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Abstract 11 

Since the inception of the idea to utilize electrically driven vehicles on the power grid, numerous valuable investigations have 12 

been carried out to showcase the advantageous capabilities of such technologies. However, there are still uncertainties 13 

surrounding the integration of electric vehicles into the power grid. These uncertainties encompass the number of electric 14 

vehicles that will be linked to the grid at any given time, the quantity of energy stored in their batteries during both daytime 15 

and nighttime, and the impact of their charging patterns on the overall power grid load. Moreover, there are numerous other 16 

unanswered queries that demand attention. This study presents a unique model that effectively addresses these uncertainties 17 

by utilizing a non-stationary Markov chain. The utilization of a non-stationary discrete Markov model in this study provides 18 

a precise and valuable understanding of the constantly evolving and time-dependent nature of electric vehicle behavior in the 19 

power network. Through a comprehensive case study, the outputs of the model offer intriguing insights into the number of 20 

electric vehicles connected to the grid and the energy they reserve over a 24-hour period. Furthermore, this study assesses the 21 

model's accuracy in representing the load modeling of electric vehicle charging. 22 

Keywords:  Electric Vehicles, Load Modeling, Markov Chain, Power Grid, Vehicle-To-Grid. 23 

1. INTRODUCTION 24 

With the increasing frequency of natural disasters caused by climate change and growing concerns about the 25 

depletion of traditional energy sources, it is not difficult to understand why there is a significant shift towards 26 

electrically-driven vehicles [1]. Electric vehicles (EVs) are becoming increasingly popular as a sustainable 27 

alternative to traditional gasoline-powered cars. As the number of EVs on the roads continues to rise, it is important 28 

to understand their behavior in the power grid and their impact on electricity consumption. One key aspect of 29 

studying EV behavior is analyzing their load profile, which refers to the pattern of electricity consumption by EVs 30 

over a given period [2]. This understanding is crucial for grid operators and policymakers to effectively manage 31 

the integration of EVs into the existing power infrastructure. V2G technology plays a significant role in enabling 32 

bidirectional energy flow between EVs and the power grid [3]. It allows EVs not only to consume electricity from 33 

the grid but also to feed excess energy back into the grid when needed. V2G technology has the potential to balance 34 

power supply and demand, optimize grid stability, and integrate renewable energy sources. By utilizing V2G 35 

capabilities, EVs can act as mobile energy storage units, providing valuable flexibility to the power grid. This 36 
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technology opens up opportunities for various applications, such as demand response programs, peak shaving, and 37 

frequency regulation. Understanding the behavior of EVs in the context of V2G is crucial for unlocking the full 38 

potential of this technology [4]. 39 

Analyzing EV behavior using Markov Chains offers a powerful tool for modeling and understanding the behavior 40 

of complex systems with probabilistic transitions. In the context of EV behavior, Markov Chains can be employed 41 

to predict the charging and discharging patterns based on historical data. This analysis provides valuable insights 42 

into the future behavior of EVs and helps optimize their integration into the power grid. By capturing the 43 

probabilistic nature of transitions, we can accurately model and predict the load profile of EVs over time, 44 

considering factors such as charging infrastructure availability, user preferences, and external conditions. While 45 

Markov Chain models have been widely used in various fields;  46 

 Our study specifically focuses on the non-stationary nature of the system, which is a unique aspect that 47 

has not been extensively explored in the existing literature.  48 

 By incorporating this non-stationary aspect, our model provides a more accurate representation of real-49 

world scenarios and offers insights into the dynamic behavior of EV charging load profiles.  50 

 This novel approach adds significant value to the existing body of knowledge in the field of energy 51 

management and electric vehicle charging, as it addresses the limitations of stationary Markov Chain 52 

models and provides a framework for modeling and predicting the behavior of EV charging load profiles 53 

in a non-stationary environment. 54 

 We have also presented an innovative method for calculating the grid load caused by electric vehicle 55 

charging. This new model serves as a valuable framework to assist experts in analyzing the behavior of a 56 

group of vehicles in a given area.  57 

The ultimate objective of this research is to address the current challenge of the lack of interactivity between 58 

the power grid and electric vehicles in terms of their placement when connected to the grid. The results of this 59 

model offer crucial information for the management and control of electric vehicles within a specific region's 60 

power grid. 61 

Such a model to understand the behavior of a fleet of EVs from the power grid's perspective and gaining 62 

insights into the EVs' load profile brings significant benefits to various entities within the power grid 63 

ecosystem. Power system managers and policy makers can make informed decisions regarding grid planning, 64 

infrastructure development, and policy formulation related to EV integration. Independent Power System 65 

Operators (ISOs) can accurately forecast EV charging demand and effectively manage the grid's supply-66 

demand balance, reducing the risk of grid instability. Transmission System Operators (TSOs) can assess the 67 

impact on transmission infrastructure, ensuring reliable power delivery. Distribution System Operators 68 

(DSOs) can plan and upgrade the distribution network to accommodate increased EV charging demand. 69 
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Aggregators and retailers can optimize charging strategies, pricing schemes, and energy procurement, offering 70 

innovative services. EV owners can optimize their charging patterns, maximizing range and cost savings. 71 

Other power grid customers can anticipate and manage potential impacts on their operations, optimizing 72 

energy usage. Overall, this model can provide valuable insights for efficient grid operation, enhanced customer 73 

satisfaction, and optimized resource allocation within the power grid ecosystem. 74 

After a brief review of the literature in the section 2, in section 3 of the current paper, the fundamentals of the 75 

presented Markov chain model are delved into. The section begins by introducing and discussing the set of 76 

state space utilized in this paper. Additionally, the variable components of the transition probabilities 77 

associated with the presented Markov model are explained. The non-stationary elements of these transition 78 

probabilities are also highlighted and discussed. To provide a visual representation, the state transition diagram 79 

of the Markov model is presented. Furthermore, in this section, the process of defining the initial states of the 80 

presented Markov model is thoroughly examined. The section concludes by outlining the proposed 81 

assumptions of the Markov model. 82 

Moving on to section 4, a case study is presented to demonstrate the capability of the presented model in a 83 

real-world scenario. Specifically, the effectiveness of the model in exploring the behavior of a fleet of electric 84 

vehicles is showcased. Additionally, the model's utilization in diagnosing the load profile associated with the 85 

charging of these electric vehicles is demonstrated. Section 5 is dedicated to discussing the results of the paper 86 

and comparing them with the findings of current relevant research studies. This allows for a comprehensive 87 

evaluation of the model's performance. Finally, in section 6, the paper concludes by summarizing the key 88 

findings and implications. Potential topics for future studies are also suggested, highlighting areas that warrant 89 

further exploration. 90 

2. A BRIEF LITERATURE REVIEW 91 

In recent years, there has been a significant focus on the emergence and integration of electric vehicles, leading to 92 

a wealth of valuable studies in this field. The increasing prominence of electric vehicles has sparked widespread 93 

interest and research efforts, as they represent a crucial component of the evolving transportation landscape. These 94 

studies have sought to explore various aspects of electric vehicles, including their impact on the environment, the 95 

process of their integration in power networks and their role in the future power systems. In this regard, reference 96 

[5] provides an overview of the current status of electric vehicles and discusses future expectations for their growth 97 

and impact, [6] analyzes the long-term outlook for electric vehicles and discuss the potential impact on the electric 98 

grid. [7] assesses the factors that influence the penetration of electric vehicles in the European Union by 2030 99 

using a model-based policy assessment. [8] evaluates various policy interventions aimed at stimulating the 100 

transition to electric vehicle technology in the European Union. Beside all these driving forces, many tempting 101 

advantages are widely discussed for these technologies under the name of vehicle-to-grid (V2G) applications, in 102 

this regard, [9] presents a bidirectional grid-connected AC/DC converter for V2G applications. [10] provide a 103 
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comprehensive review of V2G concepts, interface topologies, marketing strategies, and future prospects. [11] 104 

presents a comprehensive review and performance evaluation of bidirectional charger topologies for V2G and 105 

grid-to-vehicle (G2V) operations in electric vehicle applications. Such advantages could be mentioned from the 106 

ultimate goal of stabilizing the intermittent sustainable resources to provision of power system ancillary services 107 

such as frequency regulation[12-14]. where [15] discusses the upgrading of conventional power systems to 108 

accommodate electric vehicles through demand-side management and V2G concepts. [16] presents an optimal 109 

allocation strategy for V2G stations in a microgrid environment with a focus on demand response, [12] and [13] 110 

explore the use of optimal control strategies for V2G in frequency regulation, with the former using deep 111 

reinforcement learning. [14] propose a power imbalance-based droop control for V2G in primary frequency 112 

regulation. In this regard, the technical aspects of V2G integration have been widely investigated and discussed in 113 

a variety of valuable scientific articles and literature. These include the impacts of EV presence on the stability 114 

and reliability of power grids, optimal charging and discharging strategies in V2G-enabled power networks, the 115 

bidirectional interrelations of smart grids and V2G concepts [17, 18], the economic and environmental potentials 116 

of V2G implementation, V2G's dedication to providing resource flexibility for grid management, and the 117 

regulatory and policy frameworks necessary to facilitate widespread adoption of V2G. where [19] and [20] discuss 118 

the benefits and technical feasibility of smart EV charging and V2G technologies, with the latter focusing on 119 

renewable power integration. [21] and [22] review the progress and impact of V2G technologies on the power grid 120 

and battery simultaneously. The reference [23] and [24] examine the impact of EVs on power grid operation and 121 

the strategies for charging-dispatch and V2G technologies in distribution networks, respectively also reference 122 

[25] review the challenges and impacts of V2G integration. The references [26], [27] and [28] conduct cost-benefit 123 

analyses of V2G implementation and optimal charging strategies for EVs. [29] propose a green smart grid 124 

predictive analysis to integrate sustainable energy of emerging V2G in smart city technologies. [30], [31] and [32] 125 

provide comprehensive reviews on the incorporation of EVs and renewable energy distributed generation to smart 126 

grid, smart energy systems management in a smart grid environment, and multi-agent reinforcement learning for 127 

intelligent V2G integration, respectively. The references [33], [34], and [35] discuss the business models, 128 

innovation activity systems, and economic challenges for V2G technology. [36], [37] and [38] explore the value 129 

of V2G in a decarbonizing grid, techno-economic analysis of V2G integration, and economic and environmental 130 

impact of V2G integration, respectively. The references [39], [40], and [41] propose coordinated EV management 131 

systems for grid-support services, optimal energy management of cooperative energy communities, and driver 132 

plug-in patterns for V2G, respectively. [42] and [43] present new models for a smart grid considering joint power 133 

and reserve scheduling, V2G, and demand response, and barriers and frameworks for flexibility services, 134 

respectively. 135 

The references [44] and [45] discuss the regulatory and political challenges to V2G and the final hurdles to large-136 

scale V2G deployment. [46] review the assessment of charging technologies, infrastructure, and charging station 137 

recommendation schemes of EVs. Although some good efforts have been made to highlight the advantages of 138 
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using electric vehicles from both a network and customer perspective [46-50], like [48], [49] and [50] review the 139 

optimal charging strategy for EVs under dynamic pricing schemes, Chinese consumers’ preferences for EVs, and 140 

the business of EVs from a PowerGrid perspective, respectively. [51], [52] and [53] discuss various aspects of 141 

EVs and V2G, including load modeling techniques, state space model, large-scale provision of frequency control, 142 

transactive energy, distributed coordination, and learning EV driver range anxiety. [54] present a comprehensive 143 

review of the current state of EV charging services, infrastructure provision, players, and policies. The research 144 

highlights the challenges and opportunities in the EV charging market, discussing the roles of various stakeholders, 145 

including governments, utilities, and private companies. [55] focuses on the trends and developments in EV 146 

charging technologies, discussing advancements in charging station hardware, communication protocols, and 147 

charging strategies. In the reference [56] reviews the optimal location of EV charging stations and their impact on 148 

the distribution network. The paper discusses the challenges associated with charging station placement, such as 149 

load balancing, network capacity, and cost optimization. [57] compares the performance of lithium-ion batteries 150 

and nickel-metal hydride batteries in EVs, analyzing factors such as energy density, cost, and environmental 151 

impact. The reference [58] presents a review of the future challenges of extending the range of EVs. The paper 152 

discusses advancements in battery technology, charging infrastructure, and range extension strategies, highlighting 153 

the need for continued research and development in this area. The reference [59] proposes a multi-type EV load 154 

prediction model based on Monte Carlo simulation, which takes into account various factors such as vehicle types, 155 

charging patterns, and user behavior. The reference [60] proposes a combined online and offline prediction 156 

framework for estimating the remaining discharge energy of EVs. The paper discusses the importance of accurate 157 

load prediction for effective grid management and propose a method to improve the accuracy of load forecasting. 158 

The reference [61] provides an overview of EV behavior modeling and its applications in vehicle-grid integration. 159 

The paper discusses various modeling approaches, including stochastic and deterministic methods, and highlights 160 

the potential benefits of EV participation in grid services. The reference[62] reviews the modeling of EV charging 161 

patterns, focusing on the prediction of charging demand and the impact of various factors such as user behavior, 162 

infrastructure availability, and pricing schemes. They discuss the importance of accurate charging pattern 163 

modeling for grid planning and optimization. Also in [63] proposes a probabilistic method to model plug-in hybrid 164 

electric vehicles (PHEVs) for participation in the electricity market. The authors discuss the challenges of 165 

incorporating PHEVs into the market and propose a method to estimate the probability of PHEV participation. 166 

The reference [64] investigates the potential of domestic EVs to contribute to power system operation through 167 

vehicle-to-grid (V2G) technology. The authors discuss the benefits of V2G, including energy storage and 168 

frequency regulation, and present simulation results to demonstrate the feasibility of using EVs for grid support. 169 

[65] introduces a new concept for utilizing plug-in EVs in frequency regulation services. The authors propose a 170 

control strategy that enables EVs to provide regulation services while considering the battery state of charge and 171 

user preferences. [66] proposes a stochastic distributed protocol for EV charging, which allows EVs to adjust their 172 

charging rates based on real-time information. The paper discusses the benefits of distributed charging, such as 173 
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load balancing and peak shaving, and presents simulation results to evaluate the performance of the proposed 174 

protocol. [67] presents the results of a test of V2G technology for energy storage and frequency regulation in the 175 

PJM system. The authors discuss the technical and economic feasibility of V2G and highlight the potential benefits 176 

of using EVs for grid support and [68] discusses the driving range of EVs and presents strategies to extend the 177 

range, such as battery improvements, charging infrastructure expansion, and vehicle-to-vehicle energy transfer. 178 

The author emphasizes the importance of range anxiety reduction for widespread EV adoption. 179 

The reviewed research generally follows a statistical and engineering perspective on electric vehicles. As a result, 180 

there is still a lack of a formulated and definitive approach to evaluate the various aspects of the widespread 181 

integration of electric vehicles into the power grids of a country or region. 182 

The need to develop a model to investigate the behavior of the fleet of EVs from the power system's perspective 183 

arises from the increasing integration of EVs into the grid and the associated challenges it presents. As EV adoption 184 

continues to rise, it becomes crucial for power system operators, managers, and policymakers to understand the 185 

impact of EV charging on the grid. A comprehensive model can provide valuable insights into the charging 186 

patterns, load profiles, and overall behavior of the EV fleet, enabling stakeholders to anticipate and address 187 

potential issues related to grid stability, reliability, and congestion. Moreover, such a model can assist in optimizing 188 

the utilization of renewable energy sources, managing supply-demand imbalances, and planning for the necessary 189 

infrastructure upgrades to support the growing EV market. In this regard, the purpose of this research is to present 190 

a new method based on a non-stationary discrete Markov chain to track changes in the amount of reserved energy 191 

and the number of vehicles in different modes of vehicle usage during the day and night in the regional power 192 

network.  193 

3. MODEL INTRODUCTION 194 

A. Markov chain basics: 195 

A Markov chain is a random process with the property that given the values of the process from time zero up 196 

through the current time, the conditional probability of the value of the process at any future time depends only 197 

on its value at the current time [69-71]. 198 
 199 

𝑃(𝑋𝑛+1 = 𝑖𝑛+1|𝑋𝑛 = 𝑖𝑛 , . . . , 𝑋0 = 𝑖0) = 𝑃(𝑋𝑛+1 = 𝑖𝑛+1|𝑋𝑛 = 𝑖𝑛)   [69]                                         (1) 200 

a. State space: 201 

The set of possible values that the random variable 𝑋𝑛 can take is called the state space of the chain [72]. 202 

While the V2G application is not being considered in this paper, the potential state space sets for the proposed 203 

model are being examined. It is important to note that while a vehicle is in idle mode, its state of charge (SOC) 204 

remains stable. However, the opposite conclusion may not always be true. There are other states in which the 205 

vehicle's SOC remains unchanged, but the vehicle is not in idle mode. For example, when the vehicle is plugged 206 
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into the grid and its SOC has reached the upper limit, or when the vehicle has reached its lower limit of charge 207 

(depletion mode) while in the state of discharging [73]. The EV states in this paper are described as follows: 208 

 Plugged: This state represents the situation in which the vehicle is connected to the power grid to be 209 

charged. The vehicle's state of charge may either be increasing or have reached its upper limit of 210 

charging. However, in either situation, being connected to the grid is common. 211 

 Discharging: In this state, the vehicle is being used and its initial state of charge is decreasing. It is worth 212 

noting that this paper does not consider V2G applications. Therefore, there will be no decrease in the 213 

vehicle's SOC due to power injection into the grid. 214 

 Idle: In this state, the vehicle is neither being used nor plugged into the grid, so its SOC remains 215 

unchanged. 216 

 217 

It is worth to mention that while in our assessments the V2G application is not being considered but this model 218 

has the capability to be inserted with such applications and it would be represented in the authors’ further works.  219 

b. Transition probabilities 220 

The conditional probabilities P (𝑋𝑛+1 = 𝑗 | 𝑋𝑛 = 𝑖) are called transition probabilities [71, 72]. 221 

In regard of the time dependency of transition probabilities, the model utilized in this paper is called a "non-222 

stationary Markov chain"[74, 75]. 223 

The 𝑃𝑖𝑗(𝑡) = P (𝑋𝑛+1= j | 𝑋𝑛= i) are called one-step transition probabilities [72], because they are the probabilities 224 

of moving from state i to state j in one time step. The transition probabilities in this model consist of two separate 225 

parts: The first part emphasize on time variant parameters, and is derived from the diagram of vehicle usage 226 

probability. Of this diagram, the probability of vehicles being used (Pu) in a specific region is extracted during the 227 

24 hours of weekdays. While having Pu, logically the probability of vehicle being unused (Puu) in every moment 228 

is calculated from (2): 229 

𝑃𝑢𝑢(𝑡) = 1 − 𝑃𝑢(𝑡)       [69]                                                                                (2) 230 

It is very difficult to model and predict the behavior of every single vehicle because it encounters many unexpected 231 

events[5, 51, 52, 76], hence it is not far from reality to admit that modeling the behavior of a single vehicle is 232 

almost as hard as modeling white noise in communication systems. However, as soon as changing the viewpoint 233 

from a single vehicle to the bulk of available vehicles in a region, their aggregated behavior would be much 234 

predictable and the results of modeling will be far more reliable[52, 77-79]. This is why; we can insist that the 235 

applied diagram of vehicle usage probability is highly reliable. Table I, shows the time variant parameters. 236 

TABLE 1. TIME VARIANT PARAMETERS. 237 

         j Plugged Idle Discharge 
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  i  

Plugged Puu(t) Puu(t)  Pu(t) 

Idle Puu(t) Puu(t) Pu(t) 

Discharge Puu(t) Puu(t) Pu(t) 

The second part of the proposed transition probability, is its logical part, which indicates the logical possibilities 238 

of transition from one state to another. The model has also the flexibility to specifically define these logical 239 

parameters to simulate the actual human behavior of vehicle owners in any region. As it can be seen from table II, 240 

the logical parameters of transitioning between plugged and idle states have been manually put to zero. It is because 241 

in this paper we have simplified our assumptions, that "the vehicle owner has rationally decided either states of 242 

charging(plugging) the vehicle or not, after a period of driving", so there would not be any considerably amount 243 

of probability, of changing his/her mind before the next period of vehicle usage.  244 

In table II, the term BF stands for "Behavioral Function" that describes the vehicle owner’s decision to choose 245 

between either plugging his vehicle or, letting it stay unplugged after a period of driving. Normally without 246 

considering the persuasive signals from the contracted aggregator, and punitive signals from hourly electricity cost 247 

pattern, this parameter should be a function of vehicles battery SOC. Which would dedicate more probability of 248 

plugging vehicle while it has lower states of charge and higher probability of letting the vehicle stay unplugged 249 

(Idle state) while it has higher states of charge. For simplicity, a linear function of SOC has been used in the study 250 

case of this paper.  251 

One of the most common ways to specify the transition probabilities is using "state transition diagram"[72] as 252 

shown in Fig. 1. 253 

 254 

 255 

TABLE 2. LOGICAL PARAMETERS. 256 

           j 

     i 

Plugged Idle Discharge 

Plugged 1 0 1 

Idle 0 1 1 

Discharge BF 1-BF 1 

 257 

TABLE 3. TRANSITION TABLE. 258 

      j 

   i 

Plugged Idle Discharge Summation 

Plugged Puu(t) 0 Pu(t) 1 

Idle 0 Puu(t) Pu(t) 1 

Discharge BF*( Puu(t)) (1-BF)*( Puu(t)) Pu(t) 1 

 259 



9 
 

 260 

Fig. 1.  State transition diagram  261 

c. Initial states:  262 

One of the major questions dealing with Markov chains is the determination of starting states[53, 72]. Coping with 263 

this issue, we have applied a heuristic method in this model. Starting states determine where the Markov chain 264 

starts from and, indicates the number of vehicles in each introduced state and their relative SOC in the beginning 265 

of a typical day in this model. To solving this problem, we have applied an auto amendment method. The model 266 

starts in a definite start point that may or may not be the absolute correct point, but by proceeding the model to the 267 

final hours of the first day, there would be three stationary distribution for both the expected rates of presence 268 

possibility in each introduced states[69, 71, 72], and the available SOC in each one. These data would be the initial 269 

start trio for the next run of the model. This procedure would be repeated until reaching that final trio that clearly 270 

supports its applied initial starting data. In this way the cycling assumption for the Overall SOC (OSOC) trend 271 

would be confirmed[71, 72]. This process is represented in fig. 3. In this regard the initial start state for the Markov 272 

model is considered as: 273 

 A hundred percent of the vehicles are in the charging state with their relative SOC being fixed on  SOCmax 274 

And also, we have supposed a similar daily probability of use for all days of a week so the cycling period has been 275 

reduced to one day. If different daily probabilities of use for a week are considered, the cycling period would 276 

change to a week and thus similarly as mentioned different starting states for each days of week should be 277 

evaluated. 278 
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 279 

Fig. 2.  This process is repeated until the desired conditions of  𝐀𝐧
′ ≅ 𝐀𝐧 , 𝐁𝐧

′ ≅ 𝐁𝐧 and 𝐂𝐧
′ ≅ 𝐂𝐧  are satisfied   280 

d. Model assumptions: 281 

 Charging rate: 282 

The charging rates of electric vehicles can vary depending on factors such as the vehicle model and the level of 283 

charging stations employed [48-50]. Defining a single average value for the charging rate may not fully capture 284 

the complexity introduced by these factors. Therefore, it is crucial to consider the range of factors that can influence 285 

the charging rate. 286 

In addition to the vehicle model and charging station level, other factors that can impact the charging rate include 287 

weather conditions, calendar indicators, grid congestion, and charging infrastructure availability. These factors 288 

play a significant role in shaping the charging behavior of electric vehicles and can have implications for the 289 

overall load profile of the power network. 290 

However for the sake of simplicity we have utilized an average value for the charging rate in this stydy, but to 291 

address the variety of factors affecting the charging rate, a suggestion is to incorporate a function for the charging 292 

rate instead of using a single average value. This would allow for the consideration and simulation of different 293 

parameters, resulting in a more accurate representation of the charging rate dynamics. 294 

It is worth mentioning that the represented model in this paper has the capability to handle a function for the 295 

charging rate. Although, for the purpose of this study, we have utilized a single average value as a representative 296 

charging rate, we acknowledge the potential benefits of incorporating a function to account for the variability 297 

introduced by different factors. 298 

 Discharge rate: 299 

Discharge rates can also vary in different types of vehicles regarding their type of use[57, 58]. Nevertheless, an 300 

average rate for this rate would be applied in this paper.  301 
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In fig. 3, the Markov chain proceeding graph is represented. This graph explains the formation of Markov chain. 302 

As it can be seen in this figure, the Markov starts from a single presumed state and according to the proposed 303 

transition probabilities for the corresponding stage, the consecutive three states are generated in the proceeding 304 

time-step.  305 

These new states have their respective state-presence probability, which is calculated as below: 306 

𝑓𝑜𝑟 𝑋𝑖           𝑋𝑗  307 

𝑃(𝑋𝑗) = 𝑃𝑖𝑗(𝑡) × 𝑃(𝑋𝑖)    [71]                                                              (3) 308 

In which the 𝑃(𝑋), is the probability of state 𝑋 occurrence, and 𝑃𝑖𝑗(𝑡) is the Markov transition probability from 309 

state  𝑋𝑖 to the 𝑋𝑗 [71, 72]. 310 

And, relative state of charge which is calculated as in (4): 311 

𝑆𝑂𝐶(𝑋𝑗) = 𝑆𝑂𝐶(𝑋𝑖) + ∆𝑆𝑂𝐶𝑖𝑗                                                             (4) 312 

Where SOC is bound as follows: 313 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑋𝑗) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 314 

Regarding to the states 𝑋𝑖 and 𝑋𝑗the noted ∆𝑆𝑂𝐶𝑖𝑗 is driven from table IV. ACR and ADR are the considered 315 

average rates for charging and discharging during i and j intervals. 316 

TABLE 4. ∆SOCij 317 

        j 

  i 

Plugged Idle Discharge 

Plugged +ACR 0 -ADR 

Idle +ACR 0 -ADR 

Discharge +ACR 0 -ADR 

 318 

Fig. 3.  Programming procedure diagram, CH, I and D stand for Charging, Idle and Discharging states respectively. 319 
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B. Markov memoryless-ness: 320 

One of the most important features of a Markov model is its memory less behaviors. This property insists that the 321 

future value of states in the Markov process only depends on the value of the state in the current time regardless 322 

of its behavior in the past. As it can be seen in equations, 5 and 6 this constraint is observed in the model. In these 323 

equations i shows the current state while j represents the future state and 𝑃𝑖𝑗(𝑡), ∆𝑆𝑂𝐶𝑖𝑗 are the introduced 324 

transition probability and SOC variation, during i and j transition.    325 

𝑃(𝑋𝑗) = 𝑃𝑖𝑗(𝑡) × 𝑃(𝑋𝑖)                                                              (5) 326 

𝑆𝑂𝐶(𝑋𝑗) = 𝑆𝑂𝐶(𝑋𝑖) + ∆𝑆𝑂𝐶𝑖𝑗                                                       (6) 327 

C. Daily expected OSOC changes diagram: 328 

Proceeding from the initial start point, according to previously defined transition probabilities, the next scenarios 329 

would be generated. Thus in each stage there would be  3n scenarios of different size of SOC and their respective 330 

probability. SOC variations are bound to be between 𝑆𝑂𝐶𝑚𝑎𝑥 and 𝑆𝑂𝐶𝑚𝑖𝑛. Calculating the expected value for 331 

SOC in each step as in (7), the Daily OSOC trend would be generated. Some applications of this output are 332 

discussed during the case study in this paper. 333 

For step: n 334 

Expected_OSOC(n) = ∑ 𝑃(𝑋𝑛) × 𝑆𝑂𝐶(
3𝑛

𝑛=1
𝑋𝑛)                                                (7) 335 

D. Daily load profile due to vehicles charging 336 

From the perspective of power system operators, one of the primary concerns when dealing with electric vehicles 337 

is their lack of awareness about the impact, they have on the power grid's load [53-57]. In this paper, we present a 338 

novel method, utilizing the proposed model, to calculate the daily load profile specifically related to the charging 339 

of electric vehicles. 340 

To achieve this, we compare the calculated OSOC trend with the same output obtained when the average charging 341 

rate is manually set to zero. This comparison allows us to isolate and analyze the contribution of electric vehicle 342 

charging to the overall load profile.  343 

By employing data mining, we can leverage the available data to develop a more accurate estimation of the hourly 344 

load imposed by the charging of electric vehicles. This estimation is formulated through equation (8), which 345 

captures the relationship between the charging behavior of electric vehicles and the resulting load on the power 346 

grid. This enhanced analysis provides valuable insights for power system operators, enabling them to effectively 347 

manage and plan for the integration of electric vehicles into the grid. 348 

𝑙𝑜𝑎𝑑(𝑛) = (𝑂𝑆𝑂𝐶0(𝑛) − 𝑂𝑆𝑂𝐶0(𝑛 + 1)) − (𝑂𝑆𝑂𝐶𝐴𝐶𝑅(𝑛) − 𝑂𝑆𝑂𝐶𝐴𝐶𝑅(𝑛 + 1))                                 (8) 349 
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Where: 350 

𝑙𝑜𝑎𝑑(𝑛):  Power system, imposed load due to vehicles charging in the nth hour 351 

𝑂𝑆𝑂𝐶0(𝑛): Overall state of charge in the nth hour while the average charging rate is set to zero in the model 352 

𝑂𝑆𝑂𝐶𝐴𝐶𝑅(𝑛): Overall state of charge in the nth hour 353 

More discussions are performed during the study case. 354 

4. CASE STUDY 355 

In this section, the model has been applied for a scenario of vehicle electrification of a specific region [63-65]. A 356 

scenario of 10000 electric vehicles has been considered for a region with the daily vehicle-usage probability pattern 357 

of fig. 4 [64, 65].   For the sake of simplicity, a linear function of SOC has been used as the proposed BF function 358 

for this region. 359 

We have assumed an average size of 15 kWh for the battery size of vehicles and have set the average rates for 360 

charging and discharging (ACR & ADR) of the electric vehicles %11.1 and %18 for the typical daily usage in the 361 

supposed region [65, 66].   These data are being represented in table 5. As it can be seen in Fig. 5, the usage pattern 362 

shows two separate peaks of vehicle usage probability in a daylong. The first peak shows the time while vehicle 363 

owners are driving to work and the second peak indicates the time of returning to home from work. Employing 364 

the proposed model, some outputs are discussed for this region. 365 

 366 

 367 

 368 

TABLE 5. MODEL CONSUMPTIONS FOR THE STUDY REGION 369 

Number of electric vehicles 10000 

Average size of EV batteries 15 KWh 

Total size of available capacity 150 MWh 

Average Rate of Charging (ACR) 11.1% 

Average Rate of Discharging (ADR) 18% 

Maximum acceptable value for SOC (𝑺𝑶𝑪𝒎𝒂𝒙) 95% 

Minimum acceptable value for SOC (𝑺𝑶𝑪𝒎𝒊𝒏) 0% 

Applied Behavioral Function (BF) Linear function of vehicles SOC 

 370 
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 371 

Fig. 4.  Probability of cars being driven during weekdays and weekends 372 

A. Daily expected OSOC trend for the study region: 373 

The OSOC trend, as it was discussed in previous sections is plotted in Fig. 7. As it can be seen, two drastic falls 374 

are obvious in this Fig around 8 o’clock in the morning and 6 o’clock in the evening. These declines are the results 375 

of those discussed peaks in vehicle-usage probability pattern for this region. This diagram is plotted for the first 376 

run of the model while initial start states are not defined yet. As the day starts in this region, a steep declining 377 

occurs in the Overall SOC as the result of vehicle-usage probability peak of traveling to work. After this period 378 

the trend reaches a plateau that is the result of two reasons, decreasing in vehicles usage probability and charging 379 

of a portion of previously used vehicles at the parking lots. This trend continues until the time when the second 380 

peak in vehicle usage probability happens as the result of turning home from work. In this period, another drastic 381 

drop occurs in the region OSOC. As the vehicle-usage probability decreases in the final hours of the day, OSOC 382 

starts a steady increase in result of vehicles charging in the parking of homes. 383 

While a daily cycling period for OSOC trend has been supposed for the sake of simplicity in this region (instead 384 

of a weekly one) a foible is obvious in Fig. 5. The OSOC trend starts from 𝑆𝑂𝐶𝑚𝑎𝑥 but never reaches the same 385 

value at the end of the day, this is because the initial starting state has been set to 100% of vehicles being in the 386 

plugged state with their SOC at the maximum. This is however in contradiction with the assumption of daily 387 

cycling period. Solving this confliction needs the modification of the model initial start states, which has been 388 

assessed in the next section. 389 

B. Initial starting states evaluation: 390 

Using the proposed auto amendment method discussed in part c of the model introduction in section 2, the idle 391 

starting states for the model in this study case is being obtained after the 16th run of the model. In each one of these 392 

runs, the obtained expected values of presence probability and SOC of each state in the final hour of the day is 393 

applied as the initial start values for the next run until the satisfaction of the desired conditions (as proposed in 394 

Fig. 3) in the 16th run. The OSOC trend with the modified starting states is being represented in Fig. 8. As it can 395 

be seen in this Fig the OSOC in the final hour of the day reaches the assumed value in the starting hour which 396 

confirms the presumption for daily cycling period of the model.  397 
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For this case study the initial states to comply with the presumptions are obtained as follows: 398 

 55% of vehicles in the plugged state with their SOC at the maximum 399 

 45% of vehicles in the Idle state with the relative SOC of 52% 400 

 0% of vehicles in the discharging state 401 

 402 

Fig. 5.  Normalized overall SOC change of the group of vehicles in a sample weekday 403 

 404 

Fig. 6.  Amended normalized overall SOC change of the group of vehicles in a sample weekday 405 

C. Separate daily OSOC trend for each state:  406 

Fig. 8 shows the obtained OSOC trend while the expected values of SOC are calculated separately for each state 407 

in each hour of the day (OSOCCharging, OSOCIdle, OSOCDischarging).  This trend reveals important information about 408 

the variation of reserved energy in different states of electric vehicles during a daylong, which would be highly 409 

useful in V2G application assessments.  In Fig. 9, the fluctuation of presence probability (PCharging, PIdle, PDischarging) 410 

in each introduced state is being plotted for 24 hours. If these presence probabilities were multiplied by the number 411 

of electric vehicles in this region (10000 for this study case), the expected number of vehicles in each state would 412 

be obtained. Obviously, for these expected rates of presence-probability and SOC, the following equations are true 413 

at any time: 414 

𝑃𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔(𝑡) + 𝑃𝐼𝑑𝑙𝑒(𝑡) + 𝑃𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔(𝑡) = 1                                                             (9) 415 

𝑂𝑆𝑂𝐶(𝑡) = 𝑂𝑆𝑂𝐶𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔(𝑡) + 𝑂𝑆𝑂𝐶𝐼𝑑𝑙𝑒(𝑡) + 𝑂𝑆𝑂𝐶𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔(𝑡)                                              (10) 416 
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As it is being unveiled for the study case in this paper, if just the charging concerns are taken into consideration 417 

from the vehicle owners, there would not be much more than a half of electric vehicles plugged to the grid in any 418 

specific time of a typical day. That normally leads to the accessibility of almost half of the total existent reserve 419 

capacity of these vehicles. 420 

As it can be seen in Fig. 7, a considerable amount of energy is reserved in the battery of idle vehicles, which is 421 

normally not accessible for vehicle to grid applications. By making the right decisions, the custodians can convert 422 

this significant potential amount of energy to V2G operational reserve.  423 

Many useful assessments could be performed using the first time, revealed information in Fig. 7 & 8. As an 424 

example, suppose a constraint of minimum 50 percent in vehicles battery state of charge as the accepted V2G 425 

protocol (MAL). 426 

This statement means, every single electric vehicle is allowed to be participated in vehicle to grid applications 427 

only while it has a SOC more than half. Considering this assumption, the net size of energy, available for V2G 428 

applications without violating the acceptance criteria of vehicle owners would be calculated as in (11), and is 429 

represented for this case study in Table 6. 430 

𝑁𝐸𝑉2𝐺(𝑡) = 𝑂𝑆𝑂𝐶𝑃𝑙𝑢𝑔𝑔𝑒𝑑(𝑡) − (𝑃𝑃𝑙𝑢𝑔𝑔𝑒𝑑 × 𝑀𝐴𝐿)                                             (11) 431 

Where,  432 

𝑁𝐸𝑉2𝐺(𝑡): Normalized Net Available Energy for V2G applications in 𝑡.  433 

 434 

Fig. 7 the variation of reserved energy in the battery of vehicles, in the introduced states during 24 Hours  435 
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 436 

Fig. 8 the variation of presence probability in each introduced state during 24 Hours 437 

TABLE 6. Normalized for the study case. 438 

Hour 𝑶𝑺𝑶𝑪𝑷𝒍𝒖𝒈𝒈𝒆𝒅 𝑷𝑷𝒍𝒖𝒈𝒈𝒆𝒅 𝑵𝑬𝑽𝟐𝑮 

H6 55.00 52.25 28.875 

H7 53.68 50.99 28.185 

H8 52.18 49.03 27.665 

H9 51.40 47.33 27.735 

H10 53.19 47.91 29.235 

H11 53.63 48.29 29.485 

H12 53.41 48.33 29.245 

H13 53.30 48.39 29.105 

H14 53.18 48.45 28.955 

H15 52.62 48.01 28.615 

H16 52.49 47.66 28.66 

H17 52.09 47.05 28.565 

H18 51.37 46.05 28.345 

H19 52.85 46.80 29.45 

H20 53.58 47.65 29.755 

H21 53.70 48.26 29.57 

H22 54.02 49.02 29.51 

H23 54.23 49.74 29.36 

H24 54.44 50.42 29.23 

H1 54.60 50.98 29.11 

H2 54.72 51.22 29.11 
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Hour 𝑶𝑺𝑶𝑪𝑷𝒍𝒖𝒈𝒈𝒆𝒅 𝑷𝑷𝒍𝒖𝒈𝒈𝒆𝒅 𝑵𝑬𝑽𝟐𝑮 

H3 54.84 51.68 29 

H4 54.90 52.02 28.89 

H5 55.01 52.23 28.895 

D. OSOC trend application in electric vehicles daily charging load profile estimation: 439 

As it is already mentioned in previous sections, a novel method has been introduced to make a description of 440 

electric vehicles charging load profile in this paper. This method is based on the comparison of 𝑂𝑆𝑂𝐶0 and 441 

𝑂𝑆𝑂𝐶𝐴𝐶𝑅 (the former represents the OSOC trend while the average charging rate is manually set to zero and the 442 

latter indicates the calculated OSOC trend with the average charging rate of ACR). The  𝑂𝑆𝑂𝐶0 trend for this 443 

study case is plotted in Fig. 9. Using the equation (8), the electric vehicles daily charging profile for this case study 444 

is represented in Fig. 10. Although the ACR is a unique value for every region (according to the type of electric 445 

vehicles and charging stations in that area) but the daily EV charging profile for a different ACR (ACR=18%) is 446 

represented in Fig. 11. By comprising these two loading profiles in Fig. 10 & 11, a general overview can be 447 

obtained about the effects of changing ACR on the power grids imposed load due to charging of electric vehicles. 448 

This alteration could be the result of a load-managing program in the smart future power grids.  449 

As it can be concluded, the total areas below the represented load profiles are the same in both Fig. 10 and 11, and 450 

are equal to the sum of the total energy consumed in transportation systems for this region.   451 

The daily load profile due to the charging of electric vehicles is represented in Fig. 12 (data in Fig. 10 is multiplied 452 

by the reference value to show the system load in Mega Watts). This load profile shows two peaks happening a 453 

few minutes after the two discussed peaks in vehicle-usage probability. This is a normal result of an aggregation 454 

in previously used vehicles in plugged (charging) state. As it was mentioned before, if just the charging concerns 455 

are taken into consideration by the vehicle owners, then the annoying peaks of EVs charging loads in power 456 

systems critical peak hours would be irresistible.  457 

Although handling this conclusion for daily charging load patterns of electric vehicles, rings an alarming signal 458 

for system operators and investigators to be prepared of coping with, these new highly distributed loads, but it is 459 

not absolutely rational to consider the behavior of vehicle owners affectless of high cost of electricity in peak 460 

hours. In reality, the behavior of vehicle owners in charging their vehicles affects from hourly cost of electricity 461 

and the implementation of the introduced model to be sensitive of this concern is in the favor of Part II of this 462 

paper. In the second part of this paper, the Markov model has been modified to be able of handling electricity costs 463 

in modeling the electric vehicles behavior. 464 
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 465 

Fig. 9.  Amended normalized overall SOC trend of the group of vehicles in a sample weekday while charging rate is being set to zero 466 

 467 

Fig. 10. Normalized Grid Imposed Load Due to Vehicles Charging With ACR=11.1% 468 

 469 

Fig. 11. Normalized Grid Imposed Load Due to Vehicles Charging with ACR=18% 470 
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 471 

Fig. 12. Grid Imposed Load Due to Vehicles Charging With ACR=11.1% in Mega Watts 472 

E. A simple conformation calculation: 473 

As it can be calculated from Fig. 12 model output, shows a total sum of 29.4 MWh of energy consumption in 474 

transportation system of this studied region and also, of the usage probability diagram for the specific region can 475 

be concluded that vehicles are used for about an average of 34 minutes per day in the studied region. If an average 476 

speed of 30 km/h were considered for the supposed region [64, 67] then the total traveled path of 10000 vehicles 477 

in that region for the sample day would be calculated as: 478 

(
34

60
) (ℎ) × 30 (

𝑘𝑚

ℎ
) × 10000 = 170000(𝑘𝑚) 479 

In addition, if in another consumption an electric vehicle is assumed to be able of traveling 6 km per one kWh of 480 

reserved energy in its battery [68], then the model output shows the total traveled path in the studied region as 481 

follow: 482 

(6 × 1000) (
𝑘𝑚

𝑀𝑊ℎ
) × 29.4 (𝑀𝑊ℎ) = 176400(𝑘𝑚) 483 

Comparison of these results can be a simple method to confirm the accuracy of the proposed model.  484 

5. DISCUSSING THE RESULTS 485 

The rapid growth of EVs has led to the need for evaluating their behavior in power grids. Recent studies have 486 

employed various methods to assess EV behavior, these methods include:  487 

 Data-driven approaches, where large-scale data sets collected from EVs, charging stations, and smart grids are 488 

utilized to analyze charging patterns and EVs driving behavior [80, 81]. Machine learning algorithms and 489 

statistical models are applied to identify trends, predict future behavior, and optimize charging strategies. 490 

 Conducting surveys and questionnaires to gather information directly from EV owners [82, 83]. These methods 491 

provide insights into charging preferences, driving distances, and user experiences, helping to understand the 492 

behavior of EV users. 493 
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 Simulation models where advanced simulation models are employed to replicate real-world scenarios and assess 494 

the behavior of EVs in power grids [84, 85]. These models consider factors such as charging infrastructure, grid 495 

capacity, and user behavior to predict the impact of EVs on the grid. Various types of simulation models are 496 

introduced in research articles, including: 497 

 Discrete Event Simulation (DES): DES models simulate the behavior of individual electric vehicles and 498 

their interactions with the power grid [86]. They consider discrete events and actions, such as vehicle 499 

charging and discharging, and can provide detailed insights into the behavior of electric vehicles at a 500 

granular level. 501 

 Agent-Based Models (ABM): ABM models represent electric vehicles as autonomous agents with 502 

individual characteristics and decision-making capabilities [87, 88]. These models simulate the 503 

interactions between multiple agents and can capture the dynamics of electric vehicle behavior in a more 504 

realistic manner. 505 

 Stochastic Models: Stochastic models incorporate randomness and uncertainty into the simulation [89, 506 

90]. They can capture the variability in electric vehicle charging patterns and other factors that affect load 507 

profiles, such as driver behavior and charging infrastructure availability [91]. 508 

 Optimization Models: Optimization models aim to find the optimal charging strategies for electric vehicles 509 

based on certain objectives, such as minimizing grid stress or maximizing renewable energy utilization 510 

[92]. These models consider various constraints and optimization algorithms to determine the most 511 

efficient charging schedules. 512 

The Non-stationary Discrete Markov approach presented in this paper offers several advantages when evaluating 513 

the behavior of electric vehicles in the power grid, firstly, a non-stationary discrete Markov approach allows for 514 

the modeling of time-varying behavior of EVs. EV charging patterns and driving habits can change over time due 515 

to factors such as technological advancements, changes in user preferences, and evolving infrastructure. By 516 

incorporating this non-stationarity into the model, a non-stationary discrete Markov approach can capture the 517 

dynamic nature of EV behavior more accurately. This is in contrast to data-driven approaches or surveys, which 518 

may provide insights based on static or limited timeframes. 519 

Secondly, a non-stationary discrete Markov approach can account for the dependencies and correlations between 520 

different states or actions in EV behavior. EV charging and driving behavior are influenced by various factors, 521 

such as battery level, available charging infrastructure, and user preferences. A Markov approach considers the 522 

probabilistic transitions between different states or actions, allowing for a more realistic representation of how 523 

these factors interact and impact EV behavior. This is in contrast to simulation models or optimization models, 524 

which may not explicitly capture the dependencies between different variables. 525 

Thirdly, a non-stationary discrete Markov approach can provide valuable insights into the impact of EVs on the 526 

power grid at a granular level. By modeling multiple groups of EVs as discrete entities with distinct behaviors, a 527 

Markov approach can analyze the behavior of variant EV types and their interactions with the power grid. This 528 

level of granularity allows for a more detailed understanding of the potential challenges and opportunities posed 529 

by EVs in terms of grid stability, load management, and infrastructure requirements. Other methods, such as 530 

optimization models or simulation models, may fail to capture the behaviors of different types or fleets of EVs in 531 

a study. 532 

Additionally, a non-stationary discrete Markov approach can facilitate scenario analysis and sensitivity testing. By 533 

manipulating the transition probabilities or states in the Markov model, further studies can explore different 534 

scenarios and assess the impact of various factors on EV behavior and grid performance. This flexibility allows 535 

for a comprehensive evaluation of different policy interventions, infrastructure investments, or behavioral changes. 536 
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6. CONCLUSION 537 

In this paper, a non-stationary discrete Markov chain model is presented to determine the stochastic behavior of 538 

electric vehicles from the system operator point of view. The study's model effectively addresses the uncertainties 539 

surrounding the integration of electric vehicles into power networks by utilizing the non-stationary nature of a 540 

Markov chain. By employing the presented model, this study offers a precise and valuable understanding of the 541 

ever-changing and time-dependent behavior of EVs within the power network. 542 

Using this model, according to the vehicle usage probability for a region, variation in overall SOC of the fleet of 543 

electric vehicles in a sample weekday is determined. Applying data mining methods to the outputs of the model, 544 

some interesting, grid view, information are obtained. Such information includes; vehicles daily charging load 545 

profile, variations of reserved energy in different states of vehicles, and also, a view of the corresponding variation 546 

of the number of vehicles in the introduced states, during a sample 24 hours. Considering the trends of daily EV 547 

use at the community level, the study suggests that instead of solely focusing on the impact of EV load on the 548 

power grid the attention should be redirected towards the concept of the lost opportunity associated with these 549 

emerging technologies as without proper planning and understanding, the immense capacities of EVs as dispersed 550 

energy storage resources may fail to achieve desired outcomes. 551 

As The article emphasizes, effective utilization of EVs' significant capacity in enhancing the performance indices 552 

of the power network, provision of ancillary services like frequency control, development of flexible resources for 553 

network management, and improving power system capacities to accommodate intermittent generations could 554 

only be fully realized via the promotion of mutual recognition between the power grid and EVs.  555 

This recognition establishes a vital communication and coordination framework that enables efficient and 556 

optimized utilization of resources. By mutually recognizing each other's presence and capabilities, the power grid 557 

operator gains valuable insights into the behavior and charging patterns of EVs. This knowledge allows for better 558 

prediction and management of electricity demand, ensuring grid stability and reliability. Additionally, mutual 559 

recognition facilitates the integration of renewable energy sources, as EVs can serve as mobile energy storage 560 

units, providing flexibility to the grid. Ultimately, this collaboration between the power grid operator and EVs 561 

results in a more sustainable and resilient power network, benefiting both the environment and the overall 562 

efficiency of the grid system. This recognition involves addressing the various dimensions of the impact of EVs 563 

presence. By doing so, it fosters a better understanding of EV behavior and its impact on the power grid. This 564 

understanding is crucial as it enables network operators to make more informed decisions and effectively anticipate 565 

and manage the increased demand from EVs. Furthermore, it helps in identifying potential challenges and 566 

developing strategies to optimize power grid performance and reliability. Additionally, it aids in more effective 567 

planning of charging infrastructure and network expansion. By comprehending the load profile associated with 568 

EVs, policymakers and planners can strategically determine the placement and capacity of charging stations. This 569 
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ensures that the power grid can accommodate the growing number of EVs without compromising system stability 570 

or overloading specific network areas. 571 

In this study, the authors have focused on incorporating non-stationary transition probabilities of the Markov 572 

model to capture human behavioral functions and represent customer preferences in EV charging. However, the 573 

authors are currently conducting further research to enhance this model by incorporating the concept of EV owners' 574 

demand elasticity to energy prices. This additional research aims to improve the accuracy of the model, making it 575 

more representative of real-world scenarios. By considering the impact of demand elasticity, the model will 576 

provide a more comprehensive simulation of EV charging behavior and its response to varying energy prices     577 
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