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Abstract

L/6he rapid increase in the senior population is posing serious challenges to national
healthcare systems. Hence, innovative tools are needed to early detect health
issues, including cognitive decline. Several clinical studies show that it is possible to iden-
tify cognitive impairment based on the locomotion patterns of older people. Thus, this
thesis at first focused on providing a systematic literature review of locomotion data min-
ing systems for supporting Neuro-Degenerative Diseases (NDD) diagnosis, identifying lo-
comotion anomaly indicators and movement patterns for discovering low-level locomo-
tion indicators, sensor data acquisition, and processing methods, as well as NDD detec-
tion algorithms considering their pros and cons. Then, we investigated the use of sensor
data and Deep Learning (DL) to recognize abnormal movement patterns in instrumented
smart-homes. In order to get rid of the noise introduced by indoor constraints and activity
execution, we introduced novel visual feature extraction methods for locomotion data.
Our solutions rely on locomotion traces segmentation, image-based extraction of salient
features from locomotion segments, and vision-based DL. Furthermore, we proposed a
data augmentation strategy to increase the volume of collected data and generalize the
solution to different smart-homes with different layouts. We carried out extensive ex-
periments with a large real-world dataset acquired in a smart-home test-bed from older
people, including people with cognitive diseases. Experimental comparisons show that
our system outperforms state-of-the-art methods.

Keywords — Abnormal Locomotion Detection, Trajectory Mining, Deep Learning,
Cognitive Decline, Pervasive Healthcare
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Chapter 1

Introduction

%ﬁ the demographic change towards older adult population, the proportion of
seniors isincreasing and it is projected that the old-age dependency ratio alone
in the European Union will increase from 27.5% in 2013 to 49.4% in 2050. Aging is asso-
ciated with declines in cognitive function and mobility and it has a significant impact on
society [4]. For example, in 2013, the number of People with Dementia (PwD) was over
35 million people worldwide, and it is expected this number to double by 2030, reaching
115 million by 2050 [5]. With the shift from the young to the older people population, it
is also expected that the shortage of professional caregivers will increase, especially for
people with chronic diseases such as dementia and cognitive impairment who are at risk
of declining levels of independence, and safety issues. Furthermore, it will increase the
cost and financial burden on healthcare systems. Therefore, the early detection of cog-
nitive impairments in the elderly population could potentially help them to find timely
therapies and to stay longer independent and socially active.

A promising way to address this societal change is to switch from formal care in hos-
pitals and other traditional healthcare settings to in-home care. Studies have shown that
many people who need care prefer to stay in their own homes [6, 7]. Meanwhile, with
the advancement of sensor-based technologies and Artificial Intelligence (Al) techniques,
novel home-based e-health solutions are introduced, which include remote health sys-
tems in smart-homes. In this context, those systems target the prevention of chronic
diseases and the monitoring of residents’ behaviors for elderly or disabled people.

11 Motivation

The main purpose of Remote Care (RC) technologies is to support frail people to reduce
the cost of living and care as well as improve the quality of life for people who need
care while providing them with the opportunity to live independently [6]. Automated
intelligent technologies could provide easier and more accessible ways of early diagnosis
of cognitive impairments and enable time-dependent and location-based monitoring to
manage Activities of Daily Living (ADL) by a variety of assistive technologies. Moreover,
patients and caregivers have access to web-based applications that provide information
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on activity levels, movement processes, to-do lists, social interactions, as well as exercise
and medication [7]. They can enable automated systems for the caregivers to monitor
and track residents’ behaviors and progression of NDD symptoms, and control health
status continuously without continuous intervention.

1.2 Research Goals and Contributions

A promising direction in this regard consists in tracking the movements of frail peo-
ple through positioning technologies and analyzing location traces according to well-
established clinical models of wandering behavior. To this aim, several methods have
been recently proposed that exploit Internet of Things (loT) data and Al techniques to
recognize abnormal behaviors [8-12]. In particular, the analysis of position traces may
enable early detection of cognitive decline. However, several research challenges are
still open in this area, including the effectiveness of the tools for supporting the diag-
nosis, privacy, and obtrusiveness concerns, and adaptation of the reasoning modules to
different environments. Experiments with a real-world dataset acquired from 99 seniors
showed that the integration of heterogeneous features increases recognition accuracy.
Furthermore, due to the abundance of Spatio-temporal information encoded by move-
ment traces, and the presence of noise introduced by positioning technologies, there is
a need for specific feature engineering methods.

The goal of this thesis is the investigation of the above-mentioned research issues,
with the objective of designing indoor locomotion traces data mining framework to ef-
fectively detect cognitive decline symptoms. The framework should be generalizable to
different smart environments with different layouts, without compromising the inhabi-
tant’s privacy or being obtrusive.

For the sake of privacy, the position data processing in the above-mentioned works
is executed on the edge, within the inhabitant smart-home system. Only model training
is executed on the cloud using anonymized data. In addition, in order to avoid the use
of obtrusive wearable sensors or privacy-invasive cameras, in all works, we relied on the
acquisition of location data from environmental sensors.

Furthermore, for the sake of simplicity, we consider the case of a person living alone
in the home which is a common situation for elderly people. However, in order to sup-
port seniors living with other people or pets, the proposed approaches could be easily
extended by adopting an identity-aware positioning system, or by applying a data as-
sociation algorithm in charge of associating each location reading to the individual that
triggered the corresponding sensor [13].

1.2.1 Systematic Literature Review

The thesis starts with a systematic literature review of locomotion data mining systems
for supporting NDD diagnosis. Since locomotion characteristics and movement patterns
are reliable indicators of NDD, the review discusses techniques for discovering low-level
locomotion indicators, sensor data acquisition and processing methods, and NDD de-
tection algorithms. It presents a comprehensive discussion of the main challenges for
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this active research area, including the addressed diseases, locomotion data types, dura-
tion of monitoring, employed algorithms, and experimental validation strategies. It also
identifies prominent open challenges and future research directions regarding ethics and
privacy issues, technological and usability aspects, and the availability of public bench-
marks.

1.2.2 Towards Vision-based Analysis of Indoor Trajectories

Recent researches consist in encoding the trajectories walked by the inhabitant into im-
ages based on the smart-home floor plan as well as speed and other specific locomotion
indicators, and utilizing Deep neural network (DNN) for image classification for supporting
NDD diagnosis. The rationale of this approach is that trajectory images may effectively
capture discriminative features without the need for sophisticated feature engineering
efforts. This approach will let us get rid of the noise introduced by indoor constraints
and activity execution. Therefore, we proposed a system [14] to identify abnormal in-
door movement patterns that may indicate cognitive decline according to clinical mod-
els of spatial disorientation [15]. Our solution relies on locomotion trace segmentation,
image-based extraction of salient features from locomotion segments by retaining the
spatial information in trajectory images, enriching them with additional visual features,
and vision-based DL. Preliminary experimental results with a real-world dataset gathered
from cognitively healthy persons and PwD show that this research direction is promising.

1.2.3 The TraMiner Framework

In the next step, we extended and refined the above-mentioned work, proposing the
TraMiner system [16], which exploits Trajectory Mining for continuous cognitive assess-
ment in smart-homes. The system relies on specific techniques for locomotion data clean-
ing and segmentation. Each locomotion segment is transformed into two images that
capture different aspects related to the clinical indicators of locomotion anomalies, rep-
resent the walked trajectory in a 2-dimensional space, and highlight different visual fea-
tures, such as speed and intersection points. They allow us to visually capture locomo-
tion anomalies corresponding to the pacing and lapping patterns defined by the Martino-
Saltzman model [17], naturally encode low-level motion indicators such as sharp angles,
straightness, turning angle, and path efficiency, and also enable us to capture low-level
motion indicators. Results show that TraMiner can accurately recognize the cognitive
status of the senior, reaching a macro Fj score of 0.873 for the three categories that
we target: cognitive health, MCI, and dementia. Moreover, an experimental comparison
shows that our system outperforms state-of-the-art methods.

1.2.4 Augmented and Generalized TraMiner

In TraMiner, it is assumed that smart-homes have a fixed layout. However, since us-
ing movement patterns from a single smart-home can restrict the generalization of the
learned model to other homes with different layouts, in a later work we introduced a
data augmentation approach based on random image rotation to increase the general-
ization of the trained model. We proposed an approach combining Spatio-Temporal Fea-
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tures (STF) with features extracted from images depicting the trajectories walked within a
smart-home [18]. Experimental results with a real-world dataset collected from both cog-
nitively healthy seniors and PwD show that the proposed approach achieves promising
results in terms of macro and weighted F; with a small subset of features and long-term
analysis of the predictions can support a reliable assessment of the cognitive status over
time. Using a high number of features in such applications may lead to collinearity and
increase the number of features that potentially have no predictive power. Moreover,
the computation, storage, and transmission of unnecessary information is a waste of re-
sources [19]. Therefore, we tried to keep the number of features as small as possible.

1.2.5 List of Publications

The publications listed below constitute the majority of the content of this thesis. The
first author of them, i.e., the author of this thesis defined their problem statements, de-
veloped their methods, performed experiments to assess their underlying strategies, and
wrote the manuscripts.

e Samaneh Zolfaghari, Sumaiya Suravee, Daniele Riboni, and Kristina Yordanova.
“Sensor-based Locomotion Data Mining for Supporting the Diagnosis of Neurode-
generative Disorders: a Survey”.

e Samaneh Zolfaghari, Andrea Loddo, Barbara Pes, and Daniele Riboni. “A combina-
tion of visual and temporal trajectory features for cognitive assessment in smart-
home”. In: 2022 23rd IEEE International Conference on Mobile Data Management
(MDM). IEEE. 2022, pp. 343-348.

e Samaneh Zolfaghari, Elham Khodabandehloo, and Daniele Riboni. “TraMiner:
Vision-based analysis of locomotion traces for cognitive assessment in smart-
homes”. In: Cognitive Computation 14.5 (2022), pp. 1549-1570.

e Samaneh Zolfaghari, Elham Khodabandehloo, and Daniele Riboni. “Towards vision-
based analysis of indoor trajectories for cognitive assessment”. In: 2020 IEEE Inter-
national Conference on Smart Computing (SMARTCOMP). IEEE. 2020, pp. 290-295

1.3 Organization

The dissertation is structured as follows. Chapter 2 provides a systematic literature re-
view, and thoroughly discusses different clinical and non-clinical NDD indicators, tools,
and technologies. Moreover, it considers algorithms and applications, and open issues
regarding sensor-based locomotion analysis in order to detect gait anomaly in NDD at an
early stage that has been proposed in the literature. Chapter 3 provides an introduction
to a novel framework on locomotion traces segmentation based on a given length and
is depicted by images and additional gait features utilizing Martino-Saltzmman model [17].
Chapter 4 extends the previous framework in terms of having two different kinds of tra-
jectory images which are segmented temporally and encoded into two images based on
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movement and acceleration. In Chapter 5 we try to propose a general framework by
introducing a new data augmentation methodology, utilizing the extended version of the
previously mentioned framework for feature extraction and using additional sensory and
trajectory features. Chapter 6 concludes the dissertation by summarizing the technical
contributions of the thesis and discussing open problems.



Chapter 2

Systematic literature review

(/60 evaluate the potential of automated technologies to detect cognitive decline,
we first need to analyze the indicators of locomotion anomalies associated with
cognitive decline, different methods, and sensor-based technologies for detection of cog-
nitive impairments based on locomotion data. Therefore in this chapter, we concentrate
on techniques for discovering low-level locomotion indicators, sensor data acquisition
and processing methods, and NDD detection algorithms. We present a comprehensive
discussion on the main challenges for this active research area, including the addressed
diseases, locomotion data types, duration of monitoring, employed algorithms, and ex-
perimental validation strategies. Three widespread types of cognitive decline are consid-
ered: Alzheimer’s disease (AD), Huntington’s Disease (HD), and Parkinson’s Disease (PD).

2.1 Introduction

Since the average age of the population is projected to increase significantly in the near
future, the early diagnosis of cognitive decline among elderly people is becoming a key
objective of healthcare systems worldwide [20]. This chapter explored different tech-
nologies and methods that have been demonstrated to be successful in detecting symp-
toms of NDD based on locomotion sensor data and Al algorithms.

The structure of this chapter is illustrated in Fig. 2.1. We divided the core of our study
into three different parts, which correspond to the main building blocks of Al-based sys-
tems for NDD assessment. The lowest level is related to primary or complex gait indi-
cators, which are used for the diagnosis of NDD according to clinical theory and prac-
tice. Those indicators provide the clinical ground for designing NDD detection system
since they identify which raw data are necessary for the assessment. Consequently, the
middle-level regards existing tools and technologies to acquire locomotion data at coarse-
and fine-grained levels in different environments, including wearable and infrastructure-
based systems. Finally, the highest level reports and discusses algorithms and applica-
tions that process locomotion data for supporting the diagnosis of NDD and for recogniz-
ing challenging behaviors that may put the safety of cognitively impaired subjects at risk.
Each level is addressed in a specific section of our chapter.
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Algorithms and applications
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Figure 2.1: Chapter scenario.

2.2 Summary of Methodology and Main Findings

We queried the most prominent scientific search engines with a handcrafted query to
retrieve the literature review candidates. From a pool of 1277 retrieved articles, we se-
lected and surveyed 128 papers that matched our criteria regarding types of clinical in-
dicators, sensor technologies, experimental setup, and algorithm types. The chapter in-
dicates that the number of scientific works exploiting Al and locomotion sensor data for
the diagnosis of NDD is strongly growing, especially from 2010 on. Most papers address
the detection of dementia and Parkinson’s disease, which are the most common NDD,
while few of them address HD. Most works are based on indoor locomotion monitoring,
while few ones consider more complex outdoor movement patterns. Several different
Machine Learning (ML) algorithms are used for NDD detection. The most common ap-
proach is to use classical ML algorithms such as Random Forest (RF) or Support Vector
Machine (SVYM), while few works adopt DL methods. Some works relying on fine-grained
motion indicators rely on statistical measures and thresholds to produce a prediction.
The duration of monitoring ranges from a few minutes for gait analysis, to hours, days,
or weeks for more complex patterns. The majority of the experiments were held in con-
trolled laboratory environments, but a large percentage were conducted in naturalistic
real-world environments such as the individual’s home.
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The results show that this kind of technology may effectively support the diagnosis
of NDD and help simplify patient management. However, the review showed that most
existing techniques fall short in addressing different challenging issues. The release of lo-
cation data may reveal several private pieces of information regarding the patient; how-
ever, problems related to cyber-security and privacy protection are mostly neglected by
existing systems. Of equal importance are aspects regarding trust and legal issues, which
seem overlooked in the current literature. Other challenging issues which merit further
research regard users’ acceptance and usability. From a technological viewpoint, the
power capabilities of existing solutions are challenged by the need for long-term eval-
uation and execution of ML algorithms on wearable devices. Finally, the lack of public
datasets acquired in real-world conditions makes it difficult to experimentally compare
the different solutions.

The remainder of this chapter is structured as follows. Section 2.3 introduces the
three types of NDD, their clinical symptoms, and locomotion indicators. In Section 2.4
we describe the procedure used in this study and the types of papers included. Sec-
tion 2.5 analyses the clinical locomotion indicators of NDD, while Section 2.6 presents
the technologies and tools used for the detection of locomotion indicators. Section 2.7
discusses the existing algorithms for detecting NDD based on sensing technologies. The
chapter concludes with a discussion of the shortcomings of existing technologies and
methods and the potential future directions in detecting cognitive impairments in the
elderly based on locomotion data.

2.3 Clinical Background

In what follows we shortly introduce the three types of NDD and their clinical symptoms
and locomotion indicators.

2.3.1 Alzheimer’s Disease

AD is the most familiar type of dementia and it is considered a syndrome that has chronic
or progressive nature. It is defined as a declination in cognitive function beyond what
might be expected from normal aging. PwD suffers from a lack of memory and thinking
capability, learning ability, and inability to communicate. The impairment in cognitive
function is generally accompanied and periodically preceded by weakening in emotional
control and social manners. It is regarded as a predominantly cognitive disorder. Gait ab-
normalities can also be noticed in the disease’s early stages, including decreased walking
speed, step length, step frequency, and increased gait variability. Dementia is considered
one of the main reasons for disability and dependency among older adults worldwide. It
can be troublesome for PwD, caregivers, and family members. A lack of awareness and
understanding of dementia is being observed that causes stigmatization and hindrances
to diagnosis and care. The effect of dementia on caregivers, families, and the commu-
nity is very diverse. It can be biological, psychological, social, and economic. It might be
challenging to detect dementia early since each individual gets affected by that disease
differently, relying on the effect of the disease and the individual’s personality before
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becoming sick. According to the World Health Organization (WHO)', around 50 million
people are diagnosed with dementia, and the most common symptoms of dementia can
be classified into three stages: early, middle, and late.

Some common symptoms for these stages are listed in Table 2.1. It can be noticed
that the severity of the symptoms advances with the progression of the disease.

Table 2.1: Symptoms of AD
Early stage | Middle stage | Advanced stage

Forgetfulness Having difficulty remembering about recent events and | Having difficulty in walking
people’s names

Losing track of time Getting lost at home, having difficulty in communication | Experiencing behavior changes
that may escalate aggression

Getting lost in familiar | Needing help with personal care Having an increasing need for as-
places sisted self-care

Experiencing behavior changes, including
wandering and repeated questioning

2.3.2 Parkinson’s Disease

PD is regarded as the most familiar movement disorder, involving over 6 million individu-
als worldwide. PD can have an early onset, though it primarily affects people over the age
of 55, and the progression of the disease slowly increases after the age of 65 [21,22]. The
WHO ranks PD as the second most familiar NDD. It hampers the nerve cells in the brain
that generate dopamine. Dopamine is necessary for transmitting messages to control
and coordinate movement.

Around 0.170.2% of the dopaminergic neurons are lost per year during normal ag-
ing. This speed is significantly accelerated in People with PD (PwPD), and signs become
apparent when ~ 70°80% of these neurons have been lost.

The PwPD experience both motor and non-motor symptoms. The most common mo-
tor symptoms during the early stages of PD are resting tremors, rigidity, and bradykinesia
which are explained below.

1. Tremor / Shaking - it starts in a limb, often the patient’s hand. Patients might ex-
perience rubbing their thumb and forefinger back and forth; this is known as a
pill-rolling tremor. The patient’s hand may shake when it is at rest [23].

2. Bradykinesia - PD may slow the patient’s action over time, assembling simple tasks
complicated and time-consuming. For instance, it may be challenging for PwPD to
get out of a chair [23].

3. Rigid muscle - Muscle stiffness may appear in any portion of the body. As a result,
the stiff muscles cause pain and restrict the range of movement [23].

4. Impaired posture and balance - Posture may become stooped. PwPD might suffer
from imbalance movement as a consequence of PD [23].

5. Loss of automatic movement - PwPD might experience an inability to conduct un-
conscious movements, including blinking, laughing, or turning their arms when

"https://www.who.int/
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walking [23].

The difficulty to control movement caused by PD harms the social and psychological
situation of the patient, who feels secluded and ineffective in accomplishing simple tasks.
PwPD in the middle stage experience cramping (dystonia), dyskinesia, loss of postural
reflexes, and Freezing of Gait (FOG). FoG is one of the most common motor signs of PD
and appears during the advanced stages of the disease. It is defined by a brief episode of
involuntary lack of locomotion, a feeling of being stuck in place when attempting to have
a step or navigating through or turning around barriers [24].

2.3.3 Huntington’s Disease

HD is defined as a progressive inherited NDD, inducing involuntary movement and cog-
nitive problems, harshly impacting the quality of life. It is caused by a Cytosine-adenine
guanine repeat mutation in the HTT gene [25]. It has a comprehensive effect on a per-
son’s functional capabilities, resulting in movement, cognitive, and psychiatric disorders.
The signs of HD can form at any age, but they usually arise in people aged 30 to 40 years
old and the beginning of the disease is diagnosed clinically when motor abnormalities
form. Impairment in motor control is regarded as the most familiar sign of HD, ordered
by chorea and dystonia. This, merged with cognitive and behavioral symptoms, can im-
pact day-to-day tasks. Nevertheless, cognitive and behavioral symptoms [25] can be no-
ticed many years (even decades) before motor symptoms, which progressively affects the
quality of life of People with HD (PwHD).

When HD forms at an early age, signs are identical to those of PD, and the disease
may advance faster. Drugs are available to aid the symptoms of HD, but remedies cannot
prevent the physical, cognitive, and behavioral deterioration associated with the condi-
tion [26]. Therefore, most of the current research in this area is based on detecting HD
at an early stage, in order to benefit from prospective medical interventions that may
assist in slowing the advances of the disease. The most common symptoms of HD are

mentioned in Table 2.2.
Table 2.2: Symtoms of HD.

Movement disorder \ Cognitive disorder \ Psychiatric disorders

Involuntary jerking or writhing move- | Difficulty in organizing or focusing on tasks Irritability
ments (chorea)

Rigidity or muscle contracture Lack of flexibility to get stuck on a behavior/action | Social withdrawal
(dystonia)
Abnormal eye movements Lack of impulse control that can result in Insomnia

outbursts, acting without thinking

Impaired gait, posture \ Difficulty in learning new information Fatigue and loss of energy
Difficulty with talking / Swallowing Slowness in processing thoughts or in finding | Frequent thoughts of death
words or suicide

2.4 Materials and Methods

We conducted a systematic review to select the relevant studies on locomotion abnor-
mality detection for supporting the diagnosis of NDD. We focused on locomotion-based
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data mining techniques which are experimented on a significant number of patients, in-
cluding both healthy control subjects and people with NDD. In the following, we report
our search strategy, including inclusion and exclusion criteria, as well as statistics about
the selected research works.

2.4.1 Search and Selection Strategy

Fig. 2.2 illustrates the flowchart of our literature search and selection method. We
queried different scientific search engines, namely, Web of Science, Science Direct,
PubMed, and SCOPUS, considering academic studies published in peer-reviewed jour-
nals and in proceedings of international conferences. We handcrafted a search query to
identify relevant articles published between 1975 to October 2020, considering terms ap-
pearing in the title, abstract, or keywords of the papers. Our search query is reported in
Table 2.3. Its syntax is slightly different depending on the functionality of the considered
database, without impacting the semantics of the query.

Scientific Literature
A 4 v v ) 4 _
Web of Science Scopus Science Direct PubMed
1. Paper extraction
108 articles 462 articles | | 668 artidles 39 articles

Title & Abstract review: L Records after duplicates 2. Remove duplicates
Excluded 1017 articles A removed: 1132 articles and quick review
| —
* —_—
Eilill-l;li}:lt Af:i?;f;s 115 articles 3. Full-text analysis
LExcluded 47 articles
| —
v v —
Cross-Referenced Search: . 68 article 4. Cross-referenced
60 articles - Lo aruces search
) 4
Study included:
128 articles

Figure 2.2: Flowchart of our literature search and selection method.

Our literature search and selection method is divided into four phases.

Paper extraction. The whole query is divided into six parts connected by the “AND”
operator. The first part of the search query includes different terms to identify “neurode-
generative disorders”. Since the target group of our study is elderly people, in the second
part of the query we retrieve only publications specifically related to that age group. In
the third part, we select only papers related to the use of sensor devices and pervasive
computing technologies. The fourth part retrieves only papers related to locomotion data
mining. The fifth part selects only papers related to different monitoring methods. The
last part retrieves only papers published in conference proceedings or scientific journals
and published after 1974. The query retrieved 1277 papers in total.
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Table 2.3: Literature search query.

TITLE-ABSTRACT-KEYWORDS((“cognitive impairment" OR “cognitive problem" OR “cognitive issue" OR “cognitive decline"
OR “cognitive assessment" OR “dementia" OR “mci" OR “mild cognitive impairment" OR “alzheimer’s disease" OR “neurode-
generative")

AND (“elderly" OR “senior" OR “Aging Adults" OR “aging" OR “older adult" OR “adult")

AND (“internet of things" OR “indoor" OR “outdoor" OR “wearable" OR “ambient intelligence (Aml)" OR “ambient assisted liv-
ing" OR “aal" OR “healthcare application" OR “positioning technology" OR “ambient sensors" OR “Global Positioning System"
OR “accelerometer" OR “gyroscope" OR “environmental sensors" OR “inertial sensor" OR “mobile" OR “Intelligent Assistive"
OR “assistive Device" OR “device free" OR “intelligent systems" OR “smartphone" OR “non-invasive" OR “human computer
interaction" OR “hci" OR “mobile health" OR “smart homes")

AND (“locomotion anomaly" OR “locomotion pattern" OR “locomotion" OR “abnormal movement pattern" OR “trajectory"
OR “wandering" OR “disorientation " OR “movement traces " OR “ambulatory gait analysis" OR “abnormal locomotion" OR
“abnormality" OR “gait" OR “mobility" OR “motor impairments" OR “motor assessment" OR “motor function" OR “accelera-
tion" OR “spatial" OR “gait variability" OR “gait-cycle" OR “functional assessment" OR “motor dysfunction")

AND (“monitoring" OR “detection” OR “analysis" OR “non-intrusive" OR “unobtrusive" OR “reconstruction" OR “gait moni-
toring" OR "gait detection" OR “remote monitoring" OR “trajectory mining"))

AND ( LIMIT-TO ( DOCUMENT TYPE,"“(PEER REVIEWED JOURNAL) ARTICLE" ) OR LIMIT-TO ( DOCUMENT TYPE,“CONFERENCE
PAPER" ) OR LIMIT-TO ( DOCUMENT TYPE,“REVIEW" )) AND PUBYEAR > 1974

Duplicates removal and quick review. In the second phase, initially, we performed
duplicate removal, keeping 1132 papers. Then, we applied a quick review procedure to
those papers, to ensure that they met our inclusion criteria. The title, abstract, and key-
words of each paper were evaluated to ensure that they actually met the inclusion criteria
specified in the query string. As expected, the search query provided a relatively large
number of false positives. Most papers were excluded because they did not rely on sen-
sor devices or pervasive computing technologies, or considered diseases not related to
neurocognitive disorders. After this operation, we retained 128 papers.

Full-text analysis. In the third phase, the full text of each remaining paper was as-
sessed to exclude those papers that were preliminary versions of extended papers already
included in our search and to keep only those papers that met our inclusion criteria. In
this regard, we excluded those works which lacked a significant experimental evaluation
with both cognitively impaired seniors and healthy control subjects. After this phase, we
retained 68 papers.

Cross-referenced search. In the fourth phase, we checked the references of the re-
maining publications to look for further relevant publications matching our search crite-
ria to be included. We also looked for additional relevant papers published by the same
authors as the included papers. Thanks to this search, we added 60 for further papers.
The full list of the reviewed papers can be found in the Appendix.

2.4.2 Comprehensive Science Mapping Analysis

Recently bibliometric measurements have been increasingly expanding across various
fields [27-29]. This technique is particularly suited for implementing the comprehensive
science mapping analysis of published studies of fragmented and controversial streams
of research. As mentioned previously, the articles in this chapter can be divided into
three main categories regarding the NDD, and locomotion anomaly as follows: PD, HD,
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and dementia. The total number of published and selected articles considering different
databases are mentioned in Fig. 2.2.

From another point of view, Fig. 2.3 shows the percentage of selected articles by each
category compared to the total number of papers from the same category considering
their search engines. As could be seen the selected papers in the Web of Science search
engine represent the highest percentage of total articles among the others.

Number of NDD papers and scientific search engines
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Figure 2.3: Percentage of articles based on considered NDD categories and scientific
search engines.

Annual Scientific Production

Among the 128 included papers, 33 were survey or reviews papers. Fig. 2.4a represents
the temporal trend of papers included and it shows an exponential increase in the num-
ber of papers related to sensor-based locomotion data mining for NDD diagnosis.

Word Cloud

Word clouds are introduced as a tool to identify the most essential topics dealing with a
particular subject [27, 29]. Fig. 2.4b presents the most frequent words adopted by pre-
vious studies extracted by our search and selection strategy explained in section 2.4.1.
These keywords, which are repeated more than 30 times considering all selected papers,
demonstrate that most of them are focused on the gait aspect of cognitive disease.

Country-Specific Production

Fig. 2.5 represents that the included research papers came from 38 countries which in-
clude case studies conducted in these countries. As demonstrated in the figure, the coun-
tries that produced the most papers considering locomotion anomaly detection and NDD
in a sensory environment are the USA, Italy, Germany, and the UK. In terms of country-
specific production, the highest percentage was achieved by the USA (22.75%), followed
by Italy (10.17%), and then Germany(6.58%) and the UK (6.58%).
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Figure 2.4: Selected papers.

Scientific Production based on Disorders and Observation Location

Considering the kind of disease, Fig. 2.6a shows that PD gained essentially more atten-
tion among the researchers compared to dementia, while fewer works are related to HD.
Considering that some papers address more than one disease, around 52% of papers
address PD, about 41% of papers address dementia, and 15% address HD.

We further analyzed the scenario in which the individual’s locomotion is observed to

provide the diagnosis. We considered two observation scenarios: indoor and outdoor.
Among the selected papers, as illustrated in Fig. 2.6b, statistics show there are 68.18% of
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Figure 2.5: Selected papers.

papers that rely on locomotion observation indoors; in particular, in private residences,
retirement/nursing homes, or hospitals. Most methods relying on indoor observation
assume that the individual performs predefined instructions in the presence of one or
more observers. A few other papers rely on the observation of unsupervised locomotion
during everyday activities in real-world environments.

Papers that rely on the observation of outdoor locomotion are fewer in number; i.e,
around 7.95% of the papers. Those works assume the use of sensors embedded in wear-
able/portable devices (mainly smartphones, watches, or shoes), or outdoor localization
technologies such as GPS readers. In addition, around 23.86% of the selected papers
do not strictly rely on the assumption that the locomotion is observed either indoors or
outdoors. The category of those papers is named general in Fig. 2.6b.

Scientific Production based on Experiments Scenarios and Monitoring Duration

Fig.2.7a shows the distribution of papers according to the duration of locomotion moni-
toring used in the respective experimental evaluation. We found out that, among those
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Figure 2.6: Selected papers.

works which explicitly mentioned their observation duration (around 90 papers), many
of them (around 63.3% papers) monitored locomotion for less than one hour; around
8.9% of them monitored locomotion for less than 24 hours; around 1% for less than a
week; around 7.8% for weeks; around 11.1% for months; and around 7.8% for one year
or more. Furthermore, as shown in Fig.2.7b, 56.5% of research works carried out their
experiments in a laboratory environment, 38% in a naturalistic environment such as the
individual’s home, and 5.4% in both a laboratory and naturalistic environments.
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Figure 2.7: Selected papers.

2.5 Clinical Locomotion Indicators of NDD

We concentrate on clinical indicators of NDD related to locomotion. Indeed, several
works identified variations of gait patterns and locomotion anomalies typically observed
in cognitively impaired subjects [30-32]. Different researches consider ‘wandering’, a
concept defined by Algase et al. [33] as a “syndrome of dementia-related locomotion be-
havior having a frequent, repetitive, temporally disordered, and/or spatially disoriented
nature that is manifested in lapping, random, and/or pacing patterns”. Moreover, re-
cent sensor technologies provide the possibility to develop methods for gait analysis to
characterize NDD based on the observation of subtle anomalies in gait patterns. In a nor-
mal gait cycle, each stride contains eight phases with functional patterns and objectives
defined as follows:

1. Heel strike: initial contact of the foot touching the floor with the heel.
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2. Loading: loading response when the knee flexes and the body weight is moved

onto the limb, while the other foot is lifted.

Mid-stance: when the opposite leg is lifted and advanced.

4. Terminal stance: when the limb advances and the phase ends with the heel striking
the ground.

5. Pre-swing phase: weight transfer phase, when the opposite foot starts touching
the ground and the other one is lifted.

6. Toe-off: initial swing when the foot is lifted from the floor.

Mid-swing: when the anterior limb advances.

8. Terminal swing: when the leg moves ahead of the thigh, the foot strikes the floor,
and the advancement is completed with the flexion of the knee.

w

N

Gait disorders can be related to two main categories: neurological, and non-
neurological disorders [32]. For the sake of this thesis, we concentrate on the former
category. The instruments used to analyze human gait can be classified into two major
categories: ambient/portable wireless sensors such as [31, 34, 35], and wearable sensors
like those used in [36]. For example, smart shoe wearable sensor systems can measure
the change in gait over time and have been used in neurological exams to diagnose de-
mentia and other neurological disorders. The Center of mass movement during walking
can be easily tracked using a small Inertial Measurement Unit (IMU) attached to the lower
back and was used for neurological assessment considering the sinusoidal waveform pro-
duced by trunk movements during the gait cycle [37].

2.5.1 General Indicators based on Gait Analysis

Different low-level motion indicators have been proposed in the literature to detect
NDD [16, 34]. We classify these motion indicators into three categories: low-level gait
parameters, complex gait parameters, and Non-Linear Dynamics (NLD) theory-based fea-
tures, presented below.

e Low-level gait parameters: These indicators regard fine-grained characteristics of
gait, mostly considered in isolation, such as stride-to-stride fluctuations in walk-
ing (both in terms of magnitude and dynamics), stride time, stride velocity, stride
length [38]. In this regard, gait abnormalities mostly include decreased walking
speed, step frequency, step length, and increased gait variability [39]. In Table 2.4,
we extend and refine the classification proposed by Hollman et al. [40] to define
the low-level indicators that we use in the rest of the chapter.

e Complex gait parameters: These parameters consider different temporal aspects
of locomotion, and structural or geometrical complexity of walked trajectories. We
classify them into three categories: variability, postural control, and frequential pa-
rameters. Parameters related to variability are based on temporal characteristics
of the movement pattern, acceleration, speed, duration, and distance. Postural
control parameters such as Timed Up & Go (TUG) test, Berg Balance Scale (BBS),
Romberg Balance (RB)), and Short Physical Performance Battery (SPPB) tests, etc.
are including different kinds of postural and balance assessments such as regularity
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Table 2.4: Low-level gait parameters.

Parameters Parameters Definition Ref.
classification
Stride length Distance traveled by the same foot by two consecutive heel con- | [37, 38, 41-46,
tacts. 46, 47]
Step length Traveled distance from one heel footprint to the heel of the oppo- | [38, 45, 47-51]
site footprint.
Spatial - - - - -
Step width Distance between the line of progression of the left heel footprint | [40]
and the line of progression of the right heel footprint.
Distance The cumulative traveled distance. \ [36, 42,52]
Stance/Swing Duration of the stance/swing phase. [31,48,53,54]
time
Stride time Time interval starts when one foot makes contact with the ground | [39,42-44,49,
interval and ends when that same foot contacts the ground again. It displays | 50,53, 54]
fractal dynamics and reflects the rhythm of the locomotion.
Stride time It is related to the control of the rhythmic stepping mechanism and | [42]
variability calculated by the mean and standard deviation of stride time.
Step time The time between two consecutive heel strikes. [37,38, 45, 48,
50,51,54-56]
Temporal
P Step rate The rate of steps per minute also called cadence. [37,40,44-46,
46, 47,50, 56]
Single  support | ‘Single support’ happens when only one foot is in contact with the | [40, 46, 56]
time ground. Single support time is the duration of single support.
Double support | ‘Double support’ happens when both feet are in contact with the | [43, 46, 47, 49,
time ground. Double support time is the duration of double support. 56-58]
Stride velocity The stride length divided by the stride time. [38, 49,50, 55,
59,60]
Stride/Step Number of foot contacts per second. [41, 44, 60]
frequency
Stride/Step Duration amplitude similarity of the shape of acceleration curves | [41, 44, 45, 55,
Spatial- symmetry comparing right and left strides/steps. 61]
Temporal
P Step time Defined as the difference between the mean step time of each leg | [45]
asymmetry and the combined mean step time of both legs.
Stride/Step A measure of stride/step to stride/step consistency. [39, 41, 44, 45,
regularity 55,61]
Gait speed The distance walked divided by the ambulation time. [16,37-39, 41-
44, 44-46, 48,
49,54]

of movements, angles of movement, trajectory consistency. Frequential parame-
ters consider gait symmetry and are usually derived from the Fourier analysis of
trunk accelerations.
In Table 2.5, we provide a classification and description of complex gait parameters.
¢ NLD theory based features: Gait assessment is considered a beneficial tool to help
the diagnosis process and to assess the neurological state of people with NDD. It is
the assessment of a subject’s walking pattern. Walking is a compounded process
that can be evaluated through the application of nonlinear analysis of Human Gait
Signals. NLD theory has been introduced to the analysis of biological data. There
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Table 2.5: Complex gait parameters.
Parameters Parameters Definition Ref.
classification
Approximate Measure regularity of a trajectory under the assumption that a sequence | [55]
Entropy is regular when it contains repetitive patterns and how its’ structural
complexity varies over time.
Jerk The rate at which a subject acceleration changes with respect to time. | [16, 44]
Variability Jerk is the first-time derivative of acceleration. It quantifies the smooth-
ness of a trajectory.
Ambulation The ratio between the total time of ambulation and trajectory duration. | [62]
fraction
Straightness The ratio of the distance between two consecutive trajectory segments | [1,16]
and the distance between the start and endpoint of these segments.
Path-efficiency The ratio between the distance from the start to the end of a trajectory | [16, 62]
and the trajectory length.
Turning angle The sum of the absolute angles between any two subsequent linesina| [16, 44,
trajectory. 62]
Sharp angles Vector angles in a trajectory being equal to or more than 90 degrees. [1,16, 52,
63]
Postural
control | Foot clearance | Toe and heel height during the swing phase. | [64]
TUG test Time taken for a transition from sitting to standing, walking, turning, and | [44, 57,
transitioning from standing to sitting. 58, 61, 65]
Fall Any unintentional event that leads to the landing of individuals on a hor- | [42,57]
izontal plane
BBS/ Balance and postural control assessment to diagnose gait disturbance | [45, 57,
RB/SPPB tests caused by abnormal perception or awareness of the position and move- | 61, 66, 67]
ment of the body during predetermined tasks. (i.e. Eyes Open Feet To-
gether, Eyes Closed Feet Together, Eyes Open Feet Apart, Eyes Closed
Feet Apart)
Harmonic Ra- | Step-to-step (a)symmetry within a stride. [55,60]
tio (HR)
ial Total Harmonic Dis- | Evaluate the complexity of human motion by calculating the ratio be- | [55]
Frequentia tortion (THD) tween the fundamental waves and the harmonic waves.
Z-method/ Gait events based on Antero-posterior acceleration, Acceleration norm, | [54]
S-method/ and Vertical acceleration. Both the Z-method and M-method define the
M-method gait cycle from the initial contact timing. Also, M-method provides final
foot contact timing estimates, swing, and stance duration. Conversely,
the S-method considers the zero-crossing instants of the acceleration
norm.

are also NLD features [68,69] available such as the Correlation Dimension (CD), the
Largest Lyapunov Exponent (LLE), the Lempel Ziv Complexity (LZC), the Hurst Expo-
nent (HE), the Detrended Fluctuation Analysis (DFA) and many others to assess the
gait impairments of NDD patients. These features are used to discriminate between
NDD patients and healthy subjects and to classify patients in several stages of the
disease. In [53,70,71], DFA is used for the gait assessments of PwPD and PwHD. In
[72], Sejdi¢ et al. performed a combined analysis of spectral and NLD features to
assess gait signals of 14 healthy persons, 10 PwWPD, and 11 patients with peripheral
neuropathy. These features were compared using the Kruskal-Wallis and Mann-
Whitney tests. There are notable differences observed in features such as the LZC
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and the cross entropy, which allow for discrimination between healthy persons and
PwPD. In [73] the authors classified 13 PwPD, 13 Amyotrophic lateral sclerosis pa-
tients, 13 PwHD and 13 healthy subjects using data obtained from force-sensitive
resistors. Prabhu et al. computed NLD features such as Shannon entropy, CD, re-
currence rate, and Recurrence Quantification Analysis (RQA). The classification was
performed with the SVM and a Probabilistic Neural Network (PNN) to distinguish
between patients with different NDD. and healthy persons. In Table 2.6, we pro-
vide the general NLD theory-based features that are used to assess the neurological
state of the patients.

Table 2.6: Non-Linear Dynamic features.

NLD features | Definition | Ref.

DFA Observes the degree of correlation of one stride interval with previous and | [53,70,71]
subsequent ones.

LLE Provides information about the stability properties of the time series as it cal- | [68, 69]
culates the sensitivity to initial conditions of the signal according to the rate
at which the nearby trajectories of the phase space converge.

HE \ Assesses the long-term dependency of the time series. \ [68,69]

LzCc Relates to the number of different patterns that lie along a sequence which | [68,69,72,74]
reflects the order that is retained in a one-dimensional temporal pattern.

2.5.2 Indicators of Dementia

As mentioned in Subsection 2.3.1, dementia causes a decline in thinking skills, severe
enough to impair daily life and independent living. In particular, it affects behavior, loco-
motion, feelings, and relationships. Different high-level indicators have been presented
in the literature to characterize the locomotion behavior of people suffering from demen-
tia [30].

We classify those indicators into four categories: trajectory-based, permission-based,
purpose-based, and performance-based indicators. In Table 2.7, we define the specific
indicators according to our categorization, and the most relevant research works in which
they are considered. In the following, we briefly discuss the three classes.

1. Trajectory-based indicators They are well-known indicators for categorizing the
patterns of abnormal locomotion behaviors by PwD. A popular model in this re-
gard was proposed by Martino-Saltzman [17]. That model categorizes the trajec-
tories into one of four distinct patterns of movement: direct, random, lapping, or
pacing, illustrated in Fig. 2.8.

e Direct: a simple or uncomplicated trajectory from one location to another
one.

e Pacing: at least three consecutive back-and-forth movements between two
locations along very similar paths.

e Lapping: at least two circular movements between at least three distinct lo-
cations.
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Figure 2.8: Travel patterns according to the Martino-Saltzman model [1].

e Random: a continuous and aimless movement across numerous locations
with multiple directional changes, that generally passes through more than
four locations.

The direct path is walked by cognitively healthy people, while random, pacing, and
lapping patterns are typical indicators of dementia. In particular, scientific stud-
ies demonstrated that severely demented individuals perform trajectory-based
anomalies all day long, while in moderately demented, the percentage of those
anomalies increases in the evening and mostly in the night [17].

In a different research conducted by Kearns et al. [36], it was shown that the tor-
tuosity of a walked trajectory is significantly correlated with the cognitive status.
A high value of the fractal mathematical index of path tortuosity (Fractal D) indi-
cates abnormal trajectories that are typically observed in wandering behaviors [36].
Fractal D is a compact and effective measure to characterize wandering behaviors.

2. Permission-based indicators Another class of indicators considers anomalous lo-
comotion patterns of people living in constrained environments, which violate the
permissions of the caregivers. We name this class of dementia-related locomotion
anomalies permission-based indicators. As shown in Table 2.7, these indicators are
further classified as abscond/elopement (leaving a safe environment without care-
giver’s consent), exit seeking (trying to open locked doors without consent), and
invasion/trespassing (invading the private environment of other people without
consent) [33].

3. Purpose-based indicators Most of the studies about wandering behavior consider
it as an aimless, directionless movement. As mentioned in Tabel 2.7, only a few
research support the theory of wandering as a goal-seeking behavior. According
to the latter theory, some wandering behaviors have a specific purpose; e.g., to
satisfy a need or to communicate a need. Accordingly, we classify those behaviors
as purpose-based clinical indicators. Most of these indicators have been identified
by Algase et al. [33], and are described in Table 2.7.

4. Performance-based indicators These are based on the performance of certain
tasks that evaluate cognitive dysfunction and memory impairment. The Mini-
Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and
Canadian Consortium on Neurodegeneration in Aging (CCNA) are the widely used
measures and protocols to evaluate cognitive dysfunction based on gait analy-
sis [50, 61, 80, 81]. The score range of MMSE and MoCA is from 0 to 30. In these
tests, if the final score is lower than 24 in MMSE, or less than 20 in MoCA, the sub-
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ject will be regarded as cognitively impaired. However, the CCNA classifies the gait
disturbance into different categories such as normal gait, ataxic gait, antalgic gait,
cautious gait, frontal gait, hemiparetic gait, and many others.

While trajectory-based indicators are mostly used for diagnosis only, permission-
based indicators, purpose-based indicators, and performance-based indicators are also
used for ensuring the safety of the elderly suffering from NDD by monitoring his/her lo-
comotion behavior and prompting caregivers accordingly.

2.5.3 Indicators of Parkinson’s Disease

As anticipated, PD severely affects the human motor system. Gait impairment such as
bradykinesia is one of the most common disabling symptoms of PwPD. It refers to the
slowness of movement observed in patients. Locomotor dysfunction, shortened stride
length, increased variability of stride, and shuffling gait are cardinal features of PD. There-
fore, different indicators were proposed to characterize pathological gait in PD. Gait anal-
ysis on the walking behavior of PWPD is usually performed by monitoring several low-level
parameters, mentioned in Table 2.4, over extended periods, including stride length, step
length, stride velocity, swing time. There are also a few common complex gait parameters
and NLD features that are used to detect gait abnormality in PD, mentioned in Table 2.5
and 2.6.

Generally, gait disorders in PwPD are evaluated by observing the gait in a lab with the
help of one or more other clinical assessment scales. Several clinical indicators have been
introduced in the literature and hence we categorized them as multi-task assessment
indicators, which are illustrated in Table 2.8. The Unified PD Rating Scale (UPDRS), the
updated version of UPDRS, and the Movement Disorder Society-sponsored version of the
UPDRS (MDS-UPDRS) are the most common assessment scales to evaluate the severity
of PD. They are focused on estimating the intensity of PD. UPDRS was formed in 1987 as
a gold standard for observing the reaction to medications employed to reduce the signs
of PD [83]. These tools are scored on a 0-4 rating scale, where higher scores denote
risen severity. Traditionally these scales include three sections used to estimate critical
areas of disability. These sections are based on motor function, including getting up from
the chair and postural stability. The Hoehn and Yahr Scale, formed in 1967 Melvin Yahr
and Margaret Hoehn [84] is another most commonly used tool to evaluate Parkinson’s
symptoms and the level of disability established on motor function. It is ranked in stages
from 1 to 5 and describes complex patterns of advanced motor impairment.

Advancement in Hoehn and Yahr stages is connected to motor decline, the decline in
quality of life, and neuroimaging studies of dopaminergic loss. Table 2.8 summarizes the
leading clinical indicators for PD related to locomotion analysis.

2.5.4 Indicators of Huntington'’s Disease

The PwHD experience locomotion impairments that can lead to falls, reduce the quality
of ADL, and increase hospital admission and mortality. There are two main approaches
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Table 2.8: PD movement indicators.

Indicators Indicators Definition Ref.
classification

Single-task . Evaluates the stability of individuals by measuring the maximum dis- | [57]
assessment Functional Reach Test tance they can reach forward while standing in a fixed position. This
(FRT) test evaluates the stability of individuals by measuring the maximum
distance they can reach forward while standing in a fixed position.

UPDRS Employed as a tool to calculate the intensity of PD, formed as a gold [24,
standard to observe the response of medications for Parkinson’s pa- | 85, 86]
tients. It is scored on a 0 — 4 rating scale and is established on a few
segments such as motor impairment, behavior, and daily life activities.

UDRS Used to estimate involuntary movements in PwPD due to medication | [87]
assumption. The scale has measurements for ‘on-dyskinsesias’ (jerk-
ing or turning movements) and 'off-dyskinesias’ (cramps).

Multi-task
assessment

MDS-UPDRS Revised version of UPDRS, formed in 2007, utilized to measure differ- | [88]
ent aspects of PD, including non-motor and motor functions in ADL
and motor complications.

Hoehn and Yahr Used to assess the progress of Parkinson’s advancement and the level | [51]
of disability, formed in 1967.

Employed to measure FoG advancement for PwPD, FoG frequency, dis- | [89]

FoG-Questionnaire orders in gait, and connection to clinical features associated with gait

(FoG-Q) and motor aspects
Renowned tool to estimate the progression of FoG. It is a self-reported | [89]
New FoG- . . . L
. . questionnaire with nine items to assess FoG
Questionnaire
(NFoG-Q)

to assessing mobility and balance impairments for HD diagnosis: semi-quantitative clini-
cal observational tests, and laboratory-based assessment. The former approach is based
on observation by a clinical expert, and regards the assessment of locomotion impair-
ments such as bradykinesia and decreased velocity, dynamic balance loss, and increased
base of support [57]. The latter approach is expensive, since there is a need for extensive
training, and it is not available in most clinical settings. Hence, there is increasing inter-
est in innovative tools for supporting the diagnosis of HD by utilizing sensor instruments.
Different clinical indicators have been proposed in the literature. We classify them into
two categories: single-task assessment, and multi-task assessment indicators, which are
illustrated in Table 2.9. Most of the gait indicators used for HD diagnosis are general
gait indicators (presented in Section 2.5.1). Here, we classified the locomotion indicators
which are combined and presented as clinical tests for recognizing anomalous gait re-
lated to PwHD. Aside from those indicators, other research studies investigated the use
of general gait indicators (including swing and stance intervals, stride interval time series,
Gait velocity, TUG test, BBS, and RB tests) for HD diagnosis [31, 46,53, 54].

1. Single-task assessment Single-task assessment indicators rely on the examination
of gait or stability during the execution of a given locomotion task. FRT evaluates
stability by measuring the maximum distance that an individual can reach forward
while standing. This measure proved to be highly correlated with HD severity [57].
This indicator is performed during a single session and led by a therapist.
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Table 2.9: HD clinical indicators.

Indicators Indicators Definition Ref.
classification

Single-task FRT This test evaluates the stability of individuals by measuring the max- | [57]
assessment imum distance they can reach forward while standing in a fixed po-
sition.

It includes four components: Total Motor Score, Functional Assess- | [45, 47, 56,

Unified HD  rating ment Scale, Total Functional Capacity scale, and IS. It evaluates mo- | 57,90-92]

Performance scale (UHDRS) tor impairment considering a range of voluntary and involuntary
-oriented movements, including retropulsion pull test for postural stability,
assessment bradykinesia, coordination, balance, and gait.

A scoring-based scale which is including adaptive functioning as- | [57]
sessment based on ADL and family relationships and it is validated
for PWHD.

HD Activities of Daily
Living (HD-ADL)

2. Performance-oriented assessment Performance-oriented indicators evaluate dif-
ferent abilities, including stability and locomotion, during the execution of complex
tasks. The UHDRS considers motor impairment due to different voluntary and invol-
untary movements, together with the ability to independently execute ADL [47,56].
The HD-ADL assesses balance, postural control, and adaptive functioning during
certain tasks, which may be impaired by the abnormal perception of the body'’s
position and movement in PwHD [45, 57].

2.6 Tools and Technologies

It is possible to use a wide range of low-cost sensors to track the position of users and
their movements, detect cognitive problems, and ensure their safety. Therefore, all loco-
motion analysis methods have as a first step the collecting of movement data by utilizing
sensory instruments. In this section, we will explain the most common sensors, either
wearable/unwearable, for healthcare solutions, and discuss their pros and cons regard-
ing locomotion anomalies and NDD. Moreover, we refer to device-based technologies for
those tools that require the user to wear a device/tag, or even a device needs to be car-
ried, while device-free technologies do not require users intervention and mostly they are
embedded in objects/environment [93,94]. However, most of these devices could be in-
vasive and obtrusive, especially the ones that need to be worn all the time by the user.
Most importantly, indoor localization technologies raise some serious privacy risks, since
the position of the user is always known and that is not very desirable for the user [95].

2.6.1 Device-based Localization Sensor Technologies

Device-based location identification consists of wearable/mobile devices, such as
watches, bands, pendants, earphones, collars, and so on, that help to locate the user. The
magnetic-based technology utilizes a mobile magnetic sensor, usually a mobile phone, to
measure the magnetic fields in different positions of an indoor environment. These mea-
surements are used to construct a map of the location, which represents a reference for
the user localization [96]. In mechanical-based devices, the user’s location is estimated
with IMU. IMU uses a combination of accelerometers, gyroscopes, and even magnetome-
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ters to calculate a target’s current position from a known starting point, with previously
determined speed and direction [35, 77].

Location-based Radio-Frequency Identification (RFID) utilizes electromagnetic fields
to specify tags connected to things. An RFID system has a radio transponder, receiver,
and transmitter. It transmits data to a reader device when triggered by an electromag-
netic interrogation pulse from the reader device [97]. Ultra-Wide Band (UWB) sys-
tems [36,62] transmit information over a large bandwidth and use measures such as Time
of Arrival (ToA) and Time Difference of Arrival (TDoA) to locate the distance between two
entities. The UWB systems provide high accuracy. The UWB signal can penetrate walls
and many other additional materials. Force sensing technologies are those sensors used
to detect physical pressure, squeezing, and weight. They could be simple resistors that
are embedded in the shoes and change their resistive value based on how much they are
pressed, which are low cost [98] or mat-shaped step sensors to detect contact of the feet
on the floor where a footswitch is installed next to the patient’s bed [30].

Awristband, watch, or smartphone is incorporated with IMU technologies or different
types of sensors which are used as a combination of accelerometers, gyroscopes, touch
screens, and even magnetometers. Smartphone, as an example of IMU, makes remote
patient monitoring possible and give faster access to providers and care, and are widely
adopted for NDD monitoring [24, 35, 95, 99-102]. It also leads to improved communi-
cation, fewer hospital visits, and reduced patient costs. Furthermore, these wearable
wristbands and watches can be used in healthcare solutions because of their simple de-
sign, common on-body placement, and connectivity with mobile phones [71,77,103].

2.6.2 Device-free Localization Sensor Technologies

Device-free technologies allow gathering the user’s position without needing him or her
to carry any device. They are mainly based on motion detection and provide data in real-
time [95,104]. There are different sensor technologies that can be used for this purpose,
which are illustrated in Fig. 2.9 and briefly explained in the following.

Device-free localization sensors

——————————— | Fmmmmmmm | Pe————— | Fm—m—m——————| Femmmm—————— E—————————|
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Figure 2.9: Well-known device-free sensor technologies.

¢ Infrared-based technologies are utilized in Passive InfraRed (PIR) sensors, and
Active InfraRed (AIR) sensors [34, 50, 75,105]. The former measures infrared light
radiations from people since they emit heat energy in the form of radiation. The
latter requires a transmitter to continuously send beams of infrared light, and a re-
ceiver to detect when the beam stream gets interrupted by a mobile object moving
across the scan area.
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e MicroElectro Mechanical Systems (MEMS) pressure sensors have a central role in
controlling the environment to detect falls and wandering patterns based on the
number and pattern of activation on a gait mat or on the floor and measure foot
strike [106, 107].

e Ultrasonic transmitters emit an ultrasonic wave that gets reflected by objects in the
scan area, and detect doppler shift at low audio frequencies, similarly to microwave
devices [108].

e Computer vision-based sensors such as utilizing cameras or Visual Sensor Networks
are promising in ambient sensing approaches for pervasive healthcare delivery. By
utilizing these kinds of technologies it is possible to compare sequential images
from captured video streams, monitor 3D spaces, and detect movements when
there are enough changes between the frames by scene analysis and proximity
techniques even by compact on-node image processing and computer vision algo-
rithms [17, 50,109, 110].

e Radio signals and their reflections can be used to detect individuals’ movement and
position over time. Furthermore, by utilizing microwave signals, the movement of
an object causes a phase shift in the emitted radiation, creating a signal at a low
frequency. Thanks to this technology, ultra-low-power radio signals in tomographic
motion detectors [94], and wall-mounted sensors [36] can sense radio waves at
frequencies that penetrate most obstacles and walls, detecting the user’s position
over large areas.

e Ambient light communication technologies are based on light sensors that receive
the signals of Light-Emitting Diode (LED) emitters with different flicker encoding
so that they can be compared in order to measure direction, position and provide
localization [94].

2.6.3 Strengths and Weaknesses of Localization Technologies

All device-free and device-based sensor technologies, as shown in Table 2.10, have their
own strengths and weaknesses.

Mechanical-based systems are cheap and effective. They have a high Mean Time Be-
tween Failures and consume less power, but they are vulnerable to cumulative error.

Acoustic systems can provide high accuracy even between rooms, but the signal de-
tection should be low power not to be heard by a human ear and not to cause sound
pollution. They are also sensitive to temperature changes and noise. Magnetic-based
systems offer high accuracy, but they are sensitive to conductive and ferromagnetic ma-
terials.

Optical-based systems provide high accuracy and they are not affected by the multi-
path effect, but they require line of sight, consume higher power, and range is affected by
obstacles [94,95]. WiFi-based systems are relatively cheap and are widely available with-
out needing complex hardware. Bluetooth is supported by most modern devices, such
as smartphones and smartwatches. It is low cost and has very low power consumption,
but the signal is very attenuated from obstacles.
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UWB systems provide high accuracy. They are less sensitive to multipath effects and
are immune to interference, but they are shorter range and their cost is high. RFID sys-
tems consume low power, have a wide range, and are low cost, but require proximity and
localization accuracy is low. The MEMS pressure sensors are small in size, have lower cost
and power consumption, and provide high consistency.

In terms of accuracy, both mechanical-based systems and ultrasound systems offer
higher accuracy. The latter can reach accuracy from 0.01 to 1 meter. Magnetic-based
systems provide a high accuracy on the order of a few centimeters. WiFi has an accuracy
between 1 and 5 meters; Bluetooth, instead, from 2 to 5 meters. A beacon can determine
three ranges of proximity: immediate (less than 50 cm); near (between 50 cm and 2 to
5 meters); far (between 5 meters and 30 meters). The accuracy depends on interference
from physical obstacles. UWB offers an accuracy of up to 10 cm, while RFID accuracy is
relatively low and it is from 1 to 5 meters.

In terms of obtrusiveness and privacy, ambient light systems, such as audible sound,
could be annoying for the user, but they could be resolved to reuse an already available
light infrastructure in order to be not intrusive or, in audible systems cases, using digital
watermarking of audio signals. In computer vision sensors, although, they can do real-
time monitoring there are still privacy concerns and scalability problems. Also, there is
a difficulty for detail deduction or subtle changes in movement patterns and they are
unable to detect physiological parameters which may lead to hindering their application
for ambient sensing frameworks [95].

Infrared sensors offer 1 to 2 meters accuracy, while LED implementation using fixed
lamps reports an accuracy below 20 cm. Utilizing infrared technology has also some lim-
itations such as moderate accuracy, it needs for more receivers to improve accuracy, and
interference of infrared waves in presence of fluorescent light and sunlight, leading to the
reduction of system usability. They also are invisible to the human eyes, instead, ultra-
sound is undetectable to the human ear, so they are not intrusive at all [95]. Although,
they are useful for movement detection still there is a general limitation which is low
accuracy due to multipath effects and line of sight.

In conclusion, in practical applications, both device-based and device-free technolo-
gies provide complementary information and successful systems are only feasible by in-
tegrating the two sensing modalities.

2.7 Algorithms and Applications

In this section, we classified sensor-based algorithms and applications for recognizing
NDD according to the locomotion indicators reported in Section 2.5. This classification
is presented in Fig. 2.10. We also illustrate ambient intelligence techniques to recognize
challenging behaviors.

2.7.1 Detection of Dementia

In order to categorize the existing solutions for recognizing symptoms of dementia, we
propose the classification shown in Fig. 2.10. In the following, we present the most promi-
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Figure 2.10: The proposed framework for dementia detection approaches.

nent methods according to our classification, namely Clinical assessment and ML-based
assessment. Those methods are summarized in Table 2.11.

Clinical Assessment

In this group of approaches, detection is based on prior knowledge, results of clinical
tests, and statistical analysis of locomotion data by the supervision of operators and med-
ical experts. Therefore, these kinds of approaches strongly rely on human resources and
experts to evaluate the cognitive status of an individual. We further classify the clin-
ical assessment methods into low-level motion indicator assessment and task-oriented
assessment methods, both of which rely on general gait indicators. The former meth-
ods consider specific low-level motion indicators, that in some cases allow distinguishing
among the different dementia disease sub-types, such as AD and dementia with Lewy
bodies [38, 48]. Hence, the choice of specific indicators has an important impact on the
diagnosis. In addition to motion indicators, the latter methods also consider executive
and memory functions, adopting an approach named dual tasking.

In both approaches, the patient evaluation is supervised by clinicians and executed
during predefined, short, structured testing sessions. The fact that tests are not per-
formed in naturalistic conditions can obviously have an impact on the effectiveness of
the evaluation [44, 48].

1. Low-level motion indicator assessment
The evaluation of different gait features, including simple and complex gait param-
eters, is commonly considered an important part of dementia assessment, and
their locomotion patterns are considered good predictors of diverse adverse health
outcomes and mobility “bio-markers” [54]. Different studies have shown that by
sensor-based gait cycle analysis of PwD vs cognitively healthy seniors, it is possible
to find a correlation between variability in different gait parameters and cognitive
decline progression [44, 48]. As an example, the experiments conducted by Kearns
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Figure 2.11: Detection of Dementia approaches.

et.al revealed that there is a correlation between higher tortuosity of the path with
lower MMSE scores which is assessed by clinicians [36].

. Task-oriented assessment

Task-oriented methods are based on single-task and dual-task (sometimes called
Talking While Walking [61]) walking assessment, which considers the concurrent
performance of a motor-motor or motor-cognitive task. The evaluation relies on
measuring the interference of the different tasks with each other. Indeed, while
the individuals divide their attention to multiple tasks, they have difficulty regu-
lating the stride-to-stride variations of locomotion, and this difficulty is stronger
for cognitively impaired people [43, 49]. Impairment in executive functions (e.g.,
verbal fluency [55], visual-spatial skills [42], counting aloud backward from 100 to
zero [55]) is one of the earliest indicators of cognitive decline. Different experi-
ments have proved that PwD has a more variable within-bout and irregular trunk
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acceleration pattern, higher step duration and gait complexity, and less variable
across-bout walking patterns on single and dual-task walking (e.g., words enumer-
ation) compared to healthy persons [38, 39, 42]. The execution and evaluation of
task-oriented assessment methods are more complex than the one of low-level mo-
tion indicator methods but allow the recognition of early-stage cognitive decline.

ML-based Assessment

Another group of approaches relies on ML algorithms to distinguish between cognitively
healthy subjects and PwD based on the observation of movement and behavior. Com-
pared to the clinical assessment approach, ML-based assessment enables the evaluation
of the cognitive status in more naturalistic settings. Indeed, the observation is usually
carried out in the inhabitant’s smart-home or in instrumented retirement homes. More-
over, ML-based assessment can be carried out unobtrusively for long time periods, and
in general requires less clinical effort compared to clinical assessment methods, enabling
both long-term and short-term monitoring [34].

As can be seen in Fig. 2.10, we classified the different ML-based methods into three
categories: pattern-based methods, threshold-based methods, and feature-based meth-
ods. Pattern-based methods consider movement as a temporal sequence of locations,
which describe the trajectories walked by an individual, and directly process that se-
quence to provide a hypothesis of diagnosis. Threshold-based methods use thresholds
inferred from the data to detect dementia based on locomotion signals collected by am-
bient or wearable sensors. Finally, feature-based methods apply ML algorithms to feature
vectors extracted from locomotion data for recognizing dementia.

The three classes are depicted in Fig. 2.11b. The underlying clinical indicators used by
these methods are reported in Section 2.5.

1. Pattern-based methods These methods process trajectory data to recognize ab-
normal patterns that may indicate dementia according to specific indicators, such
as the Martino-Saltzman model [17]. Since ambulation episodes are composed of
locomotion and non-locomotion phases, a key step of these methods is to segment
locomotion traces to recognize significant trajectories.

A wrong segmentation of trajectories may disrupt the effectiveness of the pattern
recognition algorithms. Moreover, the execution of ADL, especially in indoor en-
vironments, may impact the individual’'s movements, increasing the complexity of
trajectories and incorrect detection [34].

Some pattern-based methods are non-supervised. For example, in [34], Khoda-
bandehloo and Riboni detect loops (i.e., pacing and lapping episodes) building a
buffer on the trajectory segments and considering the percentage of intersection
among the buffered segments composing the same trajectory. Other works rep-
resent the trajectory as a string of locations and detect abnormal patterns using
the longest repeated sub-string algorithm [75]. Other authors propose the use of
supervised ML algorithms to recognize abnormal trajectories. Zolfaghari et al. [16]
represent trajectories as colored pictures in order to encode features such as speed
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and sharp points and use a DMLP for determining whether the trajectory is walked
by a PwD, by a person with MCI, or by a cognitively healthy senior. Since pattern-
based methods rely on data acquired in naturalistic environments, they are prone
to misclassification errors due to noise in sensor data acquisition and interference
of external factors (e.g., activities, interaction with other people, obstacles in the
home). Hence, these approaches tend to be effective mostly for long-term moni-
toring [34].

Other methods for increasing the effectiveness of pattern-based methods include
the application of low-pass filters to location data for noise reduction especially for
data collected from inertial sensors, or the addition of extra features such as statis-
tics extracted from trajectory data [34, 75], activities and abnormal behaviors [1].
Furthermore, Chaudhary et al. in [113] tried to implement an early dementia de-
tection system in an indoor environment using travel patterns of the inhabitant
and Recurrent Neural Network (RNN), which automatically extracts the high-level
features.

2. Threshold-based methods
This category of methods detects gait phases by mining thresholds from the data
for segmenting events, recognizing gait cycles, and locomotion phases. Meng et
al. used accelerometer data and adaptive thresholds to recognize the gait phases
of PwD and cognitively healthy seniors [111]. In [76] the authors presented a so-
lution for detecting locomotion anomalies in dementia patients using a wearable
Opal monitor which is including an accelerometer, gyroscope, and magnetome-
ter. In order to recognize direct, pacing, lapping, and random movement patterns,
they considered translational acceleration threshold to detect walk events, then
they tracked the movement orientation until the algorithm detects the subject had
made a complete stop. The classification is done by considering the different ranges
of orientation degrees for different locomotion patterns. Wang et al. [65] proposed
a threshold-based method to automatize the TUG test. In that work, event seg-
mentation is based on thresholds to identify peaks and valleys during forward mo-
tion, swing points, and stance-point. Experimental results showed that PwD need
more time for TUG test tasks such as sitting and standing up, with respect to cog-
nitively healthy subjects. Of course, in such methods, a key factor is the definition
of the thresholds. Since different subjects may walk with high variation in cadence
and step length, those works need adaptive thresholds for different classes of sub-
jects, and specific model calibration for the different individuals. An advantage of
threshold-based approaches is the low computational complexity and feasibility for
real-time applications at the edge.

3. Feature-based methods As explained before, dementia is a complex impairment
that impacts several domains. Hence, it is natural to consider different features
for its detection. Feature-based methods rely on feature extraction techniques to
represent the different characteristics of locomotion data, and on supervised ML
algorithms to classify the feature vectors according to the cognitive status of the
subject. In feature-based methods, locomotion features used for recognizing de-
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mentia include kinematics characteristics of postural control such as displacement
on the transverse plane and dispersion radius [80], accelerometer-based gait pa-
rameters (e.g., walking speed, step frequency, compensation movements, accel-
eration variance) [60], gait symmetry and regularity [61], and other gait variables
including step counts, step duration, speed, accelerometer and gyroscope statisti-
cal measures [112].

Toosizadeh et al. [43] extracted different features from accelerometers worn by
patients on the upper arm, on the wrist, and on the shins, during the execu-
tion of dual-tasking. Those features considered both upper-extremity function
parameters (e.g., elbow angular velocity, acceleration) and gait parameters (e.g.,
speed, time interval, distance). Analysis of variance tests showed a significant
correlation between upper-extremity features acquired during the dual task and
the MoCA cognitive assessment result of the patient. Kumar et al. used trend
analysis on different navigational features, including speed, path-efficiency, angle-
turn, and ambulation-fraction, to distinguish PwD from cognitively healthy se-
niors considering UWB location data acquired in an assisted living facility [62].
Together with feature extraction, some of these methods apply feature selection
techniques to increase recognition rates, reduce computational effort, and avoid
overfitting [60, 61,112].

Kondragunta and Hirtz in [50] used data acquired from depth cameras during single
and dual-tasking, and extracted several features including step length, step time,
stride time, and cadence, by applying 3D human pose estimation techniques. They
proposed to use dynamic time warping on those features to recognize PwD, MCl in-
dividuals, and cognitively healthy seniors. Compared to wearable sensor systems,
techniques based on cameras are less obtrusive, but are prone to detection errors
in low-light conditions, and are generally more computationally expensive. More-
over, the use of cameras poses serious privacy issues, especially when they are
deployed in private homes [114]. A shortcoming of feature-based methods is that
the accuracy of recognition strongly depends on feature engineering. Moreover,
being based on supervised learning, those methods need large volumes of training
data that are expensive to capture in real-world settings.

2.7.2 Detection of Parkinson’s Disease

As explained in Section 2.5.3, our human motor system is affected by PD. The most sig-
nificant indicators of PD are locomotor dysfunction, shortened stride length, increased
variability of stride, and shuffling gait. Therefore, it is essential to identify these parame-
ters for diagnosing PD. Generally, gait disorders of PD are assessed by UPDRS. Gait freez-
ing deteriorates the quality of life by reducing mobility and increasing falls. Patients with
freezing episodes also have problems with a lack of steady gait. Researchers have recog-
nized the gait disorders of PD based on wearable sensors [66,107] placed in the patient’s
back or wearable devices such as smart watches [103]. Several studies were also con-
ducted to measure Spatio-temporal gait parameters using pressure-sensitive mats such
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48 CHAPTER 2. SYSTEMATIC LITERATURE REVIEW

as GAITRite [117]. Emerging wristbands or smartwatches integrated with IMU are pledg-
ing into wearable healthcare solutions. Experiments also showed that Upper Body (UB)
variables need to be computed together with the consideration of Spatio-temporal char-
acteristics to gain a more holistic inspection of PD for use in a clinical or in the nonclinical
environment [103,117]. Wearable inertial sensors were used to monitor and measure the
head and pelvis accelerations. Pearson’s product-moment correlations were computed
from UB accelerations, including magnitude, smoothness, regularity, symmetry, attenua-
tion, and spatiotemporal characteristics such as postural control [117]. In order to catego-
rize the existing solutions for recognizing symptoms of PD, we propose the classification
shown in Fig. 2.12. Table 2.12 summarizes the characteristics of existing techniques.
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Figure 2.12: PD assessment methods classification.

Clinical Assessment Methods

In the clinical assessment method, PD is detected based on prior knowledge, results of
clinical tests, and statistical analysis of locomotion data by the supervision of medical
experts. Hence, these approaches intensely depend on expert evaluation to assess an
individual’s cognitive status. Patient evaluation is supervised by clinicians and executed
during predefined, short, structured testing sessions. Generally, the severity of PD is mea-
sured with UPDRS [132] score and the Hoehn and Yahr stage [133], NFOG-Q [134]. Clinical
evaluation can be done based on the performance of a simple motor task such as walking
a short distance and standing up out of the chair and the standing or walking turns [118].
The short stride length characteristic of Parkinsonian gait can be noticed from long-term
changes in stride length. Locomotor impairment is one of the leading characteristics of
PD. On the other hand, many other symptoms of PD such as rigidity, difficulty swallow-
ing, upper-body tremor, and dyskinesias, cannot be noticed with the stride monitor [115].
Clinical evaluation was conducted employing the leg dyskinesia item of the UPDRS [87].
Generally, dyskinesias in PwPD are associated with motor dysfunctions, including gait and
balance deficits.
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ML-based Assessment Methods

Currently, PD is not curable. Early detection of PD symptoms is necessary to enhance
the patient’s treatment. Gait analysis is an essential step for the PD diagnosis, as gait
abnormalities have been reported to appear at the earlier stages. Since changes in gait
are among the foremost symptoms of this disease, a gait classifier would be beneficial
for physicians. Therefore, ML assessment methods can classify abnormal and normal
gait. There are different approaches available to detect PD using ML, here we divided ML
assessment methods into three categories: Feature-based assessment methods, Image
processing-based assessment methods, and Pattern-based assessment methods.

1. Feature-based assessment methods The diagnosis of PD can be challenging in
its earlier; Parkinsonian gait is characterized by small steps, a slower gait cycle, a
smaller swing phase, and a lengthier stance phase. Physicians evaluate these fea-
tures in their diagnosis process to confirm the presence of PD. Gait evaluation can
be difficult since it can be influenced by several aspects such as age and health con-
dition. Despite the considerable interest in Parkinsonian gait analysis, there is no
accurate tool to help physicians with gait evaluation. To detect the characteristics of
gait, feature extraction methods, and ML have been used. However, gait is a phys-
iological characteristic that differs for each person according to age, health, and
other intrinsic factors. Therefore, manual preprocessing and feature extraction will
always be limited in their capacity. Generally, a feature-based assessment method
is used to extract significant features that will help to diagnose PD. Various features
such as step distance, stride length, stride velocity, stance and swing phases, heel
and normalized heel forces, swing time of Parkinsonian patients, and walking speed
were extracted from the data collected from the wearable sensors and after that ex-
amined using ML-based algorithm to select the most influential features that would
help to differentiate between the two groups: PwPD and healthy people. Gener-
ally, supervised learning methods such as LDA [120], SVM [51, 120-122], NB classi-
fier [51,121,123], RF [121,123], MLP [123], DT [51], kNN [123], Deep 1D-Convnet [124]
are used for distinguishing between PwPD and healthy cognitive subjects. Further-
more, recently novel machine and DL-based multi-modal technologies are used to
identify the severity of PwWPD actions by analyzing speech, and movement patterns
and evaluation of motor capabilities [100, 125]. The rationale of this approach is
that they may effectively capture discriminative features from time-series data or
other IMU sensors collected data without the need for sophisticated feature engi-
neering efforts.

2. Image processing-based assessment methods Image processing technologies have
been employed widely for PD diagnosis. PwPD show large gait variability and
slower walking speeds than normal people. Cho et al. [126] introduced a gait anal-
ysis system based on a computer vision-based technique for the detection of gait
patterns of PD. They captured a few videos of both normal subjects and PwPD.
They processed the images from the videos to characterize the subjects. PCA and
LDA were employed to extract features and the minimum distance classifier was
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used as the classifier. Seven PwPD and seven healthy people from Buddhist Tzu Chi
General Hospital in Taiwan participated in this study. It used the image sequences
of human silhouettes during walking and extracted the intrinsic features by LDA.
It can identify healthy people and PwPD by their gaits with high reliability and it is
considered a promising aid in the diagnosis of PD. Khan et al. [128] also presented
a computer-vision-based marker-free method to detect abnormal gait in PwPD. In
this study, subjects are videotaped with several gait cycles for the gait analysis of
the PWPD. To develop a silhouette, the subject’s body is segmented through a color
segmentation process. The skeleton is formed by computing the medial points of
each body segment. The motion cues such as the cyclic motion of legs and the pos-
ture lean of the subject during the gait are extracted from the skeleton. Then the
comparison study compared these two cues with the probable perfect gait pattern
to assess the gait impairment. Generally, a computer vision-based technique is in-
troduced for gait analysis to classify normal or PD’s gaits using a camera. In [127],
a masked R-CNN is applied for extracting human silhouettes from video frames
based on recorded videos of normal gaits. After that, the gait energy images are
constructed based on extracted human silhouettes as features, which are applied
to develop an SVM model for classifying healthy and PD gaits in video clips.

. Pattern-based assessment methods These approaches process trajectory data to

recognize abnormal patterns identifying PD. Walking is a part of human move-
ment monitored by the human brain. Gait deficits and abnormal walking patterns
may appear if the brain fails to control this movement. Walking patterns can be
monitored continuously and remotely over time by wearable sensors. The bag-of-
words approach [130] was introduced where each individual’s walking time series
is defined as a bag of words. The ratio of the words together with ML techniques
such as linear SVM, DT, RF, and kNN were employed to distinguish between pa-
tients with PD and healthy individuals. Although the bag-of-words method is used
to distinguish between PD and healthy age-matched individuals, this method is
also applicable to other health conditions. Each individual’s walking time series
is converted into signal subsequences using an overlapping sliding window. Then,
each subsequence is characterized using a few statistical descriptors and similar
subsequences are assigned the same word. Therefore, each person’s data is con-
verted into a bag of words and then evaluated using accelerometers’ data collected
from the ankles. The proposed approach illustrates a vital step towards providing
healthcare through continuous monitoring and advanced analysis of movement
patterns [130]. Another method was introduced to diagnose PD based on Shifted
1D-LBP using ML algorithm [129]. The gaitpdb dataset was used for the evaluation
task, consisting of three gait datasets based on gait signals from different circum-
stances. Statistical features were extracted from histograms of gait signals changed
by Shifted 1D-LBP. ML methods such as NB, LR, and MLP, were employed to extract
and classify features that can be successfully used in PD detection from gait [129].
This approach may also be utilized to detect other symptomes. It can also be applied
in any real-time application by detecting local changes in a signal.
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Figure 2.13: HD assessment methods classification.

Nevertheless, it is hard to define significant features or patterns that can help to
diagnose PD. Moreover, ML-based assessment methods require large volumes of
training data to employ in the classification task.

2.7.3 Detection of Huntington’s Disease

As explained in Section 2.5.4, HD determines impairment in motor control characterized
by chorea and dystonia. Several studies have shown that HD symptoms based on locomo-
tion are observable in pre-manifest individuals well before the actual diagnosis [45, 56].
Therefore, recognizing temporal changes in gait parameters is important for early diag-
nosis and to help delay the disease progression. Different studies used pressure-sensitive
walkway instruments capable of recording Spatio-temporal gait data with high preci-
sion [45,46,56,57,91]. Other works are based on wearable sensors, such as force-sensitive
switches embedded in shoes [53,71], accelerometer and gyroscope positioned in a waist-
belt [54], or IMU attached to the shank [92]. Experimental results have shown that PwHD
experience a decrease in velocity, stride length, and cadence, and an increase in parame-
ters related to dynamic balance impairment, including increased time in double support
and gait asymmetry [91]. Furthermore, the ability to preserve steady locomotion, i.e., low
stride-to-stride variability of gait cycle interval and its’ sub-phases, would be reduced in
persons with NDD [31]. Therefore abnormal timing of steps in NDD leads to a distraction
in gait and locomotor activity generation and fortunately these categories of clinical tests
are highly correlated with functional limitation and quantitative gait measures related to
gait speed [31,57]

Since there are different approaches to detecting HD locomotion anomalies, we clas-
sified the techniques into two categories: temporal assessment methods, and hybrid as-
sessment methods, which are illustrated in Fig. 2.13. The main characteristics of these
approaches are summarized in Table 2.13.
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Table 2.13: Classification of HD detection methods.

Approaches | Main Idea | Characteristics | Challenges | Algorithms
Temporal Use IMU mounted on |-Applicable indoors and | -Limited to certain locomo- | Statistical analy-
assessment the waist or embedded | outdoors tion data sis [71], Gait event
methods in shoes to monitor tem- | -Data can be acquired in | -External events and noise | detection meth-
poral gait parameters | naturalistic conditions can impact the recognition | ods [54], Threshold
such as stride interval -Minimally obtrusive performance dependent symbolic
-Need for extensive train- | entropy [53]
ing datasets acquired in dif-
ferent conditions
Hybrid Use wearable sensors | -Accurate acquisition of | -Results may reflect gen- | Intraclass Correlation
assessment or sensorized pressure- | motor data alongside | eral gait deterioration | Coefficient and Coeffi-
methods sensitive walkways to | clinical walking measures. | rather than HD specifically. | cient of Variation [46],

investigate a different

-The use of different types

-Some of them need spe-

Hidden Markov

aspect of mobility and | of indicators increases | cific laboratory equipment | Models (HMM) [92],
balance by considering | accuracy. Statistical analy-
different types of clinical | -Good correlation  with sis [45, 47, 56, 57, 91],
gait indicators. fluctuation limitation and Radial Basis Func-
quantitative gait measures tion neural net-
and gait patterns, dynamic works [31], Long

balance, and fall risk. short-term  memory

network [135]

Temporal Assessment Methods

These methods use different strategies in order to examine gait cycles and their corre-
lations with HD by the analysis of complexity and uncertainty measures. In particular,
the stride interval in human locomotion reflects the rhythm of the locomotor system and
its analysis provides a non-invasive approach for quantifying gait dynamics [53]. Since
there is a correlation between fluctuation in stride interval and HD, stride analysis al-
lows the detection of locomotion impairment in PwHD at an early stage. Furthermore,
the correlation degree in this indicator is inversely associated with the degree of func-
tional impairments in PwHD [71]. Different research studies were able to differentiate
PwHD from cognitively healthy subjects relying on accelerometer-based gait event de-
tection [54] and Shannon entropy [53]. However, these temporal assessment methods
need large volumes of training data acquired in different conditions, and noise or data
perturbation due to external events can affect their accuracy and reliability.

Hybrid Assessment Methods

In order to detect locomotion changes and quantify motor symptoms of HD in pre-
manifest and early stages, it is useful to consider further markers in addition to tempo-
ral indicators. Hybrid assessment methods investigate the progression of gait disorders
through the different HD stages according to a heterogeneous set of locomotion indi-
cators. In particular, the estimation of gait events related to stance and swing [92], as
well as gait cycle variability, proved to be effective in recognizing early and longitudi-
nal gait changes in PWHD [45]. Other works consider gait indicators to measure balance
and symmetry in locomotion, which are correlated to walking impairment progression in
PwD [45,57]. Those methods apply quantitative phase plot analysis on the sinusoidal con-
secutive waveforms produced by trunk movement, and statistical assessment methods.
However, those systems are subject to possible recognition errors due to gait deteriora-
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tion not specifically related to HD. The use of particular instruments such as sensorized
pressure-based pathways in controlled environments is useful to reduce noise in locomo-
tion data acquisition and to reduce the impact of external factors. Those methods do not
support the data acquisition in fully naturalistic conditions, and their cost makes them
unsuitable for continuous and large-scale deployments [57].

2.7.4 Challenging Behavior Recognition

In people who suffer from NDD, disorientation, and wandering behaviors can cause po-
tential harm such as accidents, injuries, and sometimes death, which can occur during
either the day or night [136]. Therefore, these kinds of behaviors are the main concern
for care personnel, as patients require continuous surveillance. Continuous monitoring
of patients with NDD is a stressful task, which leads to confinement feelings and immense
stress for caregivers. However, it is possible to use Aml and assistive technologies to rec-
ognize that challenging behaviors which may lead to accidents and injuries in patients
with neurocognitive diseases [30, 136]. Generally, when a challenging behavior is recog-
nized, those systems promptly inform the caregiver by issuing an alert or automatically
triggering procedures to avoid the occurrence of accidents. For instance, the system may
automatically lock doors or use wireless technologies to activate an alarm through the
emission of sound or light.

In order to perform accurate motion analysis, those systems use techniques similar
to the ones used to recognize symptoms of neurocognitive diseases [105, 136]. Human
locomotion data in an indoor environment can be collected by using both device-free
and device-based sensing modalities, while systems use in outdoor environments rely
on mobile devices. Advanced systems use sensor data fusion methods to improve the
accuracy and significance of acquired data. While Single-modality methods consist of one
or multiple sensors of the same technology, Multi-modality methods use different kinds
of sensors to acquire multi-modal data. In the following, we present existing challenging
behavior detection approaches according to the above-mentioned categories. The main
methods are summarized in Table 2.14.

1. Single-modality methods: In different works, including [52, 136], the authors use
GPS data to detect wandering behaviors, while other works, including [137], use
accelerometers for the same objective. Regarding data analysis, the techniques
proposed in [52,136] rely on clustering, while in [52] Lin et al. detect loop-like loco-
motion traces based on the Martino-Saltzman model [17]. In particular, the work
presented in [136] is specifically based on detecting wandering by means of itera-
tive clustering followed by ML. Other approaches monitor patients with cognitive
impairment to alert caregivers when they leave the bed or exit the door. In [78]
the authors use cameras and background subtraction technologies to model the
scene background, together with HMM to automatically detect elopements and
alert caregivers. A tool, named AssisT-In, for indoor wayfinding and wandering de-
tection is presented in [82]. It is based on tagging the environment with QR codes,
that need to be scanned by the user through a smartphone so that he/she can
be located and can receive indications to get to the destination. That method is
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Table 2.14: Challenging behavior recognition.

Approaches clas- | Diseases Behaviors Applications | Experiments | Sensor Algorithms
sification environment | environment | technologies
Dementia (+ | Gait dis- | Indoor/ Out-|Lab / real- | Computer vision | Statistical analysis
. Parkinson) | turbance, door world [78], GPS [52,136], |[82], Density-Based
Single- Wandering, accelerome- Spatial
modality Ambulatory ter [137], QR | Clustering of Applica-
gait behavior codes [82] tions

with Noise [136], Loop
detection method
called ©_ WD [52],
Analytical algorithm
for analyzing acceler-
ation data + K-means
clustering to classify
the gait variables

[137], HMM [78]
Dementia (+ | Wandering, Indoor/ Out-|Lab / real-|GPS [17, 63, 138], | Proposed algo-
Parkinson) | Disorienta- door/ General | world/ Both accelerometer rithm [63], Differ-
tion, Limping, [63,105,138], Com- |ent ML  methods
Multi- Fall detection, puter vision [17],|[138], Markov chain
modality Agita.tion., accelerometer, m.odel [105], Ped.es—
Localization metal plate, In-|trian Dead Reckoning,
frared [105], | Statistical analy-

electronic  patch, | sis [17, 77], Multistage
RFID  [17], Actil- | spatial-temporal
lume, StepWatch, | graph  convolutional
Step Sensor, and | network [139]
TriTrac-R3D  [77],
Optical and video
cameras [139]

simple, inexpensive, and easily deployable. However, the used data localization
technology is not well suited for people with cognitive impairment, since QR codes
must be frequently scanned. An obvious advantage of single-modality approaches
is simplicity; however, noise and heterogeneous environmental conditions can af-
fect the robustness, feasibility, and stability of those approaches.

. Multi-modality methods: With respect to wandering detection, the recognition of

more complex challenging behaviors such as persistent, shadowing, pottering, or
repetitive behaviors, poses additional issues. Those behaviors are not based only
on the patient’s trajectory, but also consider environmental conditions, such as
the presence or movement of other people. For this reason, some systems, includ-
ing [17], integrate different technologies such as RFID and GPS. In [105] Homdee et
al. use door sensors and wearable devices to detect doorway crossing events and
location tracking errors with walking directions by a Markov model method, and
provide correct location information using the most likelihood method. In another
work [63] the authors use a smartwatch provided with GPS and an accelerometer
to detect wandering and to alert the patient’s relatives when needed. Moreover,
the development of novel treatments for objectively assessing FoG, which is a de-
bilitating gait impairment in PD, is severely limited by its difficulty. Therefore Filt-
jens et al. [139] used a Vicon 3D motion analysis system, which is a combination
of optical and video cameras for FoG assessment. They have formulated it as an
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action segmentation problem where temporal models are tasked to recognize and
temporally localize the FoG segments. It applies spatial graph convolutions on the
human skeleton graph at each time step that connects the same markers across
consecutive time steps.

2.8 Conclusion

This chapter introduced a detailed overview of different technologies and Al methods
for detecting symptoms of NDD based on locomotion sensor data. We investigated 128
peer-reviewed articles discussing the detection of dementia (37%), HD (11%), and PD
(44%) as well as some discussing both dementia and PD (4%) and PD and HD (4%). The
experimental results presented in these articles have shown that these new technologies
may provide adequate support for practitioners and caregivers to improve diagnosis and
simplify patient management, making the detection of NDD symptoms more accessible
and beneficial for the research community and for the practice. In the following chap-
ters, we will analyze locomotion traces acquired from a real-world dataset by proposing
a novel methodology to detect cognitive impairment symptoms employing thorough ex-
periments.



Chapter 3

Towards Vision-based Analysis of Indoor
Trajectories

fthe previous chapter, we thoroughly investigated the most prominent methods
which have been proposed to exploit IoT data and Al techniques employing loco-
motion data to support the diagnosis of cognitive decline [12,140, 141]. In that case, the
analysis of position traces can enable us to detect the symptoms of cognitive decline ear-
lier. In this chapter, we present a preliminary investigation of the challenging issue of rec-
ognizing symptoms of cognitive decline based solely on the analysis of indoor movement
patterns which relies on trajectory segmentation, visual feature extraction from trajec-
tory segments, and vision-based DL on the edge [14]. In order to avoid privacy issues, we
rely on indoor localization technologies without the use of cameras. We have carried out
experiments with a dataset of real-world trajectories acquired in a smart-home from both
cognitively healthy persons and PwD. Initial results show that our approach is promising,
and may enable effective cognitive assessment in the long term.

3.1 Introduction

A promising direction in tracking the movements of the elderly through unobtrusive po-
sitioning technologies is based on analyzing location traces according to clinical models
of wandering behaviors [17, 142]. Indoor wandering recognition is challenging because
movements are constrained by the ambient shape, and are impacted by the execution
of ADL. Lin et al. proposed a method to identify repetitive locomotion episodes in the
home according to well-known models of wandering [143]. Khodabandehloo and Riboni
proposed a collaborative mining approach to assess the cognitive status of smart-home
inhabitants based on statistical features extracted from their trajectories [144]. Kearns et
al. proposed the use of accurate localization technologies deployed in a common indoor
living space of aretirement home and measured the tortuosity of trajectories to recognize
wandering episodes [145]. As mentioned before, in several studies on the same setup,
the authors found out that other features, including speed, path-efficiency, and angle-
turn, were predictive of dementia [62]. Other studies such as Dodge et al. work [146]
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showed that the relation between walking velocity and activity patterns was significantly
correlated to the cognitive status of the inhabitant.

Indeed, due to the abundance of Spatio-temporal information encoded by movement
traces, and the presence of noise introduced by positioning technologies, feature engi-
neering from trajectory data is not a trivial task. For this reason, a recent research direc-
tion consists of encoding trajectories into images and using DNNs for image classification.
The rationale of this approach is that trajectory images may effectively capture discrimi-
native features without the need for sophisticated feature engineering efforts.

Kieu et al. used trajectories in the form of 3D images containing geographical fea-
tures and driving behavior features to predict the identity of drivers [147]. They applied
unsupervised auto-encoder neural networks to avoid over-fitting and supervised neural
networks to identify drivers. Endo et al. used DNNs as an automatic feature extraction
method, along with handcrafted features, for estimating users’ transportation modes
from images of their travel trajectories [148]. Transportation modes were recognized us-
ing supervised learning methods. In this chapter, we investigate the application of image-
based trajectory classification to the domain of cognitive assessment. To the best of our
knowledge, only one previous work adopted a similar work in the same domain. Go-
choo et al. in [3] represent trajectories in a 2-dimensional grid, in which one dimension is
time, and the other is (mono-dimensional) space. They map each 3-dimensional Spatio-
temporal trajectory point into the 2-dimensional grid. The corresponding binary image is
then classified using convolutional DNNs to recognize different patterns of wandering be-
havior. However, as a consequence of the mapping, the spatial information is disrupted,
since metric operations and topological relationships are not preserved.

In our work, we pursue a different direction, retaining the spatial information in tra-
jectory images, and enriching them with additional visual features that may indicate cog-
nitive decline according to clinical models of spatial disorientation [15]. Our method relies
on specific techniques for trajectory segmentation, visual feature extraction, and DNN-
based trajectory image classification. For the sake of privacy, all these operations are exe-
cuted on the edge, within the inhabitant smart-home system. However, it is not the best
approach to assure privacy, and the images themselves reveal details about the layout
of homes and potentially violate privacy. Therefore, it will be discussed in detail in Chap-
ter 6. The DNN is trained on the cloud by a trusted third party based on anonymous data,
and the trained model is fed to individual smart-homes.

3.2 System Overview

In this chapter, we assume a smart-home infrastructure capable of continuously monitor-
ing the inhabitant’s position at a fine-grained level. Regarding the use of single-resident
smart-home infrastructure, our system may extract position information not only from
localization infrastructures but also based on the inhabitant’s interaction with sensorized
objects and appliances.

Fig. 3.1illustrates our system architecture. A sensor-based infrastructure is in charge
of gathering data about the inhabitant’s position (e.g., through PIR sensors), and about
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his/her interaction with the environment. At each firing of a sensor, the infrastructure
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Figure 3.1: The proposed system overview.

sends a sensor record r to the positioning system of the home:

where t is the timestamp of sensor firing, s_id is the sensor’s unique identifier, and v is

r=(t,s_id,v),

the sensor value. For instance, the sensor record:

r = (2020-04-05 16:46:18.323, sens5371, open),
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states that the sensor identified as ‘sens5371’ (which is a sensor attached to the fridge
door) fired a value ‘open’ at timestamp ‘2020-04-05 16:46:18.323". A sensor position
table stores the relative position of each sensor in the home. A record of sensor position
is a triple:

(s_id, (z,y)),

where s_id is the sensor’s identifier, and (z, y) are the relative coordinates of that sensor
in the home. When the positioning system receives a sensor record, it joins the record
with the position table and projects the coordinates and timestamp values, to obtain a
position record p:

p=(z,y,1),

The trajectory segmentation module is in charge of partitioning the temporal stream
of position records into trajectory segments, named trajectories for short in the follow-
ing. Trajectories are temporally contiguous sequences of positions of a given length [;
for instance, [, may be set to 50m. Each trajectory ¢; is passed to the visual feature ex-
traction module, which outputs an image img; representing the walked trajectory and
highlighting additional visual features, such as the points of trajectory intersection.

The trajectory images classification module is in charge of classifying each trajectory
as either normal or abnormal. To this aim, it uses a DL classifier trained on the cloud
using a set of anonymous trajectories labeled according to the cognitive health status of
the individual: PwD are assumed to walk abnormal trajectories, while cognitively healthy
persons are assumed to walk normal ones.

3.3 Trajectory Feature Extraction

In this section, we explain how we segmented the history P = (p;,...,p,) of the per-
son’s position records and how we extracted visual features.

In real-world conditions, noise reduction is an inevitable step in preparing the data.
For this reason, we applied two noise reduction methods to the position history P:

e We set a threshold T, for the maximum possible velocity v of a person mov-
ing into the home. If the speed between any two consecutive position records
(pi,pir1) € P is higher than T,, the record p;,; is considered a noisy reading;
hence, it is deleted from P. For the sake of this work, we set T}, to 15m/s.

e By considering the arrangement of sensors in the test-bed of our experiments, the
maximum distance between any two adjacent sensors is below 3 m. By carefully
analyzing the person’s trajectories, we observed that some paths spatially deviated
from the expected trajectory due to abrupt movements between non-contiguous
sensors. In this regard, if the distance between the positions of two consecutive
records (p;, pir1) € P exceeds a threshold T (which is set to 5m), we remove
Pitr1 from P.

After noise removal, the trajectory segmentation module is in charge of identifying
trajectories by considering spatial information. To this aim, the position history P is par-
titioned into a set T’ of non-overlapping trajectories:
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T — {tl,tQ,...,tm},

where each trajectory t € T is a temporal sequence of consecutive position records:

t = <pj7pj+1a s 7pk>

The segmentation algorithm partitions P into trajectories whose length is approxi-
mately equal to a given value [. In our experiments, we evaluated different values of [,
ranging from 25m to 150m. The first trajectory is initialized with the first entry of P, and
continues until the overall distance (computed as the summation of the distance between
each of two consecutive position records) exceeds [. The next trajectory is initialized with
the last entry of the previous one, and continues until its length exceeds [; and so on, until
the end of P.

The next step is visual feature extraction, which consists in representing each tra-
jectory through an image that visually encodes its salient features. Since visual feature
extraction from trajectories is a challenging task, to exploit DNN's performance, there
is a need to have sufficient informative data. Unfortunately, as we increase the resolu-
tion of trajectory images, the sparsity of non-zero pixels also increases. The latter effect
may decrease the generalization capability of a DNN [148]. Images with low resolution
reduce the sparsity problem, but low resolution may determine the loss of multiple in-
formation corresponding to the same pixel. Moreover, the accuracy of such classification
models highly depends on the number of samples and on the architecture of the neural
network [3]. After considering different resolutions, we set the images to 100 x 130 pix-
els resolution. Hence, based on the smart-home area, each pixel represented one square
decimeter of the area. As explained below, the images have three colors. The image color
is encoded in the third dimension of each pixel.

As mentioned before, wandering is a complex behavior, and there is still no complete
agreement on its definition. However, one common component in the different defini-
tions of wandering is disorderliness in the individual’s movements [33]. In this regard, the
visual extraction module plots the whole trajectory in its corresponding image in blue
color, in order to visually represent the trajectory’s complexity. Moreover, in order to
emphasize the intricacy of the trajectory, the module computes the intersection points
between each line in the trajectory and depicts it in the image by a red circle. Considering
image resolution and test-bed size, the circle radius measures 0.25m. Fig. 3.2 shows the
images obtained through visual feature extraction of two sample trajectories, walked by
a cognitively healthy person and by one person with dementia, respectively.

3.4 Vision-based Trajectory Classification

Fig. 3.3 illustrates our framework for cloud-based model training. Anonymous trajec-
tory images are collaboratively collected from a set of inhabitants. As mentioned in Sec-
tion 3.2, images are annotated as either normal or abnormal according to the cognitive
status of the inhabitant that walked the corresponding trajectory. As shown in Fig. 3.1,
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(a) Trajectory image of a cognitively healthy se- (b) Trajectory image of a PwD.
nior.

Figure 3.2: Trajectory images example.

after applying supervised learning with a DNN, the trained model is released to the indi-
vidual systems to classify novel trajectories walked by the local inhabitant.

The pre-processing component image conversion is in charge of converting each tra-
jectory image to a flat feature vector based on its width, height, and color value of each
pixel. Then, labels are added to the feature vectors in order to train the network. The
architecture of the used model for this binary classification task is depicted in the trajec-
tory image-based DNN architecture of Fig. 3.3. We have used MLP DNN to distinguish
normal from abnormal trajectories based on their images. In order to fine-tune the DNN,
we tested the different number of neurons (from 32 to 128), hidden layers (from 1 to 4),
batch sizes (from 32 to 256), activation functions, and also hyper-parameters for regular-
ization and learning rate reduction. In the rest of the chapter, we referred to the config-
uration that achieved the highest recognition rates. The presented MLP is composed of
three fully connected (dense) layers: one input layer, one hidden layer, and one output
layer, with 32 neurons for the input and hidden layers, and 1 neuron for the output layer.
The layers used the Rectified Linear Units (ReLU) function as the activation function. Since
we faced a binary classification problem, we chose the Sigmoid function as the activation
function on the output layer. Furthermore, all layers are followed by Batch Normalization
and Dropout layers in order to speed up learning, increase the stability of the neural net-
work, and significantly reduce over-fitting. Therefore, we have used a low learning rate,
set to 0.0001, with Adam optimizer. This solution allows for major improvements over
other regularization methods [149, 150]. The fraction to drop units has been set at 0.5.
As a loss function, we have used binary cross-entropy.

The neural network needs to start with some weights and refine them iteratively. To
this aim, we used the He_uniform distribution Kernel Initializer for obtaining the initial
weights. Furthermore, we used Mini-batch gradient descent (Batch Size) that divides the
training dataset into small batches to calculate model error and update model coeffi-
cients. Mini-batch gradient descent achieves robust convergence avoiding local minima,
and performs a computationally efficient process, without the need of keeping all training
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Figure 3.3: Cloud-based model training architecture.

data in main memory [151]. The Batch Size is set to 128.

In order to have an adaptive learning rate, we also used the ReduceLROnPlateau call-
back to reduce the learning rate [151]. This callback is used to fine-tune model weights
when there is no change for a ‘patience’ (set to 5) number of epochs and monitors a
metric that is specified by the ‘monitor’ argument (set to ‘val_loss’). In this regard, by
considering 10% of trajectories for the validation set and monitoring the validation loss,
the learning rate will be reduced by an order of magnitude if the validation loss does not
improve. The new learning rate is the result of multiplying the recent learning rate by
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a ‘factor’ argument, which is set to 0.1. To focus on significant changes, the ‘min_delta’
argument, which is a threshold for measuring the new optimum, issetto 1£ — 7.

3.5 Experimental Evaluation

We conclude this chapter by briefly evaluating our proposed architecture in terms of the
considered dataset, setup and requirements, the experimental results, and future direc-
tions.

3.5.1 Dataset

The experiments are based on real-world trajectories acquired in a smart-home of the
CASAS test-bed [152]. That dataset was acquired from a total of 400 individuals and anno-
tated by the researchers of the Center for Advanced Studies in Adaptive Systems (CASAS)
at Washington State University (WSU) [140]. The smart-home layout is represented in
Fig. 3.4.
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Figure 3.4: The smart-home layout used in our experiments [2]

The smart-home is a two-story apartment equipped with different kinds of sensors,
and its floor plan includes a living/dining room, three bedrooms, a kitchen, and a bath-
room. During the data acquisition phase, the researchers asked the participants to per-
form a set of scripted activities in the home, such as preparing a meal and cleaning. The
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smart-home included a living/dining room, three bedrooms, a kitchen, and a bathroom,
and was equipped with different kinds of sensors. For the sake of our experiments, we
relied on PIR motion sensors and door sensors to track the movements of the individu-
als in the home. PIR sensors are mounted on the ceiling and their accuracy is about one
meter. In total, the apartment included 51 motion sensors and 16 door sensors.

Participants were recruited by advertisement and physician referrals. After obtain-
ing informed consent, participants underwent multidimensional clinical examination by
neuropsychologists, in order to assess their cognitive health status. For the sake of
anonymity, explicit identifiers of the individuals involved in the study were removed, and
quasi-identifier personal data, such as age, were generalized to age ranges. The proto-
col of recruiting and data collection was approved by the Institutional Review Board of
WSU [140]. As a consequence of clinical examination, each participant was classified as
either PwD, a person with MCI, or a cognitively healthy person.

MCl is considered an intermediate phase between cognitive healthiness and demen-
tia. Previous studies showed that it is difficult to distinguish MCI from the other two
classes based on |oT solutions [140,141]. Hence, for the sake of this work, we simplify the
problem by considering only PwD and cognitively healthy seniors.

Participants were asked to individually execute scripted Day Out Tasks (DOTs) in the
smart-home test-bed. DOTs are naturalistic tasks involving the execution of interleaved
activities for reaching a certain goal [153]. Each participant executed the DOTs in a single
day for an average of three hours. Data collection occurred in the morning or in the
early afternoon. During the execution of DOTs, the sensor infrastructure acquired the
sensor data triggered by their actions and movements. The detailed descriptions of DOTs,
together with the collected dataset, are available on the Web'. The smart-home setup
is described in detail in [154]. We considered those PwD who were able to carry out
activities in the home (19 individuals), and young-old seniors aged 60 to 74 years old (80
individuals).

Table 3.1 reports the average number of trajectories per person of the considered
classes. The average numbers are very close for the two classes. However, there is more
variability (larger value of STandard Deviation (STD) in PwD. STD in the table is an indi-
cator of different total trajectory lengths for patients. As patients did not have an equal
walk in the home, consequently the number of trajectory images per patient varies. By
increasing the length of the segment (from 25m to 150m), the number of images for each
patient and consequently STD for different segment lengths decreased. The total number
of samples in different length trajectories are 7759 in 25m , 4011 in 50m, 2715 in 75m,
2053 in 100m, 1657 in 125m and 1389 in 150m trajectories.

3.5.2 Setup

In order to develop our system, we have used Python, using the Keras neural network
library®>. We have run experiments on a departmental Linux server with Graphics Pro-

'http://casas.wsu.edu/datasets/assessmentdata.zip
2https://keras.io/
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Table 3.1: Average number of trajectories per person.

Trajectory length | Cognitively healthy PwD
25m 78.40(£17.09) 78.26 (+27.67)
50m 40.49 (£8.82) 40.63 (£14.21)
75m 27.41 (+5.95) 27.47 (£9.60)
100m 20.74 (+4.42) 20.74 (£7.28)
125m 16.73 (+3.60) 16.79 (£5.70)
150m 14.03 (4+2.95) 14.05 (£+4.90)

Table 3.2: Results of vision-based classification according to different lengths of trajectory
segmentation.

Comparison of segmented trajectories by different lengths
Measures 25m 50m 75m 100m 125m 150m
Precision 69.32% 63.72% 57% 61.97% 63.75% 65.51%
Micro | Recall 83.07% 85.64% 83.06% 85.24% 84.71% 83.62%
F1-score 75.58% 73.07% 67.6% 71.76% 72.75% 73.46%
Precision 54.5% 59.5% 54% 58.5% 58% 56%
Macro | Recall 53.5% 56.5% 52.5% 55.5% 55% 54%
F1-score 53% 54.5% 49.5% 53.5% 53.5% 52.5
Classification
time perimage | ~ 0.001875s | ~ 0.00326s | ~ 0.00441625s | ~ 0.005726s | ~ 0.007s | ~ 0.00785s

cessing Unit (GPU) acceleration.

To evaluate the effectiveness of visual feature extraction, we have experimented with
different trajectory lengths, ranging from 25m to 150m. We applied a leave one person
out cross-validation approach to keep one participant’s image trajectories as a test set
and the remaining ones for the train set and validation set. Since the presented model
requires tuning of hyper-parameters, training trajectories are split by a fraction of 10%
for validation and 90% for training.

It should be mentioned that the performance measure ‘accuracy’, which is the total
number of correct predictions divided by the total number of predictions, is inappropri-
ate for imbalanced classification problems such as the one we are tackling. Indeed, de-
pending on how severe the class imbalance is, the accuracy value regarding the majority
class would overwhelm the accuracy value of the minority class. Hence, for evaluating
the overall performance of our technique, we use the metrics of precision, recall, and
F, score, which are standard metrics in imbalanced classification problems. In particu-
lar, the macro-averaged F score is well representative of the classification performance,
since gives the same weight to the performance of both classes, despite the distribution
of instances in the classes.

3.5.3 Experimental Results

In our experiments, we evaluate the effectiveness of the DNN classifier in correctly recog-
nizing the cognitive status of a person given the observation of a single trajectory walked
by him/her. According to the results shown in Table 3.2, among different fixed lengths
from 25m up to 150m, the best results are achieved using 50m trajectories. Indeed, tra-
jectory images with 50m length obtained the best performance in distinguishing between
PwD and cognitively healthy seniors in terms of macro-averaged F score.

Considering the confusion matrices illustrated in Tables 3.3b and 3.3d, for trajecto-
ries with lengths ranging from som to 125m, the ratio of correct classification is over 50%
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classified as — [ Normal [ Abnormal

Normal 4348 1924 Normal 2064 1175
Abnormal 886 601 Abnormal 346 426
(a) 25m length (b) 50m length

| classified as — | Normal | Abnormal |

Normal

1250

943

Abnormal

255

267

(c) 75m length

| classified as — | Normal | Abnormal |

Normal

853

485

Abnormal

154

165

(e) 125m length

| classified as — | Normal [ Abnormal |

Normal

1028

631

Abnormal

178

216

(d) 100m length

| classified as — | Normal | Abnormal |

Normal

735

387

Abnormal

144

123

(f) 150m length

Table 3.3: Confusion matrices of vision-based classification according to different lengths
of trajectory segmentation.

in both classes. Based on an analysis of the results, we noticed that if the length of the
trajectory is too small, the shapes of the trajectories of different patients tend to be sim-
ilar, and consequently, the model cannot distinguish the different classes. If the length
of the trajectory is too large, the shapes of trajectories become very involved and diffi-
cult to distinguish from each other. Hence, optimal results are achieved by a compromise
between long and short trajectories.

As mentioned before, in this dataset, the ratio of trajectories walked by healthy se-
niors vs. PwD is highly imbalanced, at about a 5 : 1 ratio. As it can be seen in Table 3.2, in
all experiments, micro-averaged values are higher than macro-averaged ones. This result
is due to the fact that the DNN is biased toward predicting the most frequent class.

Moreover, in order to evaluate the feasibility of executing our methods on the edge,
we measured the execution times of trajectory image classification. It should be men-
tioned that the execution time of trajectories grows with the length of the trajectory.
However, as shown in Table 3.2, the classification time of a single trajectory image is in
the order of milliseconds.

In general, we can conclude that the classification of a single trajectory does not pro-
vide a reliable prediction of the cognitive status of the subject. However, we observe
that, with trajectory lengths ranging from 50m to 125m, the most frequently predicted
classes are the correct ones. For instance, with the length of 50m, 426 trajectories of
PwD were correct as abnormal, while only 346 of them were classified as normal. More-
over, 2064 trajectories of cognitively healthy seniors were classified as normal, and only
1175 of them were classified as abnormal. Hence, we believe that a long-term analysis of
trajectories may support reliable cognitive assessment; however, this hypothesis should
be supported by further research and experiments.
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3.6 Conclusion

In this chapter, we tackled the challenging issue of recognizing symptoms of cognitive de-
cline based on the analysis of indoor movements. To this aim, we proposed a technique
to extract visual features from indoor trajectories, and a deep learning model for classifi-
cation. Experiments with a real-world dataset collected from both cognitively healthy se-
niors and PwD suggested that a long-term analysis of the predictions may achieve promis-
ing results.

Furthermore, our experiments have shown that trajectory segmentation has a strong
impact on the classification results. Hence, we have to investigate more sophisticated
methods for segmentation, including not only spatial but also temporal conditions. Vi-
sual feature extraction could be improved by adding some other useful characteristics,
such as speed, or abrupt changes in direction. The neural network model should also be
refined to exploit visual features. Finally, in the next chapter, we will investigate a tech-
nique for long-term analysis of predictions in order to support a reliable assessment of
the cognitive status over time.



Chapter 4

The TraMiner Framework

ﬁorder to get rid of the noise introduced by indoor constraints and activity exe-
cution, and employ important clinical indicators for accurate assessment which
support MCl subjects as well, we introduce novel visual feature extraction methods from
locomotion data collected by sensors embedded in the environment considering both
spatial and temporal aspect of movements. This method is in a framework which in
general is called TraMiner. We carried out extensive experiments with a large dataset
acquired in a smart-home test-bed from 153 seniors, including people with cognitive dis-
eases. Results show that our system can accurately recognize the cognitive status of the
senior, reaching a macro F} score of 0.873 for the three categories that we target: cogni-
tive health, MCI, and dementia. Moreover, an experimental comparison shows that our
system outperforms state-of-the-art methods.

4.1 Introduction

In this chapter, we contribute to propose TraMiner, a novel system based on Trajectory
Mining for continuous cognitive assessment in smart-homes. Our system relies on clinical
indicators that characterize cognitive decline in terms of abnormal locomotion patterns
of the elderly, as mentioned in the Chapter 2.

We have taken a different approach compared to the preliminary investigation pre-
sented in Chapter 3, representing locomotion traces through images and relying on DL
for the classification of those images according to the cognitive health status of the in-
habitant. Our method relies on specific techniques for locomotion data cleaning and
segmentation. Each locomotion segment is transformed into two images that capture
different aspects related to the clinical indicators of locomotion anomalies. Each couple
of images is fed to a DL classifier in charge of predicting the anomaly level of the cor-
responding locomotion segment. Since it would be unrealistic to provide a hypothesis
of diagnosis based on the observation of a single trajectory, our system includes a long-
term analysis module. The latter is in charge of processing the history of DL predictions
for computing a hypothesis of diagnosis, which is provided to clinicians for supporting
the neuropsychological assessment.
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We have developed a prototype of our TraMiner system and carried out extensive ex-
periments with a real-world dataset [2] gathered in a smart-home test-bed with 153 se-
niors, including cognitively healthy subjects, people with MClI [155], and PwD. This dataset
is described thoroughly in Section 3.5.1. Results proved the accuracy of TraMiner in pre-
dicting the cognitive health status of the inhabitants. Indeed, based on the observation of
the locomotion traces acquired during one day per patient, our system achieved a macro
F’ score of 0.873. Moreover, an experimental comparison showed the superiority of our
approach with respect to state-of-the-art techniques. In order to enable the full repro-
ducibility of our experiments, we have released the code of all our system components,
and the used dataset is available on the Web '. Hence, we extend the preliminary version
of locomotion analysis, discussed in Chapter 3 in detail, considering general indicators
(i.e., complex gait parameters) and indicators of dementia, explained in Chapter 2, and
introduce new framework with:

i. Support for recognition of MClI,
ii. A novel locomotion trace segmentation algorithm,
iii. A new visual feature extraction technique,
iv. A novel two-input DL architecture,
v. An additional algorithm for long-term assessment of the cognitive health status,
vi. Experiments with a larger dataset,
vii. New experiments to evaluate all the components of our system,
viii. An experimental comparison with state-of-the-art techniques, and
ix. A dashboard is accessible on the Web to inspect the visual features and the system
predictions.

In fact, the theoretical basis of the proposed TraMiner system is based on complex
gait parameters of general indicators’ category (including Jerk, Turning angle, Sharp an-
gle, Straightness, and Path-efficiency) and dementia trajectory-based indicators (i.e, di-
rect, random, pacing, and lapping). Several random, pacing and lapping patterns can be
observed in the home, which is actually due to the normal execution of ADL by cogni-
tively healthy inhabitants. Hence, in this system, we do not aim at explicitly recognizing
those patterns, but we rely on a supervised learning approach for recognizing abnormal
locomotion patterns.

4.2 TraMiner System Overview

This system regarding the usage of a single resident smart-home infrastructure is capable
of continuously monitoring the inhabitant’s position at a fine-grained level. Moreover,
seniors living alone may have particular benefits from remote monitoring and assessment
of cognitive functions.

Fig. 4.1illustrates the TraMiner architecture. Since the focus of this chapter is on pro-
cessing locomotion data, the core methods of our contribution are largely independent of

"https://sites.unica.it/domusafe/traminer/
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Figure 4.1: Overview of the TraMiner system.

the available sensor infrastructure. We assume that a smart-home sensor infrastructure
is in charge of continuously gathering data about the inhabitant’s position; e.g., through
PIR sensors. The smart-home system communicates raw sensor data to a stream process-
ing software platform (e.g., Apache Kafka) for integration and temporal synchronization.

As mentioned in the Chapter 3, each time a sensor fires, the platform sends a raw
sensor event to the TraMiner system:

rse = (t, s_id,v),

where t is the timestamp of firing, s_id is the sensor’s unique identifier, and v is the
generated value. Since we assume that the home is inhabited by a single individual, we
are not interested in associating the sensor record with the person that triggered it.
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Likewise, the integrated positioning system is in charge of deriving Spatio-temporal
information from raw sensor events. To this aim, it relies on a sensor position table
storing the relative position of each sensor in the home. A record of sensor position in
that table is a triple:

(s_id, (x,y)),

where (x, y) are the relative coordinates of the sensor identified by ‘s_id’ in the home.
For the sake of simplicity, we consider only static sensors in the home; hence, we assume
that the position of sensors does not change with time. Each time the integrated po-
sitioning system receives a raw sensor event, it joins the corresponding record with the
sensor position table to obtain the (z, y) coordinates, producing a user’s position record:

r=(p,t),

where p = (z,y) are the relative coordinates of the sensor that fired at time ¢.

The trajectory segmentation module is in charge of reducing noise in the data and
partitioning the temporal stream of position records into trajectories. A trajectory is a
temporally contiguous sequence of positions that corresponds to a locomotion episode.

Each trajectory is passed to the modules for traj and speed feature extraction. Those
modules represent the trajectory as an image each. The two images represent the walked
trajectory in a 2-dimensional space and highlight different visual features, such as speed
and intersection points.

The trajectory images classification module is in charge of classifying each trajectory
as either walked by a cognitively healthy person, MCI individual, or PwD. To this aim, it
uses a DL classifier processing the two images corresponding to each trajectory. The clas-
sifier is trained on the cloud using a set of anonymous trajectories labeled according to
the cognitive health status of the individual. According to the history of predictions, the
long-term trajectory analysis module computes a hypothesis of diagnosis for the individ-
ual. The hypothesis may be cognitively healthy, MCI, or PwD. Finally, the hypothesis of
diagnosis is communicated to the remote healthcare center, to support the clinicians in
the evaluation of the patient.

4.3 Trajectory Segmentation and Visual Feature Extraction

This section reports the details of modules in charge of trajectory segmentation and visual
feature extraction.

4.3.1 Position Data Cleaning and Trajectory Segmentation

As explained before, the integrated positioning system continuously provides TraMiner
with the user’s position records. These records instantiate the position history H =
(r1,r9,...,m,), which is the temporal sequence of the user’s positions records. In-
evitably, the position history contains inaccuracies because, in real-world conditions, sen-
sor data are affected by a relevant level of noise. Therefore, in order to noise reduction,
like what is done in the preliminary version of TraMiner in Chapter 3, we manually ana-
lyzed the Spatio-temporal information of the dataset used in our experiments by plotting
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movement traces over the home layout. We observed several unfeasible deviations from
the expected trajectories, which were due to wrong position detection by the positioning
system. Hence, the trajectory segmentation module performs noise reduction by consid-
ering the maximum possible velocity v of a person moving in the home (which is set to
15m/s) and the maximum distance between any two adjacent sensors (which is set to
5m).

Likewise, after position data cleaning, the trajectory segmentation module is in
charge of partitioning the de-noised H into trajectories by considering temporal and
spatial information. In this regard, the position history H is partitioned into a set T" of
non-overlapping trajectories:

T = {t1>t27 v 7tm}7

where each trajectory t € T'is a temporal sequence of consecutive position records:

t = (pj,Pj+1,---. k) € H.

A trajectory consists of locomotion and non-locomotion phases. The non-locomotion
phases happen during a time interval between any two consecutive sensor activations
that do not exceed a given threshold T,. In our experiments, we evaluate different values
of T, ranging from 30s to 180s. The rationale of our segmentation algorithm is that a
phase of non-locomotion may happen in a trajectory if no sensor is triggered for less
than 7. Otherwise, if no user movement is detected for more than 7, the previous
trajectory is completed, and a new one is initialized.

Our segmentation algorithm initializes the first trajectory with the first entry of H, and
each trajectory ¢, is a temporal sequence of consecutive position records from H such
that the time interval between any two consecutive position records does not exceed
T,. The next trajectory is initialized with the last entry of the previous trajectory and
continues until the threshold condition is met. The algorithm continues until the end of
H.

4.3.2 Visual Feature Extraction

In order to prepare input data for the DNN, the modules for traj and speed feature extrac-
tion are in charge of visually representing the salient features of each trajectory through
images. To prepare the images, we use the RGB color model. Hence, each image has
three colors: red, green, and blue. For every pixel, the values related to these colors are
represented by a byte each. Hence, each pixel is characterized by three integer values
ranging from 0 to 255. In our work, the maximum spatial extent of all the trajectories is
the same and corresponds to the home layout.

Choosing the image size is an important aspect of feature extraction. By increasing the
resolution of the image, the sparsity of non-zero pixels in the image increases, and may
decrease the learning capability of the DNN [148]. Low-resolution images can alleviate
this issue; however, important information in the image could be lost, since the values
of multiple contiguous pixels could be mixed. After considering different resolutions for



4.3. TRAJECTORY SEGMENTATION AND VISUAL FEATURE EXTRACTION 73

the images, for our experimental setup, we chose image length and height of 100 by
130 pixels. By considering the size of our smart-home test-bed, each pixel in the image
corresponds to approximately 0.1 m?2.

TRAJ Feature Extraction

Fig. 4.2a shows an example of an image obtained using the TRAJ feature extraction
method from a person’s trajectory in our smart-home test-bed.

(a) TRAJ feature extraction. (b) SPEED feature extraction.
Figure 4.2: Example of visual feature extraction from a trajectory.

The trajectory path is shown through a monochrome line string. The weight of each
line is set according to the number of times that the corresponding path has been walked.
The line weight is 1 if the path has been walked only once; the weight is 2 if it has been
walked twice, and so on. Consequently, lines corresponding to paths walked several times
are bolder than those of paths walked sporadically. This feature extraction method allows
us to visually capture locomotion anomalies corresponding to the pacing and lapping
patterns defined by the Martino-Saltzman model [17].

For emphasizing the intricacy of the trajectory, which may indicate a random walk
according to the Martino-Saltzman model [17], the intersection points between the tra-
jectory lines are shown in the image as a red circle. By considering the image size, the
radius of that circle corresponds to 0.25m.

Moreover, the trajectory line string naturally encodes low-level motion indicators
such as sharp angles, straightness, turning angle, and path efficiency.

SPEED Feature Extraction

Patterns of locomotion speed are important indicators of cognitive decline. However,
speed information is not captured by the TRAJ feature extraction method. Hence,
TraMiner produces a second image of the trajectory, using the SPEED feature extraction
method. Fig. 4.2b shows an image obtained using the SPEED method from a person’s
trajectory in our experimental test-bed.

With this method, the trajectory is partitioned into sections, such as the speed of
the inhabitant is steady in each section. The color of each section depends on its speed
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range. When a section is walked multiple times, the most recent speed of that section is
considered for drawing the image. For the sake of this work, we consider 7 different speed
ranges, with 7 associated colors. In particular, the speed rangesare0—2,2—4,4—6, 6—8,
8 — 10,10 — 12, 12 — 14, and more than 15ms, and the corresponding colors are purple,
violet, blue, cyan, green, yellow, orange, and red, respectively. Of course, some of those
speed ranges are exaggerated when referring to people moving inside an apartment. The
explanation is that the positioning infrastructure used in our experimental test-bed has
approximately 1 meter resolution, and (being based on PIR technology) the detection
range of sensors partially overlaps. For this reason, the computed speed is inevitably
approximated and subject to errors. However, as confirmed by our experimental results,
those approximated speed values are useful to improve the recognition performance of
our system. The SPEED feature extraction method allows capturing the jerk low-level
motion indicator.

4.4 DNN Trajectory Classification and Long-term Analysis

In this section, we present the DNN trajectory image classification method and the long-
term analysis module.

4.4.1 Cloud-based Model Training

The goal of the cloud-based model training module is to train a DNN model to classify
every trajectory as either walked by a cognitively healthy subject, by a person with MCl,
or by PwD. To this aim, we take a collaborative approach. That module periodically re-
ceives a training set of trajectory images from the local instances of the TraMiner sys-
tem, running in the individual homes. Each image is labeled with the cognitive status of
the anonymous inhabitant (i.e., either ‘cognitively healthy’, ‘MCI’, or ‘PwD’). Trajectory
images are locally computed on the edge by the different instances of TraMiner, as ex-
plained in Section 3.3. Based on that training set, the trusted cloud-based module is in
charge of training a DNN model for trajectory classification. The TraMiner local instances
receive the model from the cloud and use it for classifying the trajectories of the inhab-
itant. Note that the TraMiner instances do not receive any trajectory image. Indeed, for
the sake of privacy, trajectory images are processed only by the trusted cloud module.

Fig. 4.3 shows the MLP DNN architecture used by the cloud-based infrastructure. For
each trajectory, the MLP DNN takes as input two images. The first one is obtained through
the TRAJ feature extraction method as shown in Fig. 4.2a, while the second one is ob-
tained through SPEED feature extraction as shown in Fig. 4.2b.

Since we use two images with different features for each trajectory, our model re-
lies on ‘mixed data’. Developing systems capable of handling mixed data is still an open
area of research, and can be challenging since each input with a different feature repre-
sentation may require separate preprocessing steps. In order to prepare the trajectory
images for training, we convert them to flat feature vectors based on the width, height,
and color values of each pixel. Hence, since images have 100 by 130 pixels, and each pixel
is represented by three color values, each feature vector has a size 39, 000. So, each fea-
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Figure 4.3: Cloud-based model training MLP DNN architecture.

ture corresponds to the color value of a single pixel. Then, we apply binarization to the
color values of the image to reduce the computational cost of training. Finally, we add
the labels to the feature vectors before feeding them to the DNN for training.

The used MLP DNN for each input is composed of two fully connected (dense) layers:
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one input layer and one hidden layer, with 32 neurons for both. The layers used the RelLU
as the activation function. Furthermore, for both inputs, each layer is followed by batch
normalization to speed up learning and increase the stability of the neural network. In
the last layer for each of them, there is also a dropout layer in order to significantly reduce
over-fitting. The fraction of drop units has been set to 0.5. Then, we combine the output
of both inputs (TRAJ and SPEED) and apply one more fully connected layer with three
neurons followed by batch normalization and dropout with the same drop units. Since
we are facing a three-class classification problem, we have chosen the softmax function as
the activation function on the final output layer. This function is used to find a probability
distribution of the mentioned categories as follows:

p(k) = ]g—j,gi = max(0, Z fiwi; + hj)
Zj:l 9j i

where p(k) is the probability of a trajectory belonging to the k-th class, and g; is a
standard exponential function applied to each element of the input vector. This function
gives a positive value above zero, which will be very large if the input was large and very
small if the input was negative. Furthermore, N, denotes the number of classes, f; is a
value of i-th neuron in the last fully connected layer, w;; and h; are coefficients of the
softmax function [3].

Furthermore, we have used a low learning rate, set to 0.00001, with adam optimizer.
As aloss function, we have used category cross-entropy, which is an effective loss function
for classification problems that have softmax activation function in the output layer. This
loss function is based on the maximum likelihood estimate approach and it is used for
single label categorization [156]. In our case, this ensures that a trajectory belongs to
exactly one class.

We have used a batch-size approach to calculate the model error and to update the
model coefficients. We divided the training dataset into small batches of 64 samples
which are utilized in one epoch. In order to fine-tune the number of epochs, we have
used the early stopping procedure. We tested different numbers of epochs, ranging from
20 to 100 epochs. According to this procedure, the training is stopped when the general-
ization error increases. Therefore, we evaluated the model during training on a holdout
validation set after each epoch. When the performance of the model starts to degrade
(i.e., the loss begins to increase), the training process is stopped. In the represented con-
figuration, the number of epochs was set to 27. With this approach, we improved the
computational efficiency of the learning process, without the need of keeping all training
datain the main memory. The approach also provides robust convergence, avoiding local
minima [151].

4.4.2 Long-term Trajectory Analysis

As shown in Figure 3.1, the trained model is communicated to the trajectory images classi-
fication module of the individual smart-home systems, which uses it for trajectory image
classification as soon as new trajectories are observed in the home. Finally, the classifi-
cation predictions are processed by the long-term trajectory analysis module, which is in



4.5. EXPERIMENTAL EVALUATION 77

charge of computing a hypothesis of diagnosis regarding the inhabitant’s cognitive health
(i.e., cognitively healthy subject, MCI, or PwD).

The aim of that module is to generate a hypothesis of diagnosis based on the long-
term predictions of the vision-based trajectory classifier. Of course, in order to produce a
reliable hypothesis, the long-term analysis module needs a sufficient quantity of trajec-
tory classifications. Therefore, it is assumed that the module considers the whole data
acquired in a given time period; e.g., all the predictions about the trajectories observed
in the previous 30 days. The module analyses the whole history of vision-based trajectory
classifications produced in that period as VT'C"

VTC = {class;, classs, ..., class,},

where the value of class; can be either ‘cognitively healthy’, ‘MCI’, or ‘PwD’. Also,
there is a need to compute the number of predictions of each class in VI'C. Then, the
module outputs the hypothesis corresponding to the most frequent class fc as follows:

fe=argmazx ,ecp | {cl € VI'C : cl = class} |,
where D = {‘cognitively healthy’, ‘MCI’, ‘PwD’}.

4.5 Experimental Evaluation

In this section, we report our experimental evaluation which was carried out with real-
world locomotion data acquired in an instrumented smart-home from a large set of se-
niors, including cognitively healthy seniors, PwD, and persons with MCI. Therefore, in
the following subsections, we explain the used dataset, the experimental setup, and the
achieved results. We also experimentally compare our technique with existing state-of-
the-art methods which will be described in the following sections.

4.5.1 Dataset

The experiments were carried out considering real-world trajectories acquired from 153
individuals in a smart-home of the CASAS test-bed [152] such as the preliminary version.
Likewise, for our experiments, we relied on PIR motion sensors and door sensors to track
the movements of the individuals in the home.

As mentioned before, in this data set, after clinical examination the participants were
classified as either PwD, persons with MCI, or cognitively healthy persons.

While 40 PwD were recruited, only part of them was able to participate in the data
collection in the smart-home. Hence, in our experiments, we considered only PwD who
were able to carry out activities in the home (19 individuals). Moreover, we considered
the data acquired from the 80 seniors aged 60 to 74 years old as cognitively healthy per-
sons, and from the 54 persons with MCI.

4.5.2 Comparison with State-of-the-Art Methods

In order to experimentally compare our method with the state-of-the-art, we imple-
mented both a baseline numeric feature extraction method and the image-based method
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proposed by Gochoo et al. in [3].
State-of-the-Art Numeric Feature Extraction

As a comparison, we implemented a baseline feature extraction method, in which each
feature corresponds to a locomotion-based clinical indicator of cognitive decline pro-
posed in the literature. We call this method Numeric Feature Eextraction (NFE). We con-
sider the following indicators:

e Pacing [17] travel pattern, defined in the Martino-Saltzman model: this feature
counts the number of observations of pacing in the last day.

e Lapping [17] travel pattern, defined in the Martino-Saltzman model: this feature
counts the number of observations of lapping in the last day.

e Random [17] travel pattern, defined in the Martino-Saltzman model: this feature
counts the number of observations of random on the last day.

e Jerk [157] is computed as the first time derivative of acceleration. This feature rep-
resents the average jerk observed in the individual’s trajectories on the last day.

e Straightness [158] represents the average straightness computed on the individ-
ual’s trajectories of the last day.

e Sharp angles [159] feature counts the number of sharp angles observed in the in-
dividual’s trajectories during the last day.

In order to compute the above-mentioned indicators, we adopt the algorithms pre-
sented in [160].

State-of-the-Art Gochoo Visual Feature Extraction

In the original paper where the method proposed by Gochoo et al. [3], the Gochoo Vi-
sual Feature Extraction (GVFE) technique was used to recognize those abnormal loco-
motion patterns that are strong indicators of neurocognitive diseases according to the
Martino-Saltzman model [17]; i.e., pacing, lapping, and random patterns. The authors
experimented with their GVFE technique in the same smart-home environment used in
our experiments, with data acquired from a cognitively healthy senior over 21 months.
They obtained very good results, achieving accuracy above 97%. Those results indicate
that the GVFE technique is effective in recognizing abnormal travel patterns that indicate
cognitive impairment. For this reason, we experimentally compare the GVFE technique
with our visual feature extraction method.

In the GVFE technique, images in each trajectory are prepared based on the sequence
of activation of the position sensors. Each trajectory is converted to a binary image,
where the z axis represents the temporal order of the sensor activation, and the y axis
represents the numeric identifier of the fired sensors. For example, suppose that the
temporal sequence of activated motion sensors in a trajectory is: Moo5, M003, M0O5,
Mo10, Mo11, and Moo1. Then, the only non-zero pixels in the image correspond to the
following coordinates: (1,5), (2, 3), (3,5), (4, 10), (5, 11), (6, 1).

Also for GVFE method, we apply trajectory segmentation using different values of
the threshold 7. The width of the corresponding image is chosen based on the maxi-
mum length of trajectories. For example, in our dataset, using 7, = 60 s, the maximum
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Figure 4.4: Example of images generated through the GVFE method. The left-hand side
image is extracted from a trajectory using T, = 90 s. The right-hand side image is ex-
tracted from a trajectory using T, = 150 s.

length of trajectory for all considered individuals is 32. Hence, images computed using
that threshold value have 32 pixels width.

As mentioned before, the y axis represents the numerical identifier of the fired sensor.
Since in our dataset we consider 67 sensors (i.e., 51 PIR sensors and 16 door sensors), the
y axis includes 67 different values. Consequently, the images have 67 pixels in height,
irrespectively from the value of the threshold 75. For thresholds 7, set to 30 s, 60 s,
90 s, 120 s, and 150 s, the image size is (14 x 67), (32 x 67), (60 x 67), (110 x 67) and
(169 x 67), respectively. Fig. 4.4 shows two samples of images obtained using different
threshold values.

State-of-the-Art Deep CNN

In order to compare our DNN architecture with a state-of-the-art one, we consider the
Deep CNN (DCNN) used by Gochoo et al. in [3]. As illustrated in Fig. 4.5, that network has
three zero padding convolution layers and three fully connected layers which are followed
by max-pooling layers and feature filters size of 5 x 5. The pooling window size is set to
2 x 2 and, since max-pooling creates a smaller version of input maps, the output images
become two times smaller than the input. The first convolution layer has 32 kernels,
the second one, which receives the output of the first max-pooling layer as inputs, has
128 feature filters, and the last convolutional layer receives the second max-pooling layer
output and convolutes them with 256 feature filters.

Finally, in the fully connected part, the layers are flattened, and the output of the third
max-pooling layer is converted into a feature vector. In this part, the first, second, and
third fully connected layers have 512, 128, and 64 neurons, respectively, and neurons of
the last fully connected layer are connected to all three outputs; i.e., cognitively healthy,
MCI, PwD. In order to find the probability distribution of the classes, the softmax function
is applied.

Since the reference paper [3] does not mention internal details such as the used opti-
mizer and its rate, or the chosen loss function, we used the same parameters chosen for



80 CHAPTER 4. THE TRAMINER FRAMEWORK

\
Y C1 S1 C2 S2 C3 S3 5\
\ Feature Feature Feature Feature Feature Feature \
Y maps maps maps maps maps maps W\ T TTTTTTTToooo , Output
\

WY
. \
Max pooling Convolution Max pooling Convolution Max pooling \ \ Fully connected |
2x2 5%5 oxo 5%5 2x2 S layers \
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, NN A
Feature Selection Classification

Figure 4.5: The state-of-the-art DCNN used by Gochoo et al. in [3].

our proposed DNN configuration described in Section 4.4.

4.5.3 Experimental Setup

We developed all the algorithms in Python. For experimenting with the NFE method, we
used the machine learning algorithms implemented by the Weka toolkit [161]. The code
for extracting the NFE features is available online?. We have used the Python Keras neural
network library? to develop the proposed DNN classification systems. In order to support
scalability, in the general architecture of our system we envision the use of a cloud-based
system for training the DNN model. However, given the relatively small size of the training
set used in our experiments, we trained the DNN on a departmental server. We have run
experiments on a Linux server with four NVIDIA Tesla p6 graphic boards, a single NVIDIA
Pascal GP104 GPU, and 16 GB GDDR5 memory. To evaluate the effectiveness of our TRAJ
and SPEED visual feature extraction techniques, we have experimented with different
values of the T threshold for trajectory segmentation, ranging from 30 seconds up to
180 seconds. We also developed the feature extraction method and the DCNN used by
Gochoo et al. [3] to experimentally compare our methods with the state-of-the-art.

In all the experiments, we applied a leave one person out cross-validation approach:
we used the data of one individual for the test set, and the data of the other persons for
training and validation, iterating on each person to execute the tests on the whole con-
sidered participants. With this approach, the data of the same person is never used both
for training/validation and testing at the same time. For tuning the hyper-parameters of
the DNN, training trajectories are split by a fraction of 10% of each category for validation
and 90% of them for training.

For the overall performance evaluation, we have used the metrics of macro precision,
macro recall, and macro I} score. These metrics are standard ones for imbalanced prob-
lems. In particular, the macro F; score is a reliable metric in imbalanced cases, since it
gives equal weights to the different classes, despite their size. Since the ‘accuracy’ per-
formance measure is inappropriate for imbalanced classification problems like the one

*https://sites.unica.it/domusafe/healthxai/
Shttps://keras.io/
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we are tackling, we do not consider that measure in our evaluation. Indeed, depend-
ing on the degree of imbalance, the majority class’s accuracy value would overcome the
accuracy value of the minority classes.

4.5.4 Results of NFE Method

At first, we evaluated the NFE method explained in Section 4.5.2. For each participant,
we built the feature vector using all the trajectory data collected during the day. Each
feature vector was labeled with the cognitive status of the individual; i.e., cognitively
healthy, MCI, or PwD. We experimented with several classifiers:

e The well-known NB [162] classifier;

e R classifier [163], relying on a multinomial logistic regression model with a ridge
estimator;

MLP feed-forward artificial neural network algorithm;

SVM [164]

kNN [165] lazy classifier, with k = 5;

Ripper [166] propositional rule learner;

C4.5 [167] DT;

Random tree [168] classifier.

RF [169] classifier.

Results are reported in Table 4.1. Overall, the results achieved by the NFE method are
poor. Indeed, all classifiers achieved a macro-average I score close to the one of a ran-
dom classifier. The classifier achieving the best performance in this pool of experiments
is the RF algorithm, with Fj score of 0.37. These results seem to indicate that, in a home
context, numerical statistics about locomotion-based indicators of cognitive decline are
ineffective for automatic cognitive assessment. This fact is probably due to the high level
of noise introduced by two factors that influence the movement patterns; i.e., obstacles
in the home, and execution of ADL.

4.5.5 Results of Single Trajectory Image Classification

At first, we experimentally compare the effectiveness of our TRAJ feature extraction
method with the one achieved using Gochoo’s visual feature extraction (GVFE) method.
For this experiment, we used the DCNN used by Gochoo’s et al. In this regard, we want
to assess the ability to correctly recognize the cognitive status of a person by the obser-
vation of a single trajectory walked by him/her.

According to the results shown in Table 4.2, for both techniques, the best results
are achieved with the trajectories obtained setting 7, = 120s. As it can be observed
in Fig. 4.6, the technique using TRAJ and DCNN slightly outperforms the one relying on
GVFE and DCNN in terms of macro Fj score.

However, the results achieved using those methods are rather poor, since the best
achieved F} scores only slightly outperform the ones that would be obtained using a
random classifier. The poor performance of the GVFE technique in the task of recognizing
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Table 4.1: Results of NFE method.

Class Measure | NB LR MLP | SVM
Cognitively | F{ score | 0.50 | 0.69 | 0.65 | 0.69
healthy Precision | 0.56 | 0.55 | 0.53 | 0.53
Recall 0.45 | 0.91 | 0.84 | 1.00
F1 score 0.46 | 0.32 | 0.25 | 0.04
MCI Precision | 0.38 | 0.57 | 0.39 | 1.00
Recall 0.59 | 0.22 | 0.19 | 0.02
F, score | 0.00 | n/a n/a n/a
PwD Precision | 0.00 | n/a n/a n/a
Recall 0.00 | 0.00 | 0.00 | 0.00
F, score 0.32 | n/a n/a n/a
Avg. Precision | 0.31 n/a n/a n/a
Recall 0.35 | 0.38 | 0.34 | 0.34
Class Measure | kNN | Ripper | C4.5 | Rand. tree RF
Cognitively | F; score 0.61 0.68 0.59 0.54 0.64
Precision | 0.55 0.53 0.47 0.55 0.56
healthy
Recall 0.68 0.93 0.79 0.54 0.74
F{ score | 0.43 0.21 0.00 0.34 0.39
MCI Precision | 0.46 0.50 0.00 0.35 0.44
Recall 0.41 0.13 0.00 0.33 0.35
F, score | 0.00 n/a 0.00 0.00 0.08
PwD Precision | 0.00 n/a 0.00 0.00 0.20
Recall 0.00 | 0.00 | 0.00 0.00 0.05
F1 score 0.35 n/a 0.20 0.29 0.37
Avg. Precision | 0.34 n/a 0.16 0.30 0.40
Recall 0.36 0.35 0.26 0.29 0.38
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TRAJ and MLP DNN
BIEl SPEED and MLP DNN
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Figure 4.6: Trajectory images classification: macro F} score for the different techniques.

the cognitive status of the individual may be explained by the fact that, as we argue in
the previous chapters, indoor movements are constrained by the ambient shape, and are
impacted by the execution of ADL. Hence, the GVFE technique may classify as abnormal
several normal trajectories walked by cognitively healthy individuals.

In the second set of experiments, we compare the performance of the TRAJ vs SPEED
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Table 4.2: Trajectory images classification: results obtained using our TRAJ feature ex-
traction method and DCNN vs. GVFE and DCNN.

TRAJ and DCNN GVFE and DCNN
Class Measure
30s 60s 120s 180 30s 60s 120s 180s
Cognitively | F{ score | 0.54 0.52 0.57 0.57 | 0.57 0.57 0.56 0.55
healthy Precision | 0.57 0.53 0.62 0.6 0.62 0.62 0.6 0.57
Recall 0.51 0.5 0.52 0.53 | 0.53 0.52 0.53 0.54
Fyscore | 0.34 0.36 0.5 0.38 | 0.36 0.36 0.4 0.35
MCI Precision | 0.33 0.36 0.4 0.37 | 0.34 0.34 0.39 0.35
Recall 0.35 0.37 0.41 0.39 | 0.38 0.38 0.41 0.36
Fiscore | 012 043 041 012 | 011 0.056 043 OM
PwD Precision | 0.1 011 0.08 0.08 | 0.09 0.04 0.1 0.09
Recall 014 045 043 048 | 015 0.081 047 0.3
Fyscore | 0.33 0.34 0.39 0.36 | 0.35 0.33 0.36 0.34
Avg. Precision | 0.33 0.33 0.37 0.35 | 0.35 0.33 0.36 0.34
Recall 0.33 0.34 0.35 0.37 | 0.35 0.33 0.37 0.34

feature extraction methods, using our MLP DNN. Table 4.3 shows the achieved results.
The two feature extraction methods achieve comparable results. As it can be observed
in Fig. 4.6, for both methods, the best results in terms of average macro F score are
obtained using T, = 120s. It is evident that the results obtained using the TRAJ feature
extraction method with our MLP DNN strongly improved with respect to using the DCNN.
Indeed, using the MLP DNN we achieve a macro F} score larger than 0.57 with less com-
putation time, while the best macro F score obtained using the more complex DCNN
was close to 0.36. We believe that this result may depend on the relatively limited size of
the training set. Indeed, using a larger training set, the more complex DCNN could possi-
bly outperform the MLP DNN, at the cost of additional time and resource consumption.
Due to these results, in the rest of the experiments, we use our MLP DNN for performing
the classification tasks.

Table 4.3: Trajectory images classification: results of our TRAJ vs SPEED feature extraction
methods, using our MLP DNN.

TRAJ and MLP DNN SPEED and MLP DNN

Class Measure
30s 60s 120s 180 | 30s 60s 120s 180s
Cognitively | Fy score | 0.62 0.67 0.67 0.64 | 0.62 0.66 0.72 0.67
healthy Precision | 0.56 0.65 0.62 0.59 | 0.56 0.66 0.7 0.64
Recall 0.68 0.69 072 0.69 | 0.68 0.5 074 07
F, score 0.5 0.55 0.58 0.56 | 053 052 0.59 0.57
MCI Precision | 0.46 0.5 0.52 0.52 | 0.51 0.46 0.55 0.56
Recall 0.56 0.62 0.65 0.6 | 056 0.61 0.64 0.59
Fiscore | 0.35 0.34 0.47 0.33 | 0.37 0.42 0.39 0.35
PwD Precision | 0.58 0.49 0.75 0.54 | 0.56 0.56 0.51 0.45
Recall 0.25 0.27 0.34 0.24 | 0.28 0.34 0.31 0.28
Fiscore | 0.49 0,52 0.57 051 | 050 0.53 0.56 0.53
Avg. Precision | 0.53 0.54 0.63 0.55 | 0.54 0.56 0.58 0.55
Recall 0.49 0.46 0.57 051 | 0.51 0.53 0.56 0.52
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4.5.6 Results of Two Input Trajectory Images Classification

Since the results obtained using separately the TRAJ and SPEED techniques are encour-
aging, we perform additional experiments using both TRAJ and SPEED trajectory images
as input to our proposed MLP DNN. Indeed, since TRAJ and SPEED images represent dif-
ferent features of trajectories, their combined use may increase recognition rates. This
setup corresponds to the TraMiner architecture shown in Fig. 3.1 and Fig. 4.3.

The achieved results are presented in Table 4.4. Like in the previous experiments, the
best results in terms of macro F;j score are obtained using T, = 120s. Also in this experi-
ment, the worse results are obtained using threshold values of 30s and 180s. Considering
these results, as also shown in Fig. 4.6, it is evident that the combined use of TRAJ and
SPEED features significantly improves the recognition performance with respect to the
use of the single feature extraction methods. Indeed, the best achieved F score is larger
than 0.71, while the single feature extraction methods achieve F7j scores close to 0.57.

The detailed results can be inspected through the confusion matrices reported in Ta-
ble 4.5. By observing the confusion matrices, it is evident that the total number of sam-
ples changes depending on the chosen value of T,. For instance, with T, = 30s we
have 5, 195 trajectories, while with T, = 180s we have only 540 trajectories. Indeed, in
general, the lower the threshold for trajectory segmentation, the larger the number of
generated trajectories. Hence, by using larger values of T, we obtain a smaller number of
samples, but we can encode more information in the single trajectory images since tra-
jectories are generally longer. On the negative side, too large values of T, may determine
very involved images, which may confuse the DNN. On the contrary, too small values of
T, may determine very short trajectories, that do not encode enough information for the
DNN. According to our experiments, the value T, = 120s provides a good trade-off in this
sense.

Table 4.4: Trajectory images classification: results of our TRAJ+SPEED model and MLP
DNN.

TRAJ+SPEED and MLP DNN

Class Measure
30s 60s 120 180s
Cognitively | F; score | 079 0.82 0.8 0.79
healthy Precision | 0.73 0.81 0.76 0.74
Recall 0.86 0.84 0.85 0.84
F1 score 074 074 0.76 072
MCI Precision | 0.67 0.64 0.68 0.69
Recall 0.84 0.86 0.86 0.78
F1 score 0.49 0.56 0.58 0.52
PwD Precision | 0.81 0.82 0.89 0.39
Recall 0.35 0.43 0.43 0.77
F, score | 0.67 0.71 0.71 0.67
Avg. Precision | 0.73 0.75 0.77 0.61
Recall 0.68 0.71 0.71 0.79

However, the achieved results, which are computed on the classification of single
trajectories in isolation, are not sufficient for providing a reliable hypothesis about the
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Table 4.5: Trajectory images classification: confusion matrices of our TRAJ+SPEED model

and MLP DNN.
(a) T, = 30s
| classified as — | Cognitively healthy | MCI | PwD |
Cognitively healthy 0.73 0.08 | 0.19
MCI 0.3 0.67 | 0.21
PWD 0.4 0.05 | 0.81
(b) T, = 60s
classified as — [ Cognitively healthy | MCI [ PwD |
Cognitively healthy 0.81 0.07 | 0.12
MCI 0.16 0.64 | 0.20
PwD 0.16 0.02 | 0.82
(c) T, = 120s
classified as — [ Cognitively healthy | MCI [ PwD |
Cognitively healthy 0.76 0.07 | 017
MCI 0.16 0.68 | 0.16
PwWD 0.10 0.01 | 0.89
(d) T, = 180s
classified as — [ Cognitively healthy | MCI [ PwD |
Cognitively healthy 0.74 0.1 | 0.15
MCI 0.18 0.69 | 0.12
PWD 0.09 014 | 077

cognitive status of the individual. For this reason, in the following experiments, we eval-
uate the performance of the module for long-term trajectory analysis, which considers
the whole history of trajectories acquired during a certain period of time.

4.5.7 Results of Long-term Trajectory Analysis

In these experiments, we apply the algorithm for the long-term analysis described in
Section 4.4.2 with all the different techniques for trajectory image classification evaluated
in Sections 4.5.5 and 4.5.6. Fig. 4.7 provides an overview of the achieved results.

As expected, the results achieved using DCNN with the TRAJ or GVFE feature ex-
traction methods are rather poor. Indeed, those techniques achieve the lowest recog-
nition rates for trajectory image classification. In particular, the TRAJ method with DCNN
achieves an F7 score slightly larger than 0.4 with T, = 120s. Its F} score is lower than the
other values of the threshold. The best result of the GVFE method with DCNN is similar
but obtained with T, = 60s. Overall, these two techniques do not provide significant
results for cognitive assessment, even in the long term.

Results are significantly better using our MLP DNN with the TRAJ or SPEED feature
extraction methods. For both techniques, the best results are obtained using T, = 120s.
In particular, the TRAJ method achieves a macro I score of 0.7, while the SPEED method
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Figure 4.7: Long-term analysis: macro F; score for the different techniques.
Table 4.6: Long-term analysis: results obtained using two input trajectory images classi-
fication (TRAJ + SPEED features) with our MLP DNN.

TRAJ+SPEED and MLP DNN
Class Measure
30s 60s 120 180s
Cognitively | F; score | 0.86 0.93 0.92 0.88
healthy Precision | 0.85 0.94 0.95 0.84
Recall 0.87 0.93 0.89 0.92
F1 score 0.78 0.82 0.87 0.87
MCI Precision | 0.69 0.74 0.8 0.83
Recall 0.9 0.93 0.93 0.9
F1 score 0.57 0.67 0.83 0.61
PwD Precision | 0.79 0.84 0.89 0.79
Recall 0.44 0.55 0.77 0.5
F1 score 073 0.81 0.87 0.78
Avg. Precision | 0.77 0.84 0.88 0.82
Recall 0.73 0.80 0.86 0.77

achieves 0.65 macro F7j score. With these techniques, the increase in recognition perfor-
mance introduced by the long-term evaluation algorithm is evident. Indeed, both tech-
niques obtain a lower macro F} score for trajectory image classification, which is close
to 0.57. However, the results obtained with these techniques are still insufficient for pro-
viding reliable hypotheses of diagnosis about cognitive assessment.

The best results in this pool of experiments are achieved using two input trajectory
images classification (TRAJ + SPEED features) with our MLP DNN. Indeed, the best results
are achieved with T, = 120s, with a macro F; score of 0.873. The detailed results are
shown in Table 4.6. As it can be observed, the best results with 7, = 120s are achieved
for the class of cognitively healthy subjects (F; score = 0.92), which is the most frequent
one. The class of MCI subjects obtains I score = 0.87, while the class of PwD people
achieves I score = (.83.

By closely inspecting the results in the confusion matrices shown in Table 4.7, we can
observe that, with T, = 120s, 17 PwD subjects out of 19 are correctly recognized. Among
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Table 4.7: Long-term analysis: confusion matrices obtained using two input trajectory
images classification (TRAJ + SPEED features) with our MLP DNN.

(a) T, = 30s
| classified as — | Cognitively healthy | MCI | PwD |
Cognitively healthy 0.85 0.03 | 0.12
MCI 0.15 0.69 | o17
PWD 0.1 o011 | 0.79
(b) T, = 60s
classified as — [ Cognitively healthy | MCI | PwD |
Cognitively healthy 0.94 0.03 | 0.04
MCI 0.07 0.74 | 0.19
PwD 0.1 0.05 | 0.84
(c) T, = 120s
classified as — [ Cognitively healthy | MCI | PwD |
Cognitively healthy 0.95 0.03 | 0.03
MCI 0.15 0.80 | 0.06
PwWD 0.05 0.05 | 0.89
(d) T, = 180s
classified as — [ Cognitively healthy [ MCI | PwD |
Cognitively healthy 0.84 0.04 | 0.12
MCI 0.07 0.83 | 0.09
PwWD 0.11 011 | 079

the other ones, one subject is classified as a person with MCI, and one as a cognitively
healthy person. Hence, the false negative rate of PwD is very low. Regarding false positive
predictions of dementia, we observe that three persons with MCl out of 54 are classified
as PwD. Out of 80 cognitively healthy subjects, only two are classified as PwD. Hence, the
false positive rate of PwD is also low. Regarding the 54 persons with MCI, 43 are correctly
recognized, while 8 are classified as cognitively healthy, and 3 of them as PwD. We con-
sider these results positive since MCl is an intermediate state between cognitive health
and dementia, which is difficult to diagnose, especially with automatic tools. Among the
80 cognitively healthy seniors, we achieved only 4 false positives. Indeed, two of them
were classified as persons with MCI, and two of them as PwD.

4.5.8 Dashboard for Clinicians

In order to allow clinicians to inspect the predictions of our system, we have developed a
user-friendly dashboard, using the Google Data Studio framework. The dashboard allows
inspecting the predictions obtained through the various techniques experimented with
in our work, achieved using the threshold value T, = 120s. The dashboard can be freely
accessed on the Web*.

“https://sites.unica.it/domusafe/traminer/
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Figure 4.8: A screenshot of the TraMiner dashboard.

A screenshot of the dashboard is illustrated in Fig. 4.8. The user can select the patient
through a drop-down list. The actual diagnosis for the current patient is shown on the left-
hand side of the dashboard. On the right-hand side, the user can inspect the predicted
diagnosis based on the five different methods: ‘GVFE and DCNN’, ‘SPEED and MLP DNN’,
‘TRAJ and DCNN’, ‘TRAJ and MLP DNN’, and ‘TRAJ+SPEED and MLP DNN'. We remind that
the latter is the actual method implemented by TraMiner, while the other ones are shown
only as a reference.

By selecting a patient, the lower part of the dashboard shows the history of all input
trajectories. For each trajectory, the user can visualize the extracted visual features, ac-
cording to the three experimented methods: ‘TRAJ’, ‘SPEED’, and ‘GVFE’. Those images
are available in a table and can be opened in a separate window through a hyperlink. A
sample of three images in the dashboard for one trajectory is shown in Fig. 4.9.

4.5.9 Discussion and Limitations

Our experimental evaluation shows that the use of our combined visual features (TRAJ
and SPEED), coupled with the use of the MLP DNN, outperforms a state-of-the-art
method based on a different visual feature extraction technique and on a more com-
plex DNN. The advantage of our solution consists of the encoding of additional features,
such as speed, intersections, and low-level anomaly indicators, that are not captured by
existing solutions relying on images. Indeed, those locomotion features are known in the
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Figure 4.9: A sample of images for one trajectory in the TraMiner dashboard. From left
to right, the images are obtained using the TRAJ, SPEED, and GVFE feature extraction
methods, respectively.

literature to be reliable indicators of cognitive diseases.

In general, our system achieves better results with more frequent classes. Hence, we
expect that recognition rates may improve using a training set composed of larger sets of
individuals with MCI and PwD. The achieved macro F score suggests that TraMiner may
be a useful support for clinicians to provide a clinical evaluation of the cognitive health
status of the elderly. However, this hypothesis should be confirmed by a large trial with
the support of clinicians and the deployment of our system in real-world conditions.

The experiments show that the recognition performance of TraMiner strongly im-
proves by considering the whole history of trajectories. In this respect, we recall that,
despite the dataset having been acquired from more than 150 individuals, each person
was monitored only for a few hours in one day. Such a short observation period may be
insufficient to reliably predict the cognitive status of all individuals. Hence, we expect to
achieve more accurate predictions by considering a long history of observations. How-
ever, this intuition needs to be verified by additional experiments on a large trial.

4.6 Conclusion

We tackled the challenging issue of recognizing symptoms of cognitive decline based on
the analysis of indoor movements. To this aim, we proposed a technique to extract visual
features from indoor trajectories, and a two-input DL model for classification. Experi-
ments with a real-world dataset collected from cognitively healthy seniors, people with
MCI, and PwD, showed that our system achieves good accuracy for long-term cognitive
assessment and outperforms state-of-the-art techniques.

Several directions remain open for future research. Visual feature extraction could be
improved by adding some other useful characteristics related to low-level abnormal mo-
tion indicators. Our neural network model could be refined to exploit visual features. The
optimal value of the temporal threshold 7T, may depend on the kind of activity currently
performed by the individual, and by the home shape. Hence, we will investigate tech-
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niques to fine-tune T} considering the current context of the inhabitant. Moreover, the
system could be provided with explainable Al capabilities by adopting additional models
of abnormal behaviors. Finally, there is an implicit assumption that we have a fixed lay-
out for the smart-home which can restrict data portability and generalization. The latter-
mentioned challenges are the main contributions of the work that will present in Chap-
ter 5.



Chapter 5

Augmented and Generalized TraMiner

fthis chapter, we tackle the challenging issue of recognizing symptoms of NDD
based on the analysis of indoor locomotion traces by acquired sensor data in
smart-homes with specific attention to portability and generalization. In this regard, we
adopt an approach combining STF with features extracted from images depicting the tra-
jectories walked within a smart-home. We introduce a vision-based method to graphi-
cally represent indoor trajectories as well as a data augmentation approach based on ran-
dom rotation to increase the generalization of the trained model. In order to avoid the use
of obtrusive wearable sensors or privacy-invasive cameras, we rely on the acquisition of
position data from environmental sensors. Moreover, we use different HandCrafted (HC)
features designed for image analysis tasks and combine them with features extracted
directly from Spatio-temporal sequences of movements. Experiments on a real-world
dataset acquired in a smart-home test-bed show that the proposed approach achieves
promising results.

5.1 Introduction

As locomotion traces encode Spatio-temporal information and can only be partially cap-
tured through a fixed set of numerical features, in this chapter, we adopt the vision-based
approach introduced in Chapter 4. With that approach, the trajectories walked by the in-
habitant are depicted in images based on the smart-home floor plan, considering speed
and specific locomotion indicators. The resulting images are classified by a DNN using a
labeled training set. The main purpose is to increase learning generalization by means
of additional sensory, vision-based, and trajectory numerical features. We extend and
improve TraMiner [16] approach providing the following contributions:

i. We propose an image augmentation strategy to generalize the approach to differ-
ent smart-home layouts;
ii. We extract additional STF relevant to the cognitive assessment task;
iii. We perform a comparison with HC features;
iv. We propose a feature-merging strategy, combining STF and visual trajectory infor-
mation;
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v. We experimentally evaluate our methods with a real-world dataset, showing the
benefits of our technique.

Experiments with a real-world dataset acquired from 99 seniors showed that the in-
tegration of heterogeneous features increases recognition accuracy.

5.2 Generalized TraMiner System Overview

Similarly, we assume a sensorized smart-home infrastructure as described in Chapter 3,
which is equipped with various types of sensors (i.e., ambient and wearable). These sen-
sors include PIR motion sensors to detect the individual’s location in the house; contact
and motion sensors to track interactions with objects and their usage; power sensors to
detect the use of certain electrical appliances, etc. Fig. 5.1illustrates our system architec-
ture. The modules highlighted in blue are those which include our contributions.

The stream processing software platform is in charge of continuously collecting posi-
tioning data through PIR and door sensors. Whenever a sensor is triggered, the platform
sends to the preprocessing module the following raw sensor event: ¢ = (¢, s_id,v),
where t is the firing timestamp, s_id is the sensor’s unique identifier, and v is the gener-
ated value.

The integration and temporal synchronization module derives Spatio-temporal infor-
mation from the events based on the relative position of each sensor in the home, which
is stored in the sensor position table.

The preprocessing position data module is in charge of noise reduction, data cleaning,
and partitioning the temporal stream of position records into trajectories. For this mod-
ule, we used the technique proposed in Chapter 3 and 4. For noise reduction and data
cleaning similarly, we set the thresholds for the maximum possible locomotion speed of
people in the house to 15 m/s and the maximum distance between adjacent positions
to 5 m, respectively. For trajectory partitioning, we rely on a given threshold 7. A new
trajectory is initialized whenever the inhabitant is not moving for a time period exceeding
T%. In this work, we set T} to 120 s.

Each trajectory is passed to the modules for visual feature extraction and trajectory
feature extraction. Those modules represent the trajectory as two images called TRAJ
and SPEED and extract Sensory and Trajectory features considering triggered sensors for
each trajectory, respectively. Moreover, the trajectory image rotation module will rotate
two trajectory images by random angles to augment trajectories and provide different
aspects of trajectories that can be considered as different test-bed smart-home layouts.

Likewise, classification and long-term analysis modules are in charge of classifying
each trajectory combined with extracted numerical features as either walked by a cog-
nitively healthy person or PwD and communicating the hypothesis of diagnosis to the
remote healthcare center.

5.3 Trajectory Feature Extraction

The visual feature extraction module, represented in Fig. 5.1, encodes a given trajectory
into two images, named TRAJ and SPEED. They highlight different visual features, i.e., the



5.3. TRAJECTORY FEATURE EXTRACTION

Classification, and LTA

saanjeaj Aroypalen

>

= MODEL
'g TRAINING - :'H i :_Hf
: oxE= SR~
< Shallow ML classifiers
=
E REMOTE
HEALTHCARE < T T
CENTER predictions
hypothesis of diagnosis I .. |PwD nilivelylwa Cogni’-velyl
( CH , D ) healthy healthy
L TRAINED TraMiner X :
MODEL -{ Long Term Analysis ]
. A, |
rotated trajectory images
Feature Extraction extracted features
"y ' '
r N
Trajectory TraMiner features
image rotation
>
> Spatio-Temporal )
trajectory features
imdges f )
s )
Sensory features
. J
7 '
. Trajectory features
TRAJ SPEED | L J )
Visual Trajecto .
Feature Extraction . feature extraction |
[
Preprocessed
positioning data
Preprocessing
Sensor Z
position Integration, =3
table temporal o»| Preprocessing
synchronization g_ position data
(ITs) g

1

raw sensor events

Smart-home

sensor i11frastructure(

Stream processing software ]

-

B D DET
REL R BRESD

platform
AMBIENT WEARABLE
SENSORS SENSORS

Figure 5.1: Generalized TraMiner system overview.

93



94 CHAPTER 5. AUGMENTED AND GENERALIZED TRAMINER

former represents intersection points as red dots, while the latter represents the speed
of trajectory segments using different colors.

In our system, we introduce the novel trajectory image rotation module, which has
been designed to generalize the vision-based approach to smart-homes with different
layouts. Indeed, using patterns from a single home can limit the classification model
generalization to other home layouts [170]. For this reason, the module applies a rotation
of TRAJ and SPEED images by arandom angle. Figure 5.2 shows the original and Randomly
Rotated (RR) versions of the TRAJ and SPEED images.

(a) original TRAJ. (b) original SPEED.

(c) Rotated TRAJ. (d) Rotated SPEED.
Figure 5.2: Examples of TRAJ and SPEED images.

Of course, the rotation of rectangular images may change the image layout, as in our
case. Hence, we set the resolution of rotated images to 164 x 164 pixels unlike the Chap-
ter 4 which was set to 100 x 130 pixels.
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5.3.1 TraMiner as Feature Extractor

To extract high-level features from the trajectory images, in this chapter, we exploited the
DNN presented in Chapter 4, already pre-trained with the full-size (164 x 164) original
trajectories, as a feature extractor. The DNN structure is illustrated in Figure 5.3.
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Figure 5.3: TraMiner DNN model and its feature extractor.

The trajectory images were converted into flat feature vectors based on each pixel’s
coordinates and color values. Normalization was applied to reduce the computational
cost of training. The DNN includes two dense layers with 32 neurons each. Each layer
used RelLU as the activation function, followed by batch normalization and a 0.5 dropout
unit to increase reliability and reduce overfitting.

Outputs of both inputs (i.e., one per image) were concatenated, followed by batch
normalization and dropout with the same drop units. Softmax was used as the activation
function to calculate the probability distribution for the two classes cognitively healthy
and PwD on the final output layer. Based on the maximum likelihood, it guarantees that
each trajectory belongs to precisely one class [156].

After the training phase, we used the output of the hidden layers as extracted features
from TRAJ and SPEED vectors of our rotated images. This part is highlighted in blue in
Figure 5.3 Each image provided 64 features, which we call TraMiner features.

5.3.2 Spatio-Temporal Features

We also considered different categories of STF proposed in related studies [144, 160, 171]
which are defined Sensory and Trajectory features as follows.
Sensory features are computed from raw sensor events of each trajectory:

i. IDs of the first and last activated sensor in a trajectory;
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ii. Number of activated sensors;

iii. Number of activations of each sensor;

iv. Variance of the sensor IDs triggered during the trajectory’s duration (each sensor
is assigned a numerical ID);

v. Time of Day (ToD) for current trajectory based on start-time, where ToD € {0, 5}
represents “morning” (1AM to 11AM), “noon” (11AM till 13PM), “afternoon”
(13PM to 18PM), “evening” (18PM to 21PM), “night” (21PM to 23PM) or “mid-
night” (23PM to 1AM) by numerical order.

Trajectory features consider low-level movement indicators (explained in Chapter 2)
that have been proved in the clinical literature to be indicative of cognitive decline, in-
cluding jerk [157], sharp angles [159], straightness [158], and path-efficiency [62]:

i. Number of jerk episodes in the trajectory that exceed the threshold= 1.5;
ii. Number of sharp angles in the trajectory;
iii. Number of straightness episodes in the trajectory that exceed the threshold= 1.5;
iv. The ratio of the distance between the start- and end-point of a trajectory to trajec-
tory length (path-efficiency);
v. The ratio of the number of sharp angles to the time duration of the trajectory
(named normalized change direction);
vi. The ratio of number of triggered sensors to the trajectory duration (named ca-
dence);
vii. Theratio of the total time of ambulation to trajectory duration (hamed ambulation
fraction);
viii. Trajectory length;
ix. Time duration of the trajectory.

5.3.3 Handcrafted Image Features

We have also studied and exploited several well-used features for computer vision tasks,
both classical ones [172-174] and other ones similar to those used in TraMiner, specifically
oriented to the classification of images representing trajectories [175,176]. In particular,
we evaluated two different classes of HC image descriptors: invariant moments and color
features.

For the first class, we computed Legendre Moments (LM) and Zernike Moments (ZM).
LM was introduced by Teague [177] for image analysis tasks and have been widely used
due to their invariance to changes in scale, rotation, and reflection [178, 179], as well as
ZM [180]. They can represent the properties of an image without redundancy or over-
lapping information between moments [177]. In both cases, the order of the moments
is five, since a higher order would have decreased the performance of the system by
adding overly specific features more useful for image reconstruction than for image clas-
sification [181].

Regarding the second class, we extracted the following Color Histogram Features
(CHF) from the images converted to grayscale: mean, STD, smoothness, skewness, kurto-
sis, uniformity, and entropy. They describe the overall distribution of color in the image.
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5.4 Trajectory Classification and Long-term Analysis

A machine learning algorithm classifies each trajectory as cognitively healthy or PwD ac-
cording to the predicted category of the inhabitant. As shown in Section 5.5, we evaluate
different machine learning classifiers in our experiments.

Based on the TraMiner work in Chapter 4, and the predictions computed by the ma-
chine learning algorithm, the long-term analysis module produces a diagnostic hypoth-
esis about the subject’s cognitive health. The diagnosis hypothesis is reported to the
remote health center for further investigation by physicians. As mentioned in Chapter 4,
the long-term prediction relies on the most frequently predicted class, and it is computed
as [tp according to the following formula:

ltp = arg max [{ce{c1,..., ecm}}],
ce{‘cognitively healthy’,‘PwD’}

where ¢y, ..., ¢,, is the history of predictions regarding the inhabitant’s trajectories.

5.5 Experimental Evaluation

In this section, we report the experimental results which were carried out with CASAS
instrumented smart-home from a large set of seniors, including cognitively healthy se-
niors and PwD. We explain the experimental setup and the achieved results by shallow
ML classifiers.

5.5.1 Setup

Our experiments were based on the test-bed smart-home of CASAS [2]. Since we rely on
locomotion data and TraMiner architecture, our experiments only consider PIR motion
and door sensors as well. Since, for the sake of this study, we are interested in recogniz-
ing symptoms of dementia, we considered 99 participants’ data, including 80 cognitively
healthy seniors aged 60 to 74 years old and 19 PwD who were able to carry out the activi-
ties in the home. We developed a prototype of our system using Python and its libraries.
All the experiments have been conducted with Leave One Person Out cross-validation,
keeping one person’s trajectories as the test set and the remaining persons’ trajectories
as the training set, and iterating over all persons. We experimentally compared different
configurations of features, which are explained in the following of this section. For each
configuration, we report the achieved average values of Precision, Recall, and F}-score,
where the latter is the harmonic mean of Precision and Recall. We report both weighted
and macro-averaged values of those measures, where the former is averaged over all
instances. The latter is averaged over the two classes cognitively healthy and PwD.

5.5.2 Experimental Results

We evaluated six classifiers, namely: NB, SVM, kNN which k& = 3, DT, MLP (composed
of 100 neurons in a hidden layer, RelLU activation function, Adam optimizer, and trained
for 1000 epochs, with batch size equal to 200), and LogitBoost (LB). We considered the
following configurations:
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RR-TraMiner, which uses only the TraMiner DNN as feature extractor;
RR-STF, which uses STF numerical features only;

both RR-TraMiner and RR-STF features together;

HC image features LM, ZM, and CHF; together, and in isolation.

The results of the first three configurations are reported in Table 5.1. Among them,
RR-TraMiner features achieve the lowest results; i.e., 72.11% weighted F; with SVM and
53.4% macro F; with NB.

Features Measures (%) NB SVM kNN DT MLP LB

Precision| 71.55 65.16 67 69.06 68.33 69.25
Weighted Recall 65.81 7272 70 6672 79.27 67.81

TraMiner as
feature extractor F1-score | 68.18 72.11 68.4 67.82 72.01 68.5
(RR-TraMiner) Precision| 54.77 50 473 50.30 49.81 50.62

Macro Recall 53.6 40.36 46.66 50.26 48.66 50.57
F1-score | 53.4 44.66 46.84 50.17 45.9 50.55

Precision| 68.54 68.91 71.41 7373 75.3 70.63
Weighted Recall 7618 70.36 7472 73.63 80.54 75.45

STF numerical F1-score | 71.51 69.60 71.41 73.68 75.13 71.96

features
(RR-STF) Precision| 497 50.04 50.23 57.81 59.3 52.43
Macro Recall 49.29 50.04 50.40 5776 59.8 53.14
Fi1-score | 47.97 50 49.43 5778 59.53 52.47
Precision| 68.42 68.98 69.08 75.27 76.3 70.12
RR-TraMi Weighted Recall 76 70.54 7472 75.27 78.8 73.09
O raiviiner Fi-score | 71.4 6973 71.41 75.27 76.96 71.45
and RR-STF

Precision| 49.58 50.15 50.23 60.26 60.27 5173
Macro Recall 49.04 50.17 50.4 60.26 62.85 52.21
F1-score | 47.87 50.11 49.43 60.26 6117 517

Table 5.1: Trajectory classification results using different features.

RR-STF features provide better results than the previous. Indeed, with those features
and the MLP classifier, we achieve 75.13% weighted F; and 59.53% macro F3.

The classification results improve further by using both RR-TraMiner features and RR-
STF obtaining 76.96% weighted F; and 61.17% macro F; with the MLP classifier. This
result indicates that the system accuracy can increase by considering the combination of
heterogeneous features.

We also evaluated the classification performance achieved with the HC image fea-
tures presented in Section 5.3.3. The results are reported in Table 5.2. With this class
of features, LM features alone determine the lowest results in terms of macro F}; DT
achieves the best result with 48.51% macro F. The NB classifier achieves 51.48% macro
I}, with CHF features, while the kNN classifier obtains 51.88% macro I} with ZM features.

Interestingly, the use of LM, ZM, and CHF features together determines a relevant im-
provement in macro Fj; i.e., 57.2% with the LB classifier, indicating the need to combine
different features for this recognition task.

The results obtained in weighted [ with HC features are more stable than the previ-
ous. Indeed, when used in isolation, all three considered kinds of features achieve their
best results using the MLP classifier with around 72% or 73% weighted F}. Also, in this
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Features  Measures (%) NB SVM kNN DT MLP LB

Precision| 68.71 67.93 64.37 67.96 7159 65.58
Weighted Recall 69.27 78.18 72.91 67.27 80.73 65.09

LM F1-score |68.99 717 68.31 67.61 7212 65.34

Precision| 49.72 4778 4072 48.55 57.03 4477
Macro Recall 4973 49.5 4552 48.49 50 44.62
Fi1-score | 4972 46.22 42.81 48.51 44.67 447

Precision| 67.11 6578 70.49 69.88 74.99 68.81
Weighted Recall 73.45 77.64 7473 68.36 80.73 68.36

™M F1-score |69.88 70.85 72.26 69.09 72.78 68.58

Precision| 46.5 4274 53.03 51.53 65.48 49.89
Macro Recall 48.01 48.44 52.03 51.68 5072 49.88
F1-score | 46.61 44.49 51.88 51.55 46.46 49.88

Precision| 7114 6971 67.03 68.23 74.07 69.38
Weighted Recall 77.27 7673 73.27 68 80.55 70.36

CHF F1-score |73.22 72.27 6977 68.11 73.3 69.86

Precision|54.68 5174 46.36 48.95 62.8 50.82
Macro Recall 5217 5075 47.9 48.94 51.32 5076
F1-score |51.48 49.46 46.52 48.95 48.05 50.77

Precision| 65.85 67.44 66.22 71.6 7016 73.38

5M Weighted Recall 612 79.6 73.22 73.41 73.22 74.5
F1-score |63.32 71.85 69.32 72.44 71.53 73.9

LM

U

Precision| 45.78 46.55 44.76 54.74 52.37 57.61
Macro Recall 4474 49.68 4747 541 51.83 56.93
F1-score | 45 4519 45.37 54.3 51.8 572

Table 5.2: Trajectory images classification results using several HC features extracted from
randomly rotated images.

CHF

case, the best result in weighted I (i.e., 73.9%) is obtained using LM, ZM, and CHF fea-
tures together.

Overall, in our experiments, RR-STF features, especially when combined with RR-
TraMiner ones, outperform HC image features. This result indicates that our system
needs statistical information (i.e., STF) along with visual information (trajectory images)
about the walked trajectories. Moreover, the results obtained in weighted F) are signifi-
cantly better than those obtained in terms of macro Fj. This fact is probably due to class
imbalance. Indeed, the dataset includes much more trajectories of cognitively healthy
persons (80 individuals) than trajectories of PwD (19 individuals). Hence, the classifiers
are biased toward predicting the most frequent class cognitively healthy.

We also experimented with the algorithm for the long-term analysis described in Sec-
tion 5.4, using both RR-STF and RR-TraMiner features together. As reported in Fig.5.4, the
best result is obtained by the DT classifier, which achieves 62.56% macro F; and 79.1%
weighted Fj.

5.6 Conclusion

This chapter adopts an approach to combine STF with features extracted from images
depicting the trajectories walked within a smart home. We introduce a data augmen-
tation approach based on random image rotation to increase the generalization of the
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trained model. In order to avoid the use of obtrusive wearable sensors or privacy-invasive
cameras, we rely on the acquisition of position data from environmental sensors. Exper-
iments with a real-world dataset acquired from 99 seniors show that the integration of
heterogeneous features increases recognition accuracy.



Chapter 6

Summary and Future Outlook

L%this chapter we summarize the main contributions of this thesis and address
open issues, future directions, and other potential locomotion analysis applica-
tions.

6.1 Technical Contributions

This thesis aims to efficiently and effectively analyze position traces to enable early de-
tection of cognitive decline symptoms via locomotion pattern data mining. We tried to
propose a framework that is non-intrusive and generalizable to various types of smart
environments with different layouts considering the inhabitant’s privacy.

The first proposed framework, in Chapter 3, consists in representing the trajectories
walked by the resident depicted into images based on the smart-home floor plan as well
as speed and other specific locomotion indicators and utilizing DNN for image classifi-
cation for supporting cognitive impairment diagnosis. DNNs help to effectively capture
discriminative features without feature engineering efforts.

In the TraMiner system, introduced in Chapter 4, we tried to extend and refine the
preliminary version of our framework by transforming each locomotion segment into
two images that capture different aspects related to the clinical indicators of locomo-
tion anomalies. However, it is assumed that smart-homes have a fixed layout which can
restrict data portability and generalization.

Therefore, in a later work discussed in Chapter 5, we introduced a data augmenta-
tion approach based on image rotation by random angles to increase the generalization
of the trained model. Moreover, we augmented the image features with handcrafted
features extracted from sensors triggered by the inhabitant’s movements. Experimental
results show that the proposed approach is promising, and it merits further research and
improvements.

However, in our experimental test-bed, we relied on PIR sensors and door sensors to
track the inhabitant’s location, which provides coarse-grained position data. The system
accuracy could be enhanced by using more precise localization technologies, like UWB
positioning systems.
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6.2 Open Issues and Future Directions

Several issues, both practical and theoretical, still have to be deeply investigated to make
an effective and viable solution for detecting cognitive decline symptoms through loco-
motion analysis. We identify the following as the main open issues:

i. Explainability;
ii. Data portability
iii. Public benchmarks availability
iv. Ethics and privacy
v. Activity recognition and locomotion anomaly detection

6.2.1 Explainability

A limitation of our vision-based method is the difficulty of manually analyzing the reasons
that determined the actual hypothesis of diagnosis. Indeed, it is not straightforward for a
human observer to distinguish the trajectory images produced by our feature extraction
techniques for the different classes of seniors. In order to provide explainable Al capabil-
ities, these kinds of systems should be complemented with other methods for cognitive
assessment, possibly considering other behavioral models of cognitive decline based on
overt [182] or subtle anomalies [183], which are easier to interpret by a domain expert. In
order to recognize those behavioral anomalies, the locomotion analysis system should be
extended with additional sensors and algorithms to recognize activities at a fine-grained
level.

6.2.2 Data Portability

Given the nature of the datasets used in our experiments, all the patients’ data were
acquired in the same smart-home context. Whether the learned model is portable to a
different context is still an open research question. We believe that advanced transfer
learning methods specifically designed for image classification may enable training data
portability [184], but this aspect should be confirmed by additional experiments with
other datasets.

Even without the use of transfer learning methods to enhance data portability, our
system could be applied to important domains. In particular, a residence for elderly peo-
ple may consist of several similar apartments. The DNN model could be trained based
on the trajectories walked by those inhabitants for which a cognitive status diagnosis is
known. That model could be used for the cognitive assessment of the other inhabitants.

6.2.3 Public Benchmarks Availability

The accurate evaluation of proposed tools and methods necessarily relies on extensive ex-
periments in naturalistic conditions. However, in this domain, the setup of experimental
test-beds and the experimentation with a large set of participants, including both people
with NDD and healthy control seniors, is particularly complex and expensive. Moreover,
acquired data contain sensitive information. For these reasons, there is a lack of large
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datasets acquired for long time periods on a significant number of individuals, that are
publicly available.

This fact limits the possibility of experimentally comparing different solutions for Al-
based neurocognitive disease assessment using common test-bed datasets. A potential
solution for this problem could be the option to integrate external evaluation pipelines
into the computation infrastructure of the institution holding the dataset, allowing exter-
nal researchers to evaluate their hypotheses without the risk of data privacy violation.

It should be mentioned that most collected datasets that are used as a benchmark
are based on certain cultural regions. Therefore, there is a need to enrich data sources
by considering the customs, and cultural differences of different regions. The gender, in-
terests, and daily habits of subjects could be considered to create an interactive environ-
ment. There can be a progressive profile for each resident, which is constantly evolving
according to the feedback it receives from the person and the environment.

6.2.4 Ethics and Privacy

Since the average age of the population is projected to increase significantly in the near
future, the early diagnosis of cognitive decline among elderly people is becoming a key
objective of healthcare systems worldwide [20]. This dissertation explored different tech-
nologies and methods that have been demonstrated to be successful in detecting symp-
toms of NDD based on locomotion sensor data and Al algorithms.

However, given the sensitivity of the task, particular care should be taken before in-
troducing these technologies into medical practice. The first fundamental challenge in
sensor-based healthcare systems is the protection of privacy. The use of sensor data
and Al methods for neurocognitive disease assessment raises serious ethical and legal
concerns, including informed consent acquisition, safety, transparency, data ownership,
algorithmic fairness, and biases [185].

Indeed, it is well known that the release of location data determines serious privacy
issues [186]. Of course, the continuous observation of movements and locomotion pat-
terns may reveal not only medical conditions, but also personal routines, activities, and
preferences. This problem is particularly evident in systems based on outdoor location.
For instance, recurring presence in specific locations may reveal sensitive data such as
political opinions or religious beliefs, while frequent co-occurrence with other people
may expose private contacts. The continuous observation of indoor locomotion traces at
home may also challenge the individual’s privacy, revealing the presence of other people
or the execution of private ADL.

These concerns are becoming more important when RC systems are designed to be
used by vulnerable people with cognitive impairments who often lack the capacity to
provide informed consent to their use [187,188].

In the last decade, we have witnessed significant endeavors in striking a balance be-
tween ethical and policy considerations and assistive technologies, and a growing in-
terest in Al ethics [188, 189]. However, there is still a lack of a structural framework to
thoroughly consider different aspects of sensor-based Al-related technologies in RC for
people with cognitive impairments in terms of ethical and policy-oriented concerns. Fur-
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thermore, there are some major gaps between developing clinically relevant Al-powered
diagnosis systems and their acceptance and reliability [190]. For this reason, a privacy-
by-design technology must be adopted when designing and implementing locomotion-
based healthcare systems [114].

Furthermore, novel tools and methodologies are needed to provide training and
guidelines to explain the benefits of introducing medical Al for people with cognitive im-
pairments and their families. Investigating the views and needs of both patients and rele-
vant stakeholders at the cross-section of technology development and healthcare is con-
sidered a useful way to prospectively assess the practical, technical, clinical, and ethical
challenges associated with RC smart-homes for people with cognitive impairments and
their caregivers [191]. The future prospect could be focusing on challenges, preventive
strategies, and the possibility of improving ethical and policy-oriented training to provide
proper counseling to the patients about the risks and benefits of using RC in smart-homes
which are crucial to building trust between patients and clinical staff. Particularly, there
is a need to do:

e A systematic qualitative research about opportunities and issues related to ethics

and policy in Al-powered assistive systems for people with cognitive impairments.

e An analysis of challenges and the proposal of a comparison structure to map major
issues and possible solutions.

e A quantitative research by a user study approach considering neurological, geri-
atric, and geropsychiatric clinicians and older adults to understand the needs, ex-
pectations, and acceptance of RC smart-home systems.

e A structural approach for training and providing guidelines for the end-users of
assistive systems.

Together with privacy, it is important to adopt effective cyber-security mechanisms in or-
der to protect sensitive data regarding the individual. This requirement is particularly im-
portant in loT systems, which are prone to different kinds of attacks [192]. From a techno-
logical point of view, the need for continuous data acquisition and processing challenges
the power requirements of portable or wearable systems. Novel edge computing solu-
tions such as Federated Learning [193,194] optimized for the execution of ML algorithms
and supported by privacy and security mechanisms need to be put in place [195]. There is
also the need for optimized, energy efficient, and effective noise suppression algorithms
for accurate localization and location data processing [93].

6.2.5 Activity Recognition and Locomotion Anomaly Detection

Frail people, especially those with cognitive impairments, are at risk of declining levels
of independence, and safety issues, therefore, the main purpose of RC technologies is to
support them to improve their quality of life [6]. RC technologies in smart-homes enable
time-dependent and location-based monitoring in order to manage ADL by a variety of
assistive technologies [7].

Studies showed that the relation between locomotion and ADL patterns is signifi-
cantly correlated with a person’s health and cognitive status, if changes in human be-
havior can be detected, situations that require further health evaluation will be identi-
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fied [146, 196]. Moreover, indoor movements are affected by the variability of activity
execution as well. In fact, recognizing activities is a challenging problem as there are no
direct ways to relate data recorded via sensors to specific activities. In fact, a person
could carry out an activity with significant variations compared to the performance of
another person. In this way, the data collected by the sensors will also vary. Some of
these changes are detectable in the short term, such as frequent use of the toilet, which
may indicate a urinary tract infection, or behavioral changes that are detectable in the
long term, such as taking longer to prepare food and shorter reading the newspaper. It
may indicate MCI or a more serious form of dementia [197]. Furthermore, they can be
classified using different perspectives and granularity levels, as well as requiring a dense
sensing infrastructure which may lead to privacy issues and increasing recognition com-
plexity due to the number of residents in an indoor environment [198].

Therefore, human activity recognition in elderly healthcare systems is the way to fa-
cilitate healthcare work in order to treat and care for the elderly, reduce the workload
for caregivers, reduce hospital stays, reduce costs, and improve quality of life. Experts
in the field of medicine in general and in geriatrics, in particular, believe that one of the
best ways to identify and discover emerging medical conditions is to examine changes in
people’s daily activities before these conditions become serious [199].

In general, abnormal behaviors of individuals more specifically during multi-stage ac-
tivities such as cooking can be identified based on observations and they can be divided
into three main categories [200]:

e Problem with experience: Lack of sufficient experience with multi-stage activities
has led to difficulty in performing this activity effectively. Also, not having enough
experience in doing the activity leads to slowing down each stage of the activity
and a lot of time will be spent doing it.

¢ Difficulty in following the steps and instructions for the activity: participants face
productivity and safety problems during the activity and constantly ask questions
to receive approval from observers.

e Cognitive/Emotional Problems: The results show that using a method that is con-
trolled by the user leads to less distraction. However, some people need the help
of supervisors to prevent mistakes to follow activities.

Since in most sensor-based applications, the focus is on sensing object interaction
and tracking locations visited [201], as s future research direction, a novel unobtrusive
activity recognition system based on indoor locomotion analysis for the recognition of
participants’ activities through encoding the trajectories and manipulated objects into
images which represented the performed activities through graphics could be useful.

Moreover, considering the goals while the person is executing the actions, in order
to detect errors in behavior, assess the skills of initiation, organization, the inclusion of
all steps, sequencing, safety and judgment, and completion while the task is being per-
formed [202-204], and to reason about the causes of these errors. It can be done using
Computational Causal Behavior Models [205] which is a compact symbolic structure with
a powerful probabilistic inference engine.

These kinds of systems are the most preferred solution for monitoring daily activities
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specifically regarding elderly people who live alone and they prefer non-intrusive systems
rather than a camera and wearable devices-based systems.

6.3 Other potential application areas

Locomotion analysis other than healthcare applications is valuable in different kinds of
domains such as military and surveillance environments, entertainment, sports, and for
validation of computer vision and robots.

Motion and locomotion detection and analysis in surveillance and security environ-
ments can be used in order to automatically detect anomalous activities to warn relevant
authorities about potentially dangerous or criminal or terrorist behaviors, monitor the
safety of a place, and track individuals or groups of people. Therefore, when an emer-
gency situation arises it also leads to facilitate the evacuation of that area. This appli-
cation is helpful to coordinate the activities of firefighters who need to work in parallel
but differently divided groups. Automatic recognition and tracking of group movement
patterns along with activities will be useful for team training in emergency situations as
well as for helping groups to coordinate their actions in complex situations In filmmak-
ing and video game development, it refers to recording the locomotion of human actors
and using that information to animate digital character models in 2D or 3D computer
animation.

“Locomotion" by itself is a general term that is considered as “Walking" in the current
dissertation. However, there are other types of locomotion including rolling, hopping,
metachronal motion, slithering, swimming, brachiating, and hybrid locomotions which
can be considered as locomotion in multiple modes. Furthermore, it can be categorized
according to one of four types of environment: terrestrial (on the earth), aerial (in the
air), aquatic (in the water), or fossorial (in the earth). Considering different kinds of en-
vironments and variations of locomotions, they can have different sorts of applications,
especially in developing robots’ locomotion capabilities to autonomously decide how,
when, and where to move.
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Appendix

Table A.1: Selected papers after four phases of literature search method.

Ref. | Disease Location | #Subjects | Monitoring |Lab/Real | Algorithms Sensors Year
duration
[77] | Dementia | Indoor 178 16 hours Real Multi-modality Actillume, StepWatch, | 2003
Step Sensor, and TriTrac-
R3D
[53] | Huntington | Indoor 64 few min Lab Temporal assessment | 2-bit on-board analog- | 2006
methods to-digital converter, 4
sensitive switches
[44] | Dementia | General 1249 3.6 years Real Low-level motionindica- | accelerometer, gyro- | 2020
tor assessment scope
[117] | Parkinson | General 134 few min. Lab Statistical analysis Accelerometers, 2019
GAITRite
[51] | Parkinson | Indoor 54 - Real ML based assessment | 8 IMU sensors 2018
methods
[69] | Parkinson | Indoor 134 60 meter | Lab NLD, SVM smartphone, ac- | 2022
walk celerometers and
gyroscopes
[113] | Dementia | Indoor 5  CASAS |- Real Pattern-based methods | PIR 2020
dataset
[78] | Dementia | Indoor 19 600 hours Real Single-modality Computer vision 2007
[126]| Parkinson | Indoor 14 - Lab Image processing based | SONY HDR-HC3 cam- | 2009
method corder
[90] | Huntington | Indoor 85 - Lab Hybrid assessment | IMU attached to the | 2014
methods trunk
[80] | Dementia | Indoor 72 few sec. Lab Feature-based methods | accelerometer, gyro- | 2016
scope
[121] | Parkinson | General 166 few min. Lab ML based assessment |8 sensors underneath | 2013
methods each foot
[45] | Huntington | General 34 - Lab Hybrid assessment | accelerometer 2013
methods
[63] | Dementia | Outdoor |182 few min. Real Multi-modality GPS,accelerometer 2017
[47] | Huntington | Indoor 99 50 m walk Lab Hybrid assessment | force platforms + 62011
methods infrared camera + 15
spherical, retroreflec-
tive marker
[49] | Dementia | Indoor 100 25 steps Lab Task-oriented  assess- | 3D kinematics, gyro- | 2019
ment scope
[86] | Parkinson | Indoor 40 7 days Lab Multi-task assessment | wearable sensors, gyro- | 2014
methods scope, opal inertial sen-
sors
[124]] Parkinson | General 166 few min. Lab ML based assessment | 8 foot sensors measur- | 2020
methods ing the vertical ground
reaction force (VGRF)
[129]]| Parkinson | General 166 few min. Lab ML based assessment | force sensors 2016
methods
[37] | Parkinson | General 24 few min. Real Temporal assessment | IMU 2013

methods
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Table A.1 - continued from previous page
Ref. | Disease Location | #Subjects | Monitoring |Lab/Real | Algorithms Sensors Year
duration
[131] | Parkinson | Indoor 28 few min. Real Pattern-based methods | mobile device, Kalman | 2016
filter and off-the-shelf
shoe-worn inertial sen-
sors
[64] | Parkinson | Indoor 45 13 hours Lab Clinical assessment | accelerometer, gyro- | 2019
methods scope, magnetometer,
and a barometric
pressure sensor
[118] | Parkinson | General 56 few min. Lab Clinical assessment | accelerometers 2017
methods
[139]]| Parkinson | Indoor 42 - Lab Multi-modality  meth- | Vicon 3D motion analy- | 2022
ods sis system
[60] | Dementia | Indoor 20 5 months Real Feature-based methods | accelerometer 2013
[41] | Dementia | Indoor 65 - Lab Task-oriented  assess- | accelerometer 2009
ment
[127] | Parkinson | General 301 - Real Image processing based | - 2020
method
[101] | Parkinson | Indoor 35 25 sec real Statistical analysis smartphone app, sen-|2014
sors, accelerometer
[112] | Dementia | General 53 - Feature-based methods | accelerometer, gyro- | 2019
scope
[42] | Dementia | General 136 7 days both Task-oriented  assess- | accelerometer 2018
ment
[71] | Huntington | Indoor 46 few min. Lab Single-task assessment | Force-sensitive switches | 1997
placed inside the shoe
[105]| Dementia | Indoor different 1month Real Multi-modality doorway sensors, | 2018
approach accelerometer
[39] | Dementia | Indoor ] few min Lab Task-oriented  assess- | accelerometer 2012
ment
[122] | Parkinson | General 31 5 min. Real ML based assessment | force sensitive resistors | 2017
methods
[36] | Dementia | Indoor 14 30 days Real Low-level motionindica- | UW sensor network 2010
tor assessment
[128] | Parkinson | Indoor 7 20 second Lab Image processing based | - 2013
method
[34] | Dementia | Indoor 200 2 years Real Pattern-based methods | PIR, door sensors 2020
[1] Dementia | Indoor 192 2 years Real Pattern-based methods | PIR, doorway sensors 2021
[70] | Parkinson | Indoor 39 49.2 meter | Real NLD based apporach Wireless Medilogic foot | 2014
walk pressure insoles
[50] | Dementia | Indoor +250 3years Lab Feature-based methods | Kinect sensor 2020
[62] | Dementia | Indoor 10 1year Real Feature-based methods | UW location data 2017
[75] | Dementia | Indoor 252 2to 4 hours | Real Pattern-based methods | ambient sensors
[52] | Dementia | Outdoor |7 7days Real Single-modality GPS 2012
[92] | Huntington | general 30 - Lab Hybrid assessment | accelerometer, gyro- | 2015
methods scope,gait pressure
mat
[55] | Dementia | Indoor 41 2 weeks Lab Task-oriented  assess- | inertial sensor 2016
ment
[17] | Dementia | Indoor 40 4 weeks Lab Multi-modality RFID, GPS, GSM and GIS, | 1991
vision-based
[48] | Dementia | General 80 few min. Lab Low-level motion indica- | accelerometer 2020
tor assessment
[111] | Dementia | Indoor 9 few sec. Lab Threshold-based meth- | accelerometers, gyro- | 2013
ods scopes, magnetometers
[115] | Parkinson | General 17 - Both Clinical assessment | accelerometers 2007
methods
[58] | Dementia | Indoor 213 30m walk Real Low-level motionindica- | wearable inertial sen- | 2020
tor assessment sors
[206] Parkinson | General 166 few min. Lab ML based assessment | pressure sensors 2019
method
[135] | Parkinson, | Indoor 64 few min Lab ML based assessment | sensorized walkway, | 2021
Huntington method force-sensitive
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Ref. | Disease Location | #Subjects | Monitoring |Lab/Real | Algorithms Sensors Year
duration
[68] | Parkinson | Indoor 90 20 meter | lab NLD based apporach tri-axial accelerometer | 2020
walking with and a tri-axial gyroscope
a stop at 10
meter
[120]| Parkinson | General 182 few sec. Lab Feature-based assess- | 8 foot sensors measur- | 2016
ment methods ing the vertical ground
reaction force (VGRF)
[73] | Parkinson, | Indoor 64 lab Feature-based: Non- | Force-sensitive resistors | 2020
Huntington linear feature, SVM,
probabilistic neural
network
[110] | Parkinson | Indoor 51 few min Lab ML based assessment | Kinect 2015
method
[91] | Huntington | Indoor 14 walk to the |Lab Hybrid assessment | GaitRite. CIR system 2017
end of the methods
hallway
[24] | Parkinson | Indoor 8 few sec. Real Multi-task assessment | accelerometer 2019
method
[87] | Parkinson | Indoor 36 12 weeks Both Clinical assessment | accelerometer 2016
methods
[38] | Dementia | General 60 8 days Both Task-oriented  assess- | accelerometer, instru- | 2020
ment mented walkway
[56] | Huntington | Indoor 65 4.6 mwalk |Lab Hybrid assessment | instrumented walkway | 2008
methods with  force  sensors
embedded in its surface
[57] | Huntington | Indoor 30 walk to the |Lab Hybrid assessment | GaitRite. CIR system 2009
end of the methods
hallway
[46] | Huntington | Indoor 24 4.6m walk Lab Hybrid assessment | six sensor pads encapsu- | 2005
methods lated in a roll-up carpet
[130]| Parkinson | General 20 40m walk Lab ML based assessment | accelerometer, gyro- | 2020
methods scope
[119] | Parkinson | Indoor 10 few min Lab Clinical assessment | accelerometer, gyro- | 2017
methods scope
[138]| Dementia | Outdoor |15 few sec. Real Multi-modality accelerometers, GPS 2020
[72] | Parkinson | Indoor 34 3 min walk lab Feature-based ap- | tri-axial accelerometer | 2014
proach, Hoehn and Yahr
scale
[102]| Parkinson | Indoor 60 Walk 3meter | real Statistical analysis device sensor, 3-axis | 2020
twice with 15 gyroscope, 3-axis ac-
min interval celerometer, and a
Digital Motion Proces-
sor
[107]| Parkinson | Indoor 102 few sec. Lab Clinical assessment | pressure sensors on the | 2018
methods floor
[106]| Parkinson | Indoor 102 few sec. Lab Clinical assessment | pressure sensors on the | 2019
methods floor
[66] | Parkinson | Indoor 24 few min. Lab Clinical assessment | video and wearable 2018
methods
[43] | Dementia, |Indoor 67 few sec. Lab Feature-based methods | gyroscope, accelerome- | 2016
Parkinson ter
[82] | Dementia | Indoor 28 6 min Real Single-modality QR codes 2016
[54] | Parkinson, | General 40 few min. Lab Temporal  assessment | accelerometer, gyro- | 2015
Huntington methods scope
[123] | Parkinson | General 16 1 hour Lab ML based assessment | accelerometers, gyro- | 2012
method scopes
[109]| Parkinson | General 100 - Lab Clinical assessment | infrared depth sensor | 2020
method (Kinect)
[125] | Parkinson | Indoor 44 1 hour Lab Feature-based assess- | Bio-signals and gait in- | 2018
ment methods formation by eGalT sys-
tem
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Ref. | Disease Location | #Subjects | Monitoring |Lab/Real | Algorithms Sensors Year
duration

[116] | Parkinson | General 73 1om walk Lab Clinical assessment | gyroscope, accelerome- | 2019
method ters

[76] | Dementia | Indoor 7 1 hour Lab Threshold-based meth- | accelerometer, gyro- | 2015
ods scope, magnetometer

[100]| Parkinson | Outdoor |62 6 months real Feature-based assess- | smartphone, ac- | 2018
ment method celerometers and

gyroscopes

[65] | Dementia | Indoor 46 3 meters Lab Threshold-based meth- | accelerometer, gyro- | 2015
ods scope

[61] | Dementia | Indoor 30 40m walk Lab Feature-based methods | accelerometer, gyro- | 2014

scope
[136]| Dementia | Outdoor 14 days Real Single-modality GPS 2019
[137] | Dementia, | Outdoor |65 24 hours Real Single-modality accelerometer 2016
Parkinson
[31] | Huntington, | Indoor 64 few min. Lab Hybrid assessment | Force sensitive switches | 2015
Parkinson methods in the shoes

[59] | Dementia | Indoor 28 few min. Lab Task-oriented  assess- | accelerometer, gyro- | 2018
ment scope, magnetometer

[99] | Parkinson | Indoor 55 14 days Real Image processing based | mobile phone 2016
assessment methods

[16] | Dementia | Indoor 153 2 years Real Pattern-based methods | PIR, doorway sensors 2021




Abbreviations

AD Alzheimer’s disease

ADL Activities of Daily Living

Al Artificial Intelligence

AIR Active InfraRed

BBS Berg Balance Scale

CASAS Center for Advanced Studies in Adaptive Systems
CCNA Canadian Consortium on Neurodegeneration in Aging
CD Correlation Dimension

CHF Color Histogram Features

CNN Convolutional Neural Networks

DCNN Deep CNN

DFA Detrended Fluctuation Analysis
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DL Deep Learning

DMLP Deep MLP

DNN Deep neural network

DOTs Day Out Tasks

DT Decision Tree

FoG Freezing of Gait

FoG-Q FoG-Questionnaire

FRT Functional Reach Test

GPU Graphics Processing Unit

GVFE Gochoo Visual Feature Extraction

HC HandCrafted

HD Huntington’s Disease

HD-ADL HD Activities of Daily Living

HE Hurst Exponent

HMM Hidden Markov Models

HR Harmonic Ratio
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IMU Inertial Measurement Unit

loT Internet of Things

kNN K-Nearest Neighbour

LB LogitBoost

LDA Linear Discriminant Analysis

LED Light-Emitting Diode

LLE Largest Lyapunov Exponent

LM Legendre Moments

LR Logistic Regression

LZC Lempel Ziv Complexity

ABBREVIATIONS

MDS-UPDRS Movement Disorder Society-sponsored version of the UPDRS

MEMS MicroElectro Mechanical Systems

ML Machine Learning

MLP Multi-Layer Perceptron

MMSE Mini-Mental State Examination

MoCA Montreal Cognitive Assessment
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NB Naive Bayes

NDD Neuro-Degenerative Diseases

NFoG-Q New FoG-Questionnaire

NLD Non-Linear Dynamics

PCA Principal Component Analysis

PD Parkinson’s Disease

PIR Passive InfraRed

PNN Probabilistic Neural Network

PwD People with Dementia

PwHD People with HD

PwPD People with PD

RB Romberg Balance

RC Remote Care

R-CNN Regional-CNN

RelLU Rectified Linear Units

RF Random Forest
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RFID Radio-Frequency Identification

RNN Recurrent Neural Network

RQA Recurrence Quantification Analysis

RR Randomly Rotated

SPPB Short Physical Performance Battery

STD STandard Deviation

STF Spatio-Temporal Features

SVM Support Vector Machine

TDoA Time Difference of Arrival

THD Total Harmonic Distortion

ToA Time of Arrival

ToD Time of Day

TUG Timed Up & Go

UB Upper Body

UHDRS Unified HD rating scale

UPDRS Unified PD Rating Scale
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UWB Ultra-Wide Band

WSU Washington State University

ZM Zernike Moments
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