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Stretching experiments on single molecules of arbitrary length opened the way for studying the sta-
tistical mechanics of small systems. In many cases in which the thermodynamic limit is not satisfied,
different macroscopic boundary conditions, corresponding to different statistical mechanics ensem-
bles, yield different force-displacement curves. We formulate analytical expressions and develop
Monte Carlo simulations to quantitatively evaluate the difference between the Helmholtz and the
Gibbs ensembles for a wide range of polymer models of biological relevance. We consider gener-
alizations of the freely jointed chain and of the worm-like chain models with extensible bonds. In
all cases we show that the convergence to the thermodynamic limit upon increasing contour length
is described by a suitable power law and a specific scaling exponent, characteristic of each model.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704607]

I. INTRODUCTION

The recent development of mechanical experiments on
single molecules provided a deeper understanding of inter-
molecular and intramolecular forces, thereby introducing cru-
cial additional information about the thermodynamics and ki-
netics of several biomolecular processes.1–3 Single-molecule
experimental methods can be typically based on laser optical
tweezers,3 magnetic tweezers,4 or atomic force microscope.5

These experimental techniques have been extensively applied
to nucleic acids (DNA, RNA, and DNA condensation)6,
proteins (protein-protein interaction7 and protein folding8),
molecular motors,9 and other long-chain biopolymers.10

Furthermore, in such experiments the determination of
small energies and the detection of large deviations due to
Brownian interactions offer a new method for analysing
the basic foundations of statistical mechanics. In particular,
the above techniques permitted a clearer comprehension
of the equilibrium and non-equilibrium thermodynamics of
small systems and the experimental verification of fluctuation
theorems.11–13

One of the most important single-molecule experiment
concerns the stretching of a chain structure in order to
measure its elastic features. The first famous investigation
was performed on the double-stranded DNA and the results
appeared in very good agreement with the worm-like chain
(WLC) model14, 15 while they were only in partial agreement
with the freely jointed chain (FJC) model (the latter model
typically providing, however, a better fit for single-stranded
DNA and RNA (Ref. 16)). This result and successive exper-
imental evidences suggested that the mechanical properties

a)Author to whom correspondence should be addressed. Electronic mail:
luciano.colombo@dsf.unica.it.

of DNA, and in particular its flexibility (described by
the persistence length Lp)17, have a relevant role in many
biological process.18 The importance of understanding the
force-extension relationship for macromolecules has there-
fore attracted the attention of physicists and mathematicians,
who produced several models and relationships to explain the
experimental results. For example, the discrete version of the
WLC model was considered and new interpolation formulas
for semiflexible polymers were introduced.19, 20 Moreover,
efficient techniques for calculating the thermo-mechanical
properties of a heterogeneous chain were developed through
the numerical determination of the statistical partition
functions under different types of boundary conditions.21, 22

Two main assumptions are typically considered in the an-
alytical developments of the standard FJC and WLC models:
(a) inextensibility, expressed as a fixed bond length between
two adjacent monomers and (b) the contour length Lc (equal
to N times the equilibrium bond length for a chain composed
of N monomers) is supposed very large. The first assumption
should not be adopted if we consider a large applied force as
explained in Sec. II. The second assumption is related to the
concept of thermodynamic limit. In fact, the standard rules of
equilibrium thermodynamics may not apply to experiments
on individual, short-length polymer molecules. In such a case
the results may depend on the boundary conditions imposed
for stretching the polymer, namely: a fixed end-to-end dis-
tance, pertinent to the Helmholtz ensemble of statistical me-
chanics, or a fixed force applied at one or both ends, rather
representing a realization of the Gibbs ensemble. The differ-
ences between the two conditions should vanish in the ther-
modynamic limit (N → ∞), when the polymer contour length
Lc is much larger than its persistence length Lp (or to the indi-
vidual bond length, for completely flexible chains). This phe-
nomenon has been studied and observed for simple models
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describing internal barriers to bond rotation,23 for the single
ideal Gaussian chain24 and for DNA stretching.25, 26

It is important to observe that from the experimental point
of view both assumptions, inextensibility and attainment of
thermodynamic limit, are often not fulfilled for many prac-
tical reasons (e.g., too large applied forces and force-rates,
different configurations of the experimental devices, actual
procedures for force and distance measurements, and so on).
Therefore, in this paper we study the effects of the superposi-
tion of the two aspects, by considering the mechanical stretch-
ing response of extensible polymer chains of arbitrary length.
Of course, the above two assumptions are completely inde-
pendent and, therefore, one can consider all their possible
combinations: short chains without extensibility (leading to
the FJC or WLC for short chains), extensible long chains at
the thermodynamic limit, or short chains with extensibility.

In particular, we will take into consideration the quantita-
tive difference between the thermodynamic behaviour within
either the Helmholtz or Gibbs ensemble, by investigating the
foundations of the statistical mechanics for small systems.
This will be done by taking into account flexible (or semi-
flexible) and extensible polymer chain models of biological
interest. Our theoretical approach is twofold, since we adopt
both analytical and numerical techniques (Monte Carlo sim-
ulations). Indeed, while the analytical approach is useful to
obtain the explicit partition function in some specific cases,
Monte Carlo simulations are crucial to determine the scaling
laws controlling the convergence to the thermodynamic limit.

The structure of the paper is the following. In Sec. II
we introduce the thermodynamics of a polymer chain by de-
scribing two different approaches, respectively, leading to the
Helmholtz and the Gibbs ensembles. Then, we derive an exact
relationship between the partition functions pertinent to the
different ensembles. By using this result we formally prove
the existence of the thermodynamic limit for long chains. In
Secs. III and IV we quantitatively evaluate the difference be-
tween the Helmholtz and Gibbs ensembles for FJC and WLC
models with extensible bonds. In all cases we find a con-
vergence to the thermodynamic limit described by a suitable
power law and a specific scaling exponent. Finally, in Sec. V
some conclusions and perspectives are drawn.

II. THERMODYNAMICS OF POLYMER CHAINS

A. General theoretical framework

Usually, FJC and WLC models describe the polymer
as an ideal chain, where self-avoidance is not taken into
account.27, 28 In both cases the polymer is modeled as a chain
of beads connected by rigid bonds, but only the WLC model
takes into account an intrinsic bending stiffness between two
consecutive bonds. The most important common feature is the
inextensibility of the bonds. Such assumption is used even in
the case of large applied forces, although it has been shown
that the polymer may enter a regime where the elasticity of
the molecular and chemical bonds becomes important. This
phenomenon has been experimentally observed for DNA,29

polyelectrolytes,30 and F-actin.31 Typical corrections aimed at
describing bond elasticity have been introduced through ad-

ditional spring-like terms.32 Recently, a refined statistical me-
chanics approach for the stretching of semiflexible polymers
with elastic bonds was developed.33

Let us consider a chain of monomers in a long molecule,
each monomer representing a group of atoms or molecules
along the polymer backbone. The classical dynamics
of monomers is described by the set of positions �ri (i
= 1, . . . , N ) and momenta �pi (i = 1, . . . , N ). The polymer
end-to-end distance is defined as |�rN − �r0| and the contour
length of the polymer is defined by Lc = ∑N−1

i=0 〈|�ri+1 − �ri |〉,
where average values are determined through the pertinent
probability density ρ (see below). We assume that one
terminal monomer is fixed at position �r0 ≡ (0, 0, 0) and that
monomers interact through a potential V = V (�r1, . . . , �rN ).
This implies that our scheme will be able to describe all types
of polymer models, ranging from the FJC to the WLC and
possible generalizations with extensible bonds. The dynamics
of the system is described by the Hamiltonian

h0(�r1, . . . , �rN , �p1, . . . , �pN ) =
N∑

i=1

�pi · �pi

2m
+ V (�r1, . . . , �rN ).

(1)
We consider this system to be in thermal equilibrium with a
reservoir at temperature T and, therefore, its statistical prop-
erties are described by the canonical ensemble distribution

ρ(q, p) = 1

Z
e
− h0(q,p)

kB T , (2)

where we have introduced the canonical variables q

= (�r1, . . . , �rN ) and p = ( �p1, . . . , �pN ), the Boltzmann con-
stant kB, and the partition function Z. The main goal of this
section is to obtain the thermodynamics of the system when
the end terminal monomer is either clamped at a fixed posi-
tion �rN or it is subjected to a constant traction force �f . These
two boundary conditions correspond to the constant-volume
or constant-pressure configurations of an ideal gas, and are
described by the Helmholtz or Gibbs statistical mechanics
ensembles.

B. Polymer chain with fixed end-to-end distance

By setting a given end-to-end distance, positions �r0 and
�rN are fixed (see Fig. 1) and we can use the following reduced
Hamiltonian:

h(�r1, . . . , �rN−1, �p1, . . . , �pN−1, �r)

= h0(�r1, . . . , �rN−1, �rN = �r, �p1, . . . , �pN−1, �pN = 0).

(3)

In this case the microscopic variables are defined as q

= (�r1, . . . , �rN−1) and p = ( �p1, . . . , �pN−1), in terms of which
the system partition function is written

Z�r (�r, T ) =
∫∫

�N−1

e
− h(q,p,�r)

kB T dqdp, (4)

where �N − 1 = R6(N − 1). The equilibrium distribution is
therefore

ρ�r (q, p ; �r, T ) = 1

Z�r (�r, T )
e
− h(q,p,�r)

kB T . (5)
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FIG. 1. A polymer chain under the Helmholtz boundary conditions:
monomers �r0 and �rN are clamped.

The net force exerted on the monomer at position �r by the
remaining monomers is by definition − ∂h

∂�r . Such a force can
be used to define the mechanical constitutive equation (here-
after referred as the “force-extension curve”) of the chain. In
fact, the force exerted on the system (from the outside) in or-
der to keep fixed the last monomer is �f = 〈 ∂h

∂�r 〉, thus provid-
ing the statistical nonlinear generalization of Hooke’s law for
the chain

�f (�r, T ) = −kBT
∂

∂�r log Z�r = ∂F (�r, T )

∂�r , (6)

where F (�r, T ) = −kBT log Z�r is the Helmholtz free energy.
We identify the average value of the Hamiltonian as the inter-
nal energy of the system U = 〈h(q, p, �r)〉. In order to intro-
duce the thermodynamics we must consider a transformation
of the system, i.e., a process which imposes a time-dependent
variation of some macroscopic variable of the system. This
means that the end-position �r = �r(t) can vary in time as well
as the temperature T = T(t). By assuming slow variations of �r
and T the system undergoes a quasi-static transformation for
which the distribution given in Eq. (5) is valid at any time. We
define the entropy

S�r = −kB〈log ρ�r〉 = −kB

∫∫
�N−1

ρ�r log ρ�r dqdp, (7)

and we easily get the thermodynamic energy balance in the
form34, 35

dU

dt
= �f · d�r

dt
+ T

dS�r
dt

, (8)

where the first term represents the work done by the exter-
nal force and the second one represents the heat entering
the system. Finally, the Helmholtz free energy F is given by
F = U − T S�r .

C. Polymer chain under constant load

We next assume that a given force �f is applied to the ter-
minal monomer at �rN , while the end-to-end distance is free

r0

r1

r2

ri

rN−1 k

k

k
k

k

FIXED

ff

rN

FIG. 2. A polymer chain under the Gibbs boundary conditions: while the
monomer �r0 is clamped, the one at �rN is subject to a constant traction �f .

to fluctuate (see Fig. 2). This external force is described by
an additional potential energy term given by − �f · �rN since
− ∂

∂�rN
(− �f · �rN ) = �f . Therefore, the system is described by

the following augmented Hamiltonian:

h̃(�r1, . . . , �rN , �p1, . . . , �pN, �f )

= h0(�r1, . . . , �rN , �p1, . . . , �pN ) − �f · �rN , (9)

where q = (�r1, . . . , �rN ) and p = ( �p1, . . . , �pN ) are the micro-
scopic variables and �f acts as a macroscopic variable. The
ensemble partition function is now given by

Z �f ( �f , T ) =
∫∫

�N

e
− h̃(q,p, �f )

kB T dqdp, (10)

where �N = R6N and the corresponding statistical distribution
is

ρ �f (q, p ; �f , T ) = 1

Z �f ( �f , T )
e
− h̃(q,p, �f )

kB T . (11)

We observe that ∂h̃

∂ �f = −�rN and we calculate the mean po-
sition of the last monomer of the chain through the average
value �r = 〈�rN 〉 or, more explicitly, �r = −〈 ∂h̃

∂ �f 〉. This constitu-
tive equation can also be expressed in terms of the partition
function Z �f . In fact, by differentiating Eq. (10) with respect

to �f , we get

�r( �f , T ) = kBT
∂

∂ �f log Z �f = −∂G( �f , T )

∂ �f , (12)

where G( �f , T ) = −kBT log Z �f is the Gibbs free energy. We
now introduce the thermodynamics by identifying the average
value of the augmented Hamiltonian with the enthalpy of the
system H = 〈̃h(q, p, �f )〉. As before, we assume slow varia-
tions �f = �f (t) and T = T(t) in order to deal with a quasi-static
transformation and we develop the time derivative of the en-
thalpy. Through the new definition of the entropy

S �f = −kB〈log ρ �f 〉 = −kB

∫∫
�N

ρ �f log ρ �f dqdp, (13)
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the energy balance is obtained as34, 35

dH

dt
= −d �f

dt
· �r + T

dS �f
dt

. (14)

It is important to remark that Eq. (13) is not identical to
Eq. (7) since they are based on two different probability den-
sities. Only when the thermodynamic limit (N → ∞) is at-
tained, the two approaches would yield the same results (see
Sec. II E for details). From the previous expression we also
obtain that G = H − T S �f , according to the standard defini-
tion of the Gibbs free energy.

D. Helmholtz versus Gibbs ensembles

By taking into consideration Eqs. (4) and (10), as well as
the known integral∫

�3
exp

{
− 1

kBT

�p · �p
2m

}
d �p = (2πmkBT )3/2 , (15)

the exact relationship between Z �f and Z�r can be obtained

Z �f ( �f , T ) = (2πmkBT )
3
2

∫
�3

Z�r (�r, T )e
�f ·�r

kB T d�r, (16)

showing that the Gibbs partition function is the three-
dimensional (bilateral or two-sided) Laplace transform of the
Helmholtz partition function (except for a non relevant multi-
plicative constant).

For the following purposes, it is useful to invert the pre-
vious integral relation. In Eq. (16) we operate the change of
variable �f = −ikBT �ω (with �ω ∈ �3), so that

Z �f (−ikBT �ω, T )

(2πmkBT )
3
2

=
∫

�3
Z�r (�r, T )e−i �ω·�rd�r. (17)

In the right-hand side we recognize a standard Fourier trans-
form and the inverse relation is obtained as

Z�r (�r, T ) = 1

(2π )3

∫
�3

Z �f (−ikBT �ω, T )

(2πmkBT )
3
2

ei �ω·�rd �ω. (18)

By the change of variable �φ = −kBT �ω we obtain the relation
d �φ = (kBT )3d �ω and, therefore, we get

Z�r (�r, T ) = 1[
(2πkBT )3m

]3/2

∫
�3

Z �f (i �φ, T )e−i
�φ·�r

kB T d �φ,

(19)
which states that, in order to derive the Helmholtz partition
function, one must use the analytic continuation of the Gibbs
partition function over the imaginary argument.

Equations (16) and (19) allow to obtain each partition
function with an integral over R3, which is much easier than
the original integral over the whole phase space. So, when one
of the two partition functions is determined, the other can be
simply obtained analytically or numerically, depending on the
complexity of the system. Moreover, the relationship between
the two partition functions is very important for enlightening
the meaning of the thermodynamic limit, as described below.

The present results can be further simplified when the
applied force is taken to be collinear with the end-to-end
vector distance. We suppose that the Helmholtz partition
function exhibits the spherical symmetry, leading to the

scalar relation Z�r (�r, T ) = Zr (r, T ). In other words, Z�r
depends on �r only through its modulus r. In this case the
Gibbs partition function shows such a spherical symmetry as
well: Z �f ( �f , T ) = Zf (f, T ). Conversely, a similar constraint
is, in turn, obtained for the Helmoltz function if spherical
symmetry is assumed for the Gibbs function. It can be proved
that Zr and Zf fulfil the following relationships:

Zf (f, T ) = α

∫ ∞

0
Zr (r, T )

βr

f
sinh

f r

kBT
dr (20)

and

Zr (r, T ) = α

∫ ∞

0
Zf (iη, T )

η

βr
sin

ηr

kBT
dη, (21)

where α = ( 2
πkBT

)1/2 and β = (2πmkBT )3

m3/2 . We observe that
Eqs. (20) and (21) are the counterparts of Eqs. (16) and (19)
for a model with spherical symmetry.

E. On the thermodynamic limit

We want to prove that the Helmholtz and Gibbs ensem-
bles provide the same constitutive equation for large systems
(N → ∞). The two expressions given in Eqs. (6) and (12)
would represent, in fact, the same constitutive equation if the
first relation coincides with the inverse function of the sec-
ond one and vice versa. In other words, our statement above
is proved as long as it is shown that the Helmholtz and the
Gibbs energy functions are related by a Legendre transfor-
mation G = F − �f · �r , as discussed in Ref. 35. By inserting
Eqs. (6) and (12) in Eq. (16) we obtain

e
− G( �f ,T )

kB T = (2πmkBT )
3
2

∫
�3

e
− F (�r′ ,T )

kB T e
�f ·�r′

kB T d�r ′, (22)

which is an exact relation between F and G, always satisfied
(i.e., valid for any N). By expanding F (�r, T ) up to the second
order in �r ,

F |�r ′ � F |�r + ∂F

∂�r (�r ′ − �r) + 1

2
(�r ′ − �r) · ∂2F

∂�r2
(�r ′ − �r).

(23)
In the previous series expansion we did not consider the third
order term and higher since, for large N, their effects are negli-
gible with respect to the leading terms (first and second order).
This is a typical approximation adopted and justified within
the Laplace method useful for obtaining the asymptotic be-
havior of integrals (e.g., used for proving the standard Stirling
approximation for the factorial function, largely used in sev-
eral statistical mechanics evaluations).36 By means of Eq. (6)
we eventually obtain

G = F − �f · �r − kBT ln �, (24)

where

� = (2πmkBT )
3
2

∫
�3

e
− 1

2kB T
(�r ′−�r) ∂2F

∂�r2 (�r ′−�r)
d�r ′. (25)

The quantities G, F, �, and �f · �r assume an extensive charac-
ter (i.e., they are proportional to N) and, therefore, the loga-
rithmic term in Eq. (24) becomes negligible for large systems.
Thus, for N → ∞, the Legendre transformation is fulfilled.
In Secs. III–V we will quantitatively address the convergence
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l l+Σ xl − Δ0

V (x) = 1
2k(x − l)2

FIG. 3. Potential energy function for the stretching of a single bond in the
polymer chain.

to the thermodynamic limit by comparing the Helmholtz and
Gibbs ensembles for increasing values of N, and we will eval-
uate their differences for small systems (i.e., for short length
polymer chains).

III. FLEXIBLE POLYMER WITH ELASTIC BONDS

We firstly consider a model in which each bond is
represented by a harmonic spring with finite extension, while
no potential is acting on bending or torsional degrees of
freedom. Each spring is defined by the potential energy V (x)
= (1/2)k(x − l)2 for x ∈ (l − �, l + �), where k is the spring
constant, l is the equilibrium bond length, and x is the actual
extension of the bond. As it can be seen in Fig. 3, the potential
is set to infinity for x �∈ (l − �, l + �) in order to impose a lim-
ited extension of the spring both for expansion and compres-
sion. This assumption is consistent with that discussed in Ref.
37, where it is shown that a strong force may induce structural
transitions or even the breaking of the polymer under tension.
Since such phenomena are outside the scope of this work, we
limit the model to the regime of harmonic bond potentials.

We start with the Gibbs ensemble and we consider the
augmented Hamiltonian

h̃(�r1, . . . , �rN , �p1, . . . , �pN, �f )

=
N∑

i=1

�pi · �pi

2m
+ 1

2
k

N−1∑
i=0

(‖�ri+1 − �ri‖ − l)2 − �f · �rN . (26)

In this case the determination of the spherically symmetric
partition function can be made in closed form. First of all, we
separate the kinetic part of the partition function and we adopt
the change of variables �ξi+1 = �ri+1 − �ri (i = 0, . . . , N − 1).
Further, by representing the vector �ξi in spherical coordinates,
we get

Zf (f, T ) =
(√

2πmkBT
)3N

(
4πkBT

f

)N

×
[∫ l+�

l−�

exp

{
− k

2kBT
(ξ−l)2

}
sinh

(
f ξ

kBT

)
ξdξ

]N

.

(27)

The calculation can be explicitly carried out by making use of
the known integral

I (α, β, x0, a, b) =
∫ b

a

xe−α(x−x0)2
eβxdx

= eβx0e
β2

4α

{
1

2α

(
e−A2 − e−B2)

+
√

π

α

β + 2αx0

4α
[erf (B) − erf (A)]

}
,

(28)

where

A = √
α

(
a − x0 − β

2α

)
, B = √

α

(
b − x0 − β

2α

)
, (29)

and the function erf(z) is defined as38

erf (z) = 2√
π

∫ z

0
e−t2

dt. (30)

From Eq. (28) we can further define the following auxiliary
function:

� (α, β, x, a, b) = I (α, β, x, a, b) − I (α,−β, x, a, b) .

(31)

The calculation leads to the exact expression of the Gibbs par-
tition function in the form

Zf (f, T ) =
(√

2πmkBT
)3N

(
2πkBT

f

)N

×
[
�

(
k

2kBT
,

f

kBT
, l, l − �, l + �

)]N

.

(32)

This partition function directly provides the (scalar) constitu-
tive equation r = r(f) as

r = kBT
∂ log Zf (f, T )

∂f
. (33)

It is interesting to observe that, as expected, in the limit of k
→ ∞ the partition function of the FJC model is recovered

Zf (f, T ) = cost. ×
(

sinh
(

lf

kBT

)
lf

kBT

)N

, (34)

and the constitutive equation r = NlL( lf

kBT
) is found, where

L(x) = coth x − 1/x is the Langevin function.35, 39

In Fig. 4 we plot the constitutive equations (at
constant temperature T = 293K) obtained by applying
Eqs. (32) and (33). We adopted the parameters l = 2.5 nm
(typically used for DNA (Refs. 19 and 20)), placing the walls
at l − � = 0 and � + l = 5 nm. The plot represents elonga-
tion versus traction curves for different values of the spring
constant k = 3, 5, 10, 20, 50, 2000 in units of kBT/(nm)2

= 4 × 10−3 N/m. While the smallest value of the stretch-
ing modulus describes a very soft chain, the largest one ac-
tually mimics a FJC. Three different regimes can be detected
in Fig. 4: the first one, corresponding to a very small applied
force, is the entropic region characterized by a linear relation
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FIG. 4. Constitutive relation provided by Eq. (33) for a flexible polymer with
elastic bonds described by the potential reported in Fig. 3. The elongation r
and the traction f are reported, respectively, in the vertical and horizontal axis
in dimensionless units (see text). Different relations in the Gibbs ensemble
are reported, corresponding to a spring constant varying in the range 3 ≤ k
≤ 2000 (units of 4 × 10−3 N/m).

r = Nl2f/(3kBT), as it is well known from classical polymer
theory;35, 39 by increasing the applied load, the chain experi-
ences an elastic region characterized by a slope proportional
to k; finally, the saturation is reached when the bond exten-
sion approaches the energy barrier at l + �. The length of
the polymer chain in the configuration of largest extension
(f → ∞) is N(l + �). It is important to remark that each
curve is independent of N, since the partition function given in
Eq. (32) is an exact power with exponent N.

For the Helmholtz ensemble we use instead Eq. (21)
combined with the analytic continuation of Eq. (32) with
f = iη. From this equation we obtain the scalar constitutive
equation f = f(r) (see Eq. (6))

f = −kBT
∂ log Zr (r, T )

∂r
, (35)

representing the elastic behaviour in the Helmholtz ensemble
which depends on the number of monomers N. We expect a
family of curves approaching the Gibbs solution for large N
(thermodynamic limit).

While the numerical implementation of Eq. (33) is
straightforward, the Helmholtz case (see Eq. (35)) is more dif-
ficult to handle because of some numerical instabilities and it
can be used in a limited range of cases. Therefore, we ex-
ploited a Monte Carlo approach which can bypass such prob-
lems and can be also adopted for studying more complex
chains, such as the WLC model.

The Monte Carlo approach simulates the stretching of
the polymer under a force provided by a cantilever (mimik-
ing, for instance, the loading by an atomic force micro-
scope) with a proper adjustable elastic stiffness. In the limit
of a soft cantilever the generalized ensemble of the coupled
molecule/cantilever system reduces to the Gibbs ensemble for
the isolated molecule subjected to a constant force. On the
other hand, for a stiff cantilever we obtain the Helmholtz en-
semble for the isolated molecule held at a fixed extension by
the fluctuating force.40 This simulation protocol has been al-
ready used to prove the existence of transitions from the flexi-
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r N
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FIG. 5. Constitutive relation provided by Monte Carlo simulations for a FJC
model, both under Helmholtz (H) and Gibbs (G) boundary conditions. The
elongation r and the traction f are reported, respectively, on the vertical and
horizontal axis in dimensionless units (see text). The Helmholtz constitutive
relation is reported for different polymer lengths, given by the number N of
monomers in the chain.

ble to the rigid phase for the WLC model under the Helmholtz
ensemble.41, 42

Simulations were performed by using a rather conven-
tional implementation of the Metropolis version of the Monte
Carlo algorithm.43 The initial state of the chain is defined by a
set of randomly chosen positions for the monomers. The dis-
placement extent δ�ri of the position vectors governs the mag-
nitude of the trial move and the overall efficiency of the con-
figurational space sampling. However, while a larger δ�ri could
speed up the search for the minimum, a too large δ�ri leads to a
high rejection frequency. Therefore, we analysed several runs
in order to optimize its value.44, 45 We avoided the dynamical
adjustment of this parameter since this approach can violate
the detailed balance.46

In Fig. 5 we report our Monte Carlo results for the FJC
model in both statistical mechanics ensembles. While we
observe a single curve for the Gibbs ensemble (since the
Langevin function derived from Eq. (34) is independent of
N), we get different elastic response curves for the Helmholtz
ensemble with polymer length N = 4, 5, 10, and 50. It is inter-
esting to note that the Helmholtz curves approach the Gibbs
one for large N, as expected for the convergence to the ther-
modynamic limit. Figure 5 shows that differences between the
two ensembles are considerable for short chains.

In order to better characterize the convergence toward
the thermodynamic limit, we investigate the ratio between the
elongation rH(N) = r/(Nl) calculated in the Helmholtz ensem-
ble and the elongation rG = r/(Nl) for the Gibbs ensemble
corresponding to the same number of monomers. Figure 6
proves that Monte Carlo simulations are nicely fitted by the
power law

rH (N )

rG

= 1 + a

Nα
, (36)

where a and α are fitting parameters. Each curve corresponds
to a different value of the normalized force fl/(kBT). All data
sets were interpolated by linear regression and they provided
the same scaling exponent α = 1.15 ± 0.05. Therefore, we
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FIG. 6. Comparison between the elongations rH and rG for the pure FJC
model. The elongations are calculated, respectively, in the Helmholtz and
Gibbs ensembles as a function of the polymer lengths (given by the number
N of monomers in the chain). All sets of data are nicely fitted by Eq. (36)
with the same scaling exponent α = 1.15 ± 0.05.

argue that the convergence to the thermodynamic limit of the
FJC model is quantitatively controlled by a unique scaling
exponent.

Further, we are interested in understanding whether this
value depends on the specific microscopic model of poly-
mer adopted for the Monte Carlo simulations. To this aim
we set a lower value for the elastic constant of the spring
between the monomers. In particular, we selected the value
k = 10kBT/(nm)2 already used in Fig. 4. The Monte Carlo
simulation results for both the Helmholtz and Gibbs ensem-
ble are shown in Fig. 7. As before, we find a single curve for
the Gibbs ensemble and a family of curves for the Helmholtz
ensemble (corresponding to N = 4, 5, 10, and 50, from the
top to the bottom). We checked and confirmed the agreement
between Eq. (35) and the Monte Carlo results also for the
Helmholtz ensemble. Once again, the curves in Fig. 7 can be
used to address the thermodynamic limit issue, as shown in
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FIG. 7. Constitutive relation provided by Monte Carlo simulations for a FJC
model with elastic bonds between the monomers, both under Helmholtz (H)
and Gibbs (G) boundary conditions. The elongation r and the traction f are
reported, respectively, on the vertical and horizontal axis in dimensionless
units (see text). The Helmholtz constitutive relation is reported for different
polymer lengths, given by the number N of monomers in the chain.
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FIG. 8. Comparison between the elongations rH and rG for the FJC model
with elastic bonds between the monomers. The elongations are calculated,
respectively, in the Helmholtz and Gibbs ensembles as a function of the
polymer length (given by the number N of monomers in the chain). All
sets of data are nicely fitted by Eq. (36) with the same scaling exponent
α = 0.80 ± 0.05.

Fig. 8. We observe that the linear regression leads now to the
scaling exponent α = 0.80 ± 0.05 for any value of the normal-
ized force fl/(kBT). This result suggests that different polymer
models, e.g., rigid versus elastic in this case, have different
scaling exponents or, in other words, that they progress dif-
ferently to reach the thermodynamic limit.

IV. SEMIFLEXIBLE POLYMER WITH ELASTIC BONDS

In order to make the model polymer more physically
sound, we now extend our formal device to a semiflexible
chain which incorporates elastic bonds into a discrete version
of the WLC model. The augmented Hamiltonian for the
Gibbs ensemble is

h̃(�r1, . . . , �rN , �p1, . . . , �pN, �f )

=
N∑

i=1

�pi · �pi

2m
− �f · �rN + 1

2
κ

N−1∑
i=1

(�ti+1 − �ti
)2

+ 1

2
k

N−1∑
i=0

(‖�ri+1 − �ri‖ − l)2
, (37)

where κ is the bending modulus, k is the stretching modulus,
and �ti = (�ri+1 − �ri)/‖�ri+1 − �ri‖ is the unit vector collinear
with the ith bond. The corresponding reduced Hamiltonian
for the Helmholtz ensemble is given by

h(�r1, . . . , �rN−1, �p1, . . . , �pN−1, �r)

=
N−1∑
i=1

�pi · �pi

2m
+ 1

2
κ

N−1∑
i=1

(�ti+1 − �ti
)2

+ 1

2
k

N−1∑
i=0

(‖�ri+1 − �ri‖ − l)2
, (38)

where the position of the last monomer �rN corresponds
to the end-to-end vector �r . As it is well known,15 it is not
possible to determine the partition functions in closed form
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FIG. 9. Constitutive relation provided by Monte Carlo simulations for the
pure WLC model, both under Helmholtz (H) and Gibbs (G) boundary con-
ditions. The elongation r and the traction f are reported, respectively, on the
vertical and horizontal axis in dimensionless units (see text). The Helmholtz
constitutive relation is reported for different polymer lengths, given by the
number N of monomers in the chain.

for ensembles described by Eqs. (37) and (38). Therefore,
we take full profit from our Monte Carlo approach and we
critically address some approximated solutions. In particular,
by considering an inextensible WLC model, the Hamiltonian
function in the Gibbs ensemble is given by

h̃ =
N∑

i=1

�pi · �pi

2m
− �f · �rN + 1

2
κ

N−1∑
i=1

(�ti+1 − �ti)2, (39)

while in the Helmholtz ensemble it is

h =
N−1∑
i=1

�pi · �pi

2m
+ 1

2
κ

N−1∑
i=1

(�ti+1 − �ti)2. (40)

We remark that we have set the spring constant k to such
a very large value that the bond length remains fixed at
the value l. The constitutive equations are now expected
to depend on the number of monomers N in any ensemble
since, for the WLC model, both partition functions given in
Eqs. (4) and (10) cannot be written as an exact power with
exponent N.

In Fig. 9 we report the Monte Carlo results for the
inextensible WLC model: while the Helmholtz family of
curves converges from the top to the bottom, upon increasing
the polymer length, the Gibbs curves follow the opposite
trend. We remark once more the convergence to a central
common curve, representing the behavior of the system
when the thermodynamic limit is reached. The example
summarized in Fig. 9 corresponds to the value κ = 10kBT for
the bending modulus at T = 293 K. This value is comparable
to that of polymer chains of biological interest (for example,
for DNA κ = 15kBT (Refs. 15, 19, and 20)).

These results can be compared with the approximations
published in literature for the WLC model. A first interpo-
lation formula was given by the classical Marko and Siggia
result15

f l

kBT
= l

Lp

[
1

4(1 − ζ )2
− 1

4
+ ζ

]
, (41)
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FIG. 10. Same as Fig. 9 where the approximated solutions by Marko and
Siggia (see Eq. (41) taken from Ref. 15) and by Rosa et al. (see Eq. (42)
taken from Refs. 19 and 20) are reported for the sake of comparison.

where ζ = r/(Nl) is the polymer extension normalized to the
contour length and Lp = lκ/(kBT) is the persistence length.
This result is asymptotically exact both in the large- and
small-force limits of the continuous WLC model. Another,
more recent result was derived for the discrete version of the
WLC model, where the finite size of the equilibrium length l
is also accounted for19, 20

f l

kBT
= 2Lp

l

⎡⎣√
1 +

(
l

2Lp

)2 1

(1 − ζ )2
−

√
1 +

(
l

2Lp

)2
⎤⎦

+

⎡⎢⎢⎣3
1 − L

(
Lp

l

)
1 + L

(
Lp

l

) −
l

2Lp√
1 +

(
l

2Lp

)2

⎤⎥⎥⎦ ζ (42)

with L(x) = coth x − 1/x being the Langevin function. It is
easy to verify that in the continuum limit l → 0 one recovers
Eq. (41), as expected. Other interesting expressions for the
force-extension curves can be found in Ref. 33. In Fig. 10 we
report an enlarged detail of Fig. 9 together with the constitu-
tive equations given in Eqs. (41) and (42): plots correspond-
ing to both analytical approximations are contained between
the Gibbs and Helmholtz Monte Carlo solutions for the larger
value of N considered. Therefore, the interpolation formulas
in Eqs. (41) and (42) are in very good agreement with the be-
haviour of the WLC model when the thermodynamic limit is
reached (N > 50 in this case).

We can next analyse the convergence toward the ther-
modynamic limit. To this aim, we consider again the data in
Fig. 9 and the ratio rH (N)

rG(N) at a given fixed value of the
normalized force. As before, it is found that Monte Carlo
simulations are nicely fitted by the power law

rH (N )

rG(N )
= 1 + a

Nα
, (43)

where a and α are fitting parameters. All sets of data have
been interpolated by linear regression in Fig. 11 and they
provided the same scaling exponent α = 1.30 ± 0.05.
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FIG. 11. Comparison between the elongations rH and rG for the pure WLC
model. The elongations are calculated, respectively, in the Helmholtz and
Gibbs ensembles as a function of the polymer length (given by the number N
of monomers in the chain). All sets of data are nicely fitted by Eq. (43) with
the same scaling exponent α = 1.30 ± 0.05.

We finally consider the semiflexible discrete WLC model
with extensible bonds. We set the parameters κ = 10kBT (for
the bending) and k = 10kBT/(nm)2 (for the stretching). In
Fig. 12 we report the Monte Carlo results for both ensembles:
the two families of curves are converging (from the top for
the Helmholtz case and from the bottom for the Gibbs one)
to the same constitutive relation for an increasing contour
length, or number of monomers N.

As before, the curves in Fig. 12 can be used to anal-
yse the convergence toward the thermodynamic limit through
Eq. (43). Figure 13 shows that in this case the linear regres-
sion leads to a scaling exponent α = 1.40 ± 0.05 for any value
of the normalized force.
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FIG. 12. Constitutive relation provided by Monte Carlo simulations for
the WLC model with elastic bonds between the monomers, both under
Helmholtz (H) and Gibbs (G) boundary conditions. The elongation r and the
traction f are reported, respectively, on the vertical and horizontal axis in di-
mensionless units (see text). The Helmholtz constitutive relation is reported
for different polymer lengths, given by the number N of monomers in the
chain.
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FIG. 13. Comparison between the elongations rH and rG for the WLC model
with elastic bonds between the monomers. The elongations are calculated,
respectively, in the Helmholtz and Gibbs ensembles as a function of the
polymer length (given by the number N of monomers in the chain). All
sets of data are nicely fitted by Eq. (43) with the same scaling exponent
α = 1.40 ± 0.05.

V. CONCLUSIONS

In this work we investigated how the force-extension
curve of a model polymer chain is affected by the loading
protocol which can typically be fixed-ends or fixed-force. We
showed how such macroscopic boundary conditions can be
formulated within the Helmholtz and the Gibbs ensembles of
the statistical mechanics. We adopted flexible and semiflexi-
ble polymer models, with and without extensible bonds. Ex-
tensible bonds were here described by linear springs for sim-
ply comparing analytical and Monte Carlo results. However,
the present approach can be easily extended to more complex,
nonlinear springs.47

After a theoretical introduction on different boundary
conditions, we discussed the notion of thermodynamic limit.
In particular, we proved that different experimental strategies
used for stretching the polymer lead to the same results when
the number of monomers is large enough. On the other hand,
by Monte Carlo simulations we showed that for short chains
the two ensembles are characterized by very different elas-
tic behaviors. In all cases here investigated (FJC, WLC, and
their extensible versions) we found that the convergence to
the thermodynamic limit is well described by suitable power
laws with well defined scaling exponents. More specifically,
we proved that such power laws can fit the Monte Carlo re-
sults with high accuracy and that different polymer models
have different scaling exponents.

The results of this work and the demonstration of dif-
ferent scaling laws may help to discriminate the response
of polymers with different internal chemical structure, in
the short-length limit. A similar treatment can be followed
also for different deformation modes. For example, the twist-
ing experiments can be performed by means of magnetic
tweezers:48 the equivalent of the present fixed-ends versus
fixed-force scheme would be substituted with the fixed-twist
versus fixed-torque scheme.
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