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Abstract. The last few decades have witnessed the increasing deploy-
ment of digital technologies in the urban environment with the goal of
creating improved services to citizens especially related to their safety.
This motivation, enabled by the widespread evolution of cutting edge
technologies within the Artificial Intelligence, Internet of Things, and
Computer Vision, has led to the creation of smart cities. One example
of services that different cities are trying to provide to their citizens is
represented by evolved video surveillance systems that are able to iden-
tify perpetrators of unlawful acts of vandalism against public property,
or any other kind of illegal behaviour. Following this direction, in this
paper, we present an approach that exploits existing video surveillance
systems to detect and estimate vehicle speed. The system is currently
being used by a municipality of Sardinia, an Italian region. An existing
system leveraging Convolutional Neural Networks has been employed to
tackle object detection and tracking tasks. An extensive experimental
evaluation has been carried out on the Brno dataset and against state-
of-the-art competitors showing excellent results of our approach in terms
of flexibility and speed detection accuracy.

Keywords: Surveillance Systems · Convolutional Neural Networks ·
Object Detection · Smart Cities

1 Introduction

The last few decades have witnessed the increasing deployment of digital tech-
nologies in the urban environment in order to improve services to citizens and
ensure ever-greater security needs. Such a scenario, combined with the strong
scientific and industrial expansion of disciplines such as Artificial Intelligence,
Internet-of-Things, and Computer Vision, has led to the emergence of smart
cities [10]. One of the most significant aspects of this evolution is the increas-
ingly widespread adoption of video surveillance systems and cameras, whose
main utility is considered to be that of acting as a deterrent and at the same
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time facilitating the identification of perpetrators of unlawful acts or vandal-
ism against public property [21,14,5]. More recently, these infrastructures - in-
tegrated into more sophisticated software platforms - have gradually taken on
more pervasive roles, from traffic monitoring and automatic access management,
to crowd detection, to name a few [16,3,2]. In this context, this work aims to ex-
ploit existing city video surveillance systems to provide, in a simple and low-cost
way, a solution based on Deep Learning techniques for the automatic detection
and estimation of vehicle speed. Contrary to most of the scientific works in the
literature, which address the problem through hand-crafted image processing
methodologies, the proposed approach innovatively leverages object detection
and tracking methods (based on YOLOv3 and Darknet), with an extremely lim-
ited setup overhead and a fast one-off calibration phase. The system has been
adopted by a municipality of Sardinia, an Italian region: more in detail, a couple
of cameras in the main road roundabouts have been installed and continuously
send videos to the main system installed within the police department. In light
of the above, the main contributions of this paper are the following:

– an innovative approach for estimating the speed of vehicles to be applied to
fixed-frame video surveillance cameras, which relies on object recognition and
tracking methods based on Convolutional Neural Networks, and a detection
dynamics built on low complexity heuristics;

– the design of an installation and calibration phase of the proposed method,
for the application on new cameras, with reduced execution time;

– an extensive experimental validation of the proposed approach through the
public Brno dataset and with an in-depth comparison against literature com-
petitors, showing a significant performance of our method both in terms of
flexibility and estimation accuracy.

The remainder of this paper is organized as follows. Section 2 explores the
related works. Section 3 illustrates the proposed method. Section 4 presents the
results obtained from the validation of our approach and comparisons against
competitors. Finally, Section 5 ends the paper.

2 Related Works

In recent years, the speed estimation topic has been faced from several points
of view, whether the speed is measured from the perspective of other vehicles,
from the inside of the vehicle, or the outside (lampposts, traffic lights, and so
on). Different sensors may be exploited for the topic and the state of the art
offers different solutions for speed estimation, by involving several data sources:
as an example, in [12], the authors have exploited a single multi-function mag-
netic sensor for estimating vehicle speed using three different methods, Vehi-
cle Length based (VLB), Time Difference based (TDB) and Mean Value-based
(MVB), so to obtain different reference speed. In [1], the authors have proposed
VILDAR (Visible Light Detection and Ranging), built upon sensing visible light
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variation of vehicle’s headlamp, which has been proven to be able to outper-
form the accuracy of both RADAR (Radio Detection and Ranging) and LiDAR
(Light Detection and Ranging) systems. More information about features, ad-
vantages, drawbacks and limitations of RADAR and LiDAR systems is provided
in [6]. However, given the multitude of cameras that are currently used for video
surveillance purposes [3], most of the approaches are deployed for working on
camera streams. Using cameras as the data source for speed estimation is quite
complicated, given the fact that some activities are needed before being able to
detect the speed of a vehicle: in fact, the car first needs to be detected from the
real scenario, then a tracking phase is necessary for understanding its direction
and only at the end the speed can be estimated [2]. Also, the camera needs
to be calibrated for such a goal [15], according to the context (single/multiple
camera/s locations in the scenario) and its/their inner parameters (focal and
sensor size). Vehicle speed estimation on camera can be achieved by following
two different approaches: the first regards the estimation of the speed of the
vehicles in a segment of the road, thus obtaining the average speed of the traffic
in that specific section [20,8,11]. In [4] the authors have proposed a full tracking
system involving vehicle detection, tracking, and speed estimation based on the
displacement in the image of the vehicle concerning the actual position. The sec-
ond approach is based on the analysis of the n consecutive (or non-consecutive)
frames to obtain the pixel displacement of the vehicle in the video [9,24,13].
The operative difference between the two approaches is based on the moment
in which the speed estimation module is triggered: while in the first case, the
trigger comes from the scenario, i.e. the moment in which a car overcomes the
analyzed segment as in [23], in the second case, the trigger is timed from the
number of fps the video is taken with.

3 Materials and Methods

Our algorithm is fed with an input video of a road section that may contain
a certain number of vehicles (i.e., cars, trucks, motorbikes, and so on). The
video is split into frames and for each frame, we perform an object detection
task to identify vehicles and follow them during their path. Any recognized
object different from a vehicle is discarded. No pre-processing approaches have
been applied neither to enhance the image nor for augmenting the local/global
contrast of the image. The reason behind this choice is twofold: i) firstly, the
method does not need any enhancement of the contrast augmentation approach
because the speed detection is an analytical process in which image quality is a
side problem; Yolo detection and tracking have not, in fact, been affected at all;
ii) secondly, pre-processing stages would need a certain amount of time, which
eventually could burden the overall speed detection computation time. Figure 1
shows the diagram of the proposed method. In the next paragraphs, we will give
more details on our vehicle speed estimation system.
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Fig. 1. From the video frames of a road section to the speed in km/h: frames are
processed with YoloV3+Darknet, which returns the bounding boxes of the detected
vehicles. They are used to follow the trajectory of vehicles and estimate their speed
in pixel/s. Existing real speeds of some vehicles are used to calibrate the system. The
Speed Estimation module applies the calculated transformation function and returns
the speed in km/h.

3.1 Vehicle speed estimation system

Our system exploits YOLO (You Only Look Once - a real-time object detection
system) [17] with Darknet [18] (an open-source neural network framework writ-
ten in C and CUDA)3 to locate vehicles in each frame. Differently from other
object detection systems, like Fast R-CNN [7] and Faster R-CNN [19] which lie
in the field of the Region proposal network, the YOLO family of object detectors,
as the name suggests, achieves region analysis and object localization within an
image or frame in just one stage. Indeed, the canonical RPN approaches divide
the region proposal stage and the object detection stage in two different steps.
During a detection session, the video frames are analyzed one by one. If a new
vehicle is detected, it will be given an ID and its position will be tracked over
the next few frames until it leaves the scene. A small amount of time passes
between each frame (usually less than 50 milliseconds) so the position of the
same vehicle in two successive frames cannot be too different. If multiple ve-
hicles are identified within the same frame, the approach performs a nearest
neighbor computation of the objects within the different frames. In such a case,
the tracking method calculates which of the vehicles in the frame is closest to
the position of each vehicle in the previous frame. The location found is used
to update the one associated with that ID. For example, let us suppose that

3 https://pjreddie.com/darknet/yolo/

https://pjreddie.com/darknet/yolo/
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vehicles A and B have been recognized within the frame i. Then, if in frame
i + 1 we identify multiple vehicles, the one corresponding to A will be that for
which the distance between its position in frame i + 1 and the position of the
identified vehicle A in frame i is the shortest. One more constraint that vehicles
must satisfy is the detection area they must reside within. If they are detected
out of the detection area, they are discarded. The detection area is fixed for the
entire video sequence and is considered one input of the problem. An example of
a detection area is shown in Figure 2, corresponding to the green and red crossed
lines. A vehicle is analyzed as soon as it passes the first green light (indicated on
top of the figure) and is continuously tracked until it leaves the last green line
(that at the bottom of the image). When a vehicle enters the detection area, its
entry point and the current frame number are stored. When it exits the area,
the distance between the exit point EX and the entry point EN is calculated
in pixels and this value is divided by the elapsed time. Time is calculated as
the number of frames elapsed between entering and exiting the detection area
divided by the number of frames per second of the video. For example, if F1 is
the frame related to the entry point and F2 the first frame when the vehicle left
the detection area, the speed is computed as dist(EX,EN)

F2−F1
50

, assuming the frame

rate equal to 50 fps. The speeds returned in pixels/s are converted to km/h by
linear interpolation and the real speed of a few reference vehicles known as input.
In particular, in the Cartesian plane we construct a graph with the calibration
points X(detectedspeed (pixel/s), real speed (km/h)) (they are known and be-
long to the input vehicles) and, using the Least Squares method, we calculate
the equation of the line that best approximates the position of these points. The
identified equation (which is computed only once) is used to calculate the speed
in km/h from that in pixels/s. For example, let us assume we have the following
five points (903, 82.93), (910, 79.99), (856, 80.34), (935, 83.70), (810, 68.69), each
of type (pixel/s, km/h), representing five calibration points known in advance,
and the speed of 927 pixels/s of a vehicle just detected. Using the Least Squares
method we find m = 0.0862 and q = 3.0157 related to the equation y = mx+ q.
By substituting the x with 927 we obtain an estimated speed of 82.92 km/h, a
value relatively close to the real one (82.81 km/h).

3.2 The BrnoCompSpeed dataset

Authors in [22] worked on visual traffic surveillance and captured a new dataset
of 18 full-HD videos, each lasted one hour, plus three more videos (of around 10
minutes each) recorded at seven different locations. The videos contain vehicles
that are annotated with the exact speed measurements verified with different
reference GPS tracks. The dataset is made up of 21 road section videos. These
videos are split into six sessions, plus one (manually annotated), called session
zero. More in detail, each session includes three videos, one taken from the left
camera, one taken from a central camera, and the third one taken from the right
camera. We will refer to each video as Session ID-left|central|right where ID
∈ {0, . . . , 6} and left, central, and right depend on whether the video was taken
using the left camera, central camera, or right camera. Each session is stored in
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a folder that contains the videos of a different road section taken from the three
points of view. For each video, there is a file containing vehicle data, a photo
of the road section, and an image containing the detection area. In total, in the
dataset, there are video recordings and speed data of 20,865 vehicles.

The data files were produced with the Pickle module - Python object serial-
ization - for Python 2.7. The data contained in the Pickle files include:
- [distanceMeasurement]: list of measurement points and actual distances.
- [measurementLines]: list of the coefficients (a, b, c) of the measurement
lines, perpendicular to the road axis, to be used with the canonical form of
the line equation ax+by+c = 0. A digital image is a grid in which each point
(pixel) is identified by a pair of numbers (x, y) and a straight line can be
identified by a linear equation such as ax+ by + c = 0 (canonical equation).
To automatically understand if a vehicle is within the detection area and in
which lane, a system of linear equations corresponding to the sides of the
street and the lanes and the perpendicular lines to the street must be solved.

- [cars]: list of data related to running vehicles. Each info includes laneIndex
(lane number - 0 on left), carId, timeIntersectionLastShifted, valid, inter-
sections, and speed. The intersections field is a list containing information
about the exact time the vehicle crosses the measurement lines and can be
useful to identify it in the video. The value of the valid field determines
whether the measurement has to be taken into account or not.

- [fps]: frames per second of the video.
- [invalidLanes]: list of invalid lanes.
- [laneDivLines]: list of the coefficients (a, b, c) of the lines which divide the
lanes, to be used with the canonical form of the line equation ax+by+c = 0.

In Figure 2, the measurement lines (in red) and the delimitation lines (in
green) of the lanes, obtained from the coefficients present in the data file of the
Session 0-left of the dataset, are plotted. In Figure 3, one of the vehicles, taken
from the Session 0-left video, can be visually identified in the frame correspond-
ing to the exact moment it crosses the measurement line.

Fig. 2. Measurement lines. Fig. 3. Vehicle identification.

The vehicle data obtained from the videos with five different calibration
systems by the authors of the dataset were included in five JSON files per video.
Each JSON file includes a list of the identified vehicles with the following items:
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- [id] -identifier of the vehicle;
- [frames] - the frames in which the vehicle appears;
- [posX] - X coordinates of the vehicle in each frame in which it appears;
- [posY] - Y coordinates of the vehicle in each frame in which it appears.

The BrnoCompSpeed Dataset Evaluation Code is available in the project’s
GitHub repository4. The code in the repository generates the statistics on the er-
rors obtained in the phases of calibration, detection of distances, and estimation
of speeds. These statistics include, in addition to the number of the performed
measurements, mean, median, 95 percentile, and worst case (absolute and per-
centage values) for each video of all sessions from 1 to 6. In Table 1 we show the
summary of the results obtained by the competitor methods on the Brno dataset.
In the next section, we exploit such methods as the baselines for evaluating the
performance of the proposed speed measurement system.

Table 1. Competitor’s performance on the Brno dataset for each calibration system
and for the videos of sessions 1-6. (MAE: Mean Absolute Error; RE: Relative Error)

System MAE (km/h) RE (%)

FullACC 8.59 10.89
OptScale 1.71 2.13
OptScaleVP2 15.66 19.83
OptCalib 1.43 1.81
OptCalibVP2 2.43 3.08

4 Experimental Analysis

A statistically significant subset of videos from the Brno dataset has been used
to experimentally analyze and validate the proposed speed estimation system.
For each video, the vehicles were identified and associated with the real speed
measured by the authors of the dataset. The selected piece of video was then
analyzed with YOLO + Darknet to identify the positions of the vehicles in
each frame. The real speeds of some of the vehicles were used to calculate the
transformation parameters from pixel/s to km/h. The purpose of the tests is to
compare the results obtained by the authors of the datasets above with those of
our speed estimation system. In all the tests, the video analysis - the detection of
vehicles and the calculation of their speed, returned in pixel/s - were performed
on Google Colab. The equation of the line for the linear interpolation, the vehicle
speeds in km/h and the statistics were instead obtained using a Python script
and offline computing.

4 https://github.com/JakubSochor/BrnoCompSpeed

https://github.com/JakubSochor/BrnoCompSpeed
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4.1 Preliminary Quality Test

We first started the validation of our method by testing the quality of the results
obtained for the measurement of the speed using the initial parameters for the
detection and calculation of the position of the vehicles.

In this analysis, the center of the bounding box was used to denote the
vehicle’s position. Then, we estimate the speed for the first 20 vehicles of the
video belonging to the Session 0-left of the dataset (one vehicle passed on lane
1, fourteen on lane 2, and five on lane 3), by considering the vehicles which
transited on lane 2 only. The speed value obtained by the system in pixels/s
was multiplied by 3.6 to get kpixel/h. Moreover, the first five detected vehicles
(see Table 2) were used for the calibration stage. At the last step, the coefficients
m = 0.0158 and q = 29.9095 of the line equation y = mx+ q were derived with
the least-squares method. The speed in km/h was obtained from the equation
by substituting the speed measured in kpixel/h for x. The test produced the
following results (data from the first five vehicles, used for calibration, are not
considered): standard deviation of 0.0325, mean relative error of 3.27%, mean
absolute error of 2.36 km/h.

Table 2. Preliminary quality test: speed estimation results (MAE: Mean Absolute
Error; RE: Relative Error.

Vehicle id Detected speed Detected speed Real speed MAE RE
(kpixel/h) (km/h) (km/h) (km/h) (%)

0 3252 81,27 82,93 1,67 2,01
3 3276 81,65 79,99 1,66 2,07
4 3084 78,62 80,34 1,73 2,15
5 3367 83,09 83,70 0,61 0,73
8 2967 76,77 74,42 2,35 3,15
9 2864 75,14 73,75 1,40 1,89
10 3305 82,11 81,74 0,36 0,44
11 2838 74,73 70,09 4,65 6,63
12 2916 75,96 68,69 7,27 10,59
14 3258 81,36 81,59 0,22 0,27
16 3339 82,64 82,81 0,17 0,20
17 3093 78,76 75,51 3,25 4,31
18 3100 78,87 77,11 1,75 2,27
19 3087 78,66 76,49 2,17 2,84

We can observe from Table 2 that the errors for vehicles 11 and 12 are
much higher than the average. We looked at these vehicles (which we considered
outliers) in the video and noticed that they have much bigger dimensions (length
and height) than the others in the test. This property affects the size of the
bounding box and therefore the position of its center, which is used to define the
position of the vehicle itself. The bounding box assumes different sizes at the
times of entry and exit from the detection area, introducing errors, especially if
the entry or exit lines are close to the edge of the frame.
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We also carried out a second test using a different detection point, to see
whether the results were confirmed or disproved Indeed, for some vehicles, the
centroid of their bounding boxes is not properly computed. As we noticed that
its lower right corner is usually more stable and precise, from this test on we
used it as the point of reference for the calculation of the position of the vehicle.

Table 3. Results obtained with a different detection point.

Vehicle id Detected speed Detected speed Real speed MAE RE
(kpixel/h) (km/h) (km/h) (km/h) (%)

0 3089 83,75 82,93 0,81 0,98
3 2777 79,51 79,99 0,48 0,60
4 2764 79,34 80,34 1,01 1,25
5 2958 81,97 83,70 1,73 2,06
8 2579 76,82 74,42 2,40 3,23
9 2546 76,38 73,75 2,63 3,57
10 2858 80,61 81,74 1,13 1,38
11 2439 74,92 70,09 4,84 6,90
12 2409 74,52 68,69 5,82 8,48
14 2833 80,27 81,59 1,31 1,61
16 2873 80,81 82,81 2,00 2,41
17 2665 77,99 75,51 2,48 3,29
18 2662 77,95 77,11 0,84 1,08
19 2651 77,80 76,49 1,31 1,72

The results of this test are reported in Table 3 and show a standard deviation
of 0.0246, a mean relative error of 3.38%, and a mean absolute error of 2.49 km/h
(the vehicle data used for calibration are excluded). They also reveal that the
variation of the considered detection does not appear to significantly affect, on
balance, the accuracy of the method.

4.2 Impact of the Observation Angle

We then investigate the possibility that the angle of observation may impact the
goodness of measurement. In particular, with regard to the Brno dataset, the
framing is the same for the different lanes considered: this implies a different an-
gle of observation and consequent a different perspective for each lane, and such
a configuration could impact the measurement result. To estimate the magnitude
of this effect, the video of Session 1 - Central was chosen, with the lower right
corner of the bounding box being used as the vehicle location. Consequently, the
first 20 vehicles of Session 1 - central (two lanes) - were considered, while the first
five vehicles for each lane were used for calibration. Moreover, to automate the
calibration and test procedure, specific checks have been implemented to avoid
cases of double detection (a bicycle hanging on the back of a camper detected
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as an additional vehicle or a vehicle with two bounding boxes almost completely
overlapping) or detection in non-interesting areas of the image. The results are
shown in Table 4.

Table 4. Impact of the observation angle.

Lane 1 Lane 2 Average
Standard deviation 0,0192 0,0053 0.0122
Mean relative error (%) 2.44 1.42 1.93
Mean absolute error (km/h) 1.66 1.17 1.42

We recall that the lane 1 is lateral to the frame, while the lane 2 is central.
Hence, from the results in Table 4, it emerges that a greater alignment of the
camera with respect to the monitored lane (and therefore a reduced or absent
angle of observation), as is the case for central lane 2, also results in less detection
error, as intuitively expected.

4.3 Impact of the Detection Area Size

To clarify the possible relationship between the vertical length (i.e., the height,
with respect to the single frame) of the detection area and the precision of
the measurements, we compare the speed errors obtained by considering four
different dimensions of the detection area. In this additional case scenario, the
lower right corner of the bounding box was used to denote the vehicle’s position,
and the first 25 vehicles of the Session 1 - central (lane 1) - were considered.
Four measurement sessions were thus performed with detection areas of variable
height between 200 and 920 pixels (see Figures 4, 5, 6 and 7).

In such a scenario, the results highlight a significant decrease in errors as the
size of the detection area increases (see Table 5 and Figure 8).

Table 5. Impact of the detection area size.

Area height (px) MAE (km/h) MRE (%) Standard deviation
200 4.54 6.43 0.0437
400 2.57 2.57 0.0189
620 1.30 1.87 0.0113
920 0.79 1.06 0.0070

4.4 Entry/Exit Point Improved Estimation

At last, we explore a method to improve the precision of the speed estimation by
determining the exact entry and exit points in/from the detection area. In this
case, the lower right corner of the bounding box was used to locate the vehicle,
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Fig. 4. h = 200 pixels. Fig. 5. h = 400 pixels.

Fig. 6. h = 620 pixels. Fig. 7. h = 920 pixels.

Fig. 8. Errors related to the height of the detection area.

and the first 25 vehicles of the Session 1 - central (lane 1) were considered. Here,
the detection area height was fixed at 920 pixels, while the first three vehicles
(other than the fastest and the slowest), the fastest vehicle, and the slowest
vehicle were used for the calibration.

To implement such an improvement, we just keep the frame just before the
vehicle crosses the detection area and the subsequent frame where the vehicle
touches it. Similarly, when the vehicle exits from the detection area, we keep
the frame where it exits it and the frame just before the exit. The moments
when the vehicles enter and leave the detection area can therefore be calculated
comparing the vehicle positions in the previous and current frame. If A is the
point in the frame right before the vehicle enters the detection area and B is
the point in the next frame (where the vehicle touches the detection area), we
can compute the line between A and B. As we know the equation of the line
of the detection area, we can compute the intersection point I of the two lines
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and have the exact coordinate of the entry point. Similarly, we can compute the
exact exit point.

The number of frames we take into account to compute the speed in pixel/s
is equal to the number of frames elapsed between the frame F1, when the vehicle
enters the detection area, and the frame F2, the last frame before the vehicle
exits the detection area, plus the fraction of the frame right before F1 and the
fraction of frame right after F2. The fraction of the frame before F1 is equal
to the distance IB divided by the distance AB. With similar calculations we
compute the fraction of the frame after F2.

Table 6. Results obtained by improving the estimation of the entry/exit points.

MAE (km/h) MRE (%) Standard deviation
0.24 0.35 0.0025

In the previous test scenarios, the starting position of the vehicle was consid-
ered in the first frame after the vehicle passed the starting point of the detection
area and the ending position was considered in the first frame after the vehicle
was out of the detection area. Indeed, this led to a minor precision as the vehi-
cle was always some pixels over the starting/ending point of the detection area.
The results are shown in Table 6, where such an improvement generates a better
performance of the proposed method.

Fig. 9. Inconsistent bounding boxes for the same vehicle.
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4.5 Comparison with the state-of-the-art

Finally, we compare our results with those obtained by the authors of the dataset
and the other state-of-the-art competitors on the Brno dataset. To do so, we
executed a conservative configuration of our algorithm, thus excluding possible
improvements identified ex-post, which might have suffered from overfitting due
to the specific scenario related to the Brno dataset. In addition, we ran the
evaluation code available in the Brno project repository for the video related to
the Session 1-Central.

Table 7. Summary results of the comparison with the state-of-the-art methods.

MAE (km/h) RE (%)

FullACC 10,15 13.08
OptScale 3.13 4.12
OptScaleVP2 48.71 62.69
OptCalib 3.12 4.10
OptCalibVP2 7.02 9.06
UniCA (proposed) 1.42 1.93

Fig. 10. Summary results of the comparison with the state-of-the-art methods.

The summary data of this comparison are illustrated in Table 7 and Figure 10,
where the proposed method is referred to as UniCA. The results obtained not
only show a clear superiority of the proposed method in terms of lower average
error, but are also overall slightly below the 2% (in relative terms) or 2km/h (in
absolute terms) thresholds that are used by several world Countries to accredit
automatic speed detection systems.

5 Conclusions

The developed algorithm5, although its operating logic is relatively simple, per-
forms well, with a relatively average error of 1.93% compared to its literature
5 We publicly release the code at http://aibd.unica.it/speed_detection.zip.

http://aibd.unica.it/speed_detection.zip
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competitors, and a low-cost setup and calibration phase that allows for easy
extension to existing traffic surveillance systems, provided that an affordable
embedded GPU system (e.g., the NVIDIA Jetson board) is available to execute
the real-time object detection and tracking algorithms.

Through the experiments carried out, we have also highlighted how such
results can be further improved through the adoption of specific expedients,
which, however, depend on the type of framing and road setting considered.
However, some limitations remain. Looking at the video output generated by
the system, in some cases, the size of the bounding box changes abruptly in
a few frames due to particular occlusion or misdetection conditions that can
deceive the YOLO + Darknet framework (see Figure 9 for an example). If this
happens in the specific frame in which the distance measurement is performed,
higher errors for speed measurement can be generated. A possible way to mitigate
this that we will tackle in a forthcoming enhancement of this approach, could
be to consider the size of the box in each frame and a moving average of its
shape to avoid inconsistent spots changes. We finally point out that the proposed
approach - in a revised engineered implementation made more stable and robust
- performs well enough to have enabled its usage by the Monserrato municipality
in Sardinia, Italy, to help the local police identify hazard behaviours of drivers
in selected critical road sections.
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