman, F. Hussin, H. Abdullah,

and R. Saidur, “A review on applications of ann and svm for building

electrical energy consumption forecasting,” Renewable and Sustainable

Energy Reviews, vol. 33, pp. 102–109, 2014. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S1364032114000914

[10] A. Camara, W. Feixing, and L. Xiuqin, “Energy consumption forecasting using

seasonal arima with artificial neural networks models,” International Journal

of Business and Management, vol. 11, no. 5, p. 231, 2016.

[11] N. Dey, S. Fong, W. Song, and K. Cho, “Forecasting energy consumption from

smart home sensor network by deep learning,” in International conference

on smart trends for information technology and computer communications.

Springer, 2017, pp. 255–265.
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F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,

2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf

[147] S. Vitiello, N. Andreadou, M. Ardelean, and G. Fulli, “Smart metering roll-

out in europe: Where do we stand? cost benefit analyses in the clean energy

package and research trends in the green deal,” Energies, vol. 15, no. 7, p.

2340, 2022.

[148] C. Staff, “Cei-en 50065-1, signalling on low-voltage electrical installations in

the frequency range 3 khz to 148,5 khz part 1: General requirements, frequency

bands and electromagnetic disturbances,” CEI Standards, 2012.

[149] ——, “Cei ts 13-82:2017-08, sistemi di misura dell’energia elettrica - comuni-

cazione con i dispositivi utente, parte 2: Modello dati e modello applicativo.”

CEI Standards, 2012.

[150] J. Kelly and W. Knottenbelt, “The uk-dale dataset, domestic appliance-level

electricity demand and whole-house demand from five uk homes,” Scientific

data, vol. 2, p. 150007, 2015.

[151] D. Murray, L. Stankovic, and V. Stankovic, “An electrical load measurements

dataset of united kingdom households from a two-year longitudinal study,”

Scientific data, vol. 4, no. 1, pp. 1–12, 2017.

[152] P. Laviron, X. Dai, B. Huquet, and T. Palpanas, “Electricity demand activa-

tion extraction: From known to unknown signatures, using similarity search,”

in Proceedings of the Twelfth ACM International Conference on Future Energy

Systems. ACM, 2021, pp. 148–159.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


112 BIBLIOGRAPHY

[153] H. Rafiq, X. Shi, H. Zhang, H. Li, and M. K. Ochani, “A deep recurrent neural

network for non-intrusive load monitoring based on multi-feature input space

and post-processing,” Energies, vol. 13, no. 9, p. 2195, 2020.

[154] G. Zhou, Z. Li, M. Fu, Y. Feng, X. Wang, and C. Huang, “Sequence-to-

sequence load disaggregation using multiscale residual neural network,” IEEE

Transactions on Instrumentation and Measurement, vol. 70, pp. 1–10, 2020.
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