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Abstract
Carotid atherosclerotic disease is a widely acknowledged risk factor for ischemic stroke, making it a major concern 
on a global scale. To alleviate the socio-economic impact of carotid atherosclerotic disease, crucial objectives 
include prioritizing prevention efforts and early detection. So far, the degree of carotid stenosis has been regarded 
as the primary parameter for risk assessment and determining appropriate therapeutic interventions. 
Histopathological and imaging-based studies demonstrated important differences in the risk of cardiovascular 
events given a similar degree of luminal stenosis, identifying plaque structure and composition as key determinants 
of either plaque vulnerability or stability. The application of Artificial Intelligence (AI)-based techniques to carotid 
imaging can offer several solutions for tissue characterization and classification. This review aims to present a 
comprehensive overview of the main concepts related to AI. Additionally, we review the existing literature on AI-
based models in ultrasound (US), computed tomography (CT), and Magnetic Resonance Imaging (MRI) for 
vulnerable plaque detection, and we finally examine the advantages and limitations of these AI approaches.
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INTRODUCTION
Cardiovascular disease is a prominent contributor to disability and premature mortality worldwide[1-3]. In 
the context of carotid atherosclerosis, a systematic review revealed that approximately 21.1% [95% 
confidence interval (CI) 13.2-31.5] of individuals aged 30 to 79 years worldwide have carotid plaques[4]. 
Notably, a considerable portion of ischemic strokes, ranging from 8% to 15%, are caused by large artery 
atherosclerosis in the carotid arteries. This condition can lead to embolism and hypoperfusion resulting 
from vascular stenosis[5]. Beyond the degree of carotid artery stenosis, plaque morphology and composition 
have shown a crucial role in terms of plaque vulnerability or stability[6,7], and are strongly associated with 
cardiovascular complications[8,9]. Early identification of carotid atherosclerotic disease is a mainstay to 
reduce the healthcare burden and improve patient outcomes. In this scenario, non-invasive carotid imaging 
modalities, including ultrasound (US), computed tomography (CT), and magnetic resonance imaging 
(MRI), have proven their efficacy in assessing and characterizing plaque features that serve as predictors of 
future cardiovascular events, directing patient stratification and management[10].

Artificial intelligence (AI) encompasses a wide range of computer science techniques that enable machines 
to perform tasks resembling human intelligence. Within the field of cardiovascular imaging, AI has seen 
significant advancements and progress in recent years[11-18]. AI models have demonstrated their utility in 
different carotid imaging areas, including the assessment of plaque morphology and composition[15].

This review aims to provide a comprehensive overview of the key concepts related to AI. Furthermore, we 
will discuss the current literature on AI-based models in US, CT, and MRI for the detection of vulnerable 
plaques. Finally, we will examine the advantages and limitations of these AI models.

NOTIONS OF AI
AI is a generic term including a diverse range of techniques enabling machines to acquire knowledge from 
experience and emulate human cognitive processes[11,12,15,16,19]. The discipline of AI contains several subfields, 
such as Machine Learning (ML). ML is an AI technique that solves problems by extracting patterns from 
raw data without explicit programming. In ML, features are vital inputs to the algorithms and are typically 
task-specific. However, determining the necessary features in advance for a given task can pose a 
complicated hurdle. Deep Learning (DL) is a branch of ML that has evolved by allowing the algorithms to 
learn and extract pertinent features autonomously[12,20] [Figure 1]. This ability to automatically extract 
features, without the need for human intervention or explicit guidance, has led to a shift away from 
traditional processing methods towards the adoption of deep artificial neural networks (DNN). The 
architecture of a DNN consists of input, hidden, and output neurons organized into multiple layers. 
Neurons within the same layer and across different layers are interconnected. During the learning process, if 
the network achieves the desired outcome, the connections between neurons responsible for that 
achievement are strengthened. Conversely, if the desired outcome is not reached, the connections are 
weakened. This iterative mechanism allows the algorithm to refine itself automatically until a high level of 
accuracy or performance is attained.

Categorization of ML tasks
ML algorithms can be categorized into different classes depending on the type of data used for training, 
including supervised, unsupervised, and hybrid paradigms such as semi-supervised learning, weakly 
supervised learning, and self-supervised learning[20].

Supervised learning
In supervised learning, the learning algorithms are trained with labeled data, where each sample in the 
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Figure 1. Hierachical taxonomy of artificial intelligence methodologies. The taxonomy outlines the progressive relationship of artificial 
intelligence, machine learning, and deep learning, featuring specific algorithmic examples within each category. kNN: k-nearest 
neighbors; SVM: support vector machines; RF: random forests; CNN: convolutional neural networks; RNN: recurrent neural networks.

dataset is associated with a specific output. These labels enable the algorithms to learn the mapping between 
the input data and the corresponding output labels. During the training process of a supervised learning 
algorithm, the learned parameters are iteratively adjusted to minimize the difference between the predicted 
output and the true output. This iterative update aims to align the algorithm's predictions as closely as 
possible with the provided labels in the training data. Once the training is completed, the accuracy is 
evaluated using test data that was not seen during the training stage. Some examples of supervised learning 
algorithms are linear regression models, support vector machines, and tree-based and nearest-neighbor 
algorithms.

Unsupervised learning
In unsupervised learning, algorithms are presented with vast amounts of data without any accompanying 
labels or ground-truth information. The objective of unsupervised learning is to extract meaningful 
patterns, structures, or representations from the data itself.

Hybrid paradigms
Hybrid paradigms that bridge the gap between supervised and unsupervised learning encompass semi-
supervised, weakly-supervised, and self-supervised learning approaches. Semi-supervised learning combines 
labeled and unlabeled data during the training process. By leveraging labeled data, the algorithm learns from 
explicit examples and gains insights from them. Additionally, the utilization of unlabeled data helps in 
capturing supplementary information and enhancing the algorithm's generalization capabilities. In weakly-
supervised learning, the training data contains partial or noisy labels, rather than complete and accurate 
labels. The algorithms are designed to learn from this limited label information and make predictions or 
classifications based on it. In self-supervised learning, only unlabeled data is accessible, and the learning task 
is derived or generated from the data itself. The algorithm constructs its own learning task by creating 
surrogate tasks from the input data. By solving these surrogate tasks, the algorithm learns meaningful 
representations or features that can then be used for downstream tasks. Figure 2 summarizes the taxonomy 
of ML models according to the nature of supervision.
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Figure 2. Taxonomy of Machine Learning (ML) tasks categorized by the nature of supervision. The taxonomy showcases the 
categorization of ML tasks based on their supervision types, outlining their defining characteristics and representative examples.

Convolutional neural networks in diagnostic imaging
Deep learning methodologies applied to medical image analysis often rely heavily on convolutional neural 
networks (CNNs). CNNs are a specific type of artificial neural network designed to excel in interpreting 
visual data, particularly images and videos. The architecture of a CNN comprises multiple interconnected 
layers, primarily including convolutional layers. These convolutional layers play a pivotal role in enabling 
the network to learn incrementally abstract and complex hierarchical features from the input data. In 
essence, a CNN processes input data through a series of convolutional and pooling layers, which collectively 
extract features of varying complexities. The convolutional layers apply filters to the input data, capturing 
distinctive patterns and features. Subsequent pooling layers downsample the data, reducing its spatial 
dimensions while retaining relevant information. This hierarchical feature extraction allows the network to 
discern both low-level features, such as edges and textures, as well as high-level semantic features, such as 
complex structures and shapes[21]. For different tasks, the architecture of the final layers of a CNN varies. In 
classification tasks, the final layer typically consists of one or more fully connected layers followed by a 
softmax activation function, enabling the network to output class probabilities. In object detection tasks, the 
final layer often combines classification and bounding box regression, generating predictions for both the 
presence of objects and their spatial locations. In segmentation tasks, the final layers consist of 
convolutional layers that produce dense pixel-wise predictions, assigning each pixel to a specific class. 
Lastly, for regression tasks, the output layer typically comprises a single neuron with an appropriate 
activation function, providing continuous numerical predictions.

In 2015, Ronneberger et al. introduced U-Net, a segmentation network rooted in Fully Convolutional 
Networks and tailored explicitly for medical image segmentation[22]. Since its inception, the U-Net 
architecture has solidified its position as one of the most extensively employed segmentation architectures 
within the medical domain[22]. Originally, the U-Net architecture was deployed for segmenting plaque 
morphology[23]. The hallmark of the U-Net architecture, alongside its variations, is its distinct U-shaped 
design comprising two interconnected pathways. The first path, known as the contracting pathway, is 
dedicated to extracting progressively abstract and intricate features while preserving both local and global 
contextual information. The second path, referred to as the expanding path, entails upsampling the image 
back to its original spatial resolution through the incorporation of skip connections. This dual-path 
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approach enables the network to learn localized classification information and enhances the output's spatial 
resolution[24].

However, the original U-Net architecture was not immune to certain limitations, such as challenges with 
over-segmentation and under-segmentation. To overcome these issues, diverse optimization strategies have 
been employed to U-Net on various fronts, including network architecture, loss function design, heuristic 
rules, and preprocessing techniques[23]. Among the extension of UNet architectures adopted in the field of 
segmentation, no-new-net UNet (nnU-Net stands out as the state-of-the-art framework. Differing from 
previous DL architectures, nnU-Net is an automated DL-driven segmentation framework that automatically 
adapts its configurations, including preprocessing, network architecture, training, and postprocessing[25]. It 
demonstrates the capability to adapt to new datasets without requiring manual intervention, consistently 
outperforming many previous methods[25]. In the realm of imaging analysis, transformers are emerging as a 
popular approach[26]. Dosovitskiy et al. introduced the vision transformer (ViT) method, which considers 
image patches as the fundamental units of information in an image patch, as opposed to individual 
pixels[27]. ViT embeds image patches into a common space and acquires the relationships between these 
embeddings through self-attention modules[27]. The utilization of transformers, such as the U-shaped 
CSWin transformer,  has been recently proposed in carotid arteries segmentation, showing promising 
results[28].

Explainable and interpretable AI models
The interpretability of AI-based models is crucial for the application of these models, particularly in 
healthcare. Building confidence in systems is challenging when their decision-making process remains 
enigmatic. Some AI models are characterized by a "black box" nature, alluding to algorithms so intricate that 
human comprehension is not immediate. Addressing the substantial challenges posed by such "black box" 
models, a growing body of literature focuses on crafting AI models that are both explainable and 
interpretable[29,30].

The terms "interpretability" and "explainability" delineate two distinct concepts. Interpretability denotes the 
capacity to discern cause and effect within an AI model. In essence, an interpretable algorithm is one that a 
human can apprehend clearly[29,30]. Conversely, explainability pertains to the ability to elucidate an AI 
algorithm's decision-making mechanism using language intelligible to humans. This empowers individuals 
to grasp why a model generates a specific outcome[29,30].

In the context of vulnerable carotid plaque, an explainable AI model might involve well-established features 
of plaque instability as input data, rather than employing "raw" images. In contrast, interpretability could be 
achieved by utilizing histology specimens as ground truth, enabling the validation of model inferences 
against well-established pathological characteristics.

IMAGING FEATURES OF PLAQUE VULNERABILITY
Atherosclerosis is a multifactorial disease that stems from the interaction of genetic and environmental 
factors and is a well-established risk factor for ischemic stroke[31-34]. Histopathological studies have provided 
evidence that specific types of carotid plaques have a significantly increased likelihood of causing ischemic 
stroke and thrombotic complications, irrespective of the degree of stenosis. Carotid plaque imaging can 
detect some biomarkers of vulnerability. The main imaging determinants of carotid plaque vulnerability 
described in the literature are intraplaque hemorrhage (IPH), thinning or rupture of the fibrous cap (FC), 
lipid-rich necrotic core (LRNC), plaque burden, surface morphology, plaque inflammation, plaque 
neovascularization, and calcifications[10,35-38]. See Figure 3. Mainstream non-invasive measurements of 
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Figure 3. Multimodality imaging features of vulnerable plaques. (A) depicts a hypoechogenic plaque at the carotid bulb, revealing a lipid 
necrotic core with a thin fibrous cap on B-mode ultrasound imaging. (B) an ulcerated plaque is evident through computed tomography. 
(C) showcases intraplaque hemorrhage as observed in MRI images.

carotid atherosclerotic plaque include US, CT, and MRI. These imaging techniques, with different pros and 
cons, provide valuable information about plaque composition and morphology as well as a characterization 
of luminal stenosis.

Plaque burden
The relevance of plaque size in determining the risk of clinical events, often referred to as atherosclerotic 
“burden” [i.e., maximum wall thickness (MWT) plaque volume, total plaque area, and normalized wall 
index (NWI)] has been widely recognized[39]. In “real life” clinical practice, US is the preferred initial 
imaging modality for evaluating carotid plaque burden due to its wide availability and practicality[35,40,41].

Plaque surface morphology
Plaque surface characteristics, either irregularities or ulceration, represent an important determinant of 
vulnerability associated with the occurrence of cerebrovascular events[42]. Carotid plaques are typically 
classified as smooth, irregular, or ulcerated[43]. Plaque surface evaluation can be performed using US, CT, 
and MRI[10,44]. CT with iodinated contrast agent administrations serves as the benchmark non-invasive 
imaging method for assessing plaque ulcerations, which is defined as contrast material that protrudes from 
the vascular lumen into the plaque, typically covering a distance of at least 1 mm[8,9]. This imaging technique 
encounters limitations due to plaque calcifications, leading to subsequent beam-hardening artifacts. 
However, this limitation could be addressed through photon-counting scanners, enabling the elimination of 
calcified plaque components from the lumen[45-47].

Plaque composition
Beyond plaque morphology, plaque composition plays a crucial role in determining plaque vulnerability. 
Plaque composition refers to the types and distribution of various components within the plaque, such as 
LRNC, fibrous tissue, calcifications, IPH, and inflammation. MRI has proven to be highly accurate in the 
detection of features of vulnerability in carotid plaques. By employing a multi-sequence protocol (including 
T1-weighted, T2-weighted, proton density, and TOF sequences) along with a specialized carotid coil, MRI 
can effectively identify significant characteristics such as the presence of a LRNC, thinning or rupture of the 
fibrous cap, and intraplaque hemorrhage IPH[8,40,48]. The characterization of different plaque compositions 
can also be evaluated with US and CT. Carotid plaque composition was traditionally assessed qualitatively 
using US based on grayscale values, taking into account echogenicity and heterogeneity. However, this 
qualitative information can be further enhanced by incorporating quantitative analyses, specifically 
grayscale median[8,49]. Nonetheless, US lacks the ability to effectively differentiate between IPH and LRNC, 
thereby constraining its utility in the characterization of carotid plaques[8]. In CT imaging, the 
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differentiation of carotid atherosclerotic plaque components relies on Hounsfield unit (HU) densities. 
Carotid plaques are categorized into three main types based on their HU values, namely fatty (< 60 HU), 
mixed (60-130 HU), and calcified (> 130 HU)[50]. The main limitation of CT techniques is a substantial 
overlap of HU values among LRNC, fibrous tissues, and IPH. Additionally, certain artifacts, such as beam-
hardening, edge-blur, and halo effect artifacts, further restrict the CT’s capability to evaluate plaque 
composition[8]. Promising results in plaque characterization are emerging with the introduction of photon-
counting computed tomography technologies, which can generate quantitative maps depicting the spatial 
distribution of particular atomic elements within a plaque[45-47].

General imaging techniques limitations
Beyond the individual constraints of each imaging modality in detecting vulnerable plaques, it is essential to 
understand the overall limitations of the techniques employed. Specifically, the utilization of US is 
constrained by the sonographers’ experience, plaque calcifications, and anatomical considerations[51]. CT 
limitations encompass exposure to ionizing radiation and potential adverse responses to iodinated contrast 
agents. Moreover, CT faces limitations in effectively distinguishing some plaque subcomponents according 
to the HU[8]. Finally, MRI limitations include extended acquisition periods, a requirement for specialized 
hardware like carotid coils to achieve high-resolution images, and constrained availability[9].

AI-BASED MODEL FOR AUTOMATIC CAROTID PLAQUE SEGMENTATION
Several AI-based models have been proposed to automatically segment carotid plaques, facilitating the 
evaluation of plaque burden and surface morphology[52-59]. An automatic plaque segmentation can improve 
clinical workflow and reduce some limitations of the manual assessment, including long analysis time and 
inter-observer variability. The current segmentation models proposed can be broadly categorized into two 
main approaches: those based on traditional image processing and those based on DL. The traditional 
image processing technique relies on manual or semi-automated algorithms to segment the carotid plaque 
region. Conversely, the DL models can automatically segment carotid plaque without human input. 
However, these methods require large annotated datasets for training and may involve complex network 
architectures[23].

Automatic carotid plaque segmentation in US
Menchón-Lara et al. proposed an AI-based image segmentation method for an automatic intima-media 
thickness measurement in 60 longitudinal ultrasound images of the common carotid arteries, comparing the 
automatic segmentation with four manual tracings[53]. The authors developed a three-stage neural network. 
Firstly, the US images were preprocessed to automatically detect the region of interest. Then, a network 
ensemble is utilized to perform pixel classification within the region of interest, distinguishing between two 
categories: "IMT-boundary" pixels and "non-IMT-boundary" pixels. After obtaining the binary image 
through the previous classification process, post-processing techniques are applied to extract the final 
contours representing the interfaces of the lumen-intima and media-adventitia boundaries. The AI models 
achieved a mean absolute distance, polyline distance, and centerline distance of 0.03763 ± 0.02518 mm, 
0.03670 ± 0.02429 mm, and 0.03683 ± 0.02450 mm, respectively[53].

Jain et al. developed a four-layer deep learning U-Net architecture for plaque wall segmentation in the 
common carotid arteries using two different demographic groups of patients with atherosclerotic carotid 
disease[60]. The proposed model achieved a mean accuracy, dice-similarity, and correlation coefficient of 
99.01, 86.89, and 0.92, respectively, using a mixed cohort of the different demographic groups[60].
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Automatic carotid plaques segmentation in CT
Dos Santos et al. developed a fully automated vascular imaging software tool called VASIM using CT 
images from 59 randomly selected patients to segment and analyze atherosclerosis in the extracranial 
carotid arteries[57]. The image analysis algorithm of VASIM consists of five consecutive stages. The first step 
involves loading the image stack or dataset of the patient for analysis. The second step is further divided into 
two steps: airway segmentation and carotid segmentation. In the third step, the algorithm aims to delineate 
or outline the boundaries of the vascular wall, which includes the inner lumen and outer wall regions of the 
carotid arteries. Then, the region of carotid atherosclerotic plaque was extracted and identified. Finally, 
VASIM enables the extraction of several metrics on a side-wise basis, including the minimum lumen area in 
the region of interest, the maximum area percentage occupied by the arterial wall in a slice, the maximum 
area percentage occupied by the plaque, and the maximum stenosis of the carotid artery calculated by the 
algorithm.

The proposed model achieved an overall accuracy of 71% with an average time for the whole segmentation 
analysis of 1,381 s[57].

Bortosova et al. conducted a secondary analysis of prospectively collected data from the Rotterdam study 
with the aim of developing a DL-based model for automated segmentation and volume measurement of 
carotid plaque composition, specifically focusing on intracranial carotid artery calcifications[56]. The DL 
model was trained using non-contrast CT scans, and two observers manually delineated ICAC to serve as 
the ground truth for training and evaluation. The performance of the DL model was then compared to the 
manual segmentations and volume measurements generated by an independent observer, serving as a 
reference standard for accuracy assessment. The DL-based model yielded a sensitivity of 83.8% and a 
positive predictive value of 88.0% in automatic internal carotid calcification with an excellent intraclass 
coefficient (0.98) between automatic and manual volume measures. Additionally, the automated delineation 
was judged as more accurate than manual delineations in 131 regions in the blinded visual comparison (131 
of 225, 58.2%; P = 0.01)[56].

Automatic carotid plaques segmentation in MRI
The paper by Wu et al. introduces an AI-based network, which utilizes convolutional neural networks for 
the early detection of carotid atherosclerosis using vessel wall-MRI images[58]. The authors collected 1,057 
carotid MRI scans to develop automated software for carotid wall segmentation[58].

The proposed AI network consists of two main components: the segmentation subnetwork and the 
diagnosis subnetwork. The network leverages manual annotations of the lumen area, outer wall area, and 
lesion types following the modified AHA criteria as ground truth for training. The segmentation 
subnetwork is designed using a deep U-shaped convolutional neural network (CNN) architecture and 
trained using the triple Dice loss to provide the vessel wall map as morphological information. Conversely, 
the diagnosis subnetwork consists of two deep CNNs: an image stream and a morphology stream. The 
image stream processes the black-blood vessel wall-MRI images, while the morphology stream operates on 
the obtained vessel wall map. These two streams are mixed to derive the diagnosis results for 
atherosclerosis. The proposed DL models achieved high segmentation performance (0.96 Dice for the 
lumen and 0.96 Dice for the outer wall) and excellent diagnostic accuracy [0.95 area under the receiver-
operating characteristic curve (AUC) and 0.89 Accuracy] in the test dataset. This AI model demonstrates 
remarkable performance when applied to a different test dataset for both segmentation and diagnosis tasks 
(0.95 Dice for the lumen and 0.95 Dice for the outer wall, 0. 92 AUC and 0.87)[58].
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Ziegler et al. developed a segmentation pipeline utilizing a CNN called DeepMedic using contrast-enhanced 
MR angiography images from 194 subjects of the Swedish CardioPulmonsary bioImage Study (SCAPIS) to 
automatically segment the carotid arteries[59]. The segmentations produced by the DL model were evaluated 
through both quantitative and qualitative analyses. In the quantitative assessment, multi-class data from 46 
vessels was compared to manually generated ground truth data using various metrics, including the Dice 
similarity coefficient (DSC), Matthews Correlation Coefficient, F2 score, F0.5 score, and true positive ratio. 
In the qualitative assessment, the carotid black-blood vessel wall-MRI images were examined qualitatively 
and the quality by an experienced vascular MRI observer. In the testing cohort, the DL model achieved 
average scores of DSC = 0.80 ± 0.13, MCC = 0.80 ± 0.12, F2 = 0.82 ± 0.14, F0.5 = 0.78 ± 0.13, and 
TPR = 0.84 ± 0.16[59].

CAROTID PLAQUE VULNERABILITY
The integration of AI models in the characterization of carotid plaque can be an additive tool to facilitate 
the automated distinction of vulnerable plaques, assisting clinicians in risk stratification and guiding 
personalized treatment decisions for patients with carotid artery disease [Figure 4].

AI-based models to detect vulnerable plaque using US images
Zhang et al. tested the performance of US-based texture analysis combined with LASSO regression to detect 
carotid plaque vulnerability[61]. The overall cohort comprised 150 consecutive patients with suspected 
cerebrovascular events, and randomized 7:3 into the training (n = 105) and testing (n = 45) sets[61]. The 
conventional diagnostic model proposed was constructed with four variables of conventional ultrasound 
(including surface morphology, fibrous cap state, plaque echo, and plaque ulcer formation) and combined 
with the texture feature model. In the training set, the conventional ultrasound-texture feature combined 
model achieved an AUC of 0.88 and a C-index of 0.89. In the testing set, the proposed combined model 
achieved an AUC of 0.87 and a C-index of 0.84[61]. Akkus et al. developed a software package to detect 
intraplaque neovascularization called carotid intraplaque neovascularization quantification software 
(CINQS) using 45 contrast-enhanced ultrasound images of carotid plaques from 29 patients[62]. The derived 
intraplaque neovascularization parameters (segmentation-based intraplaque neovascularization surface area 
and intraplaque neovascularization to plaque surface area ratio) were compared to the consensus visual 
score of two experienced physicians based on a three-point scale achieving excellent agreement with visual 
intraplaque neovascularization scores with an AUC of 0.92 and 0.93[62].

A prospective multicenter study evaluated the performance of a DL-based model to identify carotid plaque 
vulnerability in 205 patients with carotid atherosclerosis using contrast-enhanced ultrasound video and 
histopathological or high-resolution MRI findings as reference standard[63]. The authors used a 
convolutional neural network combined with video information aggregation and compared its performance 
with two experienced radiologists who manually examined the contrast-enhanced ultrasound video. The 
proposed DL model demonstrated significant improvements over manual assessment in assessing the 
vulnerability of carotid plaque, achieving an AUC of 0.85 (vs. 0.69 for the manual assessment) with the 
training cohort and 0.87 (vs. 0.66 for the manual assessment) with the validation cohort[63]. Saba et al. 
developed a series of AI-based models (four machine learning systems, one transfer learning system, and 
one deep learning) for tissue characterization and classification, namely Atheromatic 2.0 and AtheroPoint, 
using US-based carotid artery plaque images[64]. The overall cohort comprises 506 symptomatic and 
asymptomatic patients collected from multiple centers and randomized 9:1 into the training and testing set. 
The accuracy of the AI models proposed was 93.55%, 94.55%, and 89%, with an AUC of 0.938, 0.946, and 
0.889, respectively[64].
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Figure 4. Application of artificial intelligence for vulnerable plaque detection across various imaging modalities. (A) Illustration of a 
standard processing pipeline encompassing automated segmentation of the carotid lumen, followed by automated plaque detection, 
segmentation and characterization. (B) The architecture of CarotidNet[54], a deep learning model built upon the renowned U-Net 
framework. The CarotidNet integrates a contraction path and an expansion path connected by skip connections, serving the purpose of 
automating the segmentation of the carotid artery lumen.

AI-based models to detect vulnerable plaque using CT images
A radiomics analysis combined with a ML approach (including logistic regression, support vector machine, 
and classification and regression tree analysis) was also developed using CT angiography features in the 
pilot study of Cilla et al.[65]. The authors enrolled 30 consecutive patients with carotid atherosclerosis and 
divided the carotid plaque into “hard” and “soft” using histological specimens as a ground truth. The 
predictive radiomic model for identifying “soft” plaques was built in different consecutive steps, including 
(1) the evaluation of the pairwise feature interdependencies; (2) the choice of the top-ranked features using 
univariate analysis; (3) the determination of the relative importance of features through a stepwise backward 
elimination approach. Finally, the identified significant features were employed to construct the models for 
binary classification of carotid plaques. Among the ML classifiers evaluated, the support vector machine 
demonstrated the highest performance with accuracy, precision, recall, and F-score equal to 86.7, 92.9, 81.3, 
and 86.7%, respectively. Additionally, the classification and regression tree analysis model utilizing the 
entropy and volume features achieved an accuracy of 86.7% with an AUC of 0.987[65].

Buckler et al. evaluated the diagnostic performance of a ML approach for determining plaque vulnerability 
on CT images in comparison with histologic specimens from carotid endarterectomy classified as minimal 
disease, stable plaque, or unstable plaque based on the modified AHA histological definition[66]. The overall 
cohort includes 53 patients with carotid atherosclerosis randomly assigned to the derivation cohort (n = 30) 
and to the validation cohort (n = 23). The ML-based algorithm demonstrated high accuracy for plaque 
vulnerability determination compared to histological ground truth with weighted kappa of 0.82 and AUC of 
0.97, 0.95, and 0.99 for identification of unstable plaque, stable plaque, and minimal disease, respectively[66].

Another ML-based model was proposed for the identification of vulnerable carotid plaque by Kigka et al. 
combining five distinct types of data as input, including clinical data, risk factors, laboratory data, serum 
markers, and imaging features such as stenosis ipsilateral and plaque size[67]. The authors tested several ML 
algorithms such as Random Forests, Naive Bayes, Support Vector Machine, and Artificial Neural Networks 
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and integrated into their methodology the implementation of feature selection techniques to delete 
redundant features. The support vector machine achieved the highest performance with an accuracy of 76% 
and an AUC of 0.73[67].

AI-based models to detect vulnerable plaque using MRI images
Zhang et al. developed a vulnerable carotid plaque model based on MRI radiomics features and ML 
algorithm for differentiating vulnerable carotid plaques and compared its performance to a traditional 
model based on conventional MRI features[68]. The overall cohort comprised 162 patients with carotid 
stenosis and were randomized into training and testing sets. The traditional model was constructed using 
features related to IPH and LRNC identified through multivariable logistic regression analysis. The 
predictive radiomics model for identifying high-risk plaques was built in different consecutive steps, 
including (1) normalization to z distribution; (2) selection of the features with P < 0.05 in each sequence, 
and an AUC > 0.65; (3) application of the least absolute shrinkage and selection operator (LASSO) for 
further feature reduction. Through the application of the Lasso algorithm, a subset of 33 radiomics features 
was selected for the construction of the radiomic model. The results demonstrated the superior 
performance of the radiomic model compared to the traditional model. In both the training and testing sets, 
the radiomic model achieved an AUC value of 0.988 and 0.984, respectively. The traditional model yielded 
AUCs of 0.825 and 0.804 for the training and testing sets, respectively. Furthermore, when combining the 
radiomic and traditional models, the combined model exhibited even higher AUCs of 0.989 and 0.986 for 
the training and testing sets, respectively[68].

Similarly, Li et al. developed a high-risk carotid plaque model using three-dimensional (3D) high-resolution 
magnetic resonance imaging combining radiomics features with ML approach and compared its 
performance with conventional model[69]. The authors enrolled 136 patients with symptomatic intracranial 
artery stenosis. The conventional model comprised plaque length, plaque thickness, remodeling index, 
plaque burden, degree of luminal stenosis, plaque enhancement, IPH, and plaque surface irregularities. On 
the other hand, the radiomics model was constructed using a linear support vector classifier after 
performing feature selection with an analysis of variance F-test statistic. The radiomics model achieved an 
AUC of 0.923 in the training set, and an AUC of 0.906 with an accuracy of 88.80%, a specificity of 84.78%, 
and a sensitivity of 81.62% in the test set. The combined radiomics-conventional radiological model showed 
an AUC of 0.925 in the training set and 0.903 in the test set[69].

Table 1 summarizes previous studies regarding the application of AI model in carotid plaque evaluation.

LIMITATIONS
Although the current literature shows promising results in utilizing AI model for the identification of 
vulnerable carotid plaque, there are still limitations in translating this model into real-world clinical 
practice.

Model transparency and interpretability
First, the “black box” nature of AI models. Indeed, one of the challenges with AI models lies in their lack of 
transparency and interpretability, which can result in uncertainty regarding the data utilized and the 
relationships between variables that influence specific outputs. This limitation hinders the integration of AI 
models in clinical settings, as they require sufficient insight and explanation to be effectively utilized.

Data heterogeneity
Second, data heterogeneity and apprehensions related to the training and testing set. To ensure the 
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Table 1. Previous studies regarding the application of artificial intelligence model in carotid vessels evaluation

Authors Years
Number 
of 
patients

Imaging 
modalities Variables Model 

interpretability Results

Menchón-
Lara  
et al.[53]

2014 60 US Automatic detection of intima-media thickness Black box The AI models achieved a mean absolute distance, polyline distance, and centerline distance of 
0.03763 ± 0.02518 mm, 0.03670 ± 0.02429 mm, and 0.03683 ± 0.02450 mm, respectively 

Jain  
et al.[60]

2021 630 US Automatic segmentation of low atherosclerotic 
plaque

Black box The proposed model achieved a mean accuracy, DSC, and correlation coefficient of 99.01, 
86.89, and 0.92, respectively, using a mixed cohort of different demographic groups

Wu  
et al.[58]

2019 1,057 MRI Automatic vessel and carotid plaque 
identification

Black box The proposed DL models achieved high segmentation performance (0.9594 DSC for the lumen 
and 0.9657 DSC for the outer wall), along with excellent diagnostic accuracy (0.9503 AUC 
and 0.8916 Accuracy) on the test dataset. Remarkably, these AI models maintained 
exceptional performance even when applied to a different test dataset, exhibiting DSC of 
0.9475 for the lumen and 0.9542 for the outer wall, along with an AUC of 0.9227 and 
accuracy of 0.8679 for both segmentation and diagnosis tasks

Ziegler  
et al.[59]

2021 194 MRI Automatic segmentation of the carotid 
bifurcation into the common, internal, and 
external carotid arteries

Black box The proposed DL model attained average scores of DSC = 0.80 ± 0.13, MCC = 0.80 ± 0.12, F2 
= 0.82 ± 0.14, F0.5 = 0.78 ± 0.13, and TPR = 0.84 ± 0.1649

Dos 
Santos  
et al.[57]

2019 59 CT Automatic vessel/plaque segmentation Black box The proposed model achieved an overall accuracy of 71%, with an average time of 1,381 s for 
the complete segmentation analysis

Zhou  
et al.[54]

2020 56 CT Automatic vessel segmentation. Black box The U-Net-based DL model achieved an average DSC of 82.3%

Huang  
et al.[55]

2022 24 CT Automatic vessel segmentation. Black box The self-supervised DL model achieved an average DSC of 84.83%

Bortsova  
et al.[56]

2021 2,319 CT Automatic internal carotid artery calcification 
segmentation.

Black box The DL-based model yielded a sensitivity of 83.8% and a positive predictive value of 88.0% for 
automatic internal carotid calcification segmentation, showing an excellent intraclass 
coefficient (0.98) between automatic and manual volume measures. Moreover, in the blinded 
visual comparison, automated delineations were deemed more accurate than manual 
delineations in 131 regions out of 225 (58.2%; P = 0.01)

Zhang  
et al.[61]

2022 150 US Conventional diagnostic US model (including 
surface morphology, fibrous cap state, plaque 
echo, and plaque ulcer formation) combined 
with texture analysis model

Explainable On the training set, the model combining conventional ultrasound and texture features 
achieved an AUC of 0.88 and a C-index of 0.89. On the testing set, the proposed combined 
model attained an AUC of 0.87 and a C-index of 0.84

Saba  
et al.[64]

2021 506 US Plaque vulnerability characterization Black box The introduced AI models demonstrated accuracies of 93.55%, 94.55%, and 89%, alongside 
AUC values of 0.938, 0.946, and 0.889, respectively

Akkus  
et al.[62]

2014 29 CEUS Carotid intraplaque neovascularization 
quantification

Explainable The intraplaque neovascularization software exhibited excellent agreement with visual 
intraplaque neovascularization scores, yielding AUC values of 0.92 and 0.93

Guang  
et al.[63]

2021 205 CEUS Plaque vulnerability characterization Black box The proposed DL model demonstrated significant improvements over manual assessment in 
evaluating the vulnerability of carotid plaque, achieving AUC values of 0.85 within the training 
cohort and 0.87 within the validation cohort

Zhang  
et al.

2021 162 MRI Traditional MRI-based model (including IPH 
and LRNC) combined with radiomics model

Explainable The model combining radiomic and traditional features exhibited AUC values of 0.989 and 
0.986 for the training and testing sets, respectively[68]
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Cilla  
et al.[65]

2022 30 CT Binary classification in «hard» and «soft» 
carotid plaque

Interpretable The support vector machine demonstrated the highest performance, yielding an accuracy, 
precision, recall, and F-score of 86.7%, 92.9%, 81.3%, and 86.7%, respectively. Additionally, 
the classification and regression tree analysis model, employing the entropy and volume 
features, achieved an accuracy of 86.7% along with an AUC of 0.987

Buckler  
et al.[66]

2023 53 CT LRNC, calcification, matrix, and IPH Interpretable The ML-based algorithm demonstrated high accuracy in determining plaque vulnerability 
compared to histological ground truth. It achieved a weighted kappa of 0.82 and AUC values of 
0.97, 0.95, and 0.99 for identifying unstable plaque, stable plaque, and minimal disease, 
respectively

Kigka  
et al.[67]

2021 208 CT Clinical data, risk factors, laboratory data, 
serum markers, imaging features (stenosis 
ipsilateral and plaque size)

Explainable The support vector machine achieved the highest performance with an accuracy of 76% and 
AUC of 0.73

Li  
et al.[69]

2022 136 MRI Conventional model (plaque length, plaque 
thickness, remodeling index, plaque burden, 
degree of luminal stenosis, plaque 
enhancement, IPH, and plaque surface 
irregularities) combined with radiomics model

Explainable The model combining radiomics features and conventional radiological measurements 
exhibited an AUC of 0.925 in the training set and 0.903 in the test set

reliability and generalizability of AI models, a significant quantity of annotated data from diverse centers, along with specialized software and infrastructure, is 
essential. Building a large and homogeneous dataset that encompasses images from multiple centers becomes crucial for training AI models effectively. 
Additionally, once such a dataset is accessible, it is crucial to carefully examine and partition it into training, validation, and testing sets. This partition enables 
an unbiased assessment of the final models, minimizing potential biases.

Ethical and legal issues
Third, the utilization of AI in healthcare introduces significant ethical and legal implications. Ethical concerns revolve around data privacy and security, the 
fairness and potential biases of AI systems, and transparency and safety of algorithms. Developing extensive and uniform datasets for AI leads to specific issues 
regarding data privacy and security.

Future directions
Recent years have seen significant growth in research and projects centered around AI in cardiovascular imaging. Nevertheless, the seamless integration of AI 
models into specific healthcare domains remains an ongoing challenge. To truly enhance the clinical relevance of AI algorithms, it becomes crucial to not only 
curate extensive datasets but also to raise clinicians' awareness about the utility of these models. This awareness is pivotal in facilitating their seamless 
integration into day-to-day clinical practice. Moreover, alongside dataset efforts, incorporating robust privacy protection models and security mechanisms is 
imperative to ensure the safety of patient data.



Page 14 of Cau et al. Vessel Plus 2023;7:20 https://dx.doi.org/10.20517/2574-1209.2023.78 17

Finally, an integrative non-invasive multi-modal approach that amalgamates data from US, CT, and MRI 
has the potential to significantly enhance the proficiency of AI-based models in discerning and 
characterizing plaque vulnerability. The performance of these multi-modal AI-based models could further 
be enhanced by incorporating information derived from patients’ electronic health records. Future 
controlled research on AI-based model for vulnerable carotid plaque across different centers, patient 
groups, and imaging modalities are essential to instill confidence in the implementation of AI models within 
clinical decision-making processes. In addition, these multicenter trials should be designed with inherently 
interpretable models rather than develop black box models and attempt to explain them.

CONCLUSION
The implementation of AI-based models for vulnerable carotid plaque has the potential to greatly improve 
daily clinical practice in cardiovascular healthcare. AI using US, CT, and MRI has been demonstrated to be 
an important additional tool in aiding the identification of carotid atherosclerotic plaque and characteristics 
associated with vulnerability.

The application of AI technologies in real-life clinical practice has the capacity to significantly assist 
healthcare professionals and contribute to more efficient and effective patient care. Despite the potential 
benefits of these AI models in clinical practice, their applicability is constrained by several challenges, 
including data heterogeneity, limited transparency and explainability of numerous AI algorithms, and 
limited external validation in the current literature.

To expedite the clinical integration of AI-based models into valuable tools for clinical decision-making in 
multi-modal images, it is essential to tackle the challenges posed by "black box" models and conduct future 
prospective and multicenter studies with designs that are explainable and interpretable.
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