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Deep learning Approach for Cardiovascular Disease Risk 

Stratification and Survival Analysis on a Canadian Cohort 

 

Abstract 

Background: The quantification of carotid plaque has been routinely used to predict 

cardiovascular risk in cardiovascular disease (CVD) and coronary artery disease (CAD). To 

determine how well carotid plaque features predict the likelihood of CAD and cardiovascular 

(CV) events using deep learning (DL) and compare against the machine learning (ML) 

paradigm. 

Methodology: The participants in this study consisted of 459 individuals who had undergone 

coronary angiography, contrast-enhanced ultrasonography, and focused carotid B-mode 

ultrasound. Each patient was tracked for thirty days.  The measurements on these patients 

consisted of maximum plaque height (MPH), total plaque area (TPA), carotid intima-media 

thickness (cIMT), and intraplaque neovascularization (IPN). CAD risk and CV event 

stratification were performed by applying eight types of DL-based models. Univariate and 

multivariate analysis was also conducted to predict the most significant risk predictors. The 

DL’s model effectiveness was evaluated by the area-under-the-curve measurement while the 

CV event prediction was evaluated using the Cox proportional hazard model (CPHM) and 

compared against the DL-based concordance index (c-index). 

Results: IPN showed a substantial ability to predict CV events (p<0.0001). The best DL system 

improved by 21% (0.929 vs. 0.762) over the best ML system. DL-based CV event prediction 

showed a ~17% increase in DL-based c-index compared to the CPHM (0.86 vs. 0.73).  

Conclusions: CAD and CV incidents were linked to IPN and carotid imaging characteristics. 

For survival analysis and CAD prediction, the DL-based system performs superior to ML-based 

models. 

 

Keywords: Cardiovascular risk prediction, focused carotid ultrasound, intraplaque 

neovascularization, deep learning, receiver operating characteristics, survival analysis.  
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1. Introduction 

Cardiovascular disease (CVD) is the leading cause of mortality globally [1]. The mortality is 

increasing and getting affected due to different comorbidities such as hypertension, diabetes, 

stress, and lifestyle [2, 3]. There is an urgent need for early and non-invasive detection of CVD 

risk. A valuable screening method for cardiovascular events (CVE) is vascular ultrasonography 

which is an excellent diagnostic non-invasive tool to assess atherosclerotic plaque [4, 5]. The 

surrogate markers derived from the carotid artery are primarily maximum plaque height (MPH) 

[6], total plaque area (TPA) [7], and carotid intima-media thickness (cIMT) [8-10]. Intraplaque 

neovascularization (IPN), a measure of plaque instability and development, has recently been 

shown to be a major and reliable predictor of CVE and coronary artery disease (CAD) [11]. 

The previous methods to study the relationship between carotid ultrasound-based image 

phenotype (CUSIP) and CAD primarily used standard regression tools, and these tools were 

mainly linear [12, 13]. As a result, it was an oversimplification when dealing with patterns 

which are non-linear between the risk predictors and CAD outcomes. One of the short coming 

of the regression-based techniques is its inability to handle large cohort sizes. As a result, they 

are unable to accurately predict CVD events. The improved systems with the integration of 

artificial intelligence (AI) were not previously used that leads to slower and less accurate results 

[14, 15].  

It has been recently shown that artificial intelligence (AI) techniques are superior to 

traditional statistical-based models [16]. AI has proven useful in a number of medical imaging 

applications such as dermatology [17, 18], ophthalmology [19], cardiology [20], radiology [16, 

21], and recently its use in carotid ultrasonography for CVD risk assessment [22-25]. These AI 

models can learn the relationship between the risk predictors and the CVD endpoints using the 

training paradigm in an offline mode thereby generating the trained models. These trained 

models are then applied to transform the test risk predictors to predict the CVD events in an 

online mode. 
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Deep learning (DL) has started to emerge in several areas of medicine [26]. Our study 

hypothesize that DL-based algorithms predict CVD risk more accurately when compared to 

machine learning (ML)-based models [27-29]. Since every component for an input sequence 

receives signals from dual sources such as present and past, thus, bidirectional models are 

stronger than the unidirectional models [30, 31]. Further, DL models have added advantages of 

automated feature extractions and works with the multiple layered architecture for fast feature 

extraction [26, 31, 32]. The authors have benchmarked the DL-based bidirectional and 

unidirectional models against the existing three ML-models namely gradient boost (GB), 

random forest (RF), and support vector machine (SVM) [33]. The authors have also performed 

survival analysis and univariate and multivariate analysis. The proposed DL-based CVD risk 

online prediction system named as AtheroEdge 3.0DL is shown in Figure 1. The system shows 

the fusion of cardiovascular risk factors, image phenotypes, and intraplaque neovascularization 

(IPN), which is then fed to the trained model for CVD risk prediction yielding the multi-risk 

granular risk (given in four colours).  

The layout of the proposed study includes:  The methodology is presented in section 2, 

while the results are presented in Section 3. The discussions are evaluated in section 4. Finally, 

conclusions are presented in section 5. 
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Figure 1. Global architecture for DL-based CVD prediction system (AtheroEdge 3.0DL). 

2. Methods 

Study population 

For this study, 459 consecutive patients (age >18 years) were recruited between December 2016 

and June 2018 from the Cardiac Catheterization Laboratory at Kingston General Hospital in 
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Ontario, Canada. Of the 160 patients presenting with ACS, 13 had UA. All participants who 

were stable at the time of admission (n=299) were followed for 30 days.  Regarding the 33% 

of patients referred for MI, the MI was within 7 days of presentation to the Catheterization 

laboratory. Patients with remote MI (>7 days) were excluded from the study. Further, out of 

459 patients, 139 patients received stents. The inclusion criteria were (a) age ≥ 18 years; (b) 

referred for clinically indicated angiography for CAD assessment; and (c) the absence of 

clinical contraindication to angiography [11]. The patients with choric total occlusion (CTO), 

severe calcification, multi-vessel disease, left main disease, and acute kidney failure etc. were 

included in the study. The different types of CV events that occurred during the 30 days follow-

up period were described further in Appendix B. The criteria chosen for elimination were 

patients who had coronary artery bypass graft surgery, carotid endarterectomy, percutaneous 

coronary intervention (≥ 1 week), perflutren allergy, known or suspected cardiac shunt, 

transient ischemic attack (≥ 1 week) or history of myocardial infarction, and stroke. Every 

participant generated baseline data, which included vital signs and medical and surgical 

histories. Ahead of angiography, cholesterol readings could not be collected because of staffing 

and scheduling issues. For every subject, written informed consent was taken. This study fully 

complies with the ethical criteria outlined in the 1975 Declaration of Helsinki along with 

interventional review Board (IRB) approval by Teaching Hospital Research Ethics Board in 

association with Queen’s University Health Sciences, Queens, Ontario, Canada. A batch of 

sample data is been further demonstrated in Appendix D. 

Coronary artery angiography and multiclass scoring 

The modality adopted for the gold standard was coronary angiograms and these were acquired 

using the GE system 2000 (GE Healthcare) [34]. The clinical scientist has rated the angiograms 

based on their experiences [35, 36]. Four types of scores were created from high-risk to low-

risk and the following criteria were used. In the case of the severe CAD disease (score of 3), 

the criteria adopted was 70% stenosis in the right coronary artery (RCA), left anterior 

descending (LAD), coronary originating from circumflex (LCx) or 50% blockage in the left 
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main coronary artery. In the case of the moderate-risk, the stenosis of 50-69% in the RCA, 

LAD, and LCx resulted in a score of 2. In the case of the mild-risk, the score considered was 1 

having a blockage of 20-49%. For a score of 0, it was considered as no or minimal-risk, having 

the narrowing between 0-19%. The identified substantial CAD (>= 50% stenosis) had created 

a binary outcome [37, 38]. 

B-mode carotid ultrasound focused imaging 

The acquisition of B-mode focused ultrasound of the carotid artery was conducted using GE 

Vivid E9 Ultrasound System that consisted of linear array transducer (9L-D) having a central 

frequency of 2.4-10 MHz. Within 24 hours following coronary angiography, an expert imaging 

technician conducted an ultrasound scan. The static frames of the carotid artery acquired was 

saved in digital image and communications in medicine (DICOM) format. The EchoPath 

software by GE healthcare was used for image phenotype measurement namely TPA, MPH, 

and cIMT. The MPH image phenotype is defined as the distant parting of the interfaces of 

lumen-intima media with respect to the two sides of the neck. The manual measurement of the 

same is done by capillary function in the bulb area or internal carotid artery. Another image 

phenotype is plaque area which is defined in the carotid arteries and bifurcations aligning 1 cm 

proximally in the both sides. Lastly, the area plaque regions are averaged for obtaining the TPA 

[39]. 

Contrast bubble carotid ultrasound imaging 

Another important biomarker that depicts the plaque instability is IPN, and has been identified 

using contrast-enhanced carotid ultrasonography (CEUS). The criteria for IPN identification of 

swift migration of microbubbles contrast gained from the adventitial wall towards the plaque 

core formed in the carotid artery. It was then categorised into three categories: zero for no 

microbubbles visible in the carotid plaque, one for minimal microbubbles present but restricted 

to the adventitial plaque wall, and two for microbubbles present throughout the plaque. The 

mean IPN scores were given a single average score for every patient for each of the neck sides. 
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Our most recent study showed that IPN had a strong predictive value for both major CAD and 

upcoming CV occurrences [40]. 

Cardiovascular events follow-up for survival analysis 

A 30 days follow-up period was fixed and each patient were observed for any kind of CV event 

occurrence during the follow-up periods. The different CV events are (i) coronary 

revascularization; (ii) stroke; (iii) cardiac death; (iv) heart failure; and (v) nonfatal myocardial 

infraction. So as to reduce the bias, the patients having coronary angiography in the past were 

not included in the follow-up study. To avoid evaluating planned revascularization therapy, 

patients who have undergone revascularization of coronary in between seven days after the first 

angiography are excluded from the subject list. 

Deep learning framework for cardiovascular disease prediction 

Nearly all fields of medicine have shown the role of DL for disease evaluation [41-43]. The 

main reason is its ability to extract a superior set of features by leveraging the large number of 

layers in the neural network [3, 43, 44]. Thus, we can characterize the prediction of CAD in DL 

framework given the risk predictors and the gold standard. The data was pre-processed before 

partitioning into training and testing data sets. The study implemented the normalization, 

scaling, min-max, scaler as part of the quality control on the data sets by using the Sklearn 

library in Python. The built in function from Sklearn library was used to normalize each feature 

by scaling the data in the range of 0-1. During implementation, the minimum and maximum 

values are computed and each feature value is then normalized between 0 and 1 [45-47].  We 

only apply the feature extraction and feature selection protocols to ML system, unlike in DL 

system which is self capable [45-47]. The cross-validation protocol is the most popular 

paradigm in the AI framework [41]. In this paradigm the data taken from the cohort (459 

samples/subjects) is divided into the two subsets namely, training sets and validation/test sets 

(see Figure 2). During the offline mode, the training dataset is used for generating the training 

model that utilizes the 24 risk factors and the corresponding ground truth. This trained system 

is used to transform the validation/test data set to predict the risk classes leading to risk 
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stratification [48-50]. Additionally, this work used fivefold (K-5) cross-validation methods 

(80% training, 10% validation, and 10% testing) to examine the performance of the CV event 

prediction system and CAD. The training and testing system is referred as offline and online 

respectively as the training is done only once by using the training data set whereas the testing 

system is used for risk prediction. 

In order to accomplish substantial CAD prediction in this study, we employed the 

following unidirectional deep learning (UniDL) recurrent neural network (RNN), gated 

recurrent unit (GRU), and long short-term memory (LSTM)) Generative Adversarial Network 

(GAN) and a bidirectional deep learning (BiDL) (bidirectional GAN (BiGAN),  bidirectional 

RNN (BiRNN); bidirectional LSTM (BiLSTM); bidirectional GRU (BiGRU)) classifiers. 

Further, the architecture of the above mentioned UniDL and BiDL systems are described in the 

Appendix C. Generally, the GANs are used for data generation and data augmentation [51], 

however we have used GAN as a classifier. The GAN is trained as a usual model, and then it is 

used for CVD risk stratification using cross-validation. It should be noted that the training 

database did not include the test samples. The results or the outcomes of the DL system were 

evaluated using metrics such as accuracy, and area-under-the-curve (AUC) along with its p-

value, specificity, and sensitivity. The endpoint was not a component of the "online test 

system"; rather, it was just utilized for the performance evaluation. As part of the benchmarking 

strategy, we compared our DL-based system against the ML-based (GB, RF, and SVM) 

paradigm attempted by Johri et al. [33]. In their study, the ML-based system is compared 

against the univariate analysis with IPN as an independent risk predictor. 

The rationale behind using RNN, LSTM, GRU, and GAN 

The atherosclerosis is an ethnicity-based disease that involves the blocking of arteries caused 

by the deposition of plaque, fats, and cholesterol on the walls of the arteries. The data used in 

this study involves the pool of patients belonging to the same age group i.e., elderly people, 

having the same ethnicity i.e., typically Caucasian, and having some form of coronary artery 

disease (CAD). The patients in consideration have similar characteristics with very subtle 
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differences between them. These patients are exposed to different risk classes based on their 

specific medical conditions. Since all these patients are sampled from the same statistical 

distribution and appear for medical examination in a stipulated window of time, we can 

therefore arrange these patients in increasing order of risk of coronary artery disease. This new 

distribution can be assumed to represent the progression of atherosclerosis at discrete time 

intervals for a single patient based on the risk at the various stages of the disease, keeping in 

mind the primary assumption that all patients are somewhat identical in all other attributes [30].  

 Deep Learning models, specifically the sequence models like RNN are well known for 

their ability to effectively extract temporal features and high-level semantics from sequential 

as well as discrete data. This is the primary intuition behind using RNN for the classification of 

the risk of experiencing atherosclerosis and comparing it against traditional ML-based 

classification models. Thus LSTM, RNN, GRU and GAN are ideal solutions for such 

representations [52]. 

Survival analysis: Cox proportional hazard model vs. Deep learning 

The Univariate and multivariate logistic regression was performed and the odds ratios (ORs) 

with 95% confidence interval (CI) were computed to determine the risk predictors signifcantly 

associated with the endpoint. The OR represented the difference between the risk factor and the 

ground truth in both univariate and the multivariate analysis [33]. This was computed based on 

one year increase. DL-based survival analysis was performed using the c-index and 

benchmarked with the Cox proportional hazard model (CPHM). The survival and cumulative 

hazard curves were further plotted using DL models. 

3. Results 

Study inclusion and exclusion criteria 

The study population for coronary angiographic screening had a cohort size of 1211 subjects. 

Three stages of participant exclusion occurred (Figure 3): (i) 610 participants in the initial phase 

satisfied the inclusion and exclusion requirements. Consequently, the study's remaining 601 

individuals were not included. 110 patients were dropped from the second phase mostly due to 
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consent withdrawal, coronary angiography cancellation, and lack of IV access. Thus, only 500 

people had the scanning done. 41 individuals were eliminated following picture processing 

because they did not have carotid artery plaque. For this study, 459 people in total were chosen.  

 

 

Figure 2: The architecture of an AtheroEdge 3.0DL, a DL-based coronary artery disease 

prediction system. OBBM: Office-based biomarkers; LBBM: Laboratory-based biomarkers; 

CUSIP: Carotid ultrasound image phenotypes; ML: Machine learning (Gradient Boost, 

Random Forest, Support Vector Machine); DL: Deep learning (Recurrent Neural Network, 

Gated Recurrent Unit, Long Short Term Memory, Generative Adversarial Network, 

Bidirectional RNN, Bidirectional GRU, Bidirectional LSTM, Bidirectional GAN); AUC: 

Area-under-the-curve; ACC: Accuracy. Note that pre-processing is a quality control step for 

both ML and DL paradigms. 
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Figure 3. Flowchart for patient selection. 

Baseline Characteristics 

The p-values were calculated using the Paired T-Test [53, 54] and ANOVA test [30, 55, 56] 

based on continuous values or categorical values. The main risk factors was less than 0.02 were 

age, gender, hyperlipidemia, diabetes mellitus, and smoking history (Table 1). Their 

corresponding p-values were 0.022, <0.0001, 0.003, 0.048, and 0.02, respectively. Our 

observation showed that there was a significant difference in subjects who were taking 

medications namely, beta-blockers (p=0.002), anti-platelet/anti-coagulants (p=0.001), and 

statins (p=0.023). A significant association was found between reasons for referral (positive 

stress test and myocardial infarction) and CVD (p<0.05). As far as plaque characteristics for 

the carotid ultrasound, our observation showed a significant difference for the following 

biomarkers namely, TPA (p<0.0001), MPH (p<0.0001), cIMT (p<0.0001), and IPN (p<0.0001) 

(see Table 1). 

Table 1. Baseline characteristics. 

SN Risk Factor Overall (n=459) p-value 

1 Age 65.11±10.3 0.022 

2 Male 326 (71.0%) <0.001 

3 Hypertension 317 (69.1%) 0.126 

4 Diabetes T2D 78.34±18.2 0.048 

5 Hyperlipidemia 269 (58.6%) 0.003 

6 BMI 30.10±5.9 0.334 

7 eGFR 78.34±18.2 0.122 
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8 Smoking Hx 309 (67.3%) 0.02 

9 Family History 297 (64.7%) 0.341 

10 Statins 250 (54.5%) 0.023 

11 ACE Inhibitors 179 (39.0%) 0.731 

12 ARBs Angiotensis 44 (9.6%) 0.163 

13 Beta-Blockers 221 (48.1%) 0.002 

14 Calcium Channel Blockers 87 (19.0%) 0.935 

15 Anti-Platelet/Anti-Coagulants 339 (73.9%) 0.001 

16 Diuretics 92 (20.0%) 0.561 

17 cIMT 0.76±0.2 <0.001 

18 MPH 2.85±1.2 <0.0001 

19 TPA 51.78±44.0 <0.0001 

20 IPN Score 1.26±0.8 <0.0001 

21 Referral: MI, n (%) 154 (33.6%) <0.0001 

22 Referral: Chest pain, n (%) 214 (46.6%) 0.713 

23 Referrel: +Stress Test, n (%) 145 (31.6%) 0.002 

24 Referral: Shortness of Breath 121 (26.4%) 0.108 

 

Unidirectional vs. bidirectional deep learning-based cardiovascular disease prediction 

The uniDL results are shown in Table 2, while the biDL results in Table 3. As seen in the Table 

2 GAN model outperforms the rest of the three unidirectional models (RNN, GRU, and LSTM). 

This can be seen in the accuracy column. The same behaviour is observed for all the evaluation 

metrics, namely sensitivity, specificity, and area-under-the-curve. Table 3 depicts the behaviour 

of biDL classification models. Our observation showed that BiGAN still outperforms the rest 

of the three bidirectional models (BiRNN, BiLSTM, and BiGRU). This can be clearly seen in 

the accuracy column. The rest of the performance attributes demonstrate the same behaviour as 

the uniDL models. Note carefully that there was a ~5% improvement in the AUC of biDL 

systems when compared to the uniDL system.  

Table 2. Performance evaluation parameters for unidirectional DL systems. 

SN Models Accuracy Sensitivity Specificity AUC p-value 

1 RNN 80.10 82.88 84.96 0.886 <0.002 

2 GRU 81.18 83.17 85.32 0.895 <0.002 

3 LSTM 82.88 84.37 87.67 0.910 <0.002 

4 GAN 83.01 86.34 91.13 0.916 <0.002 

 

Table 3. Performance evaluation parameters for bidirectional DL systems. 

SN Models Accuracy Sensitivity Specificity AUC p-value 

1 BiRNN 83.22 84.34 82.16 0.896 <0.002 

2 BiGRU 84.42 85.18 83.17 0.908 <0.002 

3 BiLSTM 85.32 86.12 85.29 0.916 <0.002 
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4 BiGAN 86.62 88.12 91.78 0.929 <0.002 

 

DL vs. ML performance for cardiovascular disease risk stratification 

Figure 4 demonstrates the ROC analysis for the best DL (BiGAN) and best ML (Gradient 

boost). Our observation shows that there was an improvement of ~21% in AUC between DL 

vs. ML. Our observations demonstrated better CAD prediction in DL framework (AtheroEdge 

3.0DL) compared to ML paradigm. This behaviour was mimicked when comparing ML-based 

algorithms against the conventional models or calculators. DeLong test is also been performed 

and compared with the obtained results (see Appendix E). 

 

Figure 4. Comparison of ROC curves between DL vs. ML systems. 

Univariate and Multivariate Analysis 

Table 4 indicates the results for univariate logistic regression for various risk factors. The odds 

ratios (ORs) for the risk factors were age (OR=1.05, p=0.022), male (OR=2.26, p<0.001), 

hypertension (OR=1.47, p=0.126), diabetes T2D (OR=1.67, p=0.048), hyperlipidemia 

(OR=1.90, p=0.003), BMI (OR=0.98, p=0.334), eGFR (OR=0.96, p=0.122), smoking history 

(OR=1.65, p=0.02), family history (OR=1.34, p=0.341). The other group of significant risk 

factors are medication use such as statins (OR=1.60, p=0.023), ACE Inhibitors (OR=1.02, 

p=0.731), ARBs angiotensis (OR=1.75, p=0.163), beta-blockers (OR=1.87, p=0.002), calcium 
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channel blockers (OR=0.97, p=0.935), anti-platelet/anti-coagulants (OR=2.06, p=0.001), 

deuretics (OR=0.88, p=0.561). The CUSIP covariates are MPH (OR=2.35, p<0.0001), TPA 

(OR=1.95, p<0.0001), cIMT (OR=1.92, p<0.0001), IPN score (OR=2.43, p<0.0001). 

Table 4. Odds ratios for univariate and multivariate analysis. 

SN Risk Factors Univariate Analysis Multivariate Analysis 

OR p-value OR p-value 

1 Age 1.05 0.022 1.02 0.005 

2 Male 2.26 <0.001 2.26 0.001 

3 Hypertension 1.47 0.126 - - 

4 Diabetes T2D 1.67 0.048 1.43 0.017 

5 Hyperlipidemia 1.90 0.003 1.42 0.14 

6 BMI 0.98 0.334 - - 

7 eGFR - 0.122 - - 

8 Smoking Hx 1.65 0.02 1.65 0.02 

9 Family History 1.34 0.341 - - 

10 Statins 1.60 0.023 0.99 0.94 

11 ACE Inhibitors 1.02 0.731 - - 

12 ARBs Angiotensis 1.75 0.163 - - 

13 Beta-Blockers 1.87 0.002 1.67 0.036 

14 Calcium Channel Blockers 0.97 0.935 - - 

15 Anti-Platelet/Anti-Coagulants 2.06 0.001 1.63 0.042 

16 Diuretics 0.88 0.561 - - 

17 MPH 2.35 <0.0001 1.88 <0.0001 

18 TPA 1.95 <0.0001 1.7 0.007 

19 cIMT 1.92 <0.0001 1.60 0.005 

20 IPN Score 2.43 <0.0001 2.45 <0.0001 

SN: Serial number; OR: odds ratios; BMI: Body mass index; eGFR: estimated glomerular 

filtration rate; ARB: Angiotensin receptor blockers; ACE: Angiotensin-coverting enzyme; 

IPN: intraplque neovascularization; MPH; maximum plaque height; cIMT: carotid intima-

media thickness. 

The main findings were as follows: (i) Clinical Biomarkers using univarate and multivariate 

analysis: The univariate analysis resulted several significant risk factors whose p-values were 

less than 0.05. They were namely, age (OR: 1.05, p-value: 0.022), sex (OR: 2.26: p-value: 

<0.001), diabetes T2D (OR:1.67, p-value: 0.048), hyperlipidemia (OR:1.9, p-value: 0.003), 

smoking history (OR: 1.65, p-value: 0.02), statins (OR:1.60, p-value: 0.023), beta-blockers 

(OR: 1.87, p-value: 0.002), anti-platelet/anti-coagulants (OR: 2.06, p-value: 0.001) taken from 

the biomarker clusters such as OBBM, LBBM, and MedUSE.  When looking at the multivariate 

analysis, we see that age, gender, and diabetes T2D showed OR>1.0 and having the p-value 

<0.005.  Gender had the least p-value (OR: 2.26, p-value: 0.001), while age (OR:1.02, p-value: 
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0.05) and diabetes T2D had an OR of 1.43 with p-value: 0.017. (ii) MedUSE biomarkers using 

univariate and multivariate analysis: In univarate analysis, we observed that there were three 

set of MedUSE feature set which had strong OR with p-value close to 0.001, thus influencing 

the CVD risk stratification. Note that for the multivariate analysis statins did not influence 

strongly unlike in univariate analysis.  Beta-blockers and Anti-Platelet/Anti-Coagulants had 

OR>1.0, while p-values were 0.036 ad 0.042, respectively. In general, the p-values in univariate 

was lower compared to multivariate analysis. (iii) Radiomics Features manual methods: 

Further, all the carotid ultrasound image phenotypes (CUSIP) risk factors namely, MPH, TPA, 

cIMT showed of highest significance. While in our current study, the CUSIP were manually 

derived, but powerful automated system AtheroEdge™ (AtheroPoint™, Roseville, CA, USA) 

has been developed for measurements (see cIMT [57, 58], TPA [7, 59, 60], and MPH [6]). IPN 

score has shown to be powerful risk predictor for CVD risk stratification when using ML 

paradigm [22, 33, 35]. (iv) Comparison between univariate vs. multivariate analysis using 

radiomics features: Note that OR for MPH, TPA, cIMT, and IPN score were 2.35, 1.95, 1.92, 

and 2.43, having p-value <0.0001, <0.0001, <0.0001, and <0.0001, respectively. Note that OR 

was greater than 1.0 and having a p-value, clearly demonstrating the power of the radiomics 

features. These risk predictors (cIMT, MPH, TPA, and IPN) that showed strong contributors 

for CVD risk stratification were further considered for the multivariate analysis. Table 4 shows 

that carotid image phenotypes showed the same behavior when comparing against the 

multivariate analysis. The OR during multivariate analysis for MPH, TPA, cIMT, and IPN 

score was 1.88, 1.70, 1.60, and 2.45, respectively and having the p-values <0.0001, 0.007, 

0.005, <0.0001, respectively. 

Survival Analysis 

An improvement of 17.8% was observed in c-index obtained from the survival analysis 

experiment when using the DL-based algorithm (0.96) over the traditional CPHM for hazard 

(0.73). The results from the survival analysis were shown in Figure 5. Among all the 24 risk 

factors, IPN was of highest importance for the prediction of CV events as it has the first ranked 
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in the metric. The first 20 risk factors having more ability for the prediction of CV events is 

displayed in Figure 6. Note that for the survival and cumulative hazard curves, since the number 

of patients are 459 representing 459 curves, we use the standardized method for representation 

[33, 61-63], where the curves are clubbed together. 

 

Figure 5. Plots for survival analysis using DL algorithms for 459 subjects (A) Survival 

curves; (B) Cumulative hazard curves. 

 

Figure 6. DL-based importance of risk predictors. 

4. Discussion 

This is the first study of its kind that uses deep learning for CVD risk stratification that combines 

CAD angiographic scores as the gold standard along with risk factors such as carotid 

ultrasonography plaque features, IPN, and traditional clinical risk factors. Our study 
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demonstrated a ~21% improvement in AUC for cardiovascular event (CVE) prediction in DL 

framework when compared against ML paradigm. 

According to this study, the bidirectional DL systems performed better for CVD risk 

stratification than unidirectional DL models. Improved performance is due to automated feature 

extraction offered by DL systems. IPN was found to be the most significant risk predictor of 

CV events for survival analysis. It is evident from the baseline features that older people in this 

cohort have an increased chance of acquiring severe CVD.”  

Benchmarking deep learning against machine learning and conventional paradigms 

Table 5 displays the benchmarking table containing eight studies with 10 attributes proposed 

for DL-based CVD risk stratification. The attributes are author, number of features (NOF), ML 

strategy, DL strategy, number of patients/images, cross-validation (CV) protocol, survival 

analysis (SA), and results in column C8. The first study Unnikrishnan et al. [64] (R1) have used 

the Australian datasets with 2406 patients having nine risk factors for each patient. They have 

opted for K-5 protocol for Framingham Risk Score (FRS) with linear regression classifiers and 

conventional cardiovascular risk calculator (CCVRC). The authors showed that the AUC for 

CCVRC using 10-year risk assessment was 0.57 unlike 0.71 for the ML-based calculators. In 

another study by Jamthikar et al. [35] (R2), a comparison was implemented between 

conventional calculators namely The systematic coronary risk evaluation (SCORE), FRS, and 

Extreme atherosclerotic cardiovascular disease (ASCVD) against ML calculators namely RF, 

GB, and SVM. This study used 500 subjects containing 39 risk factors. The authors showed a 

drastic difference between CCVRC and ML models in terms of AUC which came out to be 

0.50 and 0.95, respectively along with p-value<0.0001.  The third study (R3) is by Alaa et al. 

[14] that demonstrated the performance of ML classifiers against FRS system for a UK dataset 

with 423,604 patients having 473 covariates by following a five-year follow-up strategy. The 

results were better for ML classifiers (namely, RF, AdaBoost, gradient boosted machine 

(GBM), and SVM) when compared to CCVRC, having AUC of 0.774 (for ML) against 0.724 

(CCVRC).  
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The CVD risk stratification using carotid scans has been gearing up. The fourth study 

(R4) by Zhou et al. [65] showed the plaque segmentation for a multi-ethnic database by using 

the UNet++ model. Based on the cross-validation protocol, the training and testing datasets 

consisted of 33, 33, 34 (3 datasets) and 44 images, respectively. As the data size was low in 

size, the system failed to provide proper justification for the clinical settings. The group even 

lacked the benchmarking of the system with other state-of-the-art systems. In another study 

Jain et al. [66] (R5) the hybrid DL models namely SegNet-UNet and SegNet-UNet+ was 

introduced for plaque segmentation. The segment of artery considered was internal carotid 

artery (ICA). The rotation transform augmentation technique was applied for the enhancement 

of the datasets. The drawback of the system proposed were biased to racial, data selection, and 

source of the data obtained. The Jain et al. [44] (R6) used two sets of multiethnic (Japan and 

Hong Kong) CCA datasets for conducting their experiments. They proposed the hybrid deep 

learning (HDL) architecture for the unseen dataset to avoid the different types of biases. 

However, the proposed system encountered bias occurred in virtue of validation as the authors 

lacked to perform validation of the proposed system in reference to any other systems available 

in the market for CVD risk prediction. The last study considered was Jain et al. [67] (R7), where 

the authors have compared their HDL and solo deep learning (SDL) models with the 

commercially available systems proposed by AtheroPoint™ LLC, CA, USA (AtheroEdge™ 

2.0). The results showed a plaque area errors for HDL (8 mm2), SDL (9.9 mm2), and for 

conventional models (9.6 mm2) for the image datasets. 

Our system AtheroEdge 3.0DL is the first of its kind that uses DL models that uses 

coronary angiography as gold standard and contrast-enhanced ultrasonography, and focused 

carotid B-mode ultrasound as part of the risk predictors. Our system consisted of four 

unidirectional and four bidirectional models, where bidirectional models do better than 

unidirectional models. Further, AtheroEdge 3.0DL showed an improvement of 21% over 

previous ML-based solution for CVD risk stratification on the same Canadian cohort. As 
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regards survival analysis, AtheroEdge 3.0DL 17% improvement over CPHM, while none of the 

studies used survival analysis or hazard curves. 

A Special Note on unidirectional and bidirectional deep learning 

Our study presents the advantages of using the DL paradigm for stratification of CVD risk 

having the ability of feature extraction by PCA pooling mechanisms and SMOTE. Our group 

has conducted a comparative study of outcomes from the DL and ML-based models. We have 

compared unidirectional and bidirectional systems for deep learning systems. Using the same 

demographics data for ML and DL systems, the accuracies obtained for various opted (a) 

bidirectional DL models were (i) BiGAN: 86.62%, (ii) BiLSTM: 85.32%, (iii) BiGRU: 84.42%, 

(iv) BiRNN: 83.22%; (b) unidirectional DL systems were (i) GAN: 83.01%, (ii) LSTM: 

82.88%, (iii) GRU: 81.18%, (iv) RNN: 80.10%; (c) ML systems were (i) GB: 72.00%, (ii) RF: 

70.62%, (iii) SVM: 68.12%. The biDL models showed a higher performance against the 

unidirectional or ML-based models because the biDL models can handle the nonlinearities 

better between risk factors and the ground truth. This helps enable capture the complex relations 

between the two. The four diverse groups of risk factors namely CUSIP, LBBM, OBBM, and 

MedUSE were combined for the first time under the DL-based models. All 24 risk factors were 

grouped into these clusters based on the common features retained by the risk factors. Another 

aspect that we have approached is the effect of different feature clusters on the prediction of 

CVD risk. Further, the performance of the DL systems was enhanced by the addition of 

radiomics-based features (CUSIP) clusters to the earlier available clusters (namely, LBBM, 

OBBM, and MedUSE). 

A Special Note on the final network for CVD risk stratification protocol 

The group of neural networks namely, RNN, GRU, and LSTM is based on the finding of 

Rumelhart et al. [68]. These are very impactful architectures which are used to approximate 

nonlinear unknown dynamical systems [69]. The challenges with these systems are (i) more 

complex optimization objectives; (ii) disappearance of the gradient problem that directly 

impacts the model stability during the time of training [70]. The Figure 7 shows the final 
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network diagram of the RNN system which comprises of a single RNN unit with ReLU 

activation along with the four dense layer parallelized together. The three dense layer have 64, 

32, and 8 nodes respectively. The output layer have softmax activation with four nodes in it. 

The model is trained end-to-end to predict the class of atherosclerotic risk to which a patient 

belongs to the input features. 

 

Figure 7. RNN with the network. 

A special note on GAN as a classifier 

While GANs is typically utilized for data generation and data augmentation, however we have 

adopted GAN for CVD risk stratification using cross-validation protocols. Following rationale 

points are presented in its support: (i) Data Augmentation: Synthetic samples can be added to 

the training dataset using GANs. GANs can help classification models perform better by 

producing more realistic data, particularly in situations when the training dataset is short or 

unbalanced. Improved generalization and robustness of classifiers can result from augmented 

data [51, 71-75]; (ii) Feature Learning: Although GANs are not designed explicitly for 

classification, the generator and discriminator networks in GANs learn useful feature 

representations of the input data. These learned features can be extracted from the discriminator 

or intermediate layers of the generator and used as input features for classification models. This 

process, known as feature extraction or transfer learning, can enhance the performance of 

classifiers, particularly when labeled data is limited; (iii) Semi-supervised Learning: There are 

variants of GANs, such as Semi-supervised GANs (SGANs) that combine generative and 

discriminative objectives. In semi-supervised learning settings, where only a small portion of 
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the data is labeled, GANs can be used to generate additional unlabeled data samples. These 

generated samples, along with the labeled data, can then be used to train a classifier in a semi-

supervised manner, potentially improving classification performance; (iv) Domain Adaptation: 

GANs can be employed for domain adaptation, where a classifier trained on data from one 

domain is adapted to perform well on a different domain. By generating synthetic samples in 

the target domain, GANs can help bridge the domain gap and improve the performance of 

classifiers when labeled data in the target domain is scarce. (v) Data Fusion for Analytics That 

Preserve Privacy: Medical data is frequently delicate and governed by stringent privacy laws. 

Synthetic patient records that conceal individual-level information while maintaining the 

statistical characteristics of the real data may be created using GANs. With this method, risk 

prediction and other analytics activities may be carried out on synthetic data by academics and 

healthcare practitioners without jeopardizing patient privacy. It is feasible to create synthetic 

data that maintains the underlying distribution of actual patient data while guaranteeing 

anonymity by training GANs on huge, anonymised datasets; (vi) Enhanced Generalization: By 

exposing predictive models to a greater variety of situations and patient characteristic 

alterations, data generated by GANs can aid in improving the models' capacity for 

generalization. 

Strengths, Weaknesses, and Extensions 

The uniDL and biDL-based paradigm were proposed for the first time. The proposed system 

AtheroEdge 3.0DL used coronary angiography, contrast-enhanced ultrasonography, and focused 

carotid B-mode ultrasound. The DL-based models possess deep layers which when trained with 

optimized values of batch sizes, epochs, learning rate, yields generalized training model.  This 

brings superior DL results compared to ML results. Another advantage offered by AtheroEdge 

3.0DL   is the ability to fuse OBBM, LBBM with radiomics-based features offered by CUSIP, 

IPN, and MedUSE features. The survival analysis was conducted using DL-based paradigm 

unlike conventional CPHM. The DL provides flexibility to increase the cohort size for 

retraining. 
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The weakness and their mitigation of the system are as follows: (i) Retaining: With the 

change in the input data, the models must undergo retraining. This change includes additions 

of risk predictors or change in the sample size (number of patients). Even though one requires 

retraining from stretch, there are alternatives for mitigation such as uses of transfer learning 

models [28, 45]; (ii) Training Model sizes: AI models are always liable for large training sizes. 

This is due to large number of parameters. With the increase in the risk predictors and patient 

cohort, the AI models are further strain in terms of training model sizes. Even though the model 

sizes can increase, there are mitigation strategies namely, pruning of AI algorithms [61, 76]; 

(iii) AI Bias: Bias is always a challenge in the AI due to multiple reasons such as bias in input 

datasets, bias in algorithm, and the bias in the prediction system. Even though bias exists in 

different stages and phases of AI system design, there are mitigation strategies by which we 

can spot and eliminate AI bias, namely by algorithms such as Butterfly, ROBINS, and 

PROBAST methods [26, 32, 77]; (iv) Optimization during training: Every AI-based training 

algorithm requires optimization of parameters using algorithms such as ADAM, gradient 

search, etc. One alternative to mitigating this is by reducing the noise in the original data this 

includes outliers’ removal, normalization. In part of the mitigation we can also use percentage 

dropout during the layering process in DL [22, 43, 66]; (v) Over fitting: AI algorithms several 

time demonstrate very high accuracies giving an indication of over fitting. Another cause of 

over fitting is du rot small sample sizes of the input data. Even though over fitting can become 

a challenge in the training model design one can mitigate by introducing dropouts, 

augmentation of the data using SMOTE or ADASYN [30]; (vi) Hardware Constrains: 

Typically, AI systems running on CPU cluster consumes more time. This is based on number 

of epochs, learning rate, batch sizes, and data sizes. Even though these factors influence the 

performance time they can be mitigated using GPU cluster [78]. 

As part of the extensions, one can extend the base AI models like unidirectional and 

bidirectional models by attention-based and transformer-based models for CVD risk 

stratification. The AtheroEdge 3.0DL can be extended by fusion of classifiers, which comes 
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under the class of hybrid DL systems [45, 79, 80]. Scientific validation using cross-modality 

can be a possible extension [81]. The different types of plaque namely asymptomatic vs. 

symptomatic plaque obtained by grayscale modality can be added as a risk factor for CVD risk 

stratification. The wall segmentation methods can be improved by applying advanced DL 

techniques for CUSIP measurements. As part of the future work,  big data concept can be opted 

for obtaining more accurate results for the CVD risk predictions [82]. 

5. Conclusion 

This study presented a novel approach for CVD risk prediction using deep learning when using 

coronary angiography, contrast-enhanced ultrasonography, and focused carotid B-mode 

ultrasound. The study presented eight kinds of DL models and compared against three kinds of 

ML models.  The main contributing risk predictors were image phenotype and intra-plaque 

neovascularization. There was a ~21% improvement in AUC for the DL-based (AtheroEdge 

3.0DL) systems when compared to ML-based algorithms. The DL-based system showed 

superior performance with a ~17% increase in CV event prediction compared to Cox 

proportional hazard models for survival analysis. This is the pilot study towards preventive, 

precision, and personalized medicine. 
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Table 5. Benchmarking Table. 

C0 C1 C2 C3 C4 C5 C6 C7 C8 

SN Authors NOF ML Model DL Model #Patients/#Images CV SA Results 

R1 Unnikrishnan et al. [64] 9 SVM  2.4 K K-5  ML AUC:0.71; CCVRC AUC:0.57 

R2 Jamthikar et al. [35] 39 SVM, RF, 

XGBoost 
 500 K-10  ML AUC:0.95; CCVRC AUC: 0.50 

R3 Alaa et al. [14] 473 SVM, GBM, RF, 

AdaBoost 
 423.6 K K-10  ML AUC: 0.724; CCVRC AUC: 0.774 

R4 Zhou et al. [65]   UNet++ 144/510 

497/638 

K-5  DSC: 83.3-85.7%; TPA error: 5.55±4.34 mm2  

R5 Jain et al. [66]   UNet, UNet+, SegNet-

UNet, SegNet, 

SegNetUNet+ 

97/970 K-5  UNet AUC: 0.91; UNet+ AUC: 0.911; SegNet-

UNet AUC: 0.908;  SegNet AUC: 0.905, and 

SegNetUNet+ AUC: 0.898 (CE-loss models) and 

0.883, 0.889, 0.905, 0.889, and 0.907 (DSC-loss 

models), respectively 

PA error 3.49 mm2 for SDL; 4.21 mm2  for HDL  

R6 Jain et al. [44] 24  UNet 379, 300 K-10  Unseen FoM: 70.96 and 91.14 

Seen FoM: 97.57, 88.89, and 99.14  

R7 Jain et al.  [67] 24  UNet, SegNet-UNet, 

AtheroEdge 2.0 

(AtheroPoint™) 

379 K-10  UNet AUC: 0.93, SegNet-UNet AUC: 0.94; 

AtheroEdge 2.0 AUC: 0.95, respectively 

SDL PA error: 9.9mm2 ; HDL PA error: 8 mm2; 

and AtheroEdge: 2.0 mm2; PA error: 9.6 mm2  

R8 Proposed method  24 SVM,  

RF,  

XGBoost 

RNN, GRU, GAN, LSTM, 

BiRNN, BiGAN, BiGRU, 

BiLSTM 

459 K-5  ML ACC: 72.00%; RNN ACC: 80.10%; GRU 

ACC: 81.18%; LSTM ACC: 82.88%; GAN ACC: 

83.01%; BiRNN ACC: 83.22%; BiGRU ACC: 

84.42%; BiLSTM ACC: 85.32%; BiGAN ACC: 

86.62%. 

SN: Serial Number; NOF: Number of features; ML: Machine learning; DL: Deep learning; CV: Cross-validation, SA: Survival Analysis; RSF: Random survival 

forest; GBM: Gradient boosting method; RF: Random forest; SVM: Support vector machine; LR: Logistic regression; XGBoost: Extreme gradient boosting 

method; GAN: Generative adversarial network; LSTM: Long short term memory; RNN: Recurrent neural network; GRU: Gated recurrent unit; BiRNN: 

Bidirectional RNN; BiLSTM: Bidirectional LSTM; BiGAN: Bidirectional GAN; BiGRU: Bidirectional GRU; AUC: Area-under-the-curve; ACC: Accurracy. 
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Appendix A 

Abbreviation Table 

SN Abbreviation Description 

1 ACC Accuracy 

2 AI Artificial Intelligence 

3 ASCVD Extreme atherosclerotic cardiovascular disease 

4 AUC Area-under-the-curve 

5 BiDL Bidirectional deep learning 

6 BiGAN Bidirectional generative adversarial network 

7 BiGRU Bidirectional gated recurrent unit 

8 BiLSTM Bidirectional long short term memory 

9 BiRNN Bidirectional recurrent neural network 

10 CAD Coronary artery disease 

11 CCVRC Conventional cardiovascular risk calculator 

12 CEUS Contrast-enhanced carotid ultrasonography 

13 cIMT Carotid intima-media thickness 

14 CPHM Cox proportional hazard model 

15 CUSIP Carotid ultrasound-based phenotype 

16 CVD Cardiovascular disease 

17 CVE Cardiovascular event 

18 DICOM Digital image and communications in medicine 

19 DL Deep learning 

20 FRS Framingham risk score 

21 GAN Generative adversarial network 

22 GB Gradient boost 

23 GBM Gradient boost machine 

24 GRU Gated recurrent unit 

25 HDL Hybrid deep learning 

26 IPN Intraplaque neovascularization 

27 LBBM Laboratory-based biomarkers 

28 LSTM Long short term memory 

29 MedUSE Medication used 

30 MPH Maximum plaque height 

31 ML Machine learning 

32 NOF Number of features 

33 OBBM Office-based biomarkers 

34 OR Odds ratios 

35 RF Random forest 

36 RNN Recurrent neural network 

37 ROC Receiver operating characteristic 

38 SCORE Systematic coronary risk evaluation 

39 SDL Solo deep learning 

40 SVM Support vector machine 

41 TPA Total plaque area 

42 UniDL Unidirectional deep learning 
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Appendix B 

The participants with an IPN score of 1.25 or greater (n=159) had 25 CV events during the 

follow-up period, whereas participants with an IPN score of 1.25 or lower (n=150) had 4 CV 

events. The table below describes the different CV events namely, cardiac arrest, 

stroke/transient ischemic attack (TIA), acute coronary syndrome (ACS), heart failure, and 

cardiac death having 4, 4, 11, 4, and 6 number of patients respectively. The Table A1 was added 

as follows: 

Table A1. Different types of CV events occurred during the 30 days follow-up period. 

CV Events 

Overall 

(n=459) 

Cardiac Arrest 4 

Stroke/TIA 4 

ACS 11 

Heart Failure 4 

Cardiac Death 6 

Total 29 

 

Appendix C 

Architecture unidirectional DL Models 

The unidirectional DL models namely, recurrent neural network (RNN) [83], Gated recurrent 

units (GRU) [84], Long short-term memory (LSTM) [83], and generative adversarial network 

(GAN) [85]. Sequence-based applications including speech recognition, natural language 

processing, and time series prediction are especially well-suited for RNNs. However, because 

of problems like disappearing or bursting gradients, typical RNNs have trouble capturing long-

term relationships (See Figure A1). The LSTM architecture is shown in Figure A2. One kind 

of RNN architecture called LSTM (See Figure A2) was created to solve the vanishing gradient 

issue. Because of its memory cells and different gates that regulate information flow, it is more 

effective at identifying long-range relationships in sequences. 



34 
 

 Another RNN variation that resembles LSTM but has a slightly different structure is 

called GRU. It is also equipped with gating mechanisms to regulate the information flow, and 

it has demonstrated strong performance in a range of sequence-based activities (Figure A3). 

GAN is made up of two neural networks: a discriminator and a generator as shown in 

Figure A4. While the discriminator assesses samples to discern between produced and actual 

data, the generator synthesizes data by altering random noise in an attempt to replicate real data. 

The discriminator gains the ability to distinguish between actual and synthetic samples, while 

the generator becomes more proficient at producing realistic data through adversarial training. 

As a result of these networks' ongoing interaction, increasingly convincing and high-quality 

data are produced, which makes GANs effective tools for tasks like data synthesis, picture 

production, and style transfer (See Figure A4). Generally, GANs are used for data generation 

and data augmentation [51], however, we have used GANs for classification protocols. The 

GAN is trained as a usual model, and then it is used for CVD risk stratification using cross-

validation. 
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Figure A1. RNN Architecture. 
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Figure A3. GRU Architecture. 

Generative

Network G

Real Images

Generated Fake

Images

Discriminative

Network D

H
ig

h
M

o
d

era
te

M
ild

L
o

w

Output
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Architecture of bidirectional DL Models 

The bidirectional DL systems namely, BiRNN [86] (See Figure A5), BiLSTM [86] (See Figure 

A6), BiGRU [87] (See Figure A7), and BiGAN [88] (See Figure A8). BiRNN analyzes 

sequential data by traversing the input sequence both forward and backward at the same time. 

At each time step, the network gathers data from the past during the forward pass and gathers 

data from the future during the backward pass. The context surrounding each time step is 

therefore holistically represented by combining the concealed states from both directions. 

Because of this bidirectional approach, BiRNNs are especially useful for tasks where thorough 

context understanding is essential, like CVD risk prediction, depression disorder prediction, 

natural language processing, speech recognition, and time-series analysis. The network is better 

able to capture dependencies and relationships within the sequential data. To maximize the 

network's capacity to provide precise predictions or classifications based on the bidirectional 

contextual data, backpropagation is used to change the network's parameters over training. 

 An expansion of the conventional LSTM, the BiLSTM uses bidirectional information 

flow to interpret sequential input. The BiLSTM, which consists of both forward and backward 

LSTM layers, concurrently records contextual data from previous and future time steps. The 

LSTM units control input, forget, and output gates to control information flow and maintain 

memory cells to retain pertinent data at each time step. The network can comprehend 

dependencies and long-term relationships within the sequence because of its bidirectional 

nature. Concatenation of the concealed states from both sides usually allows for a more 

thorough context representation. This design is especially helpful for jobs where good 

prediction requires knowledge of both previous and succeeding parts, such as time-series 

analysis and natural language processing. Backpropagation is used to change the network's 

parameters over time during training, improving its capacity to represent intricate sequential 

relationships. 

 BiGRU uses two parallel GRU layers—one for forward processing and the other for 

backward processing—to analyze sequential input. The forward GRU simultaneously gathers 



37 
 

data from previous elements while the backward GRU concurrently gathers data from 

subsequent elements at each time step. After that, the concealed states from both sides are 

usually concatenated to produce a complete context representation. To mitigate the vanishing 

gradient problems that are frequently found in conventional RNNs, GRU units use gating 

methods to regulate the flow of input. BiGRU networks can efficiently describe dependencies 

and connections within sequential data thanks to their bidirectional nature. The network's 

parameters are updated during training via backpropagation over time, which maximizes the 

network's capacity to provide precise predictions or classifications based on bidirectional 

contextual data. 

 GAN architecture is expanded upon by BiGAN. It includes the generator and 

discriminator as well as an encoder. The encoder maps produced and actual data back to a 

common latent space, whereas the generator produces synthetic data. The encoder and 

generator seek to trick the discriminator, which makes the distinction between produced and 

actual data. The capacity of the model to capture intricate linkages between the data and latent 

space is improved by this bidirectional mapping. The network uses adversarial learning to 

iteratively improve the generator, discriminator, and encoder during training, promoting the 

creation of more realistic samples and more informative latent space. Applications for BiGANs 

may be found in many fields, such as representation learning and picture production. 

 

Figure A5. BiRNN Architecture. 
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Figure A6. BiLSTM Architecture. 
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Figure A7. BiGRU Architecture. 
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Figure A8. BiGAN Architecture [89]. 
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Appendix D 

A Batch of 3 samples Data 

 
Figure A9. A Batch of 3 sample data. 

 

Appendix E 

Result of DeLong Test 

The DeLong test states whether the AUCs of two models are statistically significantly different 

or not by comparing [90]. In the DeLong’s Test the report states the z-score, p-value and the 

two AUCs. Under the null hypothesis, z-score can be well approximated by the standard normal 

distribution. Therefore, if the value of z deviates too much from zero, it is thus reasonable to 

consider that [theta(A) > theta(B)] with the significance level p < 0.05 [91].  

We have performed the DeLong test by using the built in library pROC in R and 

obtained the results as AUC for DL is 0.920 and for ML 0.759, z-score=1.485, and the p-

ID Age Sex BMI GFR BP HLD DM SH

1 55 1 25.5 100 1 1 1 0

2 54 1 36.0 100 1 1 0 1

3 55 0 37.2 84 1 0 0 0

FH Statins ACEI ARBA BB CCB AP/AC Diuretics MI

1 1 1 0 0 0 1 0 0

1 1 0 0 0 1 0 1 0

1 1 0 0 1 0 1 0 1

CP ST SB IMT MPH TPA IPN Censored DS

0 1 0 3.6 1.13 0.15 0 0 30

1 0 0 3.98 1.38 0.85 1.33 0 30

0 0 0 3.93 1.14 0.14 8 0 30

SB: Referral: Shortness of Breath; DS: Days of Survival;

IPN: IPN Scoreper025; ST: Referral: Stress Test

Figure A9: Column 1-9; BMI: Body mass index; GFR: Glomerular filtration rate; 

 HLD: Hyperlipidemia; DM: Diabetes Mellitus; SH: Smoking Hx; 

BP: Blood pressure; 

ARBA: ARBs Angiotensis; BB: Beta-Blockers;

Figure A9: Column 10-18: FH: Family history of CVD;

AP/AC: Anti-Platelet/Anti-Coagulants

ACEI: ACE Inhibitors; CCB: Calcium Channel Blockers; MI: Referral: MI;

Figure A9: Column 19-27: CP: Referral: Chest Pain; 

IMT: IMTperIQR; MPH:MPHperIQR; TPA: TPAperIQR; 
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value=0.080. For the obtained z-score it is well proved the AUCs of two models (ML and DL) 

are statistically significantly different. Further, we noticed that DL model performs better the 

ML model. The Table A2 displays the DeLong’s test result. 

Table A2. DeLong’s test Result. 

 AUC p-value z-score 

Models ML DL ML DL ML DL 

DeLong Test 0.759 0.920 0.080 1.459 

 

Difference between DeLong Test and Standardized ROC curves: 

The same hypothesis has been proven from the AUCs of the two models (DL and ML) as 

presented in the manuscript. The ROC plots demonstrate the AUCs and the difference between 

them very clearly. Table A3 shows the comparison of both the methods. 

Table A3. Comparison of DeLong’s test and Standardized ROC curves. 

 AUC p-value z-score 

Models ML DL ML DL ML DL 

Standardized ROC curves 0.762 0.929 <0.0001 <0.0002 - - 

DeLong Test 0.759 0.920 0.080 1.459 

 


