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Abstract

T he rapid increase in the senior population is posing serious challenges to nationalhealthcare systems. Hence, innovative tools are needed to early detect healthissues, including cognitive decline. Several clinical studies show that it is possible to iden-tify cognitive impairment based on the locomotion patterns of older people. Thus, thisthesis at first focused on providing a systematic literature review of locomotion datamin-ing systems for supporting Neuro-Degenerative Diseases (NDD) diagnosis, identifying lo-comotion anomaly indicators and movement patterns for discovering low-level locomo-tion indicators, sensor data acquisition, and processing methods, as well as NDD detec-tion algorithms considering their pros and cons. Then, we investigated the use of sensordata and Deep Learning (DL) to recognize abnormal movement patterns in instrumentedsmart-homes. In order to get rid of the noise introduced by indoor constraints and activityexecution, we introduced novel visual feature extraction methods for locomotion data.Our solutions rely on locomotion traces segmentation, image-based extraction of salientfeatures from locomotion segments, and vision-based DL. Furthermore, we proposed adata augmentation strategy to increase the volume of collected data and generalize thesolution to different smart-homes with different layouts. We carried out extensive ex-periments with a large real-world dataset acquired in a smart-home test-bed from olderpeople, including people with cognitive diseases. Experimental comparisons show thatour system outperforms state-of-the-art methods.
Keywords — Abnormal Locomotion Detection, Trajectory Mining, Deep Learning,Cognitive Decline, Pervasive Healthcare
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Chapter 1

Introduction

W ith the demographic change towards older adult population, the proportion ofseniors is increasing and it is projected that the old-age dependency ratio alonein the European Union will increase from 27.5% in 2013 to 49.4% in 2050. Aging is asso-ciated with declines in cognitive function and mobility and it has a significant impact onsociety [4]. For example, in 2013, the number of People with Dementia (PwD) was over
35million people worldwide, and it is expected this number to double by 2030, reaching
115million by 2050 [5]. With the shift from the young to the older people population, itis also expected that the shortage of professional caregivers will increase, especially forpeople with chronic diseases such as dementia and cognitive impairment who are at riskof declining levels of independence, and safety issues. Furthermore, it will increase thecost and financial burden on healthcare systems. Therefore, the early detection of cog-nitive impairments in the elderly population could potentially help them to find timelytherapies and to stay longer independent and socially active.

A promising way to address this societal change is to switch from formal care in hos-pitals and other traditional healthcare settings to in-home care. Studies have shown thatmany people who need care prefer to stay in their own homes [6, 7]. Meanwhile, withthe advancement of sensor-based technologies and Artificial Intelligence (AI) techniques,novel home-based e-health solutions are introduced, which include remote health sys-tems in smart-homes. In this context, those systems target the prevention of chronicdiseases and the monitoring of residents’ behaviors for elderly or disabled people.
1.1 Motivation
The main purpose of Remote Care (RC) technologies is to support frail people to reducethe cost of living and care as well as improve the quality of life for people who needcare while providing them with the opportunity to live independently [6]. Automatedintelligent technologies could provide easier and more accessible ways of early diagnosisof cognitive impairments and enable time-dependent and location-based monitoring tomanage Activities of Daily Living (ADL) by a variety of assistive technologies. Moreover,patients and caregivers have access to web-based applications that provide information
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on activity levels, movement processes, to-do lists, social interactions, as well as exerciseand medication [7]. They can enable automated systems for the caregivers to monitorand track residents’ behaviors and progression of NDD symptoms, and control healthstatus continuously without continuous intervention.
1.2 Research Goals and Contributions
A promising direction in this regard consists in tracking the movements of frail peo-ple through positioning technologies and analyzing location traces according to well-established clinical models of wandering behavior. To this aim, several methods havebeen recently proposed that exploit Internet of Things (IoT) data and AI techniques torecognize abnormal behaviors [8–12]. In particular, the analysis of position traces mayenable early detection of cognitive decline. However, several research challenges arestill open in this area, including the effectiveness of the tools for supporting the diag-nosis, privacy, and obtrusiveness concerns, and adaptation of the reasoning modules todifferent environments. Experiments with a real-world dataset acquired from 99 seniorsshowed that the integration of heterogeneous features increases recognition accuracy.Furthermore, due to the abundance of Spatio-temporal information encoded by move-ment traces, and the presence of noise introduced by positioning technologies, there isa need for specific feature engineering methods.

The goal of this thesis is the investigation of the above-mentioned research issues,with the objective of designing indoor locomotion traces data mining framework to ef-fectively detect cognitive decline symptoms. The framework should be generalizable todifferent smart environments with different layouts, without compromising the inhabi-tant’s privacy or being obtrusive.
For the sake of privacy, the position data processing in the above-mentioned worksis executed on the edge, within the inhabitant smart-home system. Only model trainingis executed on the cloud using anonymized data. In addition, in order to avoid the useof obtrusive wearable sensors or privacy-invasive cameras, in all works, we relied on theacquisition of location data from environmental sensors.
Furthermore, for the sake of simplicity, we consider the case of a person living alonein the home which is a common situation for elderly people. However, in order to sup-port seniors living with other people or pets, the proposed approaches could be easilyextended by adopting an identity-aware positioning system, or by applying a data as-sociation algorithm in charge of associating each location reading to the individual thattriggered the corresponding sensor [13].

1.2.1 Systematic Literature Review
The thesis starts with a systematic literature review of locomotion data mining systemsfor supporting NDD diagnosis. Since locomotion characteristics and movement patternsare reliable indicators of NDD, the review discusses techniques for discovering low-levellocomotion indicators, sensor data acquisition and processing methods, and NDD de-tection algorithms. It presents a comprehensive discussion of the main challenges for
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this active research area, including the addressed diseases, locomotion data types, dura-tion of monitoring, employed algorithms, and experimental validation strategies. It alsoidentifies prominent open challenges and future research directions regarding ethics andprivacy issues, technological and usability aspects, and the availability of public bench-marks.
1.2.2 Towards Vision-based Analysis of Indoor Trajectories
Recent researches consist in encoding the trajectories walked by the inhabitant into im-ages based on the smart-home floor plan as well as speed and other specific locomotionindicators, and utilizingDeep neural network (DNN) for image classification for supportingNDD diagnosis. The rationale of this approach is that trajectory images may effectivelycapture discriminative features without the need for sophisticated feature engineeringefforts. This approach will let us get rid of the noise introduced by indoor constraintsand activity execution. Therefore, we proposed a system [14] to identify abnormal in-door movement patterns that may indicate cognitive decline according to clinical mod-els of spatial disorientation [15]. Our solution relies on locomotion trace segmentation,image-based extraction of salient features from locomotion segments by retaining thespatial information in trajectory images, enriching them with additional visual features,and vision-based DL. Preliminary experimental results with a real-world dataset gatheredfrom cognitively healthy persons and PwD show that this research direction is promising.
1.2.3 The TraMiner Framework
In the next step, we extended and refined the above-mentioned work, proposing theTraMiner system [16], which exploits Trajectory Mining for continuous cognitive assess-ment in smart-homes. The system relies on specific techniques for locomotion data clean-ing and segmentation. Each locomotion segment is transformed into two images thatcapture different aspects related to the clinical indicators of locomotion anomalies, rep-resent the walked trajectory in a 2-dimensional space, and highlight different visual fea-tures, such as speed and intersection points. They allow us to visually capture locomo-tion anomalies corresponding to the pacing and lapping patterns defined by theMartino-Saltzman model [17], naturally encode low-level motion indicators such as sharp angles,straightness, turning angle, and path efficiency, and also enable us to capture low-levelmotion indicators. Results show that TraMiner can accurately recognize the cognitivestatus of the senior, reaching a macro F1 score of 0.873 for the three categories thatwe target: cognitive health, MCI, and dementia. Moreover, an experimental comparisonshows that our system outperforms state-of-the-art methods.
1.2.4 Augmented and Generalized TraMiner
In TraMiner, it is assumed that smart-homes have a fixed layout. However, since us-ing movement patterns from a single smart-home can restrict the generalization of thelearned model to other homes with different layouts, in a later work we introduced adata augmentation approach based on random image rotation to increase the general-ization of the trained model. We proposed an approach combining Spatio-Temporal Fea-
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tures (STF)with features extracted from images depicting the trajectories walkedwithin asmart-home [18]. Experimental results with a real-world dataset collected from both cog-nitively healthy seniors and PwD show that the proposed approach achieves promisingresults in terms of macro and weighted F1 with a small subset of features and long-termanalysis of the predictions can support a reliable assessment of the cognitive status overtime. Using a high number of features in such applications may lead to collinearity andincrease the number of features that potentially have no predictive power. Moreover,the computation, storage, and transmission of unnecessary information is a waste of re-sources [19]. Therefore, we tried to keep the number of features as small as possible.
1.2.5 List of Publications
The publications listed below constitute the majority of the content of this thesis. Thefirst author of them, i.e., the author of this thesis defined their problem statements, de-veloped their methods, performed experiments to assess their underlying strategies, andwrote the manuscripts.

• Samaneh Zolfaghari, Sumaiya Suravee, Daniele Riboni, and Kristina Yordanova.“Sensor-based Locomotion Data Mining for Supporting the Diagnosis of Neurode-generative Disorders: a Survey”.
• Samaneh Zolfaghari, Andrea Loddo, Barbara Pes, and Daniele Riboni. “A combina-tion of visual and temporal trajectory features for cognitive assessment in smart-home”. In: 2022 23rd IEEE International Conference on Mobile Data Management(MDM). IEEE. 2022, pp. 343–348.
• Samaneh Zolfaghari, Elham Khodabandehloo, and Daniele Riboni. “TraMiner:Vision-based analysis of locomotion traces for cognitive assessment in smart-homes”. In: Cognitive Computation 14.5 (2022), pp. 1549–1570.
• Samaneh Zolfaghari, Elham Khodabandehloo, and Daniele Riboni. “Towards vision-based analysis of indoor trajectories for cognitive assessment”. In: 2020 IEEE Inter-national Conference on Smart Computing (SMARTCOMP). IEEE. 2020, pp. 290–295

1.3 Organization
The dissertation is structured as follows. Chapter 2 provides a systematic literature re-view, and thoroughly discusses different clinical and non-clinical NDD indicators, tools,and technologies. Moreover, it considers algorithms and applications, and open issuesregarding sensor-based locomotion analysis in order to detect gait anomaly in NDD at anearly stage that has been proposed in the literature. Chapter 3 provides an introductionto a novel framework on locomotion traces segmentation based on a given length andis depicted by images and additional gait features utilizing Martino-Saltzman model [17].Chapter 4 extends the previous framework in terms of having two different kinds of tra-jectory images which are segmented temporally and encoded into two images based on
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movement and acceleration. In Chapter 5 we try to propose a general framework byintroducing a new data augmentation methodology, utilizing the extended version of thepreviously mentioned framework for feature extraction and using additional sensory andtrajectory features. Chapter 6 concludes the dissertation by summarizing the technicalcontributions of the thesis and discussing open problems.



Chapter 2

Systematic literature review

T o evaluate the potential of automated technologies to detect cognitive decline,we first need to analyze the indicators of locomotion anomalies associated withcognitive decline, differentmethods, and sensor-based technologies for detection of cog-nitive impairments based on locomotion data. Therefore in this chapter, we concentrateon techniques for discovering low-level locomotion indicators, sensor data acquisitionand processing methods, and NDD detection algorithms. We present a comprehensivediscussion on the main challenges for this active research area, including the addresseddiseases, locomotion data types, duration of monitoring, employed algorithms, and ex-perimental validation strategies. Three widespread types of cognitive decline are consid-ered: Alzheimer’s disease (AD), Huntington’s Disease (HD), and Parkinson’s Disease (PD).
2.1 Introduction
Since the average age of the population is projected to increase significantly in the nearfuture, the early diagnosis of cognitive decline among elderly people is becoming a keyobjective of healthcare systems worldwide [20]. This chapter explored different tech-nologies and methods that have been demonstrated to be successful in detecting symp-toms of NDD based on locomotion sensor data and AI algorithms.The structure of this chapter is illustrated in Fig. 2.1. We divided the core of our studyinto three different parts, which correspond to the main building blocks of AI-based sys-tems for NDD assessment. The lowest level is related to primary or complex gait indi-cators, which are used for the diagnosis of NDD according to clinical theory and prac-tice. Those indicators provide the clinical ground for designing NDD detection systemsince they identify which raw data are necessary for the assessment. Consequently, themiddle-level regards existing tools and technologies to acquire locomotion data at coarse-and fine-grained levels in different environments, including wearable and infrastructure-based systems. Finally, the highest level reports and discusses algorithms and applica-tions that process locomotion data for supporting the diagnosis of NDD and for recogniz-ing challenging behaviors that may put the safety of cognitively impaired subjects at risk.Each level is addressed in a specific section of our chapter.
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Figure 2.1: Chapter scenario.

2.2 Summary of Methodology and Main Findings
We queried the most prominent scientific search engines with a handcrafted query toretrieve the literature review candidates. From a pool of 1277 retrieved articles, we se-lected and surveyed 128 papers that matched our criteria regarding types of clinical in-dicators, sensor technologies, experimental setup, and algorithm types. The chapter in-dicates that the number of scientific works exploiting AI and locomotion sensor data forthe diagnosis of NDD is strongly growing, especially from 2010 on. Most papers addressthe detection of dementia and Parkinson’s disease, which are the most common NDD,while few of them address HD. Most works are based on indoor locomotion monitoring,while few ones consider more complex outdoor movement patterns. Several differentMachine Learning (ML) algorithms are used for NDD detection. The most common ap-proach is to use classical ML algorithms such as Random Forest (RF) or Support VectorMachine (SVM), while few works adopt DL methods. Some works relying on fine-grainedmotion indicators rely on statistical measures and thresholds to produce a prediction.The duration of monitoring ranges from a few minutes for gait analysis, to hours, days,or weeks for more complex patterns. The majority of the experiments were held in con-trolled laboratory environments, but a large percentage were conducted in naturalisticreal-world environments such as the individual’s home.
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The results show that this kind of technology may effectively support the diagnosisof NDD and help simplify patient management. However, the review showed that mostexisting techniques fall short in addressing different challenging issues. The release of lo-cation data may reveal several private pieces of information regarding the patient; how-ever, problems related to cyber-security and privacy protection are mostly neglected byexisting systems. Of equal importance are aspects regarding trust and legal issues, whichseem overlooked in the current literature. Other challenging issues which merit furtherresearch regard users’ acceptance and usability. From a technological viewpoint, thepower capabilities of existing solutions are challenged by the need for long-term eval-uation and execution of ML algorithms on wearable devices. Finally, the lack of publicdatasets acquired in real-world conditions makes it difficult to experimentally comparethe different solutions.
The remainder of this chapter is structured as follows. Section 2.3 introduces thethree types of NDD, their clinical symptoms, and locomotion indicators. In Section 2.4we describe the procedure used in this study and the types of papers included. Sec-tion 2.5 analyses the clinical locomotion indicators of NDD, while Section 2.6 presentsthe technologies and tools used for the detection of locomotion indicators. Section 2.7discusses the existing algorithms for detecting NDD based on sensing technologies. Thechapter concludes with a discussion of the shortcomings of existing technologies andmethods and the potential future directions in detecting cognitive impairments in theelderly based on locomotion data.

2.3 Clinical Background
In what follows we shortly introduce the three types of NDD and their clinical symptomsand locomotion indicators.
2.3.1 Alzheimer’s Disease
AD is themost familiar type of dementia and it is considered a syndrome that has chronicor progressive nature. It is defined as a declination in cognitive function beyond whatmight be expected from normal aging. PwD suffers from a lack of memory and thinkingcapability, learning ability, and inability to communicate. The impairment in cognitivefunction is generally accompanied and periodically preceded by weakening in emotionalcontrol and social manners. It is regarded as a predominantly cognitive disorder. Gait ab-normalities can also be noticed in the disease’s early stages, including decreased walkingspeed, step length, step frequency, and increased gait variability. Dementia is consideredone of the main reasons for disability and dependency among older adults worldwide. Itcan be troublesome for PwD, caregivers, and family members. A lack of awareness andunderstanding of dementia is being observed that causes stigmatization and hindrancesto diagnosis and care. The effect of dementia on caregivers, families, and the commu-nity is very diverse. It can be biological, psychological, social, and economic. It might bechallenging to detect dementia early since each individual gets affected by that diseasedifferently, relying on the effect of the disease and the individual’s personality before
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becoming sick. According to the World Health Organization (WHO)1, around 50 millionpeople are diagnosed with dementia, and the most common symptoms of dementia canbe classified into three stages: early,middle, and late.Some common symptoms for these stages are listed in Table 2.1. It can be noticedthat the severity of the symptoms advances with the progression of the disease.
Table 2.1: Symptoms of AD

Early stage Middle stage Advanced stage

Forgetfulness Having difficulty remembering about recent events andpeople’s names Having difficulty in walking
Losing track of time Getting lost at home, having difficulty in communication Experiencing behavior changesthat may escalate aggression
Getting lost in familiarplaces Needing help with personal care Having an increasing need for as-sisted self-care
- Experiencing behavior changes, includingwandering and repeated questioning -

2.3.2 Parkinson’s Disease
PD is regarded as the most familiar movement disorder, involving over 6 million individu-als worldwide. PD can have an early onset, though it primarily affects people over the ageof 55, and the progression of the disease slowly increases after the age of 65 [21,22]. TheWHO ranks PD as the second most familiar NDD. It hampers the nerve cells in the brainthat generate dopamine. Dopamine is necessary for transmitting messages to controland coordinate movement.Around 0.1˘0.2% of the dopaminergic neurons are lost per year during normal ag-ing. This speed is significantly accelerated in People with PD (PwPD), and signs becomeapparent when≃ 70˘80% of these neurons have been lost.The PwPD experience bothmotor and non-motor symptoms. Themost commonmo-tor symptoms during the early stages of PD are resting tremors, rigidity, and bradykinesiawhich are explained below.1. Tremor / Shaking - it starts in a limb, often the patient’s hand. Patients might ex-perience rubbing their thumb and forefinger back and forth; this is known as apill-rolling tremor. The patient’s hand may shake when it is at rest [23].2. Bradykinesia - PDmay slow the patient’s action over time, assembling simple taskscomplicated and time-consuming. For instance, it may be challenging for PwPD toget out of a chair [23].3. Rigid muscle - Muscle stiffness may appear in any portion of the body. As a result,the stiff muscles cause pain and restrict the range of movement [23].4. Impaired posture and balance - Posture may become stooped. PwPD might sufferfrom imbalance movement as a consequence of PD [23].5. Loss of automatic movement - PwPD might experience an inability to conduct un-conscious movements, including blinking, laughing, or turning their arms when

1https://www.who.int/
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walking [23].The difficulty to control movement caused by PD harms the social and psychologicalsituation of the patient, who feels secluded and ineffective in accomplishing simple tasks.PwPD in the middle stage experience cramping (dystonia), dyskinesia, loss of posturalreflexes, and Freezing of Gait (FoG). FoG is one of the most common motor signs of PDand appears during the advanced stages of the disease. It is defined by a brief episode ofinvoluntary lack of locomotion, a feeling of being stuck in place when attempting to havea step or navigating through or turning around barriers [24].
2.3.3 Huntington’s Disease
HD is defined as a progressive inherited NDD, inducing involuntary movement and cog-nitive problems, harshly impacting the quality of life. It is caused by a Cytosine-adenineguanine repeat mutation in the HTT gene [25]. It has a comprehensive effect on a per-son’s functional capabilities, resulting in movement, cognitive, and psychiatric disorders.The signs of HD can form at any age, but they usually arise in people aged 30 to 40 yearsold and the beginning of the disease is diagnosed clinically when motor abnormalitiesform. Impairment in motor control is regarded as the most familiar sign of HD, orderedby chorea and dystonia. This, merged with cognitive and behavioral symptoms, can im-pact day-to-day tasks. Nevertheless, cognitive and behavioral symptoms [25] can be no-ticedmany years (even decades) beforemotor symptoms, which progressively affects thequality of life of People with HD (PwHD).When HD forms at an early age, signs are identical to those of PD, and the diseasemay advance faster. Drugs are available to aid the symptoms of HD, but remedies cannotprevent the physical, cognitive, and behavioral deterioration associated with the condi-tion [26]. Therefore, most of the current research in this area is based on detecting HDat an early stage, in order to benefit from prospective medical interventions that mayassist in slowing the advances of the disease. The most common symptoms of HD arementioned in Table 2.2. Table 2.2: Symtoms of HD.

Movement disorder Cognitive disorder Psychiatric disorders

Involuntary jerking or writhing move-ments (chorea) Difficulty in organizing or focusing on tasks Irritability
Rigidity or muscle contracture(dystonia) Lack of flexibility to get stuck on a behavior/action Social withdrawal
Abnormal eye movements Lack of impulse control that can result inoutbursts, acting without thinking Insomnia
Impaired gait, posture Difficulty in learning new information Fatigue and loss of energy
Difficulty with talking / Swallowing Slowness in processing thoughts or in findingwords Frequent thoughts of deathor suicide

2.4 Materials and Methods
We conducted a systematic review to select the relevant studies on locomotion abnor-mality detection for supporting the diagnosis of NDD. We focused on locomotion-based
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data mining techniques which are experimented on a significant number of patients, in-cluding both healthy control subjects and people with NDD. In the following, we reportour search strategy, including inclusion and exclusion criteria, as well as statistics aboutthe selected research works.
2.4.1 Search and Selection Strategy
Fig. 2.2 illustrates the flowchart of our literature search and selection method. Wequeried different scientific search engines, namely, Web of Science, Science Direct,PubMed, and SCOPUS, considering academic studies published in peer-reviewed jour-nals and in proceedings of international conferences. We handcrafted a search query toidentify relevant articles published between 1975 to October 2020, considering terms ap-pearing in the title, abstract, or keywords of the papers. Our search query is reported inTable 2.3. Its syntax is slightly different depending on the functionality of the considereddatabase, without impacting the semantics of the query.

Figure 2.2: Flowchart of our literature search and selection method.
Our literature search and selection method is divided into four phases.Paper extraction. The whole query is divided into six parts connected by the “AND”operator. The first part of the search query includes different terms to identify “neurode-generative disorders”. Since the target group of our study is elderly people, in the secondpart of the query we retrieve only publications specifically related to that age group. Inthe third part, we select only papers related to the use of sensor devices and pervasivecomputing technologies. The fourth part retrieves only papers related to locomotion datamining. The fifth part selects only papers related to different monitoring methods. Thelast part retrieves only papers published in conference proceedings or scientific journalsand published after 1974. The query retrieved 1277 papers in total.
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Table 2.3: Literature search query.

TITLE-ABSTRACT-KEYWORDS((“cognitive impairment" OR “cognitive problem" OR “cognitive issue" OR “cognitive decline"OR “cognitive assessment" OR “dementia" OR “mci" OR “mild cognitive impairment" OR “alzheimer’s disease" OR “neurode-generative")
AND (“elderly" OR “senior" OR “Aging Adults" OR “aging" OR “older adult" OR “adult")
AND (“internet of things" OR “indoor" OR “outdoor" OR “wearable" OR “ambient intelligence (AmI)" OR “ambient assisted liv-ing" OR “aal" OR “healthcare application" OR “positioning technology" OR “ambient sensors" OR “Global Positioning System"OR “accelerometer" OR “gyroscope" OR “environmental sensors" OR “inertial sensor" OR “mobile" OR “Intelligent Assistive"OR “assistive Device" OR “device free" OR “intelligent systems" OR “smartphone" OR “non-invasive" OR “human computerinteraction" OR “hci" OR “mobile health" OR “smart homes")
AND (“locomotion anomaly" OR “locomotion pattern" OR “locomotion" OR “abnormal movement pattern" OR “trajectory"OR “wandering" OR “disorientation " OR “movement traces " OR “ambulatory gait analysis" OR “abnormal locomotion" OR“abnormality" OR “gait" OR “mobility" OR “motor impairments" OR “motor assessment" OR “motor function" OR “accelera-tion" OR “spatial" OR “gait variability" OR “gait-cycle" OR “functional assessment" OR “motor dysfunction")
AND (“monitoring" OR “detection" OR “analysis" OR “non-intrusive" OR “unobtrusive" OR “reconstruction" OR “gait moni-toring" OR "gait detection" OR “remote monitoring" OR “trajectory mining"))
AND ( LIMIT-TO ( DOCUMENT TYPE,“(PEER REVIEWED JOURNAL) ARTICLE" ) OR LIMIT-TO ( DOCUMENT TYPE,“CONFERENCEPAPER" ) OR LIMIT-TO ( DOCUMENT TYPE,“REVIEW" )) AND PUBYEAR> 1974

Duplicates removal and quick review. In the second phase, initially, we performedduplicate removal, keeping 1132 papers. Then, we applied a quick review procedure tothose papers, to ensure that they met our inclusion criteria. The title, abstract, and key-words of each paperwere evaluated to ensure that they actuallymet the inclusion criteriaspecified in the query string. As expected, the search query provided a relatively largenumber of false positives. Most papers were excluded because they did not rely on sen-sor devices or pervasive computing technologies, or considered diseases not related toneurocognitive disorders. After this operation, we retained 128 papers.Full-text analysis. In the third phase, the full text of each remaining paper was as-sessed to exclude those papers thatwere preliminary versions of extendedpapers alreadyincluded in our search and to keep only those papers that met our inclusion criteria. Inthis regard, we excluded those works which lacked a significant experimental evaluationwith both cognitively impaired seniors and healthy control subjects. After this phase, weretained 68 papers.Cross-referenced search. In the fourth phase, we checked the references of the re-maining publications to look for further relevant publications matching our search crite-ria to be included. We also looked for additional relevant papers published by the sameauthors as the included papers. Thanks to this search, we added 60 for further papers.The full list of the reviewed papers can be found in the Appendix.
2.4.2 Comprehensive Science Mapping Analysis
Recently bibliometric measurements have been increasingly expanding across variousfields [27–29]. This technique is particularly suited for implementing the comprehensivescience mapping analysis of published studies of fragmented and controversial streamsof research. As mentioned previously, the articles in this chapter can be divided intothree main categories regarding the NDD, and locomotion anomaly as follows: PD, HD,
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and dementia. The total number of published and selected articles considering differentdatabases are mentioned in Fig. 2.2.
From another point of view, Fig. 2.3 shows the percentage of selected articles by eachcategory compared to the total number of papers from the same category consideringtheir search engines. As could be seen the selected papers in the Web of Science searchengine represent the highest percentage of total articles among the others.

Figure 2.3: Percentage of articles based on considered NDD categories and scientificsearch engines.
Annual Scientific Production

Among the 128 included papers, 33 were survey or reviews papers. Fig. 2.4a representsthe temporal trend of papers included and it shows an exponential increase in the num-ber of papers related to sensor-based locomotion data mining for NDD diagnosis.
Word Cloud

Word clouds are introduced as a tool to identify the most essential topics dealing with aparticular subject [27, 29]. Fig. 2.4b presents the most frequent words adopted by pre-vious studies extracted by our search and selection strategy explained in section 2.4.1.These keywords, which are repeated more than 30 times considering all selected papers,demonstrate that most of them are focused on the gait aspect of cognitive disease.
Country-Specific Production

Fig. 2.5 represents that the included research papers came from 38 countries which in-clude case studies conducted in these countries. As demonstrated in the figure, the coun-tries that produced themost papers considering locomotion anomaly detection and NDDin a sensory environment are the USA, Italy, Germany, and the UK. In terms of country-specific production, the highest percentage was achieved by the USA (22.75%), followedby Italy (10.17%), and then Germany(6.58%) and the UK (6.58%).
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(a) Number of published papers according to the different years.

(b) Most frequent words.Figure 2.4: Selected papers.
Scientific Production based on Disorders and Observation Location
Considering the kind of disease, Fig. 2.6a shows that PD gained essentially more atten-tion among the researchers compared to dementia, while fewer works are related to HD.Considering that some papers address more than one disease, around 52% of papersaddress PD, about 41% of papers address dementia, and 15% address HD.

We further analyzed the scenario in which the individual’s locomotion is observed toprovide the diagnosis. We considered two observation scenarios: indoor and outdoor.Among the selected papers, as illustrated in Fig. 2.6b, statistics show there are 68.18% of
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(a) Country-specific production.

(b) Country distribution production.Figure 2.5: Selected papers.
papers that rely on locomotion observation indoors; in particular, in private residences,retirement/nursing homes, or hospitals. Most methods relying on indoor observationassume that the individual performs predefined instructions in the presence of one ormore observers. A few other papers rely on the observation of unsupervised locomotionduring everyday activities in real-world environments.Papers that rely on the observation of outdoor locomotion are fewer in number; i.e,around 7.95% of the papers. Those works assume the use of sensors embedded in wear-able/portable devices (mainly smartphones, watches, or shoes), or outdoor localizationtechnologies such as GPS readers. In addition, around 23.86% of the selected papersdo not strictly rely on the assumption that the locomotion is observed either indoors oroutdoors. The category of those papers is named general in Fig. 2.6b.
Scientific Production based on Experiments Scenarios and Monitoring Duration
Fig.2.7a shows the distribution of papers according to the duration of locomotion moni-toring used in the respective experimental evaluation. We found out that, among those
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(a) Percentage of papers according to the considered diseases.

(b) Percentage of papers according to observation locations.Figure 2.6: Selected papers.

works which explicitly mentioned their observation duration (around 90 papers), manyof them (around 63.3% papers) monitored locomotion for less than one hour; around
8.9% of them monitored locomotion for less than 24 hours; around 1% for less than aweek; around 7.8% for weeks; around 11.1% for months; and around 7.8% for one yearor more. Furthermore, as shown in Fig.2.7b, 56.5% of research works carried out theirexperiments in a laboratory environment, 38% in a naturalistic environment such as theindividual’s home, and 5.4% in both a laboratory and naturalistic environments.
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(a) Percentage of papers according to monitoring duration.

(b) Percentage of papers based on different experiments scenar-ios. Figure 2.7: Selected papers.
2.5 Clinical Locomotion Indicators of NDD
We concentrate on clinical indicators of NDD related to locomotion. Indeed, severalworks identified variations of gait patterns and locomotion anomalies typically observedin cognitively impaired subjects [30–32]. Different researches consider ‘wandering’, aconcept defined by Algase et al. [33] as a “syndrome of dementia-related locomotion be-havior having a frequent, repetitive, temporally disordered, and/or spatially disorientednature that is manifested in lapping, random, and/or pacing patterns”. Moreover, re-cent sensor technologies provide the possibility to develop methods for gait analysis tocharacterize NDD based on the observation of subtle anomalies in gait patterns. In a nor-mal gait cycle, each stride contains eight phases with functional patterns and objectivesdefined as follows:

1. Heel strike: initial contact of the foot touching the floor with the heel.
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2. Loading: loading response when the knee flexes and the body weight is movedonto the limb, while the other foot is lifted.3. Mid-stance: when the opposite leg is lifted and advanced.4. Terminal stance: when the limb advances and the phase endswith the heel strikingthe ground.5. Pre-swing phase: weight transfer phase, when the opposite foot starts touchingthe ground and the other one is lifted.6. Toe-off: initial swing when the foot is lifted from the floor.7. Mid-swing: when the anterior limb advances.8. Terminal swing: when the leg moves ahead of the thigh, the foot strikes the floor,and the advancement is completed with the flexion of the knee.
Gait disorders can be related to two main categories: neurological, and non-neurological disorders [32]. For the sake of this thesis, we concentrate on the formercategory. The instruments used to analyze human gait can be classified into two majorcategories: ambient/portable wireless sensors such as [31, 34,35], and wearable sensorslike those used in [36]. For example, smart shoe wearable sensor systems can measurethe change in gait over time and have been used in neurological exams to diagnose de-mentia and other neurological disorders. The Center of mass movement during walkingcan be easily tracked using a small InertialMeasurement Unit (IMU) attached to the lowerback andwas used for neurological assessment considering the sinusoidal waveform pro-duced by trunk movements during the gait cycle [37].

2.5.1 General Indicators based on Gait Analysis
Different low-level motion indicators have been proposed in the literature to detectNDD [16, 34]. We classify these motion indicators into three categories: low-level gaitparameters, complex gait parameters, andNon-Linear Dynamics (NLD) theory-based fea-tures, presented below.

• Low-level gait parameters: These indicators regard fine-grained characteristics ofgait, mostly considered in isolation, such as stride-to-stride fluctuations in walk-ing (both in terms of magnitude and dynamics), stride time, stride velocity, stridelength [38]. In this regard, gait abnormalities mostly include decreased walkingspeed, step frequency, step length, and increased gait variability [39]. In Table 2.4,we extend and refine the classification proposed by Hollman et al. [40] to definethe low-level indicators that we use in the rest of the chapter.• Complex gait parameters: These parameters consider different temporal aspectsof locomotion, and structural or geometrical complexity of walked trajectories. Weclassify them into three categories: variability, postural control, and frequential pa-rameters. Parameters related to variability are based on temporal characteristicsof the movement pattern, acceleration, speed, duration, and distance. Posturalcontrol parameters such as Timed Up & Go (TUG) test, Berg Balance Scale (BBS),Romberg Balance (RB)), and Short Physical Performance Battery (SPPB) tests, etc.are including different kinds of postural and balance assessments such as regularity
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Table 2.4: Low-level gait parameters.

Parameters
classification

Parameters Definition Ref.

Spatial

Stride length Distance traveled by the same foot by two consecutive heel con-tacts. [37, 38, 41–46,46,47]
Step length Traveled distance from one heel footprint to the heel of the oppo-site footprint. [38,45,47–51]
Step width Distance between the line of progression of the left heel footprintand the line of progression of the right heel footprint. [40]
Distance The cumulative traveled distance. [36,42, 52]

Temporal

Stance/Swingtime Duration of the stance/swing phase. [31, 48, 53, 54]
Stride timeinterval Time interval starts when one foot makes contact with the groundand endswhen that same foot contacts the ground again. It displaysfractal dynamics and reflects the rhythm of the locomotion.

[39,42–44,49,50, 53, 54]
Stride timevariability It is related to the control of the rhythmic stepping mechanism andcalculated by the mean and standard deviation of stride time. [42]
Step time The time between two consecutive heel strikes. [37, 38, 45, 48,50, 51, 54–56]
Step rate The rate of steps per minute also called cadence. [37,40,44–46,46,47, 50, 56]
Single supporttime ‘Single support’ happens when only one foot is in contact with theground. Single support time is the duration of single support. [40,46, 56]
Double supporttime ‘Double support’ happens when both feet are in contact with theground. Double support time is the duration of double support. [43,46,47,49,56–58]

Spatial-
Temporal

Stride velocity The stride length divided by the stride time. [38,49, 50, 55,59,60]
Stride/Stepfrequency Number of foot contacts per second. [41, 44,60]
Stride/Stepsymmetry Duration amplitude similarity of the shape of acceleration curvescomparing right and left strides/steps. [41, 44, 45, 55,61]
Step timeasymmetry Defined as the difference between the mean step time of each legand the combined mean step time of both legs. [45]
Stride/Stepregularity A measure of stride/step to stride/step consistency. [39, 41, 44, 45,55,61]
Gait speed The distance walked divided by the ambulation time. [16, 37–39, 41–44, 44–46, 48,49, 54]

of movements, angles of movement, trajectory consistency. Frequential parame-ters consider gait symmetry and are usually derived from the Fourier analysis oftrunk accelerations.In Table 2.5, we provide a classification and description of complex gait parameters.• NLD theory based features: Gait assessment is considered a beneficial tool to helpthe diagnosis process and to assess the neurological state of people with NDD. It isthe assessment of a subject’s walking pattern. Walking is a compounded processthat can be evaluated through the application of nonlinear analysis of Human GaitSignals. NLD theory has been introduced to the analysis of biological data. There
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Table 2.5: Complex gait parameters.

Parameters
classification

Parameters Definition Ref.

Variability

ApproximateEntropy Measure regularity of a trajectory under the assumption that a sequenceis regular when it contains repetitive patterns and how its’ structuralcomplexity varies over time.
[55]

Jerk The rate at which a subject acceleration changes with respect to time.Jerk is the first-time derivative of acceleration. It quantifies the smooth-ness of a trajectory.
[16,44]

Ambulationfraction The ratio between the total time of ambulation and trajectory duration. [62]
Straightness The ratio of the distance between two consecutive trajectory segmentsand the distance between the start and endpoint of these segments. [1, 16]
Path-efficiency The ratio between the distance from the start to the end of a trajectoryand the trajectory length. [16,62]

Postural
control

Turning angle The sum of the absolute angles between any two subsequent lines in atrajectory. [16, 44,62]
Sharp angles Vector angles in a trajectory being equal to or more than 90 degrees. [1, 16, 52,63]
Foot clearance Toe and heel height during the swing phase. [64]
TUG test Time taken for a transition from sitting to standing, walking, turning, andtransitioning from standing to sitting. [44, 57,58,61, 65]
Fall Any unintentional event that leads to the landing of individuals on a hor-izontal plane [42, 57]
BBS/RB/SPPB tests Balance and postural control assessment to diagnose gait disturbancecaused by abnormal perception or awareness of the position and move-ment of the body during predetermined tasks. (i.e. Eyes Open Feet To-gether, Eyes Closed Feet Together, Eyes Open Feet Apart, Eyes ClosedFeet Apart)

[45, 57,61, 66,67]

Frequential

Harmonic Ra-tio (HR) Step-to-step (a)symmetry within a stride. [55,60]
Total Harmonic Dis-tortion (THD) Evaluate the complexity of human motion by calculating the ratio be-tween the fundamental waves and the harmonic waves. [55]
Z-method/S-method/M-method

Gait events based on Antero-posterior acceleration, Acceleration norm,and Vertical acceleration. Both the Z-method and M-method define thegait cycle from the initial contact timing. Also, M-method provides finalfoot contact timing estimates, swing, and stance duration. Conversely,the S-method considers the zero-crossing instants of the accelerationnorm.

[54]

are also NLD features [68,69] available such as the Correlation Dimension (CD), theLargest Lyapunov Exponent (LLE), the Lempel Ziv Complexity (LZC), the Hurst Expo-nent (HE), the Detrended Fluctuation Analysis (DFA) and many others to assess thegait impairments of NDDpatients. These features are used to discriminate betweenNDD patients and healthy subjects and to classify patients in several stages of thedisease. In [53,70,71], DFA is used for the gait assessments of PwPD and PwHD. In[72], Sejdić et al. performed a combined analysis of spectral and NLD features toassess gait signals of 14 healthy persons, 10 PwPD, and 11 patients with peripheralneuropathy. These features were compared using the Kruskal-Wallis and Mann-Whitney tests. There are notable differences observed in features such as the LZC
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and the cross entropy, which allow for discrimination between healthy persons andPwPD. In [73] the authors classified 13 PwPD, 13 Amyotrophic lateral sclerosis pa-tients, 13 PwHD and 13 healthy subjects using data obtained from force-sensitiveresistors. Prabhu et al. computed NLD features such as Shannon entropy, CD, re-currence rate, and Recurrence Quantification Analysis (RQA). The classificationwasperformed with the SVM and a Probabilistic Neural Network (PNN) to distinguishbetween patients with different NDD. and healthy persons. In Table 2.6, we pro-vide the general NLD theory-based features that are used to assess the neurologicalstate of the patients.
Table 2.6: Non-Linear Dynamic features.

NLD features Definition Ref.

DFA Observes the degree of correlation of one stride interval with previous andsubsequent ones. [53, 70, 71]
LLE Provides information about the stability properties of the time series as it cal-culates the sensitivity to initial conditions of the signal according to the rateat which the nearby trajectories of the phase space converge.

[68,69]

HE Assesses the long-term dependency of the time series. [68,69]
LZC Relates to the number of different patterns that lie along a sequence whichreflects the order that is retained in a one-dimensional temporal pattern. [68,69, 72, 74]

2.5.2 Indicators of Dementia
As mentioned in Subsection 2.3.1, dementia causes a decline in thinking skills, severeenough to impair daily life and independent living. In particular, it affects behavior, loco-motion, feelings, and relationships. Different high-level indicators have been presentedin the literature to characterize the locomotion behavior of people suffering fromdemen-tia [30].We classify those indicators into four categories: trajectory-based, permission-based,purpose-based, and performance-based indicators. In Table 2.7, we define the specificindicators according to our categorization, and themost relevant researchworks in whichthey are considered. In the following, we briefly discuss the three classes.

1. Trajectory-based indicators They are well-known indicators for categorizing thepatterns of abnormal locomotion behaviors by PwD. A popular model in this re-gard was proposed by Martino-Saltzman [17]. That model categorizes the trajec-tories into one of four distinct patterns of movement: direct, random, lapping, orpacing, illustrated in Fig. 2.8.
• Direct: a simple or uncomplicated trajectory from one location to anotherone.
• Pacing: at least three consecutive back-and-forth movements between twolocations along very similar paths.
• Lapping: at least two circular movements between at least three distinct lo-cations.
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Figure 2.8: Travel patterns according to the Martino-Saltzman model [1].
• Random: a continuous and aimless movement across numerous locationswith multiple directional changes, that generally passes through more thanfour locations.

The direct path is walked by cognitively healthy people, while random, pacing, andlapping patterns are typical indicators of dementia. In particular, scientific stud-ies demonstrated that severely demented individuals perform trajectory-basedanomalies all day long, while in moderately demented, the percentage of thoseanomalies increases in the evening and mostly in the night [17].In a different research conducted by Kearns et al. [36], it was shown that the tor-tuosity of a walked trajectory is significantly correlated with the cognitive status.A high value of the fractal mathematical index of path tortuosity (Fractal D) indi-cates abnormal trajectories that are typically observed inwandering behaviors [36].Fractal D is a compact and effective measure to characterize wandering behaviors.2. Permission-based indicators Another class of indicators considers anomalous lo-comotion patterns of people living in constrained environments, which violate thepermissions of the caregivers. We name this class of dementia-related locomotionanomalies permission-based indicators. As shown in Table 2.7, these indicators arefurther classified as abscond/elopement (leaving a safe environment without care-giver’s consent), exit seeking (trying to open locked doors without consent), andinvasion/trespassing (invading the private environment of other people withoutconsent) [33].3. Purpose-based indicatorsMost of the studies about wandering behavior considerit as an aimless, directionless movement. As mentioned in Tabel 2.7, only a fewresearch support the theory of wandering as a goal-seeking behavior. Accordingto the latter theory, some wandering behaviors have a specific purpose; e.g., tosatisfy a need or to communicate a need. Accordingly, we classify those behaviorsas purpose-based clinical indicators. Most of these indicators have been identifiedby Algase et al. [33], and are described in Table 2.7.4. Performance-based indicators These are based on the performance of certaintasks that evaluate cognitive dysfunction and memory impairment. The Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), andCanadian Consortium on Neurodegeneration in Aging (CCNA) are the widely usedmeasures and protocols to evaluate cognitive dysfunction based on gait analy-sis [50, 61, 80, 81]. The score range of MMSE and MoCA is from 0 to 30. In thesetests, if the final score is lower than 24 in MMSE, or less than 20 in MoCA, the sub-
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ject will be regarded as cognitively impaired. However, the CCNA classifies the gaitdisturbance into different categories such as normal gait, ataxic gait, antalgic gait,cautious gait, frontal gait, hemiparetic gait, and many others.
While trajectory-based indicators are mostly used for diagnosis only, permission-based indicators, purpose-based indicators, and performance-based indicators are alsoused for ensuring the safety of the elderly suffering from NDD by monitoring his/her lo-comotion behavior and prompting caregivers accordingly.

2.5.3 Indicators of Parkinson’s Disease
As anticipated, PD severely affects the human motor system. Gait impairment such asbradykinesia is one of the most common disabling symptoms of PwPD. It refers to theslowness of movement observed in patients. Locomotor dysfunction, shortened stridelength, increased variability of stride, and shuffling gait are cardinal features of PD. There-fore, different indicators were proposed to characterize pathological gait in PD. Gait anal-ysis on thewalking behavior of PwPD is usually performedbymonitoring several low-levelparameters, mentioned in Table 2.4, over extended periods, including stride length, steplength, stride velocity, swing time. There are also a few common complex gait parametersand NLD features that are used to detect gait abnormality in PD, mentioned in Table 2.5and 2.6.Generally, gait disorders in PwPD are evaluated by observing the gait in a lab with thehelp of one ormore other clinical assessment scales. Several clinical indicators have beenintroduced in the literature and hence we categorized them as multi-task assessmentindicators, which are illustrated in Table 2.8. The Unified PD Rating Scale (UPDRS), theupdated version of UPDRS, and theMovement Disorder Society-sponsored version of theUPDRS (MDS-UPDRS) are the most common assessment scales to evaluate the severityof PD. They are focused on estimating the intensity of PD. UPDRS was formed in 1987 asa gold standard for observing the reaction to medications employed to reduce the signsof PD [83]. These tools are scored on a 0-4 rating scale, where higher scores denoterisen severity. Traditionally these scales include three sections used to estimate criticalareas of disability. These sections are based onmotor function, including getting up fromthe chair and postural stability. The Hoehn and Yahr Scale, formed in 1967 Melvin Yahrand Margaret Hoehn [84] is another most commonly used tool to evaluate Parkinson’ssymptoms and the level of disability established on motor function. It is ranked in stagesfrom 1 to 5 and describes complex patterns of advanced motor impairment.Advancement in Hoehn and Yahr stages is connected to motor decline, the decline inquality of life, and neuroimaging studies of dopaminergic loss. Table 2.8 summarizes theleading clinical indicators for PD related to locomotion analysis.
2.5.4 Indicators of Huntington’s Disease
The PwHD experience locomotion impairments that can lead to falls, reduce the qualityof ADL, and increase hospital admission and mortality. There are two main approaches
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Table 2.8: PD movement indicators.

Indicators
classification

Indicators Definition Ref.

Single-task
assessment Functional Reach Test(FRT)

Evaluates the stability of individuals by measuring the maximum dis-tance they can reach forward while standing in a fixed position. Thistest evaluates the stability of individuals by measuring the maximumdistance they can reach forward while standing in a fixed position.

[57]

Multi-task
assessment

UPDRS Employed as a tool to calculate the intensity of PD, formed as a goldstandard to observe the response of medications for Parkinson’s pa-tients. It is scored on a 0 − 4 rating scale and is established on a fewsegments such asmotor impairment, behavior, and daily life activities.

[24,85,86]

UDRS Used to estimate involuntary movements in PwPD due to medicationassumption. The scale has measurements for ’on-dyskinsesias’ (jerk-ing or turning movements) and ’off-dyskinesias’ (cramps).
[87]

MDS-UPDRS Revised version of UPDRS, formed in 2007, utilized to measure differ-ent aspects of PD, including non-motor and motor functions in ADLand motor complications.
[88]

Hoehn and Yahr Used to assess the progress of Parkinson’s advancement and the levelof disability, formed in 1967. [51]

FoG-Questionnaire(FoG-Q)
Employed tomeasure FoGadvancement for PwPD, FoG frequency, dis-orders in gait, and connection to clinical features associated with gaitand motor aspects

[89]

New FoG-Questionnaire(NFoG-Q)
Renowned tool to estimate the progression of FoG. It is a self-reportedquestionnaire with nine items to assess FoG [89]

to assessing mobility and balance impairments for HD diagnosis: semi-quantitative clini-cal observational tests, and laboratory-based assessment. The former approach is basedon observation by a clinical expert, and regards the assessment of locomotion impair-ments such as bradykinesia and decreased velocity, dynamic balance loss, and increasedbase of support [57]. The latter approach is expensive, since there is a need for extensivetraining, and it is not available in most clinical settings. Hence, there is increasing inter-est in innovative tools for supporting the diagnosis of HD by utilizing sensor instruments.Different clinical indicators have been proposed in the literature. We classify them intotwo categories: single-task assessment, and multi-task assessment indicators, which areillustrated in Table 2.9. Most of the gait indicators used for HD diagnosis are generalgait indicators (presented in Section 2.5.1). Here, we classified the locomotion indicatorswhich are combined and presented as clinical tests for recognizing anomalous gait re-lated to PwHD. Aside from those indicators, other research studies investigated the useof general gait indicators (including swing and stance intervals, stride interval time series,Gait velocity, TUG test, BBS, and RB tests) for HD diagnosis [31, 46, 53, 54].
1. Single-task assessment Single-task assessment indicators rely on the examinationof gait or stability during the execution of a given locomotion task. FRT evaluatesstability by measuring the maximum distance that an individual can reach forwardwhile standing. This measure proved to be highly correlated with HD severity [57].This indicator is performed during a single session and led by a therapist.
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Table 2.9: HD clinical indicators.

Indicators
classification

Indicators Definition Ref.

Single-task
assessment

FRT This test evaluates the stability of individuals bymeasuring themax-imum distance they can reach forward while standing in a fixed po-sition.
[57]

Performance
-oriented
assessment

Unified HD ratingscale (UHDRS)
It includes four components: Total Motor Score, Functional Assess-ment Scale, Total Functional Capacity scale, and IS. It evaluates mo-tor impairment considering a range of voluntary and involuntarymovements, including retropulsion pull test for postural stability,bradykinesia, coordination, balance, and gait.

[45, 47, 56,57,90–92]

HD Activities of DailyLiving (HD-ADL)
A scoring-based scale which is including adaptive functioning as-sessment based on ADL and family relationships and it is validatedfor PwHD.

[57]

2. Performance-oriented assessment Performance-oriented indicators evaluate dif-ferent abilities, including stability and locomotion, during the execution of complextasks. TheUHDRS considersmotor impairment due to different voluntary and invol-untarymovements, togetherwith the ability to independently execute ADL [47,56].The HD-ADL assesses balance, postural control, and adaptive functioning duringcertain tasks, which may be impaired by the abnormal perception of the body’sposition and movement in PwHD [45, 57].
2.6 Tools and Technologies
It is possible to use a wide range of low-cost sensors to track the position of users andtheir movements, detect cognitive problems, and ensure their safety. Therefore, all loco-motion analysis methods have as a first step the collecting of movement data by utilizingsensory instruments. In this section, we will explain the most common sensors, eitherwearable/unwearable, for healthcare solutions, and discuss their pros and cons regard-ing locomotion anomalies and NDD. Moreover, we refer to device-based technologies forthose tools that require the user to wear a device/tag, or even a device needs to be car-ried, while device-free technologies do not require users intervention andmostly they areembedded in objects/environment [93,94]. However, most of these devices could be in-vasive and obtrusive, especially the ones that need to be worn all the time by the user.Most importantly, indoor localization technologies raise some serious privacy risks, sincethe position of the user is always known and that is not very desirable for the user [95].
2.6.1 Device-based Localization Sensor Technologies
Device-based location identification consists of wearable/mobile devices, such aswatches, bands, pendants, earphones, collars, and so on, that help to locate the user. Themagnetic-based technology utilizes a mobile magnetic sensor, usually a mobile phone, tomeasure themagnetic fields in different positions of an indoor environment. These mea-surements are used to construct a map of the location, which represents a reference forthe user localization [96]. In mechanical-based devices, the user’s location is estimatedwith IMU. IMUuses a combination of accelerometers, gyroscopes, and evenmagnetome-
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ters to calculate a target’s current position from a known starting point, with previouslydetermined speed and direction [35, 77].Location-based Radio-Frequency Identification (RFID) utilizes electromagnetic fieldsto specify tags connected to things. An RFID system has a radio transponder, receiver,and transmitter. It transmits data to a reader device when triggered by an electromag-netic interrogation pulse from the reader device [97]. Ultra-Wide Band (UWB) sys-tems [36,62] transmit information over a large bandwidth and usemeasures such as Timeof Arrival (ToA) and Time Difference of Arrival (TDoA) to locate the distance between twoentities. The UWB systems provide high accuracy. The UWB signal can penetrate wallsand many other additional materials. Force sensing technologies are those sensors usedto detect physical pressure, squeezing, and weight. They could be simple resistors thatare embedded in the shoes and change their resistive value based on howmuch they arepressed, which are low cost [98] or mat-shaped step sensors to detect contact of the feeton the floor where a footswitch is installed next to the patient’s bed [30].Awristband, watch, or smartphone is incorporatedwith IMU technologies or differenttypes of sensors which are used as a combination of accelerometers, gyroscopes, touchscreens, and even magnetometers. Smartphone, as an example of IMU, makes remotepatient monitoring possible and give faster access to providers and care, and are widelyadopted for NDD monitoring [24, 35, 95, 99–102]. It also leads to improved communi-cation, fewer hospital visits, and reduced patient costs. Furthermore, these wearablewristbands and watches can be used in healthcare solutions because of their simple de-sign, common on-body placement, and connectivity with mobile phones [71, 77, 103].
2.6.2 Device-free Localization Sensor Technologies
Device-free technologies allow gathering the user’s position without needing him or herto carry any device. They are mainly based on motion detection and provide data in real-time [95,104]. There are different sensor technologies that can be used for this purpose,which are illustrated in Fig. 2.9 and briefly explained in the following.

Figure 2.9: Well-known device-free sensor technologies.
• Infrared-based technologies are utilized in Passive InfraRed (PIR) sensors, andActive InfraRed (AIR) sensors [34, 50, 75, 105]. The former measures infrared lightradiations from people since they emit heat energy in the form of radiation. Thelatter requires a transmitter to continuously send beams of infrared light, and a re-ceiver to detect when the beam stream gets interrupted by amobile object movingacross the scan area.
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• MicroElectro Mechanical Systems (MEMS) pressure sensors have a central role incontrolling the environment to detect falls and wandering patterns based on thenumber and pattern of activation on a gait mat or on the floor and measure footstrike [106, 107].• Ultrasonic transmitters emit an ultrasonic wave that gets reflected by objects in thescan area, and detect doppler shift at low audio frequencies, similarly tomicrowavedevices [108].• Computer vision-based sensors such as utilizing cameras or Visual Sensor Networksare promising in ambient sensing approaches for pervasive healthcare delivery. Byutilizing these kinds of technologies it is possible to compare sequential imagesfrom captured video streams, monitor 3D spaces, and detect movements whenthere are enough changes between the frames by scene analysis and proximitytechniques even by compact on-node image processing and computer vision algo-rithms [17, 50, 109, 110].• Radio signals and their reflections can be used to detect individuals’movement andposition over time. Furthermore, by utilizing microwave signals, the movement ofan object causes a phase shift in the emitted radiation, creating a signal at a lowfrequency. Thanks to this technology, ultra-low-power radio signals in tomographicmotion detectors [94], and wall-mounted sensors [36] can sense radio waves atfrequencies that penetrate most obstacles and walls, detecting the user’s positionover large areas.• Ambient light communication technologies are based on light sensors that receivethe signals of Light-Emitting Diode (LED) emitters with different flicker encodingso that they can be compared in order to measure direction, position and providelocalization [94].
2.6.3 Strengths and Weaknesses of Localization Technologies
All device-free and device-based sensor technologies, as shown in Table 2.10, have theirown strengths and weaknesses.Mechanical-based systems are cheap and effective. They have a high Mean Time Be-tween Failures and consume less power, but they are vulnerable to cumulative error.Acoustic systems can provide high accuracy even between rooms, but the signal de-tection should be low power not to be heard by a human ear and not to cause soundpollution. They are also sensitive to temperature changes and noise. Magnetic-basedsystems offer high accuracy, but they are sensitive to conductive and ferromagnetic ma-terials.Optical-based systems provide high accuracy and they are not affected by the multi-path effect, but they require line of sight, consume higher power, and range is affected byobstacles [94,95]. WiFi-based systems are relatively cheap and are widely available with-out needing complex hardware. Bluetooth is supported by most modern devices, suchas smartphones and smartwatches. It is low cost and has very low power consumption,but the signal is very attenuated from obstacles.
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UWB systems provide high accuracy. They are less sensitive to multipath effects andare immune to interference, but they are shorter range and their cost is high. RFID sys-tems consume low power, have a wide range, and are low cost, but require proximity andlocalization accuracy is low. TheMEMS pressure sensors are small in size, have lower costand power consumption, and provide high consistency.
In terms of accuracy, both mechanical-based systems and ultrasound systems offerhigher accuracy. The latter can reach accuracy from 0.01 to 1 meter. Magnetic-basedsystems provide a high accuracy on the order of a few centimeters. WiFi has an accuracybetween 1 and 5meters; Bluetooth, instead, from 2 to 5meters. A beacon can determinethree ranges of proximity: immediate (less than 50 cm); near (between 50 cm and 2 to

5meters); far (between 5meters and 30meters). The accuracy depends on interferencefrom physical obstacles. UWB offers an accuracy of up to 10 cm, while RFID accuracy isrelatively low and it is from 1 to 5meters.
In terms of obtrusiveness and privacy, ambient light systems, such as audible sound,could be annoying for the user, but they could be resolved to reuse an already availablelight infrastructure in order to be not intrusive or, in audible systems cases, using digitalwatermarking of audio signals. In computer vision sensors, although, they can do real-time monitoring there are still privacy concerns and scalability problems. Also, there isa difficulty for detail deduction or subtle changes in movement patterns and they areunable to detect physiological parameters which may lead to hindering their applicationfor ambient sensing frameworks [95].
Infrared sensors offer 1 to 2 meters accuracy, while LED implementation using fixedlamps reports an accuracy below 20 cm. Utilizing infrared technology has also some lim-itations such as moderate accuracy, it needs for more receivers to improve accuracy, andinterference of infraredwaves in presence of fluorescent light and sunlight, leading to thereduction of system usability. They also are invisible to the human eyes, instead, ultra-sound is undetectable to the human ear, so they are not intrusive at all [95]. Although,they are useful for movement detection still there is a general limitation which is lowaccuracy due to multipath effects and line of sight.
In conclusion, in practical applications, both device-based and device-free technolo-gies provide complementary information and successful systems are only feasible by in-tegrating the two sensing modalities.

2.7 Algorithms and Applications
In this section, we classified sensor-based algorithms and applications for recognizingNDD according to the locomotion indicators reported in Section 2.5. This classificationis presented in Fig. 2.10. We also illustrate ambient intelligence techniques to recognizechallenging behaviors.
2.7.1 Detection of Dementia
In order to categorize the existing solutions for recognizing symptoms of dementia, wepropose the classification shown in Fig. 2.10. In the following, we present themost promi-
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Figure 2.10: The proposed framework for dementia detection approaches.
nent methods according to our classification, namely Clinical assessment and ML-basedassessment. Those methods are summarized in Table 2.11.
Clinical Assessment
In this group of approaches, detection is based on prior knowledge, results of clinicaltests, and statistical analysis of locomotion data by the supervision of operators andmed-ical experts. Therefore, these kinds of approaches strongly rely on human resources andexperts to evaluate the cognitive status of an individual. We further classify the clin-ical assessment methods into low-level motion indicator assessment and task-orientedassessment methods, both of which rely on general gait indicators. The former meth-ods consider specific low-level motion indicators, that in some cases allow distinguishingamong the different dementia disease sub-types, such as AD and dementia with Lewybodies [38, 48]. Hence, the choice of specific indicators has an important impact on thediagnosis. In addition to motion indicators, the latter methods also consider executiveand memory functions, adopting an approach named dual tasking.In both approaches, the patient evaluation is supervised by clinicians and executedduring predefined, short, structured testing sessions. The fact that tests are not per-formed in naturalistic conditions can obviously have an impact on the effectiveness ofthe evaluation [44,48].

1. Low-level motion indicator assessmentThe evaluation of different gait features, including simple and complex gait param-eters, is commonly considered an important part of dementia assessment, andtheir locomotion patterns are considered good predictors of diverse adverse healthoutcomes and mobility “bio-markers” [54]. Different studies have shown that bysensor-based gait cycle analysis of PwD vs cognitively healthy seniors, it is possibleto find a correlation between variability in different gait parameters and cognitivedecline progression [44,48]. As an example, the experiments conducted by Kearns
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(a) Clinical assessment approaches overview.

(b) ML-based assessment overview.Figure 2.11: Detection of Dementia approaches.
et.al revealed that there is a correlation between higher tortuosity of the path withlower MMSE scores which is assessed by clinicians [36].2. Task-oriented assessmentTask-oriented methods are based on single-task and dual-task (sometimes calledTalking While Walking [61]) walking assessment, which considers the concurrentperformance of a motor-motor or motor-cognitive task. The evaluation relies onmeasuring the interference of the different tasks with each other. Indeed, whilethe individuals divide their attention to multiple tasks, they have difficulty regu-lating the stride-to-stride variations of locomotion, and this difficulty is strongerfor cognitively impaired people [43, 49]. Impairment in executive functions (e.g.,verbal fluency [55], visual-spatial skills [42], counting aloud backward from 100 tozero [55]) is one of the earliest indicators of cognitive decline. Different experi-ments have proved that PwD has a more variable within-bout and irregular trunk
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acceleration pattern, higher step duration and gait complexity, and less variableacross-bout walking patterns on single and dual-task walking (e.g., words enumer-ation) compared to healthy persons [38, 39, 42]. The execution and evaluation oftask-oriented assessmentmethods aremore complex than the oneof low-levelmo-tion indicator methods but allow the recognition of early-stage cognitive decline.
ML-based Assessment
Another group of approaches relies on ML algorithms to distinguish between cognitivelyhealthy subjects and PwD based on the observation of movement and behavior. Com-pared to the clinical assessment approach, ML-based assessment enables the evaluationof the cognitive status in more naturalistic settings. Indeed, the observation is usuallycarried out in the inhabitant’s smart-home or in instrumented retirement homes. More-over, ML-based assessment can be carried out unobtrusively for long time periods, andin general requires less clinical effort compared to clinical assessment methods, enablingboth long-term and short-term monitoring [34].As can be seen in Fig. 2.10, we classified the different ML-based methods into threecategories: pattern-based methods, threshold-based methods, and feature-based meth-ods. Pattern-based methods consider movement as a temporal sequence of locations,which describe the trajectories walked by an individual, and directly process that se-quence to provide a hypothesis of diagnosis. Threshold-based methods use thresholdsinferred from the data to detect dementia based on locomotion signals collected by am-bient orwearable sensors. Finally, feature-basedmethods applyML algorithms to featurevectors extracted from locomotion data for recognizing dementia.The three classes are depicted in Fig. 2.11b. The underlying clinical indicators used bythese methods are reported in Section 2.5.

1. Pattern-based methods These methods process trajectory data to recognize ab-normal patterns that may indicate dementia according to specific indicators, suchas the Martino-Saltzman model [17]. Since ambulation episodes are composed oflocomotion and non-locomotion phases, a key step of thesemethods is to segmentlocomotion traces to recognize significant trajectories.A wrong segmentation of trajectories may disrupt the effectiveness of the patternrecognition algorithms. Moreover, the execution of ADL, especially in indoor en-vironments, may impact the individual’s movements, increasing the complexity oftrajectories and incorrect detection [34].Some pattern-based methods are non-supervised. For example, in [34], Khoda-bandehloo and Riboni detect loops (i.e., pacing and lapping episodes) building abuffer on the trajectory segments and considering the percentage of intersectionamong the buffered segments composing the same trajectory. Other works rep-resent the trajectory as a string of locations and detect abnormal patterns usingthe longest repeated sub-string algorithm [75]. Other authors propose the use ofsupervised ML algorithms to recognize abnormal trajectories. Zolfaghari et al. [16]represent trajectories as colored pictures in order to encode features such as speed
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and sharp points and use a DMLP for determining whether the trajectory is walkedby a PwD, by a person with MCI, or by a cognitively healthy senior. Since pattern-based methods rely on data acquired in naturalistic environments, they are proneto misclassification errors due to noise in sensor data acquisition and interferenceof external factors (e.g., activities, interaction with other people, obstacles in thehome). Hence, these approaches tend to be effective mostly for long-term moni-toring [34].Other methods for increasing the effectiveness of pattern-based methods includethe application of low-pass filters to location data for noise reduction especially fordata collected from inertial sensors, or the addition of extra features such as statis-tics extracted from trajectory data [34, 75], activities and abnormal behaviors [1].Furthermore, Chaudhary et al. in [113] tried to implement an early dementia de-tection system in an indoor environment using travel patterns of the inhabitantand Recurrent Neural Network (RNN), which automatically extracts the high-levelfeatures.2. Threshold-based methodsThis category of methods detects gait phases by mining thresholds from the datafor segmenting events, recognizing gait cycles, and locomotion phases. Meng etal. used accelerometer data and adaptive thresholds to recognize the gait phasesof PwD and cognitively healthy seniors [111]. In [76] the authors presented a so-lution for detecting locomotion anomalies in dementia patients using a wearableOpal monitor which is including an accelerometer, gyroscope, and magnetome-ter. In order to recognize direct, pacing, lapping, and random movement patterns,they considered translational acceleration threshold to detect walk events, thenthey tracked themovement orientation until the algorithm detects the subject hadmade a complete stop. The classification is done by considering the different rangesof orientation degrees for different locomotion patterns. Wang et al. [65] proposeda threshold-based method to automatize the TUG test. In that work, event seg-mentation is based on thresholds to identify peaks and valleys during forward mo-tion, swing points, and stance-point. Experimental results showed that PwD needmore time for TUG test tasks such as sitting and standing up, with respect to cog-nitively healthy subjects. Of course, in such methods, a key factor is the definitionof the thresholds. Since different subjects may walk with high variation in cadenceand step length, those works need adaptive thresholds for different classes of sub-jects, and specific model calibration for the different individuals. An advantage ofthreshold-based approaches is the low computational complexity and feasibility forreal-time applications at the edge.3. Feature-based methods As explained before, dementia is a complex impairmentthat impacts several domains. Hence, it is natural to consider different featuresfor its detection. Feature-based methods rely on feature extraction techniques torepresent the different characteristics of locomotion data, and on supervised MLalgorithms to classify the feature vectors according to the cognitive status of thesubject. In feature-based methods, locomotion features used for recognizing de-
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mentia include kinematics characteristics of postural control such as displacementon the transverse plane and dispersion radius [80], accelerometer-based gait pa-rameters (e.g., walking speed, step frequency, compensation movements, accel-eration variance) [60], gait symmetry and regularity [61], and other gait variablesincluding step counts, step duration, speed, accelerometer and gyroscope statisti-cal measures [112].Toosizadeh et al. [43] extracted different features from accelerometers worn bypatients on the upper arm, on the wrist, and on the shins, during the execu-tion of dual-tasking. Those features considered both upper-extremity functionparameters (e.g., elbow angular velocity, acceleration) and gait parameters (e.g.,speed, time interval, distance). Analysis of variance tests showed a significantcorrelation between upper-extremity features acquired during the dual task andthe MoCA cognitive assessment result of the patient. Kumar et al. used trendanalysis on different navigational features, including speed, path-efficiency, angle-turn, and ambulation-fraction, to distinguish PwD from cognitively healthy se-niors considering UWB location data acquired in an assisted living facility [62].Together with feature extraction, some of these methods apply feature selectiontechniques to increase recognition rates, reduce computational effort, and avoidoverfitting [60,61, 112].Kondragunta and Hirtz in [50] used data acquired fromdepth cameras during singleand dual-tasking, and extracted several features including step length, step time,stride time, and cadence, by applying 3D human pose estimation techniques. Theyproposed to use dynamic timewarping on those features to recognize PwD,MCI in-dividuals, and cognitively healthy seniors. Compared to wearable sensor systems,techniques based on cameras are less obtrusive, but are prone to detection errorsin low-light conditions, and are generally more computationally expensive. More-over, the use of cameras poses serious privacy issues, especially when they aredeployed in private homes [114]. A shortcoming of feature-based methods is thatthe accuracy of recognition strongly depends on feature engineering. Moreover,being based on supervised learning, those methods need large volumes of trainingdata that are expensive to capture in real-world settings.
2.7.2 Detection of Parkinson’s Disease
As explained in Section 2.5.3, our human motor system is affected by PD. The most sig-nificant indicators of PD are locomotor dysfunction, shortened stride length, increasedvariability of stride, and shuffling gait. Therefore, it is essential to identify these parame-ters for diagnosing PD. Generally, gait disorders of PD are assessed by UPDRS. Gait freez-ing deteriorates the quality of life by reducing mobility and increasing falls. Patients withfreezing episodes also have problems with a lack of steady gait. Researchers have recog-nized the gait disorders of PD based on wearable sensors [66,107] placed in the patient’sback or wearable devices such as smart watches [103]. Several studies were also con-ducted to measure Spatio-temporal gait parameters using pressure-sensitive mats such
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as GAITRite [117]. Emerging wristbands or smartwatches integrated with IMU are pledg-ing into wearable healthcare solutions. Experiments also showed that Upper Body (UB)variables need to be computed together with the consideration of Spatio-temporal char-acteristics to gain a more holistic inspection of PD for use in a clinical or in the nonclinicalenvironment [103,117]. Wearable inertial sensors were used to monitor and measure thehead and pelvis accelerations. Pearson’s product-moment correlations were computedfrom UB accelerations, including magnitude, smoothness, regularity, symmetry, attenua-tion, and spatiotemporal characteristics such as postural control [117]. In order to catego-rize the existing solutions for recognizing symptoms of PD, we propose the classificationshown in Fig. 2.12. Table 2.12 summarizes the characteristics of existing techniques.

Figure 2.12: PD assessment methods classification.
Clinical Assessment Methods

In the clinical assessment method, PD is detected based on prior knowledge, results ofclinical tests, and statistical analysis of locomotion data by the supervision of medicalexperts. Hence, these approaches intensely depend on expert evaluation to assess anindividual’s cognitive status. Patient evaluation is supervised by clinicians and executedduring predefined, short, structured testing sessions. Generally, the severity of PD ismea-sured with UPDRS [132] score and the Hoehn and Yahr stage [133], NFoG-Q [134]. Clinicalevaluation can be done based on the performance of a simplemotor task such as walkinga short distance and standing up out of the chair and the standing or walking turns [118].The short stride length characteristic of Parkinsonian gait can be noticed from long-termchanges in stride length. Locomotor impairment is one of the leading characteristics ofPD. On the other hand, many other symptoms of PD such as rigidity, difficulty swallow-ing, upper-body tremor, and dyskinesias, cannot be noticed with the stride monitor [115].Clinical evaluation was conducted employing the leg dyskinesia item of the UPDRS [87].Generally, dyskinesias in PwPD are associatedwithmotor dysfunctions, including gait andbalance deficits.
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ML-based Assessment Methods
Currently, PD is not curable. Early detection of PD symptoms is necessary to enhancethe patient’s treatment. Gait analysis is an essential step for the PD diagnosis, as gaitabnormalities have been reported to appear at the earlier stages. Since changes in gaitare among the foremost symptoms of this disease, a gait classifier would be beneficialfor physicians. Therefore, ML assessment methods can classify abnormal and normalgait. There are different approaches available to detect PD using ML, here we dividedMLassessment methods into three categories: Feature-based assessment methods, Imageprocessing-based assessment methods, and Pattern-based assessment methods.

1. Feature-based assessment methods The diagnosis of PD can be challenging inits earlier; Parkinsonian gait is characterized by small steps, a slower gait cycle, asmaller swing phase, and a lengthier stance phase. Physicians evaluate these fea-tures in their diagnosis process to confirm the presence of PD. Gait evaluation canbe difficult since it can be influenced by several aspects such as age and health con-dition. Despite the considerable interest in Parkinsonian gait analysis, there is noaccurate tool to help physicianswith gait evaluation. To detect the characteristics ofgait, feature extraction methods, and ML have been used. However, gait is a phys-iological characteristic that differs for each person according to age, health, andother intrinsic factors. Therefore, manual preprocessing and feature extraction willalways be limited in their capacity. Generally, a feature-based assessment methodis used to extract significant features that will help to diagnose PD. Various featuressuch as step distance, stride length, stride velocity, stance and swing phases, heeland normalized heel forces, swing timeof Parkinsonian patients, andwalking speedwere extracted from the data collected from thewearable sensors and after that ex-amined usingML-based algorithm to select themost influential features thatwouldhelp to differentiate between the two groups: PwPD and healthy people. Gener-ally, supervised learning methods such as LDA [120], SVM [51, 120–122], NB classi-fier [51, 121, 123], RF [121, 123], MLP [123], DT [51], kNN [123], Deep 1D-Convnet [124]are used for distinguishing between PwPD and healthy cognitive subjects. Further-more, recently novel machine and DL-based multi-modal technologies are used toidentify the severity of PwPD actions by analyzing speech, and movement patternsand evaluation of motor capabilities [100, 125]. The rationale of this approach isthat they may effectively capture discriminative features from time-series data orother IMU sensors collected data without the need for sophisticated feature engi-neering efforts.2. Imageprocessing-based assessmentmethods Imageprocessing technologies havebeen employed widely for PD diagnosis. PwPD show large gait variability andslower walking speeds than normal people. Cho et al. [126] introduced a gait anal-ysis system based on a computer vision-based technique for the detection of gaitpatterns of PD. They captured a few videos of both normal subjects and PwPD.They processed the images from the videos to characterize the subjects. PCA andLDA were employed to extract features and the minimum distance classifier was
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used as the classifier. Seven PwPD and seven healthy people from Buddhist Tzu ChiGeneral Hospital in Taiwan participated in this study. It used the image sequencesof human silhouettes during walking and extracted the intrinsic features by LDA.It can identify healthy people and PwPD by their gaits with high reliability and it isconsidered a promising aid in the diagnosis of PD. Khan et al. [128] also presenteda computer-vision-based marker-free method to detect abnormal gait in PwPD. Inthis study, subjects are videotaped with several gait cycles for the gait analysis ofthe PwPD. To develop a silhouette, the subject’s body is segmented through a colorsegmentation process. The skeleton is formed by computing the medial points ofeach body segment. Themotion cues such as the cyclic motion of legs and the pos-ture lean of the subject during the gait are extracted from the skeleton. Then thecomparison study compared these two cues with the probable perfect gait patternto assess the gait impairment. Generally, a computer vision-based technique is in-troduced for gait analysis to classify normal or PD’s gaits using a camera. In [127],a masked R-CNN is applied for extracting human silhouettes from video framesbased on recorded videos of normal gaits. After that, the gait energy images areconstructed based on extracted human silhouettes as features, which are appliedto develop an SVM model for classifying healthy and PD gaits in video clips.3. Pattern-based assessment methods These approaches process trajectory data torecognize abnormal patterns identifying PD. Walking is a part of human move-ment monitored by the human brain. Gait deficits and abnormal walking patternsmay appear if the brain fails to control this movement. Walking patterns can bemonitored continuously and remotely over time by wearable sensors. The bag-of-words approach [130] was introduced where each individual’s walking time seriesis defined as a bag of words. The ratio of the words together with ML techniquessuch as linear SVM, DT, RF, and kNN were employed to distinguish between pa-tients with PD and healthy individuals. Although the bag-of-words method is usedto distinguish between PD and healthy age-matched individuals, this method isalso applicable to other health conditions. Each individual’s walking time seriesis converted into signal subsequences using an overlapping sliding window. Then,each subsequence is characterized using a few statistical descriptors and similarsubsequences are assigned the same word. Therefore, each person’s data is con-verted into a bag of words and then evaluated using accelerometers’ data collectedfrom the ankles. The proposed approach illustrates a vital step towards providinghealthcare through continuous monitoring and advanced analysis of movementpatterns [130]. Another method was introduced to diagnose PD based on Shifted1D-LBP using ML algorithm [129]. The gaitpdb dataset was used for the evaluationtask, consisting of three gait datasets based on gait signals from different circum-stances. Statistical features were extracted from histograms of gait signals changedby Shifted 1D-LBP. ML methods such as NB, LR, and MLP, were employed to extractand classify features that can be successfully used in PD detection from gait [129].This approachmay also be utilized to detect other symptoms. It can also be appliedin any real-time application by detecting local changes in a signal.
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Figure 2.13: HD assessment methods classification.
Nevertheless, it is hard to define significant features or patterns that can help todiagnose PD. Moreover, ML-based assessment methods require large volumes oftraining data to employ in the classification task.

2.7.3 Detection of Huntington’s Disease
As explained in Section 2.5.4, HD determines impairment in motor control characterizedby chorea and dystonia. Several studies have shown that HD symptoms based on locomo-tion are observable in pre-manifest individuals well before the actual diagnosis [45, 56].Therefore, recognizing temporal changes in gait parameters is important for early diag-nosis and to help delay the disease progression. Different studies used pressure-sensitivewalkway instruments capable of recording Spatio-temporal gait data with high preci-sion [45,46,56,57,91]. Otherworks are basedonwearable sensors, such as force-sensitiveswitches embedded in shoes [53,71], accelerometer and gyroscope positioned in a waist-belt [54], or IMU attached to the shank [92]. Experimental results have shown that PwHDexperience a decrease in velocity, stride length, and cadence, and an increase in parame-ters related to dynamic balance impairment, including increased time in double supportand gait asymmetry [91]. Furthermore, the ability to preserve steady locomotion, i.e., lowstride-to-stride variability of gait cycle interval and its’ sub-phases, would be reduced inpersons with NDD [31]. Therefore abnormal timing of steps in NDD leads to a distractionin gait and locomotor activity generation and fortunately these categories of clinical testsare highly correlated with functional limitation and quantitative gait measures related togait speed [31, 57]

Since there are different approaches to detecting HD locomotion anomalies, we clas-sified the techniques into two categories: temporal assessment methods, and hybrid as-sessment methods, which are illustrated in Fig. 2.13. The main characteristics of theseapproaches are summarized in Table 2.13.
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Table 2.13: Classification of HD detection methods.

Approaches Main Idea Characteristics Challenges Algorithms

Temporal
assessment
methods

Use IMU mounted onthe waist or embeddedin shoes to monitor tem-poral gait parameterssuch as stride interval

-Applicable indoors andoutdoors-Data can be acquired innaturalistic conditions-Minimally obtrusive

-Limited to certain locomo-tion data-External events and noisecan impact the recognitionperformance-Need for extensive train-ing datasets acquired in dif-ferent conditions

Statistical analy-sis [71], Gait eventdetection meth-ods [54], Thresholddependent symbolicentropy [53]

Hybrid
assessment
methods

Use wearable sensorsor sensorized pressure-sensitive walkways toinvestigate a differentaspect of mobility andbalance by consideringdifferent types of clinicalgait indicators.

-Accurate acquisition ofmotor data alongsideclinical walking measures.-The use of different typesof indicators increasesaccuracy.-Good correlation withfluctuation limitation andquantitative gait measuresand gait patterns, dynamicbalance, and fall risk.

-Results may reflect gen-eral gait deteriorationrather than HD specifically.-Some of them need spe-cific laboratory equipment

Intraclass CorrelationCoefficient and Coeffi-cient of Variation [46],Hidden MarkovModels (HMM) [92],Statistical analy-sis [45, 47, 56, 57, 91],Radial Basis Func-tion neural net-works [31], Longshort-term memorynetwork [135]

Temporal Assessment Methods
These methods use different strategies in order to examine gait cycles and their corre-lations with HD by the analysis of complexity and uncertainty measures. In particular,the stride interval in human locomotion reflects the rhythm of the locomotor system andits analysis provides a non-invasive approach for quantifying gait dynamics [53]. Sincethere is a correlation between fluctuation in stride interval and HD, stride analysis al-lows the detection of locomotion impairment in PwHD at an early stage. Furthermore,the correlation degree in this indicator is inversely associated with the degree of func-tional impairments in PwHD [71]. Different research studies were able to differentiatePwHD from cognitively healthy subjects relying on accelerometer-based gait event de-tection [54] and Shannon entropy [53]. However, these temporal assessment methodsneed large volumes of training data acquired in different conditions, and noise or dataperturbation due to external events can affect their accuracy and reliability.
Hybrid Assessment Methods
In order to detect locomotion changes and quantify motor symptoms of HD in pre-manifest and early stages, it is useful to consider further markers in addition to tempo-ral indicators. Hybrid assessment methods investigate the progression of gait disordersthrough the different HD stages according to a heterogeneous set of locomotion indi-cators. In particular, the estimation of gait events related to stance and swing [92], aswell as gait cycle variability, proved to be effective in recognizing early and longitudi-nal gait changes in PwHD [45]. Other works consider gait indicators to measure balanceand symmetry in locomotion, which are correlated to walking impairment progression inPwD [45,57]. Thosemethods apply quantitative phase plot analysis on the sinusoidal con-secutive waveforms produced by trunk movement, and statistical assessment methods.However, those systems are subject to possible recognition errors due to gait deteriora-
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tion not specifically related to HD. The use of particular instruments such as sensorizedpressure-based pathways in controlled environments is useful to reduce noise in locomo-tion data acquisition and to reduce the impact of external factors. Those methods do notsupport the data acquisition in fully naturalistic conditions, and their cost makes themunsuitable for continuous and large-scale deployments [57].
2.7.4 Challenging Behavior Recognition
In people who suffer from NDD, disorientation, and wandering behaviors can cause po-tential harm such as accidents, injuries, and sometimes death, which can occur duringeither the day or night [136]. Therefore, these kinds of behaviors are the main concernfor care personnel, as patients require continuous surveillance. Continuous monitoringof patients with NDD is a stressful task, which leads to confinement feelings and immensestress for caregivers. However, it is possible to use AmI and assistive technologies to rec-ognize that challenging behaviors which may lead to accidents and injuries in patientswith neurocognitive diseases [30, 136]. Generally, when a challenging behavior is recog-nized, those systems promptly inform the caregiver by issuing an alert or automaticallytriggering procedures to avoid the occurrence of accidents. For instance, the systemmayautomatically lock doors or use wireless technologies to activate an alarm through theemission of sound or light.In order to perform accurate motion analysis, those systems use techniques similarto the ones used to recognize symptoms of neurocognitive diseases [105, 136]. Humanlocomotion data in an indoor environment can be collected by using both device-freeand device-based sensing modalities, while systems use in outdoor environments relyon mobile devices. Advanced systems use sensor data fusion methods to improve theaccuracy and significance of acquired data. While Single-modalitymethods consist of oneor multiple sensors of the same technology,Multi-modality methods use different kindsof sensors to acquire multi-modal data. In the following, we present existing challengingbehavior detection approaches according to the above-mentioned categories. The mainmethods are summarized in Table 2.14.1. Single-modality methods: In different works, including [52, 136], the authors useGPS data to detect wandering behaviors, while other works, including [137], useaccelerometers for the same objective. Regarding data analysis, the techniquesproposed in [52,136] rely on clustering, while in [52] Lin et al. detect loop-like loco-motion traces based on the Martino-Saltzman model [17]. In particular, the workpresented in [136] is specifically based on detecting wandering by means of itera-tive clustering followed by ML. Other approaches monitor patients with cognitiveimpairment to alert caregivers when they leave the bed or exit the door. In [78]the authors use cameras and background subtraction technologies to model thescene background, together with HMM to automatically detect elopements andalert caregivers. A tool, named AssisT-In, for indoor wayfinding and wandering de-tection is presented in [82]. It is based on tagging the environment with QR codes,that need to be scanned by the user through a smartphone so that he/she canbe located and can receive indications to get to the destination. That method is
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Table 2.14: Challenging behavior recognition.

Approaches clas-
sification

Diseases Behaviors Applications
environment

Experiments
environment

Sensor
technologies

Algorithms

Single-
modality

Dementia (+Parkinson) Gait dis-turbance,Wandering,Ambulatorygait behavior

Indoor/ Out-door Lab / real-world Computer vision[78], GPS [52, 136],accelerome-ter [137], QRcodes [82]

Statistical analysis[82], Density-BasedSpatialClustering of Applica-tionswith Noise [136], Loopdetection methodcalled Θ_WD [52],Analytical algorithmfor analyzing acceler-ation data + K-meansclustering to classifythe gait variables[137], HMM [78]

Multi-
modality

Dementia (+Parkinson) Wandering,Disorienta-tion, Limping,Fall detection,Agitation,Localization

Indoor/ Out-door/ General Lab / real-world/ Both GPS [17, 63, 138],accelerometer[63, 105, 138], Com-puter vision [17],accelerometer,metal plate, In-frared [105],electronic patch,RFID [17], Actil-lume, StepWatch,Step Sensor, andTriTrac-R3D [77],Optical and videocameras [139]

Proposed algo-rithm [63], Differ-ent ML methods[138], Markov chainmodel [105], Pedes-trian Dead Reckoning,Statistical analy-sis [17, 77], Multistagespatial-temporalgraph convolutionalnetwork [139]

simple, inexpensive, and easily deployable. However, the used data localizationtechnology is not well suited for people with cognitive impairment, since QR codesmust be frequently scanned. An obvious advantage of single-modality approachesis simplicity; however, noise and heterogeneous environmental conditions can af-fect the robustness, feasibility, and stability of those approaches.2. Multi-modality methods:With respect to wandering detection, the recognition ofmore complex challenging behaviors such as persistent, shadowing, pottering, orrepetitive behaviors, poses additional issues. Those behaviors are not based onlyon the patient’s trajectory, but also consider environmental conditions, such asthe presence or movement of other people. For this reason, some systems, includ-ing [17], integrate different technologies such as RFID and GPS. In [105] Homdee etal. use door sensors and wearable devices to detect doorway crossing events andlocation tracking errors with walking directions by a Markov model method, andprovide correct location information using the most likelihood method. In anotherwork [63] the authors use a smartwatch provided with GPS and an accelerometerto detect wandering and to alert the patient’s relatives when needed. Moreover,the development of novel treatments for objectively assessing FoG, which is a de-bilitating gait impairment in PD, is severely limited by its difficulty. Therefore Filt-jens et al. [139] used a Vicon 3D motion analysis system, which is a combinationof optical and video cameras for FoG assessment. They have formulated it as an
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action segmentation problem where temporal models are tasked to recognize andtemporally localize the FoG segments. It applies spatial graph convolutions on thehuman skeleton graph at each time step that connects the same markers acrossconsecutive time steps.
2.8 Conclusion
This chapter introduced a detailed overview of different technologies and AI methodsfor detecting symptoms of NDD based on locomotion sensor data. We investigated 128peer-reviewed articles discussing the detection of dementia (37%), HD (11%), and PD(44%) as well as some discussing both dementia and PD (4%) and PD and HD (4%). Theexperimental results presented in these articles have shown that these new technologiesmay provide adequate support for practitioners and caregivers to improve diagnosis andsimplify patient management, making the detection of NDD symptoms more accessibleand beneficial for the research community and for the practice. In the following chap-ters, we will analyze locomotion traces acquired from a real-world dataset by proposinga novel methodology to detect cognitive impairment symptoms employing thorough ex-periments.



Chapter 3

Towards Vision-based Analysis of Indoor
Trajectories

I n the previous chapter, we thoroughly investigated the most prominent methodswhich have been proposed to exploit IoT data and AI techniques employing loco-motion data to support the diagnosis of cognitive decline [12, 140, 141]. In that case, theanalysis of position traces can enable us to detect the symptoms of cognitive decline ear-lier. In this chapter, we present a preliminary investigation of the challenging issue of rec-ognizing symptoms of cognitive decline based solely on the analysis of indoor movementpatterns which relies on trajectory segmentation, visual feature extraction from trajec-tory segments, and vision-based DL on the edge [14]. In order to avoid privacy issues, werely on indoor localization technologies without the use of cameras. We have carried outexperimentswith a dataset of real-world trajectories acquired in a smart-home frombothcognitively healthy persons and PwD. Initial results show that our approach is promising,and may enable effective cognitive assessment in the long term.
3.1 Introduction
A promising direction in tracking the movements of the elderly through unobtrusive po-sitioning technologies is based on analyzing location traces according to clinical modelsof wandering behaviors [17, 142]. Indoor wandering recognition is challenging becausemovements are constrained by the ambient shape, and are impacted by the executionof ADL. Lin et al. proposed a method to identify repetitive locomotion episodes in thehome according to well-known models of wandering [143]. Khodabandehloo and Riboniproposed a collaborative mining approach to assess the cognitive status of smart-homeinhabitants based on statistical features extracted from their trajectories [144]. Kearns etal. proposed the use of accurate localization technologies deployed in a common indoorliving space of a retirement homeandmeasured the tortuosity of trajectories to recognizewandering episodes [145]. As mentioned before, in several studies on the same setup,the authors found out that other features, including speed, path-efficiency, and angle-turn, were predictive of dementia [62]. Other studies such as Dodge et al. work [146]
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showed that the relation between walking velocity and activity patterns was significantlycorrelated to the cognitive status of the inhabitant.
Indeed, due to the abundance of Spatio-temporal information encoded bymovementtraces, and the presence of noise introduced by positioning technologies, feature engi-neering from trajectory data is not a trivial task. For this reason, a recent research direc-tion consists of encoding trajectories into images and using DNNs for image classification.The rationale of this approach is that trajectory images may effectively capture discrimi-native features without the need for sophisticated feature engineering efforts.
Kieu et al. used trajectories in the form of 3D images containing geographical fea-tures and driving behavior features to predict the identity of drivers [147]. They appliedunsupervised auto-encoder neural networks to avoid over-fitting and supervised neuralnetworks to identify drivers. Endo et al. used DNNs as an automatic feature extractionmethod, along with handcrafted features, for estimating users’ transportation modesfrom images of their travel trajectories [148]. Transportation modes were recognized us-ing supervised learningmethods. In this chapter, we investigate the application of image-based trajectory classification to the domain of cognitive assessment. To the best of ourknowledge, only one previous work adopted a similar work in the same domain. Go-choo et al. in [3] represent trajectories in a 2-dimensional grid, in which one dimension istime, and the other is (mono-dimensional) space. They map each 3-dimensional Spatio-temporal trajectory point into the 2-dimensional grid. The corresponding binary image isthen classified using convolutional DNNs to recognize different patterns of wandering be-havior. However, as a consequence of the mapping, the spatial information is disrupted,since metric operations and topological relationships are not preserved.
In our work, we pursue a different direction, retaining the spatial information in tra-jectory images, and enriching themwith additional visual features that may indicate cog-nitive decline according to clinicalmodels of spatial disorientation [15]. Ourmethod relieson specific techniques for trajectory segmentation, visual feature extraction, and DNN-based trajectory image classification. For the sake of privacy, all these operations are exe-cuted on the edge, within the inhabitant smart-home system. However, it is not the bestapproach to assure privacy, and the images themselves reveal details about the layoutof homes and potentially violate privacy. Therefore, it will be discussed in detail in Chap-ter 6. The DNN is trained on the cloud by a trusted third party based on anonymous data,and the trained model is fed to individual smart-homes.

3.2 System Overview
In this chapter, we assume a smart-home infrastructure capable of continuouslymonitor-ing the inhabitant’s position at a fine-grained level. Regarding the use of single-residentsmart-home infrastructure, our system may extract position information not only fromlocalization infrastructures but also based on the inhabitant’s interaction with sensorizedobjects and appliances.

Fig. 3.1 illustrates our system architecture. A sensor-based infrastructure is in chargeof gathering data about the inhabitant’s position (e.g., through PIR sensors), and about
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Figure 3.1: The proposed system overview.
his/her interaction with the environment. At each firing of a sensor, the infrastructuresends a sensor record r to the positioning system of the home:

r = ⟨t, s_id, v⟩,
where t is the timestamp of sensor firing, s_id is the sensor’s unique identifier, and v isthe sensor value. For instance, the sensor record:

r = ⟨2020-04-05 16:46:18.323, sens5371, open⟩,
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states that the sensor identified as ‘sens5371’ (which is a sensor attached to the fridgedoor) fired a value ‘open’ at timestamp ‘2020-04-05 16:46:18.323’. A sensor positiontable stores the relative position of each sensor in the home. A record of sensor positionis a triple:
⟨s_id, (x, y)⟩,

where s_id is the sensor’s identifier, and (x, y) are the relative coordinates of that sensorin the home. When the positioning system receives a sensor record, it joins the recordwith the position table and projects the coordinates and timestamp values, to obtain a
position record p:

p = ⟨x, y, t⟩,
The trajectory segmentation module is in charge of partitioning the temporal streamof position records into trajectory segments, named trajectories for short in the follow-ing. Trajectories are temporally contiguous sequences of positions of a given length ls;for instance, ls may be set to 50m. Each trajectory ti is passed to the visual feature ex-traction module, which outputs an image imgi representing the walked trajectory andhighlighting additional visual features, such as the points of trajectory intersection.The trajectory images classification module is in charge of classifying each trajectoryas either normal or abnormal. To this aim, it uses a DL classifier trained on the cloudusing a set of anonymous trajectories labeled according to the cognitive health status ofthe individual: PwD are assumed to walk abnormal trajectories, while cognitively healthypersons are assumed to walk normal ones.

3.3 Trajectory Feature Extraction
In this section, we explain how we segmented the history P = ⟨p1, . . . , pn⟩ of the per-son’s position records and how we extracted visual features.In real-world conditions, noise reduction is an inevitable step in preparing the data.For this reason, we applied two noise reduction methods to the position history P :

• We set a threshold Tv for the maximum possible velocity v of a person mov-ing into the home. If the speed between any two consecutive position records
⟨pi, pi+1⟩ ∈ P is higher than Tv, the record pi+1 is considered a noisy reading;hence, it is deleted from P . For the sake of this work, we set Tv to 15m/s.

• By considering the arrangement of sensors in the test-bed of our experiments, themaximum distance between any two adjacent sensors is below 3m. By carefullyanalyzing the person’s trajectories, we observed that some paths spatially deviatedfrom the expected trajectory due to abrupt movements between non-contiguoussensors. In this regard, if the distance between the positions of two consecutiverecords ⟨pi, pi+1⟩ ∈ P exceeds a threshold Td (which is set to 5m), we remove
pi+1 from P .

After noise removal, the trajectory segmentation module is in charge of identifyingtrajectories by considering spatial information. To this aim, the position history P is par-titioned into a set T of non-overlapping trajectories:
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T = {t1, t2, . . . , tm},

where each trajectory t ∈ T is a temporal sequence of consecutive position records:
t = ⟨pj, pj+1, . . . , pk⟩.

The segmentation algorithm partitions P into trajectories whose length is approxi-mately equal to a given value l. In our experiments, we evaluated different values of l,ranging from 25m to 150m. The first trajectory is initialized with the first entry of P , andcontinues until the overall distance (computed as the summation of the distance betweeneach of two consecutive position records) exceeds l. The next trajectory is initialized withthe last entry of the previous one, and continues until its length exceeds l; and so on, untilthe end of P .The next step is visual feature extraction, which consists in representing each tra-jectory through an image that visually encodes its salient features. Since visual featureextraction from trajectories is a challenging task, to exploit DNN’s performance, thereis a need to have sufficient informative data. Unfortunately, as we increase the resolu-tion of trajectory images, the sparsity of non-zero pixels also increases. The latter effectmay decrease the generalization capability of a DNN [148]. Images with low resolutionreduce the sparsity problem, but low resolution may determine the loss of multiple in-formation corresponding to the same pixel. Moreover, the accuracy of such classificationmodels highly depends on the number of samples and on the architecture of the neuralnetwork [3]. After considering different resolutions, we set the images to 100× 130 pix-els resolution. Hence, based on the smart-home area, each pixel represented one squaredecimeter of the area. As explained below, the images have three colors. The image coloris encoded in the third dimension of each pixel.As mentioned before, wandering is a complex behavior, and there is still no completeagreement on its definition. However, one common component in the different defini-tions of wandering is disorderliness in the individual’s movements [33]. In this regard, thevisual extraction module plots the whole trajectory in its corresponding image in bluecolor, in order to visually represent the trajectory’s complexity. Moreover, in order toemphasize the intricacy of the trajectory, the module computes the intersection pointsbetween each line in the trajectory and depicts it in the image by a red circle. Consideringimage resolution and test-bed size, the circle radius measures 0.25m. Fig. 3.2 shows theimages obtained through visual feature extraction of two sample trajectories, walked bya cognitively healthy person and by one person with dementia, respectively.
3.4 Vision-based Trajectory Classification
Fig. 3.3 illustrates our framework for cloud-based model training. Anonymous trajec-tory images are collaboratively collected from a set of inhabitants. As mentioned in Sec-tion 3.2, images are annotated as either normal or abnormal according to the cognitivestatus of the inhabitant that walked the corresponding trajectory. As shown in Fig. 3.1,
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(a) Trajectory image of a cognitively healthy se-nior. (b) Trajectory image of a PwD.
Figure 3.2: Trajectory images example.

after applying supervised learning with a DNN, the trained model is released to the indi-vidual systems to classify novel trajectories walked by the local inhabitant.
The pre-processing component image conversion is in charge of converting each tra-jectory image to a flat feature vector based on its width, height, and color value of eachpixel. Then, labels are added to the feature vectors in order to train the network. Thearchitecture of the used model for this binary classification task is depicted in the trajec-tory image-based DNN architecture of Fig. 3.3. We have used MLP DNN to distinguishnormal from abnormal trajectories based on their images. In order to fine-tune the DNN,we tested the different number of neurons (from 32 to 128), hidden layers (from 1 to 4),batch sizes (from 32 to 256), activation functions, and also hyper-parameters for regular-ization and learning rate reduction. In the rest of the chapter, we referred to the config-uration that achieved the highest recognition rates. The presented MLP is composed ofthree fully connected (dense) layers: one input layer, one hidden layer, and one outputlayer, with 32 neurons for the input and hidden layers, and 1 neuron for the output layer.The layers used the Rectified Linear Units (ReLU) function as the activation function. Sincewe faced a binary classification problem, we chose the Sigmoid function as the activationfunction on the output layer. Furthermore, all layers are followed by Batch Normalizationand Dropout layers in order to speed up learning, increase the stability of the neural net-work, and significantly reduce over-fitting. Therefore, we have used a low learning rate,set to 0.0001, with Adam optimizer. This solution allows for major improvements overother regularization methods [149, 150]. The fraction to drop units has been set at 0.5.As a loss function, we have used binary cross-entropy.
The neural network needs to start with some weights and refine them iteratively. Tothis aim, we used the He_uniform distribution Kernel Initializer for obtaining the initialweights. Furthermore, we usedMini-batch gradient descent (Batch Size) that divides thetraining dataset into small batches to calculate model error and update model coeffi-cients. Mini-batch gradient descent achieves robust convergence avoiding local minima,and performs a computationally efficient process, without the need of keeping all training
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Figure 3.3: Cloud-based model training architecture.
data in main memory [151]. The Batch Size is set to 128.

In order to have an adaptive learning rate, we also used the ReduceLROnPlateau call-back to reduce the learning rate [151]. This callback is used to fine-tune model weightswhen there is no change for a ‘patience’ (set to 5) number of epochs and monitors ametric that is specified by the ‘monitor’ argument (set to ‘val_loss’). In this regard, byconsidering 10% of trajectories for the validation set and monitoring the validation loss,the learning rate will be reduced by an order of magnitude if the validation loss does notimprove. The new learning rate is the result of multiplying the recent learning rate by
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a ‘factor’ argument, which is set to 0.1. To focus on significant changes, the ‘min_delta’argument, which is a threshold for measuring the new optimum, is set to 1E − 7.
3.5 Experimental Evaluation
We conclude this chapter by briefly evaluating our proposed architecture in terms of theconsidered dataset, setup and requirements, the experimental results, and future direc-tions.
3.5.1 Dataset
The experiments are based on real-world trajectories acquired in a smart-home of theCASAS test-bed [152]. That dataset was acquired from a total of 400 individuals and anno-tated by the researchers of the Center for Advanced Studies in Adaptive Systems (CASAS)at Washington State University (WSU) [140]. The smart-home layout is represented inFig. 3.4.

Figure 3.4: The smart-home layout used in our experiments [2].
The smart-home is a two-story apartment equipped with different kinds of sensors,and its floor plan includes a living/dining room, three bedrooms, a kitchen, and a bath-room. During the data acquisition phase, the researchers asked the participants to per-form a set of scripted activities in the home, such as preparing a meal and cleaning. The
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smart-home included a living/dining room, three bedrooms, a kitchen, and a bathroom,and was equipped with different kinds of sensors. For the sake of our experiments, werelied on PIR motion sensors and door sensors to track the movements of the individu-als in the home. PIR sensors are mounted on the ceiling and their accuracy is about onemeter. In total, the apartment included 51motion sensors and 16 door sensors.
Participants were recruited by advertisement and physician referrals. After obtain-ing informed consent, participants underwent multidimensional clinical examination byneuropsychologists, in order to assess their cognitive health status. For the sake ofanonymity, explicit identifiers of the individuals involved in the study were removed, andquasi-identifier personal data, such as age, were generalized to age ranges. The proto-col of recruiting and data collection was approved by the Institutional Review Board ofWSU [140]. As a consequence of clinical examination, each participant was classified aseither PwD, a person with MCI, or a cognitively healthy person.
MCI is considered an intermediate phase between cognitive healthiness and demen-tia. Previous studies showed that it is difficult to distinguish MCI from the other twoclasses based on IoT solutions [140,141]. Hence, for the sake of this work, we simplify theproblem by considering only PwD and cognitively healthy seniors.
Participants were asked to individually execute scripted Day Out Tasks (DOTs) in thesmart-home test-bed. DOTs are naturalistic tasks involving the execution of interleavedactivities for reaching a certain goal [153]. Each participant executed the DOTs in a singleday for an average of three hours. Data collection occurred in the morning or in theearly afternoon. During the execution of DOTs, the sensor infrastructure acquired thesensor data triggered by their actions andmovements. The detailed descriptions of DOTs,together with the collected dataset, are available on the Web1. The smart-home setupis described in detail in [154]. We considered those PwD who were able to carry outactivities in the home (19 individuals), and young-old seniors aged 60 to 74 years old (80individuals).
Table 3.1 reports the average number of trajectories per person of the consideredclasses. The average numbers are very close for the two classes. However, there is morevariability (larger value of STandard Deviation (STD) in PwD. STD in the table is an indi-cator of different total trajectory lengths for patients. As patients did not have an equalwalk in the home, consequently the number of trajectory images per patient varies. Byincreasing the length of the segment (from 25m to 150m), the number of images for eachpatient and consequently STD for different segment lengths decreased. The total numberof samples in different length trajectories are 7759 in 25m , 4011 in 50m, 2715 in 75m,

2053 in 100m, 1657 in 125m and 1389 in 150m trajectories.
3.5.2 Setup
In order to develop our system, we have used Python, using the Keras neural networklibrary2. We have run experiments on a departmental Linux server with Graphics Pro-

1http://casas.wsu.edu/datasets/assessmentdata.zip2https://keras.io/

http://casas.wsu.edu/datasets/assessmentdata.zip
https://keras.io/
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Table 3.1: Average number of trajectories per person.

Trajectory length Cognitively healthy PwD
25m 78.40(±17.09) 78.26 (±27.67)
50m 40.49 (±8.82) 40.63 (±14.21)
75m 27.41 (±5.95) 27.47 (±9.60)
100m 20.74 (±4.42) 20.74 (±7.28)
125m 16.73 (±3.60) 16.79 (±5.70)
150m 14.03 (±2.95) 14.05 (±4.90)

Table 3.2: Results of vision-based classification according to different lengths of trajectorysegmentation.
Comparison of segmented trajectories by different lengths

Measures 25m 50m 75m 100m 125m 150m

Micro Precision 69.32% 63.72% 57% 61.97% 63.75% 65.51%Recall 83.07% 85.64% 83.06% 85.24% 84.71% 83.62%F1-score 75.58% 73.07% 67.6% 71.76% 72.75% 73.46%
Macro Precision 54.5% 59.5% 54% 58.5% 58% 56%Recall 53.5% 56.5% 52.5% 55.5% 55% 54%F1-score 53% 54.5% 49.5% 53.5% 53.5% 52.5Classificationtime per image ∼ 0.001875s ∼ 0.00326s ∼ 0.00441625s ∼ 0.005726s ∼ 0.007s ∼ 0.00785s

cessing Unit (GPU) acceleration.To evaluate the effectiveness of visual feature extraction, we have experimented withdifferent trajectory lengths, ranging from 25m to 150m. We applied a leave one personout cross-validation approach to keep one participant’s image trajectories as a test setand the remaining ones for the train set and validation set. Since the presented modelrequires tuning of hyper-parameters, training trajectories are split by a fraction of 10%for validation and 90% for training.It should be mentioned that the performance measure ‘accuracy’, which is the totalnumber of correct predictions divided by the total number of predictions, is inappropri-ate for imbalanced classification problems such as the one we are tackling. Indeed, de-pending on how severe the class imbalance is, the accuracy value regarding the majorityclass would overwhelm the accuracy value of the minority class. Hence, for evaluatingthe overall performance of our technique, we use the metrics of precision, recall, andF1 score, which are standard metrics in imbalanced classification problems. In particu-lar, the macro-averaged F1 score is well representative of the classification performance,since gives the same weight to the performance of both classes, despite the distributionof instances in the classes.
3.5.3 Experimental Results
In our experiments, we evaluate the effectiveness of the DNN classifier in correctly recog-nizing the cognitive status of a person given the observation of a single trajectory walkedby him/her. According to the results shown in Table 3.2, among different fixed lengthsfrom 25m up to 150m, the best results are achieved using 50m trajectories. Indeed, tra-jectory imageswith 50m length obtained the best performance in distinguishing betweenPwD and cognitively healthy seniors in terms of macro-averaged F1 score.Considering the confusion matrices illustrated in Tables 3.3b and 3.3d, for trajecto-ries with lengths ranging from 50m to 125m, the ratio of correct classification is over 50%
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classified as→ Normal Abnormal
Normal 4348 1924Abnormal 886 601

(a) 25m length

classified as→ Normal Abnormal
Normal 2064 1175Abnormal 346 426

(b) 50m length
classified as→ Normal Abnormal

Normal 1250 943Abnormal 255 267

(c) 75m length

classified as→ Normal Abnormal
Normal 1028 631Abnormal 178 216

(d) 100m length
classified as→ Normal Abnormal

Normal 853 485Abnormal 154 165

(e) 125m length

classified as→ Normal Abnormal
Normal 735 387Abnormal 144 123

(f) 150m lengthTable 3.3: Confusion matrices of vision-based classification according to different lengthsof trajectory segmentation.

in both classes. Based on an analysis of the results, we noticed that if the length of thetrajectory is too small, the shapes of the trajectories of different patients tend to be sim-ilar, and consequently, the model cannot distinguish the different classes. If the lengthof the trajectory is too large, the shapes of trajectories become very involved and diffi-cult to distinguish from each other. Hence, optimal results are achieved by a compromisebetween long and short trajectories.
As mentioned before, in this dataset, the ratio of trajectories walked by healthy se-niors vs. PwD is highly imbalanced, at about a 5 : 1 ratio. As it can be seen in Table 3.2, inall experiments, micro-averaged values are higher thanmacro-averaged ones. This resultis due to the fact that the DNN is biased toward predicting the most frequent class.
Moreover, in order to evaluate the feasibility of executing our methods on the edge,we measured the execution times of trajectory image classification. It should be men-tioned that the execution time of trajectories grows with the length of the trajectory.However, as shown in Table 3.2, the classification time of a single trajectory image is inthe order of milliseconds.
In general, we can conclude that the classification of a single trajectory does not pro-vide a reliable prediction of the cognitive status of the subject. However, we observethat, with trajectory lengths ranging from 50m to 125m, the most frequently predictedclasses are the correct ones. For instance, with the length of 50m, 426 trajectories ofPwD were correct as abnormal, while only 346 of them were classified as normal. More-over, 2064 trajectories of cognitively healthy seniors were classified as normal, and only

1175 of themwere classified as abnormal. Hence, we believe that a long-term analysis oftrajectories may support reliable cognitive assessment; however, this hypothesis shouldbe supported by further research and experiments.
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3.6 Conclusion
In this chapter, we tackled the challenging issue of recognizing symptoms of cognitive de-cline based on the analysis of indoor movements. To this aim, we proposed a techniqueto extract visual features from indoor trajectories, and a deep learning model for classifi-cation. Experiments with a real-world dataset collected from both cognitively healthy se-niors and PwD suggested that a long-term analysis of the predictionsmay achieve promis-ing results.Furthermore, our experiments have shown that trajectory segmentation has a strongimpact on the classification results. Hence, we have to investigate more sophisticatedmethods for segmentation, including not only spatial but also temporal conditions. Vi-sual feature extraction could be improved by adding some other useful characteristics,such as speed, or abrupt changes in direction. The neural network model should also berefined to exploit visual features. Finally, in the next chapter, we will investigate a tech-nique for long-term analysis of predictions in order to support a reliable assessment ofthe cognitive status over time.



Chapter 4

The TraMiner Framework

I n order to get rid of the noise introduced by indoor constraints and activity exe-cution, and employ important clinical indicators for accurate assessment whichsupport MCI subjects as well, we introduce novel visual feature extraction methods fromlocomotion data collected by sensors embedded in the environment considering bothspatial and temporal aspect of movements. This method is in a framework which ingeneral is called TraMiner. We carried out extensive experiments with a large datasetacquired in a smart-home test-bed from 153 seniors, including people with cognitive dis-eases. Results show that our system can accurately recognize the cognitive status of thesenior, reaching a macro F1 score of 0.873 for the three categories that we target: cogni-tive health, MCI, and dementia. Moreover, an experimental comparison shows that oursystem outperforms state-of-the-art methods.
4.1 Introduction
In this chapter, we contribute to propose TraMiner, a novel system based on TrajectoryMining for continuous cognitive assessment in smart-homes. Our system relies on clinicalindicators that characterize cognitive decline in terms of abnormal locomotion patternsof the elderly, as mentioned in the Chapter 2.

We have taken a different approach compared to the preliminary investigation pre-sented in Chapter 3, representing locomotion traces through images and relying on DLfor the classification of those images according to the cognitive health status of the in-habitant. Our method relies on specific techniques for locomotion data cleaning andsegmentation. Each locomotion segment is transformed into two images that capturedifferent aspects related to the clinical indicators of locomotion anomalies. Each coupleof images is fed to a DL classifier in charge of predicting the anomaly level of the cor-responding locomotion segment. Since it would be unrealistic to provide a hypothesisof diagnosis based on the observation of a single trajectory, our system includes a long-term analysis module. The latter is in charge of processing the history of DL predictionsfor computing a hypothesis of diagnosis, which is provided to clinicians for supportingthe neuropsychological assessment.
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We have developed a prototype of our TraMiner system and carried out extensive ex-periments with a real-world dataset [2] gathered in a smart-home test-bed with 153 se-niors, including cognitively healthy subjects, peoplewithMCI [155], and PwD. This datasetis described thoroughly in Section 3.5.1. Results proved the accuracy of TraMiner in pre-dicting the cognitive health status of the inhabitants. Indeed, based on the observation ofthe locomotion traces acquired during one day per patient, our system achieved a macro
F1 score of 0.873. Moreover, an experimental comparison showed the superiority of ourapproach with respect to state-of-the-art techniques. In order to enable the full repro-ducibility of our experiments, we have released the code of all our system components,and the used dataset is available on theWeb 1. Hence, we extend the preliminary versionof locomotion analysis, discussed in Chapter 3 in detail, considering general indicators(i.e., complex gait parameters) and indicators of dementia, explained in Chapter 2, andintroduce new framework with:

i. Support for recognition of MCI,ii. A novel locomotion trace segmentation algorithm,iii. A new visual feature extraction technique,iv. A novel two-input DL architecture,v. An additional algorithm for long-term assessment of the cognitive health status,vi. Experiments with a larger dataset,vii. New experiments to evaluate all the components of our system,viii. An experimental comparison with state-of-the-art techniques, andix. A dashboard is accessible on theWeb to inspect the visual features and the systempredictions.
In fact, the theoretical basis of the proposed TraMiner system is based on complexgait parameters of general indicators’ category (including Jerk, Turning angle, Sharp an-gle, Straightness, and Path-efficiency) and dementia trajectory-based indicators (i.e, di-rect, random, pacing, and lapping). Several random, pacing and lapping patterns can beobserved in the home, which is actually due to the normal execution of ADL by cogni-tively healthy inhabitants. Hence, in this system, we do not aim at explicitly recognizingthose patterns, but we rely on a supervised learning approach for recognizing abnormallocomotion patterns.

4.2 TraMiner System Overview
This system regarding the usage of a single resident smart-home infrastructure is capableof continuously monitoring the inhabitant’s position at a fine-grained level. Moreover,seniors living alonemay have particular benefits from remotemonitoring and assessmentof cognitive functions.Fig. 4.1 illustrates the TraMiner architecture. Since the focus of this chapter is on pro-cessing locomotion data, the coremethods of our contribution are largely independent of

1https://sites.unica.it/domusafe/traminer/

https://sites.unica.it/domusafe/traminer/
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Figure 4.1: Overview of the TraMiner system.
the available sensor infrastructure. We assume that a smart-home sensor infrastructureis in charge of continuously gathering data about the inhabitant’s position; e.g., throughPIR sensors. The smart-home system communicates raw sensor data to a stream process-ing software platform (e.g., Apache Kafka) for integration and temporal synchronization.As mentioned in the Chapter 3, each time a sensor fires, the platform sends a raw
sensor event to the TraMiner system:

rse = ⟨t, s_id, v⟩,
where t is the timestamp of firing, s_id is the sensor’s unique identifier, and v is thegenerated value. Since we assume that the home is inhabited by a single individual, weare not interested in associating the sensor record with the person that triggered it.
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Likewise, the integrated positioning system is in charge of deriving Spatio-temporalinformation from raw sensor events. To this aim, it relies on a sensor position tablestoring the relative position of each sensor in the home. A record of sensor position inthat table is a triple:
⟨s_id, (x, y)⟩,

where (x, y) are the relative coordinates of the sensor identified by ‘s_id’ in the home.For the sake of simplicity, we consider only static sensors in the home; hence, we assumethat the position of sensors does not change with time. Each time the integrated po-sitioning system receives a raw sensor event, it joins the corresponding record with thesensor position table to obtain the (x, y) coordinates, producing a user’s position record:
r = ⟨p, t⟩,

where p = (x, y) are the relative coordinates of the sensor that fired at time t.The trajectory segmentation module is in charge of reducing noise in the data andpartitioning the temporal stream of position records into trajectories. A trajectory is atemporally contiguous sequence of positions that corresponds to a locomotion episode.Each trajectory is passed to the modules for traj and speed feature extraction. Thosemodules represent the trajectory as an image each. The two images represent thewalkedtrajectory in a 2-dimensional space and highlight different visual features, such as speedand intersection points.The trajectory images classification module is in charge of classifying each trajectoryas either walked by a cognitively healthy person, MCI individual, or PwD. To this aim, ituses a DL classifier processing the two images corresponding to each trajectory. The clas-sifier is trained on the cloud using a set of anonymous trajectories labeled according tothe cognitive health status of the individual. According to the history of predictions, thelong-term trajectory analysis module computes a hypothesis of diagnosis for the individ-ual. The hypothesis may be cognitively healthy, MCI, or PwD. Finally, the hypothesis ofdiagnosis is communicated to the remote healthcare center, to support the clinicians inthe evaluation of the patient.
4.3 Trajectory Segmentation and Visual Feature Extraction
This section reports the details ofmodules in charge of trajectory segmentation and visualfeature extraction.
4.3.1 Position Data Cleaning and Trajectory Segmentation
As explained before, the integrated positioning system continuously provides TraMinerwith the user’s position records. These records instantiate the position history H =
⟨r1, r2, . . . , rn⟩, which is the temporal sequence of the user’s positions records. In-evitably, the position history contains inaccuracies because, in real-world conditions, sen-sor data are affected by a relevant level of noise. Therefore, in order to noise reduction,like what is done in the preliminary version of TraMiner in Chapter 3, we manually ana-lyzed the Spatio-temporal information of the dataset used in our experiments by plotting
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movement traces over the home layout. We observed several unfeasible deviations fromthe expected trajectories, which were due to wrong position detection by the positioningsystem. Hence, the trajectory segmentationmodule performs noise reduction by consid-ering the maximum possible velocity v of a person moving in the home (which is set to
15m/s) and the maximum distance between any two adjacent sensors (which is set to
5m).Likewise, after position data cleaning, the trajectory segmentation module is incharge of partitioning the de-noised H into trajectories by considering temporal andspatial information. In this regard, the position history H is partitioned into a set T ofnon-overlapping trajectories:

T = {t1, t2, . . . , tm},

where each trajectory t ∈ T is a temporal sequence of consecutive position records:
t = ⟨pj, pj+1, . . . , pk⟩ ∈ H.

A trajectory consists of locomotion and non-locomotion phases. The non-locomotionphases happen during a time interval between any two consecutive sensor activationsthat do not exceed a given threshold Ts. In our experiments, we evaluate different valuesof Ts ranging from 30s to 180s. The rationale of our segmentation algorithm is that aphase of non-locomotion may happen in a trajectory if no sensor is triggered for lessthan Ts. Otherwise, if no user movement is detected for more than Ts, the previoustrajectory is completed, and a new one is initialized.Our segmentation algorithm initializes the first trajectorywith the first entry ofH , andeach trajectory ti is a temporal sequence of consecutive position records from H suchthat the time interval between any two consecutive position records does not exceed
Ts. The next trajectory is initialized with the last entry of the previous trajectory andcontinues until the threshold condition is met. The algorithm continues until the end of
H .
4.3.2 Visual Feature Extraction
In order to prepare input data for the DNN, themodules for traj and speed feature extrac-tion are in charge of visually representing the salient features of each trajectory throughimages. To prepare the images, we use the RGB color model. Hence, each image hasthree colors: red, green, and blue. For every pixel, the values related to these colors arerepresented by a byte each. Hence, each pixel is characterized by three integer valuesranging from 0 to 255. In our work, the maximum spatial extent of all the trajectories isthe same and corresponds to the home layout.Choosing the image size is an important aspect of feature extraction. By increasing theresolution of the image, the sparsity of non-zero pixels in the image increases, and maydecrease the learning capability of the DNN [148]. Low-resolution images can alleviatethis issue; however, important information in the image could be lost, since the valuesof multiple contiguous pixels could be mixed. After considering different resolutions for
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the images, for our experimental setup, we chose image length and height of 100 by
130 pixels. By considering the size of our smart-home test-bed, each pixel in the imagecorresponds to approximately 0.1m2.
TRAJ Feature Extraction
Fig. 4.2a shows an example of an image obtained using the TRAJ feature extractionmethod from a person’s trajectory in our smart-home test-bed.

(a) TRAJ feature extraction. (b) SPEED feature extraction.Figure 4.2: Example of visual feature extraction from a trajectory.
The trajectory path is shown through a monochrome line string. The weight of eachline is set according to the number of times that the corresponding path has beenwalked.The line weight is 1 if the path has been walked only once; the weight is 2 if it has beenwalked twice, and so on. Consequently, lines corresponding to pathswalked several timesare bolder than those of pathswalked sporadically. This feature extractionmethod allowsus to visually capture locomotion anomalies corresponding to the pacing and lappingpatterns defined by the Martino-Saltzman model [17].For emphasizing the intricacy of the trajectory, which may indicate a random walkaccording to the Martino-Saltzman model [17], the intersection points between the tra-jectory lines are shown in the image as a red circle. By considering the image size, theradius of that circle corresponds to 0.25m.Moreover, the trajectory line string naturally encodes low-level motion indicatorssuch as sharp angles, straightness, turning angle, and path efficiency.

SPEED Feature Extraction
Patterns of locomotion speed are important indicators of cognitive decline. However,speed information is not captured by the TRAJ feature extraction method. Hence,TraMiner produces a second image of the trajectory, using the SPEED feature extractionmethod. Fig. 4.2b shows an image obtained using the SPEED method from a person’strajectory in our experimental test-bed.With this method, the trajectory is partitioned into sections, such as the speed ofthe inhabitant is steady in each section. The color of each section depends on its speed
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range. When a section is walked multiple times, the most recent speed of that section isconsidered for drawing the image. For the sake of thiswork, we consider 7different speedranges, with 7 associated colors. In particular, the speed ranges are 0−2, 2−4, 4−6, 6−8,
8− 10, 10− 12, 12− 14, and more than 15ms, and the corresponding colors are purple,violet, blue, cyan, green, yellow, orange, and red, respectively. Of course, some of thosespeed ranges are exaggerated when referring to peoplemoving inside an apartment. Theexplanation is that the positioning infrastructure used in our experimental test-bed hasapproximately 1 meter resolution, and (being based on PIR technology) the detectionrange of sensors partially overlaps. For this reason, the computed speed is inevitablyapproximated and subject to errors. However, as confirmed by our experimental results,those approximated speed values are useful to improve the recognition performance ofour system. The SPEED feature extraction method allows capturing the jerk low-levelmotion indicator.
4.4 DNN Trajectory Classification and Long-term Analysis
In this section, we present the DNN trajectory image classification method and the long-term analysis module.
4.4.1 Cloud-based Model Training
The goal of the cloud-based model training module is to train a DNN model to classifyevery trajectory as either walked by a cognitively healthy subject, by a person with MCI,or by PwD. To this aim, we take a collaborative approach. That module periodically re-ceives a training set of trajectory images from the local instances of the TraMiner sys-tem, running in the individual homes. Each image is labeled with the cognitive status ofthe anonymous inhabitant (i.e., either ‘cognitively healthy’, ‘MCI’, or ‘PwD’). Trajectoryimages are locally computed on the edge by the different instances of TraMiner, as ex-plained in Section 3.3. Based on that training set, the trusted cloud-based module is incharge of training a DNNmodel for trajectory classification. The TraMiner local instancesreceive the model from the cloud and use it for classifying the trajectories of the inhab-itant. Note that the TraMiner instances do not receive any trajectory image. Indeed, forthe sake of privacy, trajectory images are processed only by the trusted cloud module.

Fig. 4.3 shows the MLP DNN architecture used by the cloud-based infrastructure. Foreach trajectory, theMLPDNN takes as input two images. The first one is obtained throughthe TRAJ feature extraction method as shown in Fig. 4.2a, while the second one is ob-tained through SPEED feature extraction as shown in Fig. 4.2b.
Since we use two images with different features for each trajectory, our model re-lies on ‘mixed data’. Developing systems capable of handling mixed data is still an openarea of research, and can be challenging since each input with a different feature repre-sentation may require separate preprocessing steps. In order to prepare the trajectoryimages for training, we convert them to flat feature vectors based on the width, height,and color values of each pixel. Hence, since images have 100 by 130 pixels, and each pixelis represented by three color values, each feature vector has a size 39, 000. So, each fea-
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Figure 4.3: Cloud-based model training MLP DNN architecture.
ture corresponds to the color value of a single pixel. Then, we apply binarization to thecolor values of the image to reduce the computational cost of training. Finally, we addthe labels to the feature vectors before feeding them to the DNN for training.

The usedMLP DNN for each input is composed of two fully connected (dense) layers:
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one input layer and one hidden layer, with 32 neurons for both. The layers used the ReLUas the activation function. Furthermore, for both inputs, each layer is followed by batchnormalization to speed up learning and increase the stability of the neural network. Inthe last layer for each of them, there is also a dropout layer in order to significantly reduceover-fitting. The fraction of drop units has been set to 0.5. Then, we combine the outputof both inputs (TRAJ and SPEED) and apply one more fully connected layer with threeneurons followed by batch normalization and dropout with the same drop units. Sinceweare facing a three-class classification problem,wehave chosen the softmax function asthe activation function on the final output layer. This function is used to find a probabilitydistribution of the mentioned categories as follows:
p(k) =

gs∑Nc

j=1 gj
, gi = max(0,

∑
i

fi.wij + hj)

where p(k) is the probability of a trajectory belonging to the k-th class, and gs is astandard exponential function applied to each element of the input vector. This functiongives a positive value above zero, which will be very large if the input was large and verysmall if the input was negative. Furthermore, Nc denotes the number of classes, fi is avalue of i-th neuron in the last fully connected layer, wij and hj are coefficients of thesoftmax function [3].Furthermore, we have used a low learning rate, set to 0.00001, with adam optimizer.As a loss function, wehave used category cross-entropy, which is an effective loss functionfor classification problems that have softmax activation function in the output layer. Thisloss function is based on the maximum likelihood estimate approach and it is used forsingle label categorization [156]. In our case, this ensures that a trajectory belongs toexactly one class.We have used a batch-size approach to calculate the model error and to update themodel coefficients. We divided the training dataset into small batches of 64 sampleswhich are utilized in one epoch. In order to fine-tune the number of epochs, we haveused the early stopping procedure. We tested different numbers of epochs, ranging from
20 to 100 epochs. According to this procedure, the training is stopped when the general-ization error increases. Therefore, we evaluated the model during training on a holdoutvalidation set after each epoch. When the performance of the model starts to degrade(i.e., the loss begins to increase), the training process is stopped. In the represented con-figuration, the number of epochs was set to 27. With this approach, we improved thecomputational efficiency of the learning process, without the need of keeping all trainingdata in themainmemory. The approach also provides robust convergence, avoiding localminima [151].
4.4.2 Long-term Trajectory Analysis
As shown in Figure 3.1, the trainedmodel is communicated to the trajectory images classi-fication module of the individual smart-home systems, which uses it for trajectory imageclassification as soon as new trajectories are observed in the home. Finally, the classifi-cation predictions are processed by the long-term trajectory analysis module, which is in
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charge of computing a hypothesis of diagnosis regarding the inhabitant’s cognitive health(i.e., cognitively healthy subject, MCI, or PwD).The aim of that module is to generate a hypothesis of diagnosis based on the long-term predictions of the vision-based trajectory classifier. Of course, in order to produce areliable hypothesis, the long-term analysis module needs a sufficient quantity of trajec-tory classifications. Therefore, it is assumed that the module considers the whole dataacquired in a given time period; e.g., all the predictions about the trajectories observedin the previous 30 days. Themodule analyses thewhole history of vision-based trajectoryclassifications produced in that period as V TC:
V TC = {class1, class2, ..., classm},

where the value of classi can be either ‘cognitively healthy’, ‘MCI’, or ‘PwD’. Also,there is a need to compute the number of predictions of each class in V TC. Then, themodule outputs the hypothesis corresponding to the most frequent class fc as follows:
fc = arg maxclass∈D | {cl ∈ V TC : cl = class} |,

whereD = {‘cognitively healthy’, ‘MCI’, ‘PwD’}.
4.5 Experimental Evaluation
In this section, we report our experimental evaluation which was carried out with real-world locomotion data acquired in an instrumented smart-home from a large set of se-niors, including cognitively healthy seniors, PwD, and persons with MCI. Therefore, inthe following subsections, we explain the used dataset, the experimental setup, and theachieved results. We also experimentally compare our technique with existing state-of-the-art methods which will be described in the following sections.
4.5.1 Dataset
The experiments were carried out considering real-world trajectories acquired from 153individuals in a smart-home of the CASAS test-bed [152] such as the preliminary version.Likewise, for our experiments, we relied on PIR motion sensors and door sensors to trackthe movements of the individuals in the home.As mentioned before, in this data set, after clinical examination the participants wereclassified as either PwD, persons with MCI, or cognitively healthy persons.While 40 PwD were recruited, only part of them was able to participate in the datacollection in the smart-home. Hence, in our experiments, we considered only PwD whowere able to carry out activities in the home (19 individuals). Moreover, we consideredthe data acquired from the 80 seniors aged 60 to 74 years old as cognitively healthy per-sons, and from the 54 persons with MCI.
4.5.2 Comparison with State-of-the-Art Methods
In order to experimentally compare our method with the state-of-the-art, we imple-mented both a baseline numeric feature extractionmethod and the image-basedmethod
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proposed by Gochoo et al. in [3].
State-of-the-Art Numeric Feature Extraction
As a comparison, we implemented a baseline feature extraction method, in which eachfeature corresponds to a locomotion-based clinical indicator of cognitive decline pro-posed in the literature. We call this method Numeric Feature Eextraction (NFE). We con-sider the following indicators:

• Pacing [17] travel pattern, defined in the Martino-Saltzman model: this featurecounts the number of observations of pacing in the last day.• Lapping [17] travel pattern, defined in the Martino-Saltzman model: this featurecounts the number of observations of lapping in the last day.• Random [17] travel pattern, defined in the Martino-Saltzman model: this featurecounts the number of observations of random on the last day.• Jerk [157] is computed as the first time derivative of acceleration. This feature rep-resents the average jerk observed in the individual’s trajectories on the last day.• Straightness [158] represents the average straightness computed on the individ-ual’s trajectories of the last day.• Sharp angles [159] feature counts the number of sharp angles observed in the in-dividual’s trajectories during the last day.
In order to compute the above-mentioned indicators, we adopt the algorithms pre-sented in [160].

State-of-the-Art Gochoo Visual Feature Extraction
In the original paper where the method proposed by Gochoo et al. [3], the Gochoo Vi-sual Feature Extraction (GVFE) technique was used to recognize those abnormal loco-motion patterns that are strong indicators of neurocognitive diseases according to theMartino-Saltzman model [17]; i.e., pacing, lapping, and random patterns. The authorsexperimented with their GVFE technique in the same smart-home environment used inour experiments, with data acquired from a cognitively healthy senior over 21 months.They obtained very good results, achieving accuracy above 97%. Those results indicatethat the GVFE technique is effective in recognizing abnormal travel patterns that indicatecognitive impairment. For this reason, we experimentally compare the GVFE techniquewith our visual feature extraction method.In the GVFE technique, images in each trajectory are prepared based on the sequenceof activation of the position sensors. Each trajectory is converted to a binary image,where the x axis represents the temporal order of the sensor activation, and the y axisrepresents the numeric identifier of the fired sensors. For example, suppose that thetemporal sequence of activated motion sensors in a trajectory is: M005, M003, M005,M010, M011, and M001. Then, the only non-zero pixels in the image correspond to thefollowing coordinates: (1, 5), (2, 3), (3, 5), (4, 10), (5, 11), (6, 1).Also for GVFE method, we apply trajectory segmentation using different values ofthe threshold Ts. The width of the corresponding image is chosen based on the maxi-mum length of trajectories. For example, in our dataset, using Ts = 60 s, the maximum
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Figure 4.4: Example of images generated through the GVFE method. The left-hand sideimage is extracted from a trajectory using Ts = 90 s. The right-hand side image is ex-tracted from a trajectory using Ts = 150 s.
length of trajectory for all considered individuals is 32. Hence, images computed usingthat threshold value have 32 pixels width.Asmentioned before, the y axis represents the numerical identifier of the fired sensor.Since in our dataset we consider 67 sensors (i.e., 51 PIR sensors and 16 door sensors), the
y axis includes 67 different values. Consequently, the images have 67 pixels in height,irrespectively from the value of the threshold Ts. For thresholds Ts set to 30 s, 60 s,
90 s, 120 s, and 150 s, the image size is (14 × 67), (32 × 67), (60 × 67), (110 × 67) and
(169 × 67), respectively. Fig. 4.4 shows two samples of images obtained using differentthreshold values.
State-of-the-Art Deep CNN
In order to compare our DNN architecture with a state-of-the-art one, we consider theDeep CNN (DCNN) used by Gochoo et al. in [3]. As illustrated in Fig. 4.5, that network hasthree zero padding convolution layers and three fully connected layerswhich are followedby max-pooling layers and feature filters size of 5 × 5. The pooling window size is set to
2× 2 and, since max-pooling creates a smaller version of input maps, the output imagesbecome two times smaller than the input. The first convolution layer has 32 kernels,the second one, which receives the output of the first max-pooling layer as inputs, has
128 feature filters, and the last convolutional layer receives the secondmax-pooling layeroutput and convolutes them with 256 feature filters.Finally, in the fully connected part, the layers are flattened, and the output of the thirdmax-pooling layer is converted into a feature vector. In this part, the first, second, andthird fully connected layers have 512, 128, and 64 neurons, respectively, and neurons ofthe last fully connected layer are connected to all three outputs; i.e., cognitively healthy,MCI, PwD. In order to find the probability distribution of the classes, the softmax functionis applied.Since the reference paper [3] does not mention internal details such as the used opti-mizer and its rate, or the chosen loss function, we used the same parameters chosen for
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Figure 4.5: The state-of-the-art DCNN used by Gochoo et al. in [3].
our proposed DNN configuration described in Section 4.4.
4.5.3 Experimental Setup
We developed all the algorithms in Python. For experimenting with the NFE method, weused the machine learning algorithms implemented by the Weka toolkit [161]. The codefor extracting the NFE features is available online2. We have used the Python Keras neuralnetwork library3 to develop the proposed DNN classification systems. In order to supportscalability, in the general architecture of our systemwe envision the use of a cloud-basedsystem for training the DNNmodel. However, given the relatively small size of the trainingset used in our experiments, we trained the DNN on a departmental server. We have runexperiments on a Linux server with four NVIDIA Tesla p6 graphic boards, a single NVIDIAPascal GP104 GPU, and 16 GB GDDR5 memory. To evaluate the effectiveness of our TRAJand SPEED visual feature extraction techniques, we have experimented with differentvalues of the Ts threshold for trajectory segmentation, ranging from 30 seconds up to
180 seconds. We also developed the feature extraction method and the DCNN used byGochoo et al. [3] to experimentally compare our methods with the state-of-the-art.In all the experiments, we applied a leave one person out cross-validation approach:we used the data of one individual for the test set, and the data of the other persons fortraining and validation, iterating on each person to execute the tests on the whole con-sidered participants. With this approach, the data of the same person is never used bothfor training/validation and testing at the same time. For tuning the hyper-parameters ofthe DNN, training trajectories are split by a fraction of 10% of each category for validationand 90% of them for training.For the overall performance evaluation, we have used themetrics of macro precision,macro recall, and macro F1 score. These metrics are standard ones for imbalanced prob-lems. In particular, the macro F1 score is a reliable metric in imbalanced cases, since itgives equal weights to the different classes, despite their size. Since the ‘accuracy’ per-formance measure is inappropriate for imbalanced classification problems like the one

2https://sites.unica.it/domusafe/healthxai/3https://keras.io/

https://sites.unica.it/domusafe/healthxai/
https://keras.io/
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we are tackling, we do not consider that measure in our evaluation. Indeed, depend-ing on the degree of imbalance, the majority class’s accuracy value would overcome theaccuracy value of the minority classes.
4.5.4 Results of NFE Method
At first, we evaluated the NFE method explained in Section 4.5.2. For each participant,we built the feature vector using all the trajectory data collected during the day. Eachfeature vector was labeled with the cognitive status of the individual; i.e., cognitivelyhealthy, MCI, or PwD. We experimented with several classifiers:

• The well-known NB [162] classifier;• LR classifier [163], relying on a multinomial logistic regression model with a ridgeestimator;• MLP feed-forward artificial neural network algorithm;• SVM [164]• kNN [165] lazy classifier, with k = 5;• Ripper [166] propositional rule learner;• C4.5 [167] DT;• Random tree [168] classifier.• RF [169] classifier.
Results are reported in Table 4.1. Overall, the results achieved by the NFE method arepoor. Indeed, all classifiers achieved a macro-average F1 score close to the one of a ran-dom classifier. The classifier achieving the best performance in this pool of experimentsis the RF algorithm, with F1 score of 0.37. These results seem to indicate that, in a homecontext, numerical statistics about locomotion-based indicators of cognitive decline areineffective for automatic cognitive assessment. This fact is probably due to the high levelof noise introduced by two factors that influence the movement patterns; i.e., obstaclesin the home, and execution of ADL.

4.5.5 Results of Single Trajectory Image Classification
At first, we experimentally compare the effectiveness of our TRAJ feature extractionmethod with the one achieved using Gochoo’s visual feature extraction (GVFE) method.For this experiment, we used the DCNN used by Gochoo’s et al. In this regard, we wantto assess the ability to correctly recognize the cognitive status of a person by the obser-vation of a single trajectory walked by him/her.According to the results shown in Table 4.2, for both techniques, the best resultsare achieved with the trajectories obtained setting Ts = 120s. As it can be observedin Fig. 4.6, the technique using TRAJ and DCNN slightly outperforms the one relying onGVFE and DCNN in terms of macro F1 score.However, the results achieved using those methods are rather poor, since the bestachieved F1 scores only slightly outperform the ones that would be obtained using arandom classifier. The poor performance of the GVFE technique in the task of recognizing
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Table 4.1: Results of NFE method.

Class Measure NB LR MLP SVMCognitively F1 score 0.50 0.69 0.65 0.69

healthy Precision 0.56 0.55 0.53 0.53Recall 0.45 0.91 0.84 1.00

MCI F1 score 0.46 0.32 0.25 0.04Precision 0.38 0.57 0.39 1.00Recall 0.59 0.22 0.19 0.02
PwD F1 score 0.00 n/a n/a n/aPrecision 0.00 n/a n/a n/aRecall 0.00 0.00 0.00 0.00
Avg. F1 score 0.32 n/a n/a n/aPrecision 0.31 n/a n/a n/aRecall 0.35 0.38 0.34 0.34

Class Measure kNN Ripper C4.5 Rand. tree RFCognitively F1 score 0.61 0.68 0.59 0.54 0.64
healthy Precision 0.55 0.53 0.47 0.55 0.56Recall 0.68 0.93 0.79 0.54 0.74
MCI F1 score 0.43 0.21 0.00 0.34 0.39Precision 0.46 0.50 0.00 0.35 0.44Recall 0.41 0.13 0.00 0.33 0.35
PwD F1 score 0.00 n/a 0.00 0.00 0.08Precision 0.00 n/a 0.00 0.00 0.20Recall 0.00 0.00 0.00 0.00 0.05

Avg. F1 score 0.35 n/a 0.20 0.29 0.37Precision 0.34 n/a 0.16 0.30 0.40Recall 0.36 0.35 0.26 0.29 0.38

Figure 4.6: Trajectory images classification: macro F1 score for the different techniques.
the cognitive status of the individual may be explained by the fact that, as we argue inthe previous chapters, indoormovements are constrained by the ambient shape, and areimpacted by the execution of ADL. Hence, the GVFE technique may classify as abnormalseveral normal trajectories walked by cognitively healthy individuals.In the second set of experiments, we compare the performance of the TRAJ vs SPEED
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Table 4.2: Trajectory images classification: results obtained using our TRAJ feature ex-traction method and DCNN vs. GVFE and DCNN.

Class Measure TRAJ and DCNN GVFE and DCNN
30s 60s 120s 180 30s 60s 120s 180sCognitively F1 score 0.54 0.52 0.57 0.57 0.57 0.57 0.56 0.55

healthy Precision 0.57 0.53 0.62 0.6 0.62 0.62 0.6 0.57Recall 0.51 0.5 0.52 0.53 0.53 0.52 0.53 0.54

MCI F1 score 0.34 0.36 0.5 0.38 0.36 0.36 0.4 0.35Precision 0.33 0.36 0.4 0.37 0.34 0.34 0.39 0.35Recall 0.35 0.37 0.41 0.39 0.38 0.38 0.41 0.36
PwD F1 score 0.12 0.13 0.1 0.12 0.11 0.056 0.13 0.11Precision 0.1 0.11 0.08 0.08 0.09 0.04 0.1 0.09Recall 0.14 0.15 0.13 0.18 0.15 0.081 0.17 0.13
Avg. F1 score 0.33 0.34 0.39 0.36 0.35 0.33 0.36 0.34Precision 0.33 0.33 0.37 0.35 0.35 0.33 0.36 0.34Recall 0.33 0.34 0.35 0.37 0.35 0.33 0.37 0.34

feature extraction methods, using our MLP DNN. Table 4.3 shows the achieved results.The two feature extraction methods achieve comparable results. As it can be observedin Fig. 4.6, for both methods, the best results in terms of average macro F1 score areobtained using Ts = 120s. It is evident that the results obtained using the TRAJ featureextractionmethodwith ourMLP DNN strongly improvedwith respect to using the DCNN.Indeed, using the MLP DNN we achieve a macro F1 score larger than 0.57 with less com-putation time, while the best macro F1 score obtained using the more complex DCNNwas close to 0.36. We believe that this result may depend on the relatively limited size ofthe training set. Indeed, using a larger training set, the more complex DCNN could possi-bly outperform the MLP DNN, at the cost of additional time and resource consumption.Due to these results, in the rest of the experiments, we use our MLP DNN for performingthe classification tasks.
Table 4.3: Trajectory images classification: results of our TRAJ vs SPEED feature extractionmethods, using our MLP DNN.

Class Measure TRAJ and MLP DNN SPEED and MLP DNN
30s 60s 120s 180 30s 60s 120s 180sCognitively F1 score 0.62 0.67 0.67 0.64 0.62 0.66 0.72 0.67

healthy Precision 0.56 0.65 0.62 0.59 0.56 0.66 0.7 0.64Recall 0.68 0.69 0.72 0.69 0.68 0.65 0.74 0.7
MCI F1 score 0.5 0.55 0.58 0.56 0.53 0.52 0.59 0.57Precision 0.46 0.5 0.52 0.52 0.51 0.46 0.55 0.56Recall 0.56 0.62 0.65 0.6 0.56 0.61 0.64 0.59
PwD F1 score 0.35 0.34 0.47 0.33 0.37 0.42 0.39 0.35Precision 0.58 0.49 0.75 0.54 0.56 0.56 0.51 0.45Recall 0.25 0.27 0.34 0.24 0.28 0.34 0.31 0.28
Avg. F1 score 0.49 0.52 0.57 0.51 0.50 0.53 0.56 0.53Precision 0.53 0.54 0.63 0.55 0.54 0.56 0.58 0.55Recall 0.49 0.46 0.57 0.51 0.51 0.53 0.56 0.52
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4.5.6 Results of Two Input Trajectory Images Classification
Since the results obtained using separately the TRAJ and SPEED techniques are encour-aging, we perform additional experiments using both TRAJ and SPEED trajectory imagesas input to our proposed MLP DNN. Indeed, since TRAJ and SPEED images represent dif-ferent features of trajectories, their combined use may increase recognition rates. Thissetup corresponds to the TraMiner architecture shown in Fig. 3.1 and Fig. 4.3.The achieved results are presented in Table 4.4. Like in the previous experiments, thebest results in terms of macro F1 score are obtained using Ts = 120s. Also in this experi-ment, theworse results are obtained using threshold values of 30s and 180s. Consideringthese results, as also shown in Fig. 4.6, it is evident that the combined use of TRAJ andSPEED features significantly improves the recognition performance with respect to theuse of the single feature extraction methods. Indeed, the best achieved F1 score is largerthan 0.71, while the single feature extraction methods achieve F1 scores close to 0.57.The detailed results can be inspected through the confusion matrices reported in Ta-ble 4.5. By observing the confusion matrices, it is evident that the total number of sam-ples changes depending on the chosen value of Ts. For instance, with Ts = 30s wehave 5, 195 trajectories, while with Ts = 180s we have only 540 trajectories. Indeed, ingeneral, the lower the threshold for trajectory segmentation, the larger the number ofgenerated trajectories. Hence, by using larger values of Ts we obtain a smaller number ofsamples, but we can encode more information in the single trajectory images since tra-jectories are generally longer. On the negative side, too large values of Ts may determinevery involved images, which may confuse the DNN. On the contrary, too small values of
Ts may determine very short trajectories, that do not encode enough information for theDNN. According to our experiments, the value Ts = 120s provides a good trade-off in thissense.
Table 4.4: Trajectory images classification: results of our TRAJ+SPEED model and MLPDNN.

Class Measure TRAJ+SPEED and MLP DNN
30s 60s 120 180sCognitively F1 score 0.79 0.82 0.8 0.79

healthy Precision 0.73 0.81 0.76 0.74Recall 0.86 0.84 0.85 0.84
MCI F1 score 0.74 0.74 0.76 0.72Precision 0.67 0.64 0.68 0.69Recall 0.84 0.86 0.86 0.78
PwD F1 score 0.49 0.56 0.58 0.52Precision 0.81 0.82 0.89 0.39Recall 0.35 0.43 0.43 0.77

Avg. F1 score 0.67 0.71 0.71 0.67Precision 0.73 0.75 0.77 0.61Recall 0.68 0.71 0.71 0.79

However, the achieved results, which are computed on the classification of singletrajectories in isolation, are not sufficient for providing a reliable hypothesis about the
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Table 4.5: Trajectory images classification: confusion matrices of our TRAJ+SPEED modeland MLP DNN. (a) Ts = 30s

classified as→ Cognitively healthy MCI PwD
Cognitively healthy 0.73 0.08 0.19MCI 0.13 0.67 0.21PwD 0.14 0.05 0.81

(b) Ts = 60s

classified as→ Cognitively healthy MCI PwD
Cognitively healthy 0.81 0.07 0.12MCI 0.16 0.64 0.20PwD 0.16 0.02 0.82

(c) Ts = 120s

classified as→ Cognitively healthy MCI PwD
Cognitively healthy 0.76 0.07 0.17MCI 0.16 0.68 0.16PwD 0.10 0.01 0.89

(d) Ts = 180s

classified as→ Cognitively healthy MCI PwD
Cognitively healthy 0.74 0.11 0.15MCI 0.18 0.69 0.12PwD 0.09 0.14 0.77

cognitive status of the individual. For this reason, in the following experiments, we eval-uate the performance of the module for long-term trajectory analysis, which considersthe whole history of trajectories acquired during a certain period of time.
4.5.7 Results of Long-term Trajectory Analysis
In these experiments, we apply the algorithm for the long-term analysis described inSection 4.4.2with all the different techniques for trajectory image classification evaluatedin Sections 4.5.5 and 4.5.6. Fig. 4.7 provides an overview of the achieved results.

As expected, the results achieved using DCNN with the TRAJ or GVFE feature ex-traction methods are rather poor. Indeed, those techniques achieve the lowest recog-nition rates for trajectory image classification. In particular, the TRAJ method with DCNNachieves anF1 score slightly larger than 0.4with Ts = 120s. ItsF1 score is lower than theother values of the threshold. The best result of the GVFE method with DCNN is similarbut obtained with Ts = 60s. Overall, these two techniques do not provide significantresults for cognitive assessment, even in the long term.
Results are significantly better using our MLP DNN with the TRAJ or SPEED featureextraction methods. For both techniques, the best results are obtained using Ts = 120s.In particular, the TRAJ method achieves amacroF1 score of 0.7, while the SPEEDmethod
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Figure 4.7: Long-term analysis: macro F1 score for the different techniques.Table 4.6: Long-term analysis: results obtained using two input trajectory images classi-fication (TRAJ + SPEED features) with our MLP DNN.
Class Measure TRAJ+SPEED and MLP DNN

30s 60s 120 180sCognitively F1 score 0.86 0.93 0.92 0.88
healthy Precision 0.85 0.94 0.95 0.84Recall 0.87 0.93 0.89 0.92
MCI F1 score 0.78 0.82 0.87 0.87Precision 0.69 0.74 0.8 0.83Recall 0.9 0.93 0.93 0.9
PwD F1 score 0.57 0.67 0.83 0.61Precision 0.79 0.84 0.89 0.79Recall 0.44 0.55 0.77 0.5
Avg. F1 score 0.73 0.81 0.87 0.78Precision 0.77 0.84 0.88 0.82Recall 0.73 0.80 0.86 0.77

achieves 0.65macro F1 score. With these techniques, the increase in recognition perfor-mance introduced by the long-term evaluation algorithm is evident. Indeed, both tech-niques obtain a lower macro F1 score for trajectory image classification, which is closeto 0.57. However, the results obtained with these techniques are still insufficient for pro-viding reliable hypotheses of diagnosis about cognitive assessment.
The best results in this pool of experiments are achieved using two input trajectoryimages classification (TRAJ + SPEED features) with our MLP DNN. Indeed, the best resultsare achieved with Ts = 120s, with a macro F1 score of 0.873. The detailed results areshown in Table 4.6. As it can be observed, the best results with Ts = 120s are achievedfor the class of cognitively healthy subjects (F1 score = 0.92), which is the most frequentone. The class of MCI subjects obtains F1 score = 0.87, while the class of PwD peopleachieves F1 score = 0.83.By closely inspecting the results in the confusion matrices shown in Table 4.7, we canobserve that, with Ts = 120s, 17 PwD subjects out of 19 are correctly recognized. Among
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Table 4.7: Long-term analysis: confusion matrices obtained using two input trajectoryimages classification (TRAJ + SPEED features) with our MLP DNN.(a) Ts = 30s

classified as→ Cognitively healthy MCI PwD
Cognitively healthy 0.85 0.03 0.12MCI 0.15 0.69 017PwD 0.11 0.11 0.79

(b) Ts = 60s

classified as→ Cognitively healthy MCI PwD
Cognitively healthy 0.94 0.03 0.04MCI 0.07 0.74 0.19PwD 0.11 0.05 0.84

(c) Ts = 120s

classified as→ Cognitively healthy MCI PwD
Cognitively healthy 0.95 0.03 0.03MCI 0.15 0.80 0.06PwD 0.05 0.05 0.89

(d) Ts = 180s

classified as→ Cognitively healthy MCI PwD
Cognitively healthy 0.84 0.04 0.12MCI 0.07 0.83 0.09PwD 0.11 0.11 0.79

the other ones, one subject is classified as a person with MCI, and one as a cognitivelyhealthy person. Hence, the false negative rate of PwD is very low. Regarding false positivepredictions of dementia, we observe that three persons with MCI out of 54 are classifiedas PwD. Out of 80 cognitively healthy subjects, only two are classified as PwD. Hence, thefalse positive rate of PwD is also low. Regarding the 54 persons withMCI, 43 are correctlyrecognized, while 8 are classified as cognitively healthy, and 3 of them as PwD. We con-sider these results positive since MCI is an intermediate state between cognitive healthand dementia, which is difficult to diagnose, especially with automatic tools. Among the
80 cognitively healthy seniors, we achieved only 4 false positives. Indeed, two of themwere classified as persons with MCI, and two of them as PwD.
4.5.8 Dashboard for Clinicians
In order to allow clinicians to inspect the predictions of our system, we have developed auser-friendly dashboard, using the Google Data Studio framework. The dashboard allowsinspecting the predictions obtained through the various techniques experimented within our work, achieved using the threshold value Ts = 120s. The dashboard can be freelyaccessed on the Web4.

4https://sites.unica.it/domusafe/traminer/

https://sites.unica.it/domusafe/traminer/
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Figure 4.8: A screenshot of the TraMiner dashboard.
A screenshot of the dashboard is illustrated in Fig. 4.8. The user can select the patientthrough a drop-down list. The actual diagnosis for the current patient is shownon the left-hand side of the dashboard. On the right-hand side, the user can inspect the predicteddiagnosis based on the five different methods: ‘GVFE and DCNN’, ‘SPEED and MLP DNN’,‘TRAJ and DCNN’, ‘TRAJ andMLP DNN’, and ‘TRAJ+SPEED andMLP DNN’. We remind thatthe latter is the actualmethod implemented by TraMiner, while the other ones are shownonly as a reference.
By selecting a patient, the lower part of the dashboard shows the history of all inputtrajectories. For each trajectory, the user can visualize the extracted visual features, ac-cording to the three experimented methods: ‘TRAJ’, ‘SPEED’, and ‘GVFE’. Those imagesare available in a table and can be opened in a separate window through a hyperlink. Asample of three images in the dashboard for one trajectory is shown in Fig. 4.9.

4.5.9 Discussion and Limitations
Our experimental evaluation shows that the use of our combined visual features (TRAJand SPEED), coupled with the use of the MLP DNN, outperforms a state-of-the-artmethod based on a different visual feature extraction technique and on a more com-plex DNN. The advantage of our solution consists of the encoding of additional features,such as speed, intersections, and low-level anomaly indicators, that are not captured byexisting solutions relying on images. Indeed, those locomotion features are known in the
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Figure 4.9: A sample of images for one trajectory in the TraMiner dashboard. From leftto right, the images are obtained using the TRAJ, SPEED, and GVFE feature extractionmethods, respectively.
literature to be reliable indicators of cognitive diseases.

In general, our system achieves better results with more frequent classes. Hence, weexpect that recognition rates may improve using a training set composed of larger sets ofindividuals with MCI and PwD. The achieved macro F1 score suggests that TraMiner maybe a useful support for clinicians to provide a clinical evaluation of the cognitive healthstatus of the elderly. However, this hypothesis should be confirmed by a large trial withthe support of clinicians and the deployment of our system in real-world conditions.
The experiments show that the recognition performance of TraMiner strongly im-proves by considering the whole history of trajectories. In this respect, we recall that,despite the dataset having been acquired from more than 150 individuals, each personwas monitored only for a few hours in one day. Such a short observation period may beinsufficient to reliably predict the cognitive status of all individuals. Hence, we expect toachieve more accurate predictions by considering a long history of observations. How-ever, this intuition needs to be verified by additional experiments on a large trial.

4.6 Conclusion
We tackled the challenging issue of recognizing symptoms of cognitive decline based onthe analysis of indoor movements. To this aim, we proposed a technique to extract visualfeatures from indoor trajectories, and a two-input DL model for classification. Experi-ments with a real-world dataset collected from cognitively healthy seniors, people withMCI, and PwD, showed that our system achieves good accuracy for long-term cognitiveassessment and outperforms state-of-the-art techniques.

Several directions remain open for future research. Visual feature extraction could beimproved by adding some other useful characteristics related to low-level abnormal mo-tion indicators. Our neural networkmodel could be refined to exploit visual features. Theoptimal value of the temporal threshold Ts may depend on the kind of activity currentlyperformed by the individual, and by the home shape. Hence, we will investigate tech-
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niques to fine-tune Ts considering the current context of the inhabitant. Moreover, thesystem could be provided with explainable AI capabilities by adopting additional modelsof abnormal behaviors. Finally, there is an implicit assumption that we have a fixed lay-out for the smart-home which can restrict data portability and generalization. The latter-mentioned challenges are the main contributions of the work that will present in Chap-ter 5.



Chapter 5

Augmented and Generalized TraMiner

I n this chapter, we tackle the challenging issue of recognizing symptoms of NDDbased on the analysis of indoor locomotion traces by acquired sensor data insmart-homes with specific attention to portability and generalization. In this regard, weadopt an approach combining STF with features extracted from images depicting the tra-jectories walked within a smart-home. We introduce a vision-based method to graphi-cally represent indoor trajectories as well as a data augmentation approach based on ran-dom rotation to increase the generalization of the trainedmodel. In order to avoid the useof obtrusive wearable sensors or privacy-invasive cameras, we rely on the acquisition ofposition data from environmental sensors. Moreover, we use different HandCrafted (HC)features designed for image analysis tasks and combine them with features extracteddirectly from Spatio-temporal sequences of movements. Experiments on a real-worlddataset acquired in a smart-home test-bed show that the proposed approach achievespromising results.
5.1 Introduction
As locomotion traces encode Spatio-temporal information and can only be partially cap-tured through a fixed set of numerical features, in this chapter, we adopt the vision-basedapproach introduced in Chapter 4. With that approach, the trajectories walked by the in-habitant are depicted in images based on the smart-home floor plan, considering speedand specific locomotion indicators. The resulting images are classified by a DNN using alabeled training set. The main purpose is to increase learning generalization by meansof additional sensory, vision-based, and trajectory numerical features. We extend andimprove TraMiner [16] approach providing the following contributions:

i. We propose an image augmentation strategy to generalize the approach to differ-ent smart-home layouts;ii. We extract additional STF relevant to the cognitive assessment task;iii. We perform a comparison with HC features;iv. We propose a feature-merging strategy, combining STF and visual trajectory infor-mation;
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v. We experimentally evaluate our methods with a real-world dataset, showing thebenefits of our technique.
Experiments with a real-world dataset acquired from 99 seniors showed that the in-tegration of heterogeneous features increases recognition accuracy.

5.2 Generalized TraMiner System Overview
Similarly, we assume a sensorized smart-home infrastructure as described in Chapter 3 ,which is equipped with various types of sensors (i.e., ambient and wearable). These sen-sors include PIR motion sensors to detect the individual’s location in the house; contactand motion sensors to track interactions with objects and their usage; power sensors todetect the use of certain electrical appliances, etc. Fig. 5.1 illustrates our system architec-ture. The modules highlighted in blue are those which include our contributions.The stream processing software platform is in charge of continuously collecting posi-tioning data through PIR and door sensors. Whenever a sensor is triggered, the platformsends to the preprocessing module the following raw sensor event: e = ⟨t, s_id, v⟩,where t is the firing timestamp, s_id is the sensor’s unique identifier, and v is the gener-ated value.The integration and temporal synchronization module derives Spatio-temporal infor-mation from the events based on the relative position of each sensor in the home, whichis stored in the sensor position table.The preprocessing position datamodule is in charge of noise reduction, data cleaning,and partitioning the temporal stream of position records into trajectories. For this mod-ule, we used the technique proposed in Chapter 3 and 4. For noise reduction and datacleaning similarly, we set the thresholds for the maximum possible locomotion speed ofpeople in the house to 15 m/s and the maximum distance between adjacent positionsto 5 m, respectively. For trajectory partitioning, we rely on a given threshold Ts. A newtrajectory is initialized whenever the inhabitant is notmoving for a time period exceeding
Ts. In this work, we set Ts to 120 s.Each trajectory is passed to the modules for visual feature extraction and trajectoryfeature extraction. Those modules represent the trajectory as two images called TRAJand SPEED and extract Sensory and Trajectory features considering triggered sensors foreach trajectory, respectively. Moreover, the trajectory image rotation module will rotatetwo trajectory images by random angles to augment trajectories and provide differentaspects of trajectories that can be considered as different test-bed smart-home layouts.Likewise, classification and long-term analysis modules are in charge of classifyingeach trajectory combined with extracted numerical features as either walked by a cog-nitively healthy person or PwD and communicating the hypothesis of diagnosis to theremote healthcare center.
5.3 Trajectory Feature Extraction
The visual feature extraction module, represented in Fig. 5.1, encodes a given trajectoryinto two images, named TRAJ and SPEED. They highlight different visual features, i.e., the
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Figure 5.1: Generalized TraMiner system overview.
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former represents intersection points as red dots, while the latter represents the speedof trajectory segments using different colors.
In our system, we introduce the novel trajectory image rotation module, which hasbeen designed to generalize the vision-based approach to smart-homes with differentlayouts. Indeed, using patterns from a single home can limit the classification modelgeneralization to other home layouts [170]. For this reason, themodule applies a rotationof TRAJ and SPEED images by a randomangle. Figure 5.2 shows the original andRandomlyRotated (RR) versions of the TRAJ and SPEED images.

(a) Original TRAJ. (b) Original SPEED.

(c) Rotated TRAJ. (d) Rotated SPEED.Figure 5.2: Examples of TRAJ and SPEED images.
Of course, the rotation of rectangular images may change the image layout, as in ourcase. Hence, we set the resolution of rotated images to 164×164 pixels unlike the Chap-ter 4 which was set to 100× 130 pixels.
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5.3.1 TraMiner as Feature Extractor
To extract high-level features from the trajectory images, in this chapter, we exploited theDNN presented in Chapter 4, already pre-trained with the full-size (164 × 164) originaltrajectories, as a feature extractor. The DNN structure is illustrated in Figure 5.3.

Figure 5.3: TraMiner DNN model and its feature extractor.
The trajectory images were converted into flat feature vectors based on each pixel’scoordinates and color values. Normalization was applied to reduce the computationalcost of training. The DNN includes two dense layers with 32 neurons each. Each layerused ReLU as the activation function, followed by batch normalization and a 0.5 dropoutunit to increase reliability and reduce overfitting.Outputs of both inputs (i.e., one per image) were concatenated, followed by batchnormalization and dropout with the same drop units. Softmax was used as the activationfunction to calculate the probability distribution for the two classes cognitively healthyand PwD on the final output layer. Based on the maximum likelihood, it guarantees thateach trajectory belongs to precisely one class [156].After the training phase, we used the output of the hidden layers as extracted featuresfrom TRAJ and SPEED vectors of our rotated images. This part is highlighted in blue inFigure 5.3 Each image provided 64 features, which we call TraMiner features.

5.3.2 Spatio-Temporal Features
We also considered different categories of STF proposed in related studies [144, 160, 171]which are defined Sensory and Trajectory features as follows.Sensory features are computed from raw sensor events of each trajectory:

i. IDs of the first and last activated sensor in a trajectory;
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ii. Number of activated sensors;iii. Number of activations of each sensor;iv. Variance of the sensor IDs triggered during the trajectory’s duration (each sensoris assigned a numerical ID);v. Time of Day (ToD) for current trajectory based on start-time, where ToD ∈ {0, 5}represents “morning” (1AM to 11AM), “noon” (11AM till 13PM), “afternoon”(13PM to 18PM), “evening” (18PM to 21PM), “night” (21PM to 23PM) or “mid-night” (23PM to 1AM) by numerical order.
Trajectory features consider low-level movement indicators (explained in Chapter 2)that have been proved in the clinical literature to be indicative of cognitive decline, in-cluding jerk [157], sharp angles [159], straightness [158], and path-efficiency [62]:
i. Number of jerk episodes in the trajectory that exceed the threshold= 1.5;ii. Number of sharp angles in the trajectory;iii. Number of straightness episodes in the trajectory that exceed the threshold= 1.5;iv. The ratio of the distance between the start- and end-point of a trajectory to trajec-tory length (path-efficiency);v. The ratio of the number of sharp angles to the time duration of the trajectory(named normalized change direction);vi. The ratio of number of triggered sensors to the trajectory duration (named ca-dence);vii. The ratio of the total time of ambulation to trajectory duration (named ambulationfraction);viii. Trajectory length;ix. Time duration of the trajectory.

5.3.3 Handcrafted Image Features
We have also studied and exploited several well-used features for computer vision tasks,both classical ones [172–174] and other ones similar to those used in TraMiner, specificallyoriented to the classification of images representing trajectories [175, 176]. In particular,we evaluated two different classes of HC image descriptors: invariant moments and colorfeatures.For the first class, we computed Legendre Moments (LM) and Zernike Moments (ZM).LM was introduced by Teague [177] for image analysis tasks and have been widely useddue to their invariance to changes in scale, rotation, and reflection [178, 179], as well asZM [180]. They can represent the properties of an image without redundancy or over-lapping information between moments [177]. In both cases, the order of the momentsis five, since a higher order would have decreased the performance of the system byadding overly specific features more useful for image reconstruction than for image clas-sification [181].Regarding the second class, we extracted the following Color Histogram Features(CHF) from the images converted to grayscale: mean, STD, smoothness, skewness, kurto-sis, uniformity, and entropy. They describe the overall distribution of color in the image.
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5.4 Trajectory Classification and Long-term Analysis
A machine learning algorithm classifies each trajectory as cognitively healthy or PwD ac-cording to the predicted category of the inhabitant. As shown in Section 5.5, we evaluatedifferent machine learning classifiers in our experiments.Based on the TraMiner work in Chapter 4, and the predictions computed by the ma-chine learning algorithm, the long-term analysis module produces a diagnostic hypoth-esis about the subject’s cognitive health. The diagnosis hypothesis is reported to theremote health center for further investigation by physicians. As mentioned in Chapter 4,the long-term prediction relies on themost frequently predicted class, and it is computedas ltp according to the following formula:

ltp = argmax
c∈{‘cognitively healthy′,‘PwD′}

| {c ∈ {c1,..., cm}} |,

where c1, ..., cm is the history of predictions regarding the inhabitant’s trajectories.
5.5 Experimental Evaluation
In this section, we report the experimental results which were carried out with CASASinstrumented smart-home from a large set of seniors, including cognitively healthy se-niors and PwD. We explain the experimental setup and the achieved results by shallowML classifiers.
5.5.1 Setup
Our experiments were based on the test-bed smart-home of CASAS [2]. Since we rely onlocomotion data and TraMiner architecture, our experiments only consider PIR motionand door sensors as well. Since, for the sake of this study, we are interested in recogniz-ing symptoms of dementia, we considered 99 participants’ data, including 80 cognitivelyhealthy seniors aged 60 to 74 years old and 19 PwDwho were able to carry out the activi-ties in the home. We developed a prototype of our system using Python and its libraries.All the experiments have been conducted with Leave One Person Out cross-validation,keeping one person’s trajectories as the test set and the remaining persons’ trajectoriesas the training set, and iterating over all persons. We experimentally compared differentconfigurations of features, which are explained in the following of this section. For eachconfiguration, we report the achieved average values of Precision, Recall, and F1-score,where the latter is the harmonic mean of Precision and Recall. We report both weightedand macro-averaged values of those measures, where the former is averaged over allinstances. The latter is averaged over the two classes cognitively healthy and PwD.
5.5.2 Experimental Results
We evaluated six classifiers, namely: NB, SVM, kNN which k = 3, DT, MLP (composedof 100 neurons in a hidden layer, ReLU activation function, Adam optimizer, and trainedfor 1000 epochs, with batch size equal to 200), and LogitBoost (LB). We considered thefollowing configurations:
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• RR-TraMiner, which uses only the TraMiner DNN as feature extractor;• RR-STF, which uses STF numerical features only;• both RR-TraMiner and RR-STF features together;• HC image features LM, ZM, and CHF; together, and in isolation.
The results of the first three configurations are reported in Table 5.1. Among them,RR-TraMiner features achieve the lowest results; i.e., 72.11%weighted F1 with SVM and

53.4%macro F1 with NB.
Features Measures (%) NB SVM kNN DT MLP LB

TraMiner asfeature extractor(RR-TraMiner)
Weighted Precision 71.55 65.16 67 69.06 68.33 69.25Recall 65.81 72.72 70 66.72 79.27 67.81F1-score 68.18 72.11 68.4 67.82 72.01 68.5
Macro Precision 54.77 50 47.3 50.30 49.81 50.62Recall 53.6 40.36 46.66 50.26 48.66 50.57F1-score 53.4 44.66 46.84 50.17 45.9 50.55

STF numericalfeatures(RR-STF)
Weighted Precision 68.54 68.91 71.41 73.73 75.13 70.63Recall 76.18 70.36 74.72 73.63 80.54 75.45F1-score 71.51 69.60 71.41 73.68 75.13 71.96
Macro Precision 49.7 50.04 50.23 57.81 59.3 52.43Recall 49.29 50.04 50.40 57.76 59.8 53.14F1-score 47.97 50 49.43 57.78 59.53 52.47

RR-TraMiner
∪and RR-STF

Weighted Precision 68.42 68.98 69.08 75.27 76.13 70.12Recall 76 70.54 74.72 75.27 78.18 73.09F1-score 71.4 69.73 71.41 75.27 76.96 71.45
Macro Precision 49.58 50.15 50.23 60.26 60.27 51.73Recall 49.04 50.17 50.4 60.26 62.85 52.21F1-score 47.87 50.11 49.43 60.26 61.17 51.7

Table 5.1: Trajectory classification results using different features.
RR-STF features provide better results than the previous. Indeed, with those featuresand the MLP classifier, we achieve 75.13% weighted F1 and 59.53%macro F1.The classification results improve further by using both RR-TraMiner features and RR-STF obtaining 76.96% weighted F1 and 61.17% macro F1 with the MLP classifier. Thisresult indicates that the system accuracy can increase by considering the combination ofheterogeneous features.We also evaluated the classification performance achieved with the HC image fea-tures presented in Section 5.3.3. The results are reported in Table 5.2. With this classof features, LM features alone determine the lowest results in terms of macro F1; DTachieves the best result with 48.51%macro F1. The NB classifier achieves 51.48%macro

F1 with CHF features, while the kNN classifier obtains 51.88%macroF1 with ZM features.Interestingly, the use of LM, ZM, and CHF features together determines a relevant im-provement in macro F1; i.e., 57.2%with the LB classifier, indicating the need to combinedifferent features for this recognition task.The results obtained in weighted F1 with HC features are more stable than the previ-ous. Indeed, when used in isolation, all three considered kinds of features achieve theirbest results using the MLP classifier with around 72% or 73% weighted F1. Also, in this
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Features Measures (%) NB SVM kNN DT MLP LB

LM
Weighted Precision 68.71 67.93 64.37 67.96 71.59 65.58Recall 69.27 78.18 72.91 67.27 80.73 65.09F1-score 68.99 71.7 68.31 67.61 72.12 65.34
Macro Precision 49.72 47.78 40.72 48.55 57.03 44.77Recall 49.73 49.5 45.52 48.49 50 44.62F1-score 49.72 46.22 42.81 48.51 44.67 44.7

ZM
Weighted Precision 67.11 65.78 70.49 69.88 74.99 68.81Recall 73.45 77.64 74.73 68.36 80.73 68.36F1-score 69.88 70.85 72.26 69.09 72.78 68.58
Macro Precision 46.5 42.74 53.03 51.53 65.48 49.89Recall 48.01 48.44 52.03 51.68 50.72 49.88F1-score 46.61 44.49 51.88 51.55 46.46 49.88

CHF
Weighted Precision 71.14 69.71 67.03 68.23 74.07 69.38Recall 77.27 76.73 73.27 68 80.55 70.36F1-score 73.22 72.27 69.77 68.11 73.3 69.86
Macro Precision 54.68 51.74 46.36 48.95 62.8 50.82Recall 52.17 50.75 47.9 48.94 51.32 50.76F1-score 51.48 49.46 46.52 48.95 48.05 50.77

ZM
∪
LM
∪
CHF

Weighted Precision 65.85 67.44 66.22 71.6 70.16 73.38Recall 61.2 79.6 73.22 73.41 73.22 74.5F1-score 63.32 71.85 69.32 72.44 71.53 73.9

Macro Precision 45.78 46.55 44.76 54.74 52.37 57.61Recall 44.74 49.68 47.17 54.1 51.83 56.93F1-score 45 45.19 45.37 54.3 51.8 57.2

Table 5.2: Trajectory images classification results using several HC features extracted fromrandomly rotated images.
case, the best result in weighted F1 (i.e., 73.9%) is obtained using LM, ZM, and CHF fea-tures together.

Overall, in our experiments, RR-STF features, especially when combined with RR-TraMiner ones, outperform HC image features. This result indicates that our systemneeds statistical information (i.e., STF) along with visual information (trajectory images)about the walked trajectories. Moreover, the results obtained in weighted F1 are signifi-cantly better than those obtained in terms of macro F1. This fact is probably due to classimbalance. Indeed, the dataset includes much more trajectories of cognitively healthypersons (80 individuals) than trajectories of PwD (19 individuals). Hence, the classifiersare biased toward predicting the most frequent class cognitively healthy.
We also experimented with the algorithm for the long-term analysis described in Sec-tion 5.4, using both RR-STF and RR-TraMiner features together. As reported in Fig.5.4, thebest result is obtained by the DT classifier, which achieves 62.56% macro F1 and 79.1%weighted F1.

5.6 Conclusion
This chapter adopts an approach to combine STF with features extracted from imagesdepicting the trajectories walked within a smart home. We introduce a data augmen-tation approach based on random image rotation to increase the generalization of the
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(a) Macro F1

(b) Weighted F1Figure 5.4: Long-term analysis results with RR-TraMiner and RR-TF.
trainedmodel. In order to avoid the use of obtrusivewearable sensors or privacy-invasivecameras, we rely on the acquisition of position data from environmental sensors. Exper-iments with a real-world dataset acquired from 99 seniors show that the integration ofheterogeneous features increases recognition accuracy.



Chapter 6

Summary and Future Outlook

I n this chapter we summarize the main contributions of this thesis and addressopen issues, future directions, and other potential locomotion analysis applica-tions.
6.1 Technical Contributions
This thesis aims to efficiently and effectively analyze position traces to enable early de-tection of cognitive decline symptoms via locomotion pattern data mining. We tried topropose a framework that is non-intrusive and generalizable to various types of smartenvironments with different layouts considering the inhabitant’s privacy.The first proposed framework, in Chapter 3, consists in representing the trajectorieswalked by the resident depicted into images based on the smart-home floor plan as wellas speed and other specific locomotion indicators and utilizing DNN for image classifi-cation for supporting cognitive impairment diagnosis. DNNs help to effectively capturediscriminative features without feature engineering efforts.In the TraMiner system, introduced in Chapter 4, we tried to extend and refine thepreliminary version of our framework by transforming each locomotion segment intotwo images that capture different aspects related to the clinical indicators of locomo-tion anomalies. However, it is assumed that smart-homes have a fixed layout which canrestrict data portability and generalization.Therefore, in a later work discussed in Chapter 5, we introduced a data augmenta-tion approach based on image rotation by random angles to increase the generalizationof the trained model. Moreover, we augmented the image features with handcraftedfeatures extracted from sensors triggered by the inhabitant’s movements. Experimentalresults show that the proposed approach is promising, and it merits further research andimprovements.However, in our experimental test-bed, we relied on PIR sensors and door sensors totrack the inhabitant’s location, which provides coarse-grained position data. The systemaccuracy could be enhanced by using more precise localization technologies, like UWBpositioning systems.
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6.2 Open Issues and Future Directions
Several issues, both practical and theoretical, still have to be deeply investigated to makean effective and viable solution for detecting cognitive decline symptoms through loco-motion analysis. We identify the following as the main open issues:

i. Explainability;ii. Data portabilityiii. Public benchmarks availabilityiv. Ethics and privacyv. Activity recognition and locomotion anomaly detection
6.2.1 Explainability
A limitation of our vision-basedmethod is the difficulty ofmanually analyzing the reasonsthat determined the actual hypothesis of diagnosis. Indeed, it is not straightforward for ahuman observer to distinguish the trajectory images produced by our feature extractiontechniques for the different classes of seniors. In order to provide explainable AI capabil-ities, these kinds of systems should be complemented with other methods for cognitiveassessment, possibly considering other behavioral models of cognitive decline based onovert [182] or subtle anomalies [183], which are easier to interpret by a domain expert. Inorder to recognize those behavioral anomalies, the locomotion analysis system should beextended with additional sensors and algorithms to recognize activities at a fine-grainedlevel.
6.2.2 Data Portability
Given the nature of the datasets used in our experiments, all the patients’ data wereacquired in the same smart-home context. Whether the learned model is portable to adifferent context is still an open research question. We believe that advanced transferlearning methods specifically designed for image classification may enable training dataportability [184], but this aspect should be confirmed by additional experiments withother datasets.Even without the use of transfer learning methods to enhance data portability, oursystem could be applied to important domains. In particular, a residence for elderly peo-ple may consist of several similar apartments. The DNN model could be trained basedon the trajectories walked by those inhabitants for which a cognitive status diagnosis isknown. That model could be used for the cognitive assessment of the other inhabitants.
6.2.3 Public Benchmarks Availability
The accurate evaluation of proposed tools andmethods necessarily relies on extensive ex-periments in naturalistic conditions. However, in this domain, the setup of experimentaltest-beds and the experimentation with a large set of participants, including both peoplewith NDD and healthy control seniors, is particularly complex and expensive. Moreover,acquired data contain sensitive information. For these reasons, there is a lack of large
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datasets acquired for long time periods on a significant number of individuals, that arepublicly available.This fact limits the possibility of experimentally comparing different solutions for AI-based neurocognitive disease assessment using common test-bed datasets. A potentialsolution for this problem could be the option to integrate external evaluation pipelinesinto the computation infrastructure of the institution holding the dataset, allowing exter-nal researchers to evaluate their hypotheses without the risk of data privacy violation.It should be mentioned that most collected datasets that are used as a benchmarkare based on certain cultural regions. Therefore, there is a need to enrich data sourcesby considering the customs, and cultural differences of different regions. The gender, in-terests, and daily habits of subjects could be considered to create an interactive environ-ment. There can be a progressive profile for each resident, which is constantly evolvingaccording to the feedback it receives from the person and the environment.
6.2.4 Ethics and Privacy
Since the average age of the population is projected to increase significantly in the nearfuture, the early diagnosis of cognitive decline among elderly people is becoming a keyobjective of healthcare systemsworldwide [20]. This dissertation explored different tech-nologies and methods that have been demonstrated to be successful in detecting symp-toms of NDD based on locomotion sensor data and AI algorithms.However, given the sensitivity of the task, particular care should be taken before in-troducing these technologies into medical practice. The first fundamental challenge insensor-based healthcare systems is the protection of privacy. The use of sensor dataand AI methods for neurocognitive disease assessment raises serious ethical and legalconcerns, including informed consent acquisition, safety, transparency, data ownership,algorithmic fairness, and biases [185].Indeed, it is well known that the release of location data determines serious privacyissues [186]. Of course, the continuous observation of movements and locomotion pat-terns may reveal not only medical conditions, but also personal routines, activities, andpreferences. This problem is particularly evident in systems based on outdoor location.For instance, recurring presence in specific locations may reveal sensitive data such aspolitical opinions or religious beliefs, while frequent co-occurrence with other peoplemay expose private contacts. The continuous observation of indoor locomotion traces athomemay also challenge the individual’s privacy, revealing the presence of other peopleor the execution of private ADL.These concerns are becoming more important when RC systems are designed to beused by vulnerable people with cognitive impairments who often lack the capacity toprovide informed consent to their use [187, 188].In the last decade, we have witnessed significant endeavors in striking a balance be-tween ethical and policy considerations and assistive technologies, and a growing in-terest in AI ethics [188, 189]. However, there is still a lack of a structural framework tothoroughly consider different aspects of sensor-based AI-related technologies in RC forpeople with cognitive impairments in terms of ethical and policy-oriented concerns. Fur-
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thermore, there are somemajor gaps between developing clinically relevant AI-powereddiagnosis systems and their acceptance and reliability [190]. For this reason, a privacy-by-design technology must be adopted when designing and implementing locomotion-based healthcare systems [114].Furthermore, novel tools and methodologies are needed to provide training andguidelines to explain the benefits of introducing medical AI for people with cognitive im-pairments and their families. Investigating the views and needs of both patients and rele-vant stakeholders at the cross-section of technology development and healthcare is con-sidered a useful way to prospectively assess the practical, technical, clinical, and ethicalchallenges associated with RC smart-homes for people with cognitive impairments andtheir caregivers [191]. The future prospect could be focusing on challenges, preventivestrategies, and the possibility of improving ethical and policy-oriented training to provideproper counseling to the patients about the risks and benefits of using RC in smart-homeswhich are crucial to building trust between patients and clinical staff. Particularly, thereis a need to do:• A systematic qualitative research about opportunities and issues related to ethicsand policy in AI-powered assistive systems for people with cognitive impairments.• An analysis of challenges and the proposal of a comparison structure to mapmajorissues and possible solutions.• A quantitative research by a user study approach considering neurological, geri-atric, and geropsychiatric clinicians and older adults to understand the needs, ex-pectations, and acceptance of RC smart-home systems.• A structural approach for training and providing guidelines for the end-users ofassistive systems.Together with privacy, it is important to adopt effective cyber-security mechanisms in or-der to protect sensitive data regarding the individual. This requirement is particularly im-portant in IoT systems, which are prone to different kinds of attacks [192]. From a techno-logical point of view, the need for continuous data acquisition and processing challengesthe power requirements of portable or wearable systems. Novel edge computing solu-tions such as Federated Learning [193, 194] optimized for the execution of ML algorithmsand supported by privacy and security mechanisms need to be put in place [195]. There isalso the need for optimized, energy efficient, and effective noise suppression algorithmsfor accurate localization and location data processing [93].
6.2.5 Activity Recognition and Locomotion Anomaly Detection
Frail people, especially those with cognitive impairments, are at risk of declining levelsof independence, and safety issues, therefore, the main purpose of RC technologies is tosupport them to improve their quality of life [6]. RC technologies in smart-homes enabletime-dependent and location-based monitoring in order to manage ADL by a variety ofassistive technologies [7].Studies showed that the relation between locomotion and ADL patterns is signifi-cantly correlated with a person’s health and cognitive status, if changes in human be-havior can be detected, situations that require further health evaluation will be identi-
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fied [146, 196]. Moreover, indoor movements are affected by the variability of activityexecution as well. In fact, recognizing activities is a challenging problem as there are nodirect ways to relate data recorded via sensors to specific activities. In fact, a personcould carry out an activity with significant variations compared to the performance ofanother person. In this way, the data collected by the sensors will also vary. Some ofthese changes are detectable in the short term, such as frequent use of the toilet, whichmay indicate a urinary tract infection, or behavioral changes that are detectable in thelong term, such as taking longer to prepare food and shorter reading the newspaper. Itmay indicate MCI or a more serious form of dementia [197]. Furthermore, they can beclassified using different perspectives and granularity levels, as well as requiring a densesensing infrastructure which may lead to privacy issues and increasing recognition com-plexity due to the number of residents in an indoor environment [198].Therefore, human activity recognition in elderly healthcare systems is the way to fa-cilitate healthcare work in order to treat and care for the elderly, reduce the workloadfor caregivers, reduce hospital stays, reduce costs, and improve quality of life. Expertsin the field of medicine in general and in geriatrics, in particular, believe that one of thebest ways to identify and discover emerging medical conditions is to examine changes inpeople’s daily activities before these conditions become serious [199].In general, abnormal behaviors of individuals more specifically during multi-stage ac-tivities such as cooking can be identified based on observations and they can be dividedinto three main categories [200]:• Problem with experience: Lack of sufficient experience with multi-stage activitieshas led to difficulty in performing this activity effectively. Also, not having enoughexperience in doing the activity leads to slowing down each stage of the activityand a lot of time will be spent doing it.• Difficulty in following the steps and instructions for the activity: participants faceproductivity and safety problems during the activity and constantly ask questionsto receive approval from observers.• Cognitive/Emotional Problems: The results show that using a method that is con-trolled by the user leads to less distraction. However, some people need the helpof supervisors to prevent mistakes to follow activities.Since in most sensor-based applications, the focus is on sensing object interactionand tracking locations visited [201], as s future research direction, a novel unobtrusiveactivity recognition system based on indoor locomotion analysis for the recognition ofparticipants’ activities through encoding the trajectories and manipulated objects intoimages which represented the performed activities through graphics could be useful.Moreover, considering the goals while the person is executing the actions, in orderto detect errors in behavior, assess the skills of initiation, organization, the inclusion ofall steps, sequencing, safety and judgment, and completion while the task is being per-formed [202–204], and to reason about the causes of these errors. It can be done usingComputational Causal BehaviorModels [205] which is a compact symbolic structure witha powerful probabilistic inference engine.These kinds of systems are the most preferred solution for monitoring daily activities
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specifically regarding elderly peoplewho live alone and they prefer non-intrusive systemsrather than a camera and wearable devices-based systems.
6.3 Other potential application areas
Locomotion analysis other than healthcare applications is valuable in different kinds ofdomains such as military and surveillance environments, entertainment, sports, and forvalidation of computer vision and robots.Motion and locomotion detection and analysis in surveillance and security environ-ments can be used in order to automatically detect anomalous activities to warn relevantauthorities about potentially dangerous or criminal or terrorist behaviors, monitor thesafety of a place, and track individuals or groups of people. Therefore, when an emer-gency situation arises it also leads to facilitate the evacuation of that area. This appli-cation is helpful to coordinate the activities of firefighters who need to work in parallelbut differently divided groups. Automatic recognition and tracking of group movementpatterns along with activities will be useful for team training in emergency situations aswell as for helping groups to coordinate their actions in complex situations In filmmak-ing and video game development, it refers to recording the locomotion of human actorsand using that information to animate digital character models in 2D or 3D computeranimation.“Locomotion" by itself is a general term that is considered as “Walking" in the currentdissertation. However, there are other types of locomotion including rolling, hopping,metachronal motion, slithering, swimming, brachiating, and hybrid locomotions whichcan be considered as locomotion in multiple modes. Furthermore, it can be categorizedaccording to one of four types of environment: terrestrial (on the earth), aerial (in theair), aquatic (in the water), or fossorial (in the earth). Considering different kinds of en-vironments and variations of locomotions, they can have different sorts of applications,especially in developing robots’ locomotion capabilities to autonomously decide how,when, and where to move.
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Appendix

Table A.1: Selected papers after four phases of literature search method.
Ref. Disease Location #Subjects Monitoring

duration
Lab/Real Algorithms Sensors Year

[77] Dementia Indoor 178 16 hours Real Multi-modality Actillume, StepWatch,Step Sensor, and TriTrac-R3D
2003

[53] Huntington Indoor 64 few min Lab Temporal assessmentmethods 2-bit on-board analog-to-digital converter, 4sensitive switches
2006

[44] Dementia General 1249 3.6 years Real Low-levelmotion indica-tor assessment accelerometer, gyro-scope 2020
[117] Parkinson General 134 few min. Lab Statistical analysis Accelerometers,GAITRite 2019
[51] Parkinson Indoor 54 - Real ML based assessmentmethods 8 IMU sensors 2018
[69] Parkinson Indoor 134 60 meterwalk Lab NLD, SVM smartphone, ac-celerometers andgyroscopes

2022

[113] Dementia Indoor 5 CASASdataset - Real Pattern-based methods PIR 2020
[78] Dementia Indoor 19 600 hours Real Single-modality Computer vision 2007[126] Parkinson Indoor 14 - Lab Image processing basedmethod SONY HDR-HC3 cam-corder 2009
[90] Huntington Indoor 85 - Lab Hybrid assessmentmethods IMU attached to thetrunk 2014
[80] Dementia Indoor 72 few sec. Lab Feature-based methods accelerometer, gyro-scope 2016
[121] Parkinson General 166 few min. Lab ML based assessmentmethods 8 sensors underneatheach foot 2013
[45] Huntington General 34 - Lab Hybrid assessmentmethods accelerometer 2013
[63] Dementia Outdoor 182 few min. Real Multi-modality GPS,accelerometer 2017[47] Huntington Indoor 99 50 m walk Lab Hybrid assessmentmethods force platforms + 6infrared camera + 15spherical, retroreflec-tive marker

2011

[49] Dementia Indoor 100 25 steps Lab Task-oriented assess-ment 3D kinematics, gyro-scope 2019
[86] Parkinson Indoor 40 7 days Lab Multi-task assessmentmethods wearable sensors, gyro-scope, opal inertial sen-sors

2014

[124] Parkinson General 166 few min. Lab ML based assessmentmethods 8 foot sensors measur-ing the vertical groundreaction force (VGRF)
2020

[129] Parkinson General 166 few min. Lab ML based assessmentmethods force sensors 2016
[37] Parkinson General 24 few min. Real Temporal assessmentmethods IMU 2013
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Ref. Disease Location #Subjects Monitoring
duration

Lab/Real Algorithms Sensors Year

[131] Parkinson Indoor 28 few min. Real Pattern-based methods mobile device, Kalmanfilter and off-the-shelfshoe-worn inertial sen-sors

2016

[64] Parkinson Indoor 45 13 hours Lab Clinical assessmentmethods accelerometer, gyro-scope, magnetometer,and a barometricpressure sensor

2019

[118] Parkinson General 56 few min. Lab Clinical assessmentmethods accelerometers 2017
[139] Parkinson Indoor 42 - Lab Multi-modality meth-ods Vicon 3D motion analy-sis system 2022
[60] Dementia Indoor 20 5 months Real Feature-based methods accelerometer 2013[41] Dementia Indoor 65 - Lab Task-oriented assess-ment accelerometer 2009
[127] Parkinson General 301 - Real Image processing basedmethod - 2020
[101] Parkinson Indoor 35 25 sec real Statistical analysis smartphone app, sen-sors, accelerometer 2014
[112] Dementia General 53 - Feature-based methods accelerometer, gyro-scope 2019
[42] Dementia General 136 7 days both Task-oriented assess-ment accelerometer 2018
[71] Huntington Indoor 46 few min. Lab Single-task assessment Force-sensitive switchesplaced inside the shoe 1997
[105] Dementia Indoor differentapproach 1 month Real Multi-modality doorway sensors,accelerometer 2018
[39] Dementia Indoor 41 few min Lab Task-oriented assess-ment accelerometer 2012
[122] Parkinson General 31 5 min. Real ML based assessmentmethods force sensitive resistors 2017
[36] Dementia Indoor 14 30 days Real Low-levelmotion indica-tor assessment UW sensor network 2010
[128] Parkinson Indoor 7 20 second Lab Image processing basedmethod - 2013
[34] Dementia Indoor 200 2 years Real Pattern-based methods PIR, door sensors 2020[1] Dementia Indoor 192 2 years Real Pattern-based methods PIR, doorway sensors 2021[70] Parkinson Indoor 39 49.2 meterwalk Real NLD based apporach Wireless Medilogic footpressure insoles 2014
[50] Dementia Indoor +250 3 years Lab Feature-based methods Kinect sensor 2020[62] Dementia Indoor 10 1 year Real Feature-based methods UW location data 2017[75] Dementia Indoor 252 2 to 4 hours Real Pattern-based methods ambient sensors[52] Dementia Outdoor 7 7days Real Single-modality GPS 2012[92] Huntington general 30 - Lab Hybrid assessmentmethods accelerometer, gyro-scope,gait pressuremat

2015

[55] Dementia Indoor 41 2 weeks Lab Task-oriented assess-ment inertial sensor 2016
[17] Dementia Indoor 40 4 weeks Lab Multi-modality RFID, GPS, GSM and GIS,vision-based 1991
[48] Dementia General 80 few min. Lab Low-levelmotion indica-tor assessment accelerometer 2020
[111] Dementia Indoor 9 few sec. Lab Threshold-based meth-ods accelerometers, gyro-scopes, magnetometers 2013
[115] Parkinson General 17 - Both Clinical assessmentmethods accelerometers 2007
[58] Dementia Indoor 213 30m walk Real Low-levelmotion indica-tor assessment wearable inertial sen-sors 2020
[206] Parkinson General 166 few min. Lab ML based assessmentmethod pressure sensors 2019
[135] Parkinson,Huntington Indoor 64 few min Lab ML based assessmentmethod sensorized walkway,force-sensitive 2021
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Table A.1 – continued from previous page
Ref. Disease Location #Subjects Monitoring

duration
Lab/Real Algorithms Sensors Year

[68] Parkinson Indoor 90 20 meterwalking witha stop at 10meter

lab NLD based apporach tri-axial accelerometerand a tri-axial gyroscope 2020

[120] Parkinson General 182 few sec. Lab Feature-based assess-ment methods 8 foot sensors measur-ing the vertical groundreaction force (VGRF)
2016

[73] Parkinson,Huntington Indoor 64 lab Feature-based: Non-linear feature, SVM,probabilistic neuralnetwork

Force-sensitive resistors 2020

[110] Parkinson Indoor 51 few min Lab ML based assessmentmethod Kinect 2015
[91] Huntington Indoor 14 walk to theend of thehallway

Lab Hybrid assessmentmethods GaitRite. CIR system 2017

[24] Parkinson Indoor 8 few sec. Real Multi-task assessmentmethod accelerometer 2019
[87] Parkinson Indoor 36 12 weeks Both Clinical assessmentmethods accelerometer 2016
[38] Dementia General 60 8 days Both Task-oriented assess-ment accelerometer, instru-mented walkway 2020
[56] Huntington Indoor 65 4.6 m walk Lab Hybrid assessmentmethods instrumented walkwaywith force sensorsembedded in its surface

2008

[57] Huntington Indoor 30 walk to theend of thehallway
Lab Hybrid assessmentmethods GaitRite. CIR system 2009

[46] Huntington Indoor 24 4.6m walk Lab Hybrid assessmentmethods six sensor pads encapsu-lated in a roll-up carpet 2005
[130] Parkinson General 20 40m walk Lab ML based assessmentmethods accelerometer, gyro-scope 2020
[119] Parkinson Indoor 10 few min Lab Clinical assessmentmethods accelerometer, gyro-scope 2017
[138] Dementia Outdoor 15 few sec. Real Multi-modality accelerometers, GPS 2020[72] Parkinson Indoor 34 3 min walk lab Feature-based ap-proach, Hoehn and Yahrscale

tri-axial accelerometer 2014

[102] Parkinson Indoor 60 Walk 3metertwice with 15min interval
real Statistical analysis device sensor, 3-axisgyroscope, 3-axis ac-celerometer, and aDigital Motion Proces-sor

2020

[107] Parkinson Indoor 102 few sec. Lab Clinical assessmentmethods pressure sensors on thefloor 2018
[106] Parkinson Indoor 102 few sec. Lab Clinical assessmentmethods pressure sensors on thefloor 2019
[66] Parkinson Indoor 24 few min. Lab Clinical assessmentmethods video and wearable 2018
[43] Dementia,Parkinson Indoor 67 few sec. Lab Feature-based methods gyroscope, accelerome-ter 2016
[82] Dementia Indoor 28 6 min Real Single-modality QR codes 2016[54] Parkinson,Huntington General 40 few min. Lab Temporal assessmentmethods accelerometer, gyro-scope 2015
[123] Parkinson General 16 1 hour Lab ML based assessmentmethod accelerometers, gyro-scopes 2012
[109] Parkinson General 100 - Lab Clinical assessmentmethod infrared depth sensor(Kinect) 2020
[125] Parkinson Indoor 44 1 hour Lab Feature-based assess-ment methods Bio-signals and gait in-formation by eGaIT sys-tem

2018
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Ref. Disease Location #Subjects Monitoring
duration

Lab/Real Algorithms Sensors Year

[116] Parkinson General 73 10m walk Lab Clinical assessmentmethod gyroscope, accelerome-ters 2019
[76] Dementia Indoor 7 1 hour Lab Threshold-based meth-ods accelerometer, gyro-scope, magnetometer 2015
[100] Parkinson Outdoor 62 6 months real Feature-based assess-ment method smartphone, ac-celerometers andgyroscopes

2018

[65] Dementia Indoor 46 3 meters Lab Threshold-based meth-ods accelerometer, gyro-scope 2015
[61] Dementia Indoor 30 40m walk Lab Feature-based methods accelerometer, gyro-scope 2014
[136] Dementia Outdoor 14 days Real Single-modality GPS 2019[137] Dementia,Parkinson Outdoor 65 24 hours Real Single-modality accelerometer 2016
[31] Huntington,Parkinson Indoor 64 few min. Lab Hybrid assessmentmethods Force sensitive switchesin the shoes 2015
[59] Dementia Indoor 28 few min. Lab Task-oriented assess-ment accelerometer, gyro-scope, magnetometer 2018
[99] Parkinson Indoor 55 14 days Real Image processing basedassessment methods mobile phone 2016
[16] Dementia Indoor 153 2 years Real Pattern-based methods PIR, doorway sensors 2021



Abbreviations

AD Alzheimer’s disease

ADL Activities of Daily Living

AI Artificial Intelligence

AIR Active InfraRed

BBS Berg Balance Scale

CASAS Center for Advanced Studies in Adaptive Systems

CCNA Canadian Consortium on Neurodegeneration in Aging

CD Correlation Dimension

CHF Color Histogram Features

CNN Convolutional Neural Networks

DCNN Deep CNN

DFA Detrended Fluctuation Analysis
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DL Deep Learning

DMLP Deep MLP

DNN Deep neural network

DOTs Day Out Tasks

DT Decision Tree

FoG Freezing of Gait

FoG-Q FoG-Questionnaire

FRT Functional Reach Test

GPU Graphics Processing Unit

GVFE Gochoo Visual Feature Extraction

HC HandCrafted

HD Huntington’s Disease

HD-ADL HD Activities of Daily Living

HE Hurst Exponent

HMM Hidden Markov Models

HR Harmonic Ratio
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IMU Inertial Measurement Unit

IoT Internet of Things

kNN K-Nearest Neighbour

LB LogitBoost

LDA Linear Discriminant Analysis

LED Light-Emitting Diode

LLE Largest Lyapunov Exponent

LM Legendre Moments

LR Logistic Regression

LZC Lempel Ziv Complexity

MDS-UPDRS Movement Disorder Society-sponsored version of the UPDRS

MEMS MicroElectro Mechanical Systems

ML Machine Learning

MLP Multi-Layer Perceptron

MMSE Mini-Mental State Examination

MoCA Montreal Cognitive Assessment
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NB Naive Bayes

NDD Neuro-Degenerative Diseases

NFoG-Q New FoG-Questionnaire

NLD Non-Linear Dynamics

PCA Principal Component Analysis

PD Parkinson’s Disease

PIR Passive InfraRed

PNN Probabilistic Neural Network

PwD People with Dementia

PwHD People with HD

PwPD People with PD

RB Romberg Balance

RC Remote Care

R-CNN Regional-CNN

ReLU Rectified Linear Units

RF Random Forest
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RFID Radio-Frequency Identification

RNN Recurrent Neural Network

RQA Recurrence Quantification Analysis

RR Randomly Rotated

SPPB Short Physical Performance Battery

STD STandard Deviation

STF Spatio-Temporal Features

SVM Support Vector Machine

TDoA Time Difference of Arrival

THD Total Harmonic Distortion

ToA Time of Arrival

ToD Time of Day

TUG Timed Up & Go

UB Upper Body

UHDRS Unified HD rating scale

UPDRS Unified PD Rating Scale
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UWB Ultra-Wide Band
WSU Washington State University
ZM Zernike Moments
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