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Abstract 21 

Covering operational energy consumption and embodied energy, replacing embodied greenhouse gas 22 

(GHG) emissions in building materials, and knowing national energy resources are required. In this 23 

study, the importance of investigating the stochastic nature of weather-dependent renewable energies is 24 

well documented. The management of the hybrid renewable energy system (HRES) was built and 25 

assessed, utilizing a decision-making algorithm and 13 case studies. When the proportion of renewable 26 

energy is at 24% and the average daily fossil fuel usage is 1.11 liters per year, the HRES generates 1697 27 

kWh per year with a net present value (NPV) of 553,68 USD, with a rate of return (IRR) of 21.4%, and 28 

a payback period (PP) of 15.7 years. With a renewable energy share of 54%, fossil fuel consumption 29 

dropped to 0.69 liters per year, while yearly energy output was comparable to 1,652 kWh per year, with 30 

an IRR of 19.5% and a PP of 17.6 years. To achieve zero greenhouse gas emissions, HRES Management 31 

employs 100% renewable energy sources to generate 1933 kWh per year at a net present value of -32 

372.09 US dollars. This scenario is economically possible if the renewable energy feed-in tariff exceeds 33 

0.06 USD.  34 

Keywords: Renewable Energies; Greenhouse Gas (GHG); Hybrid Renewable Energy System (HRES); 35 

Decision-Making Algorithm; Fossil Fuel. 36 
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Nomenclature 

Symbols Acronyms 

P Power AC Alternating Current 

D Demand ARMA Autoregressive Moving Average 

I Electric Current, Solar Irradiance BESS Battery Energy Storage Systems 

Q Irradiance COE Cost of Electricity 

T Temperature DC Direct Current 

V Voltage DE Diesel Generator 

W,S Wind Speed DER Distributed Energy Resources 

Subscript ED Economic Dispatch 

min Minimum HERS Hybrid Renewable Energy System 

ci Cut-In IRR Internal Rate of Return 

co Cut-Out LCOE Levelized Cost of Energy 

dy Dynamic MG Microgrid 

max Maximum NCF Net Cash Flow 

s Level NPV Net Present Value 

yr Yearly PID Proportional Integral Derivative 

Greek Symbols PV Photovoltaic 

ƞ Efficiency RES Renewable Energy Systems 

∆t Sampling Time Interval ROI Return on Investment 

 Slope Angle SOC State of charge 

 Azimuth Angle STC Standard Test Conditions 

α Power Temperature Coefficient SUC Stochastic Unit Commitment 

δ Coefficients of the Autoregressive Model UC Unit Commitment 

ε Forecast Errors WT Wind Turbine 

μ Coefficients of The Moving Averages ZEB Zero-Energy Building 

1. Introduction 38 

Due to limited resources, traditional energy systems can't keep up with population expansion and 39 

industrialisation. According to the world energy organization, fossil fuel reserves, which provide 79% 40 

of the world's basic energy, are swiftly diminishing, with 57% of them used in transportation. As energy 41 

demand grows and supply falls due to environmental concerns, countries' economies will become 42 

unstable. Local and sustainable energy sources are crucial.  43 

Renewable energy fluctuates geographically. Photovoltaic and wind energy systems don't work at night. 44 

Design and integration of photovoltaic-wind hybrid systems, as well as efficient storage and backup 45 

systems, can boost the willingness to employ renewable systems and control the energy cycle. This 46 

technique supports local or household renewable energy consumption while building the basis for large-47 

scale power generation [1]. Investing in solar and wind systems is expensive compared to fossil fuels 48 

[2]. Combining conventional and renewable energy sources improves cost-effectiveness and reliability 49 

[3]. A small-grid renewable energy management solution incorporates multiple yet complimentary 50 

methods [4]. With the rising usage of hybrid renewable energy systems, especially in distant power 51 

supplies, cost-and reliability-optimal design is crucial. Energy researchers have spent decades trying to 52 

control renewable systems [5]. Compared to standalone systems, integrated renewable energy systems 53 

are powerful. Hourly electricity demand from 2,000 Swedish houses [6]. P-GA-PSO method was used 54 

in a research for energy management and efficiency. The result was the use of an innovative method in 55 

energy price estimation [7]. Positive feedback between central power generation and house investments 56 
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in a hybrid solar system and batteries has changed the market to single-family dwellings [8]. A 2018 57 

research advocated the intelligent control of a solar system utilizing fuzzy logic [9]. In 2021, another 58 

research suggests an intelligent control approach for a direct-connected, tracking photovoltaic solar 59 

power plant [10]. Recent research focuses on hybrid networks and real-time algorithms [11]. Lee et al. 60 

(2018) explored a grid-connected system for regulating consumption and peak correction in Japanese 61 

homes [12]. In another research, real-time optimization was done based on dynamic programming and 62 

two-dimensional algorithm. A technique for optimizing energy management combining real-time and 63 

anticipated data has produced the desired outcome [13]. Coordination of solar array, battery storage, 64 

and capacitor network integration was also studied. Invention clustering and solar battery development 65 

are also studied [14]. Elsheikh et al. developed a hybrid energy control system in 2019. This system 66 

controls electricity generation to maximize profits and minimize operational expenses. Environment 67 

determined the control situation. The power generation system predicted load distribution and profit-68 

maximizing environmental circumstances. Operating profit, imbalance factor, effective operation 69 

forecasts, and time delay were used to assess the suggested system [15]. 70 

Yang et al. developed a hybrid renewable energy forecasting system in 2020. This system managed 71 

alternating and random renewable energy flow to increase load dependability. Only the axial part of the 72 

flow needs to be controlled and the disturbance control is simple [16]. YiHe et al. implemented battery 73 

for multi-objective algorithms for the storage and management of electric energy. The results shown 74 

that energy estimation can be performed with high precision using meteorological and anticipated data, 75 

and the field evaluation of the decision-making method based on voltage control and Non-dominated 76 

Sorting Genetic Algorithm-II was effective[17]. A typical control includes integral-derivative PID 77 

control, passivity-based control connection, sliding state control, and regular sliding state fraction 78 

control. They showed that PID's active power error is small. This study tested dSpace-based hardware 79 

under different situations [18]. In a recent study, a control system with a Peak shaving technique was 80 

implemented employing HRES and BESS. The technological gap was narrowed by conducting detailed 81 

benefit evaluations based on the equivalent coefficient and by including a storage mechanism to 82 

accommodate fluctuating solar radiation and ambient temperature [19]. Pravin et al. created a 83 

framework for combining renewable energy sources with a fuel cell system in 2020. This study relied 84 

on a storage technology to deal for solar and wind's alternating nature. Over a week, a scheduling layer 85 

that gives a precise plan of the ideal proportion of available electricity sources was explored [20]. The 86 

correct operation of the power generation system was recorded by the installed modifier's production 87 

decision-making. The results showed that the envisaged control system could generate a renewable 88 

energy-balanced load. Without a hardware model, validation is impossible [21]. Dong et al. 89 

implemented the forecast control model's maximum renewable energy cooling, heating, and combined 90 

power system performance in 2020. Users can use the system's produced load for heating or cooling. 91 

Based on the energy storage unit's dynamic features, a prediction-error energy optimization model is 92 
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proposed. Target performance is an approach to optimize system running expenses. Optimizing each 93 

device's output minimizes operational costs under maximum forecast error [22]. Nogharian and Kofiger 94 

designed hybrid wind, solar, and battery renewable energy systems in 2020 using switch mechanisms. 95 

This system uses adaptive control to fulfill total electricity demand under automated switching. The 96 

suggested control law only considered velocity and angular flow, not wind energy. The simulation 97 

results demonstrated the suggested method's performance in a typical hybrid energy system [23]. In a 98 

series of studies, a novel optimization strategy for hybrid renewable systems was employed. The results 99 

shown that the simulated annealing process can achieve self-consumption average values of 0.93 and 100 

that the proposal might reduce CO2 emissions by 2,838 tons. Additionally, Green energy systems will 101 

minimize annual nonrenewable energy use by 553 MWh[24].  102 

According to a research review, governments throughout the world are trying to solve the problem of 103 

sustainable energy supply by passing environmental laws and regulations and different incentives based 104 

on technological, economic, and environmental criteria  [25].  In different climatic conditions, research 105 

was undertaken with the goal of reducing power costs and meeting all energy demands with renewable 106 

sources. The results indicated that the system's overall exergy efficiency ranges from 13 to 16 percent. 107 

In the European region, the specific expenses vary considerably by month and place. The southernmost 108 

site has the LCOE at 0.289 €/kWh and heat products at 0.320 €/kWhex. The comparison results 109 

demonstrate that the HRES is cost-effective [26]. In a comparative research, Shabestari et al. conducted 110 

a technical and economic evaluation using nine linear regression machine learning approaches. Using 111 

renewable energy as a source, CO2 emissions are reduced by an average of 16-28% compared to the 112 

pure grid. The results showed that the summer outages in Iran by 2040 are estimated to exceed 90 hours 113 

per year, and the optimized system has an energy cost of $0.06/kWh and a renewable fraction of more 114 

than 15% [27]. Existing studies can't identify the economic magnitude of integrated renewable energy 115 

systems focusing on the energy controller. This study uses vertical wind turbines, solar systems, and a 116 

diesel generator (DE) as backup energy sources. A battery bank also stores energy. Batteries store extra 117 

renewable energy. When renewable energy can't fulfill demand, a backup battery is employed. The 118 

generator ensures electricity grid quality when other units' production is low or demand is high.  119 

In this study, the importance of investigating the stochastic nature of weather-dependent renewable 120 

energies is well documented. Combining the use of dynamic decision algorithm in Markov processes 121 

to represent the uncertainty of wind power and photovoltaic unit in a Stochastic Unit Commitment 122 

(SUC) and Economic Dispatch (ED) situation and applying the Autoregressive Moving Average 123 

(ARMA) method to forecast the demand for green cottages Microgrid (MG) is the primary innovation 124 

of this study. We introduce uncertainty and stochasticity to the management of the MG scheduling issue 125 

by using these stochastic models. The viability of this method is supported by empirical evidence. 126 
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2. Materials and Methods 127 

The increase in penetration of renewable energy sources based on weather and stochastic has definitely 128 

increased the uncertainties in energy in the hybrid system and there is a need to design a prior demand 129 

algorithm, manage and control available energy resources, model RESs and optimize resources on 130 

cheap demand response. Renewable energy sources in the world are very vast. In the meantime, Iran 131 

has available and diverse sources of energy. The test site for the systems is located in Tehran at 35° 42' 132 

55.0728" North and 51° 24' 15.6328" East. The height of the green home is 1352 meters above sea 133 

level. The temperature varies from -1.1 degrees Celsius to +42.7 degrees Celsius. In the regions of Iran's 134 

central belt, solar radiation is favorable and in the range of 4.99 kWh/m2. The average annual ambient 135 

temperature, according to meteorological data, is 21.2 degrees Celsius. In this research, the power 136 

supply of a green cottage with renewable energy sources was designed using linear program control 137 

system and smart grid. The solar-wind hybrid renewable energy conversion system was designed, 138 

fabricated and evaluated with the support of DE. 139 

The Real-time HRES system performs the task of receiving data to managing and optimizing the 140 

demand of the green cottage in three stages. The first stage includes modeling the MATLAB Simulink 141 

package. The obtained results are essential for fabrication HRES. The second stage used Proteus Design 142 

Suite to design and develop the system's electronic circuits. Real-time simulations of electronic circuits 143 

are used to study and analyze their behavior. During this stage, the microcontroller is programmed with 144 

a dynamic decision-making algorithm. Finally, a green cottage uses electronic circuits and dynamic 145 

decision algorithm. Any difference between the first and second stage results has been evaluated and 146 

solved. The third stage builds the control system for the green cottage's electricity. With real 147 

environment data for a year, the system with DE support achieves the desired critical conditions and 148 

successfully manages energy, optimizing available energy resources. Figure 1 shows the outside of the 149 

prototype system subsystems that are connected to each other.  150 
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 151 

Figure 1. the RES and control equipment’s for a green cottage MG. 152 

The HRES components include electronic circuits, solar and wind subsystems, charge controller, 153 

battery bank, sensors, preparation circuits, safety circuits, converters, voltage intervention circuits, relay 154 

switching circuits, inverter and computer. Integration and fabrication of system real-time environmental 155 

testing are being conducted. Meteorological data is anticipated by the measuring instrument and each 156 

subsystem's capacity to generate electricity. Continuously managing the process of charging or 157 

discharging the battery source, the real-time management system offers 7 to 12 volts and 12 to 15 volts 158 

output voltages from renewable sources up to 230 volts. The control system gathered environmental 159 

data every hour for a whole year (8760 hours) and recorded it in LabVIEW using a USB4711 converter. 160 

A smart controller handles both energy and hybridization. Figure 2 shows the intervention model, which 161 

is based on voltage and the hardware of the control system. The MG comprised of a collection of linked 162 

loads and distributed energy resources (DERs), Like dispatchable elements such as DE, and some WT 163 

and/or PV as weather-dependent RESs. Consideration is given to battery energy storage systems 164 

(BESS) functioning as some controllable and independent units. MG can meet the load demand of green 165 

cottage off-grid or stand-alone. 166 
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 167 

Figure 2. The predictive analytics and dynamic decision algorithm of HRES voltage control. 168 

In the first stage, meteorological data is received through environmental sensors and access to historical 169 

data is provided. At the same time, the green cottage demand curve is predicted and modeled through 170 

ARMA. Since RESs are based on stochastic nature, the Marko process is solved as a multi-dimensional 171 

dependence for the uncertainty of renewable sources of solar energy (homogeneous) and wind energy 172 

(non-homogeneous). In the second stage, by solving the models and accessing the voltage controller in 173 

the smart HRES, the SUC and ED models are solved to cover the low-cost response to the electricity 174 

demand of the green cottage. It is believed that the conventional generating units (DE) and the BESS 175 

can compensate for demand forecast errors. The aforementioned criteria ensure that the green cottage 176 

MG can operate reliably on the island. In order to assure that this is the case, dependability requirements 177 

are added into the optimization problem. The voltage switch interfaces with the circuit breaker and 178 

power source controller to activate. Each renewable energy source's output is optimized based on 179 

controller calculations. The hybrid paradigm uses distribution control to manage subsystems in real 180 

time. In the third stage, the intelligent HRES system, using SUC and ED models in real-time with 181 

uncertainty in supply and while providing warnings for the presence of DE and BESS charging, supplies 182 

the electricity demand of green cottage MG in the form of demand side management. Then, the 183 

operating costs are reduced by optimization issues involving the determination of DE start-up time 184 

should be minimal. Real-time system control might be centralized, distributed, or hybrid. The HRES 185 

determines optimal energy performance in all three control paradigms. The centralization paradigm 186 

monitors all regulated output voltages and signals on the PIC16F18877. The signals are chosen after 187 

the renewable electricity is ready. Fig. 3 shows the system's dynamic decision algorithm. The algorithm 188 

looks at situations that allow solar and wind to charge the green cottage's MG or the BESS. 189 



8 
 

 190 

Figure 3. Algorithm for green cottage MG management and optimization.  191 
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The PIC16F18877 is coupled to 17 relays that control energy through 8 battery decision relays, 8 voltage 192 

switching relays, and 1 relay connected to the diesel generator's on/off starter. The microprocessor sends 193 

5 volts to the relays and operates energy optimization and hybridization. In the absence of renewable 194 

energy sources, batteries B and A drain intermittently by 40% of SOC.  If the battery bank goes below 195 

40% and there is no renewable power source, the DE control system charges the batteries. After 196 

charging the battery bank or using renewable energy, the DE is shut off. To calculate the ampere-hour 197 

of a 12-volt battery, use two 100-watt bulbs with a total consumption of 10 watts and a 175-watt bulb 198 

with a total consumption of 7.5 watts. This may be used with LED daytime running lights ranging from 199 

5 to 10 watts. The lighting portion consumes 2.29 ampere-hours each day before the inverter and 11.45 200 

ampere-hours if all three lamps are active for 5 hours. Therefore, by summing up the load consumers, 201 

the total power required for the green cottage was estimated to be 1.06 kW to 2.5 kW. Table 1 shows 202 

the cottage's electric customers. 203 

Table 1. Electricity consumers in green cottage [28]. 204 

Section Wattage (W) Time (Hours)  Ampere Hourly (Ah) 

Illumination and Light 5-10 5 11.45 

Digital and Computer 50 8 33.28 

Refrigerator and Cooling 20-100 24 79.9 

Entertainment 17-100 2 5 

Cooking 40-800 1 8.33 

Total 132-1060 - 137.96 

The green cottage will use 138 ampere-hours daily. This estimate fits tiny cottage consumption (100 to 205 

200 ampere-hours). The minimum support time is 408 min when consumption is 247 watts and the 206 

battery depletion is 200 amp hours at the inverter's 12-volt input voltage. When the control algorithm 207 

stops the battery from reaching 40% SOC and the backup system is linked to the grid. During economic 208 

analysis, the system's NPV, IRR, and ROI are computed. The NPV of future cash flows is computed 209 

through equation (1). 210 

𝑁𝑃𝑉 = NCF0 +
𝑁𝐶𝐹1
(1+𝑖)

+
𝑁𝐶𝐹2
(1+𝑖)2

+
𝑁𝐶𝐹𝑡
(1+𝑖)𝑡

     (1) 211 

Where, NCF=net cash, i=discount rate, and t=financial term. NPV is positive or negative. If the net 212 

present value is 0, the designer won't care whether to do the project. At IRR, NPV is zero. Using ROI, 213 

the time at which total yearly income is computed equals the investment cost. 214 

The statistical test is based on four-level factorial and Taguchi experimental design (irradiance, solar 215 

cell surface temperature, and wind speed). As in [29] and [30] the demand for electricity is forecasted 216 

for the following twenty-four hours using an ARMA model applied to one years of historical data from 217 

[31]. The equation (2) describes the demand model: 218 

𝐷𝑚(𝑡) = ∑ 𝜇𝑛𝐷(𝑡 − 𝑛) +
𝑟
𝑛=1 ∑ 𝛿𝑚𝜀(𝑡 − 𝑚)

𝑠
𝑚=0      (2) 219 
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where 𝐷𝑚(𝑡) represents the current demand at living time, 𝜇𝑛 and 𝛿𝑚 are the effective coefficient and 220 

the ARMA coefficient are respectively in the demand relation, and 𝜀(𝑡 − 𝑚) equal to the prediction 221 

error coefficient. In the demand model, r values and s values cover previous errors. Using Akaike's 222 

Information Criterion, the last two parameters are determined. Term 𝜀(𝑡 − 𝑚) are computed as relative 223 

percentages of forecast error for each hour and follow a normal distribution. The hourly sun irradiance 224 

is measured at the same geographical locations. equation (3) has been used to modeled the PV in 225 

homogeneous Markov reward process. 226 

𝑃𝑉𝑚(𝑡) = (
𝑃𝑆𝑇𝐶

𝐼𝑆𝑇𝐶
) {(𝑥 ∙ 𝐼𝑀,𝑡)[1 + 𝛼(𝑇𝑀,𝑡 − 𝑇𝑆𝑇𝐶)]}      ∀𝑡 ∈ {1,2,3,… , 23,24}  (3) 227 

where 𝑃𝑉𝑚(𝑡) is the power of the PV, 𝐼𝑀,𝑡  and 𝑇𝑀,𝑡 are the solar irradiance and photovoltaic cells 228 

temperature at time (t), and 𝑃𝑆𝑇𝐶, 𝐼𝑆𝑇𝐶  and 𝑇𝑆𝑇𝐶  are the variables of the solar power generation unit are 229 

in standard test conditions (STC). the maximum power, solar irradiance, and photovoltaic cells 230 

temperature, respectively. Lastly, 𝑥 is the number of photovoltaic panels, and 𝛼 represents the effective 231 

temperature coefficient in photovoltaic power loss (% ℃⁄ ). To calculate the WT power from wind speed 232 

data, as was done in solar energy, the modeling is solved by predicting non-homogeneous Makove 233 

process data, and the WT power curve is converted to the analytical form shown in equation (4).  234 

𝑊𝑇𝑚(𝑡) =

{
 
 

 
 

0 𝑓𝑜𝑟 𝑠 < 𝑠𝑐𝑖,

𝑄𝑟
𝑠3−𝑠𝑐𝑖

3

𝑠𝑟
3−𝑠𝑐𝑖

3 𝑓𝑜𝑟 𝑠𝑐𝑖 < 𝑠 < 𝑣𝑟 ,

𝑄𝑟 𝑓𝑜𝑟 𝑠𝑟 < 𝑠 < 𝑣𝑐𝑜
0 𝑓𝑜𝑟 𝑣 > 𝑣𝑐𝑜,

,

      ∀𝑡 ∈ {1,2,3,… , 23,24}  (4) 235 

 The coefficient values 𝑄𝑟 and 𝑠𝑟 denote the rated power (kW) and the wind speed (m/s), whereas 236 

𝑠𝑐𝑖 and 𝑣𝑐𝑜, and 𝑠 denote the cut-in and cut-out, and wind speed, respectively. The battery bank is an 237 

element that can directly generate the electricity needed by the green cottage or be charged as a 238 

consumer by connecting to power generation sources. The state of charge (SOC) is received by HRES 239 

at any moment and displayed as a percentage. Also, equation (5) shows the BESS charging status model. 240 

𝑆𝑂𝐶𝐵𝐸𝑆𝑆(𝑡) = 𝑆𝑂𝐶𝐵𝐸𝑆𝑆(𝑡 − 1) − {
∆𝑡 ∙ 𝐵𝐸𝑆𝑆(𝑡) ∙ 𝐸𝑐 ; 𝐵𝐸𝑆𝑆(𝑡) < 0

∆𝑘∙𝐵𝐸𝑆𝑆(𝑡)

𝐸𝑑
; 𝐵𝐸𝑆𝑆(𝑡) > 0

}   ∀𝑡 ∈ {1,2,3,… , 23,24}   (5) 241 

where 𝐸𝑐, 𝐸𝑑, and ∆𝑡 represent the BESS charging efficiency, discharging efficiency, and sampling 242 

interval, respectively. The status of the battery power can be positive or negative. If the element works 243 

as a generator, the 𝐵𝐸𝑆𝑆(𝑡) will be positive and in the state of discharge, the power will be negative. 244 

Damage can be avoided if the SOC stays within a certain range, hence this range includes both the 245 

maximum and minimum values. Consequently, it needs to be in accordance with equation (6). 246 

𝑆𝑂𝐶𝐵𝐸𝑆𝑆,𝑚𝑖𝑛(𝑡) ≤ 𝑆𝑂𝐶𝐵𝐸𝑆𝑆(𝑡) ≤ 𝑆𝑂𝐶𝐵𝐸𝑆𝑆,𝑚𝑎𝑥(𝑡)      ∀𝑡 ∈ {1,2,3, … , 23,24}  (6) 247 
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The microgrid nonrenewable energy sources are the conventional generating units (DE). The power 248 

generated is physically constrained and represented using equations (7). 249 

𝑃𝐷𝐸,𝑚𝑖𝑛 ≤ 𝑃𝐷𝐸(𝑡) ≤ 𝑃𝐷𝐸,𝑚𝑎𝑥      ∀𝑡 ∈ {1,2,3,… , 23,24}  (7) 250 

𝑃𝐷𝐸,𝑚𝑖𝑛 and 𝑃𝐷𝐸,𝑚𝑎𝑥 are the minimum power and maximum power of DE generator, whereas 𝑃𝐷𝐸(𝑡) 251 

is time-dependent power of DE generator. 252 

To compose the optimization equations, the terms of the HRES are modified. They exhibit the criteria 253 

of prediction and proportionality with time (𝑡 ∈ {1,2, … , 24}). The variables indicated by 𝑣 are used 254 

when the model or optimization is used in the forecasting situation. Any of the variables can qualify for 255 

this condition. For the suggested technique to MG, a optimization algorithm is implemented, 256 

comparable to the actual method of managing power grids. 𝐷̂(𝑡), 𝑃𝑉̂(𝑡) and 𝑊𝑇̂(𝑡) terms are related 257 

to forecasts of demand and uncontrollable Solar and wind sources in a 24-hour period. As described 258 

before, the determination of how much operationally controlled sources should contribute is determined 259 

in two distinct processes. The initial phase is termed as unit commitment (UC). It simply controls 260 

whether a unit is active or inactive. The binary variables are employed for this purpose. ED is second 261 

stage that the real power to be provided by controllable sources is determined based on the discrepancy 262 

between forecasts and actual demands.   263 

3. Results and Discussions 264 

Thirteen subsystem configuration possibilities were analyzed using solar-wind hybrids, batteries, and 265 

DE. In this study, the renewable energy hybrid system has a 20-year lifespan, a 16.7% discount rate, a 266 

10% inflation rate, and meteorological data. The minimum renewable component is 23.7%. The LCOE 267 

for all subsystems combined is $0.381 per kilowatt-hour. In countries with significant inflation and 268 

discount rates, such as Iran, a 0.205 kW photovoltaic system (starting cost of 410 USD), an i500 wind 269 

turbine (beginning cost of 1000 USD), a 0.890 kW DE model TG2500DC, and two 100 ampere-hour 270 

batteries are installed. This system uses 253 liters of gasoline per year and 54% renewable energy. The 271 

DE operated for 1345 hours and generated 675 kWh. The battery stores 499 kWh annually and has a 272 

7.03-hour compensation capacity. Table 2 demonstrates hybrid renewable energy systems' optimal 273 

combinations. According to Green Cottage Power Use, residential power consumption peaks 3 hours 274 

after sunset. On some days, electricity consumption reaches 2.09 kW. Off-hours usage was 0.01 kW. 275 

By dusk, the green cottage's yearly average power use had reached 0.47 kW. 276 

Table 2. HRES System Architecture. 277 

Architecture  
Tg2500 

(kW) 

 

Photovoltaic 

(kW) 

I500 

(kW) 
 

Battery 

(100Ah) 

Investment 

Cost 

(USD) 

 COE 

(USD 

Per 

kWh) 

Fuel 

Consumption 

(L) 

 
Renewable 

Fraction 

(%) 

1 0.89  0.368 0  2 1222  0.379 407  23.8 
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2 0.89  0.205 1  2 1888  0.381 253  54 

3 0.89  0 1  3 1579  0.402 359  30 

4 0.89  0 0  4 695.6  0.407 585  0 

5 0.89  0.396 2  4 3378  0.446 0  100 

6 0.89  0 3  5 3800  0.510 0  100 

7 0.89  1.42 0  11 4130  0.547 0  0 

8 0.89  0 0  0 285.46  0.636 1080  0 

9 0.89  0.0065 0  5 289.83  0.637 1080  0 

10 0.89  0 1  0 1278  0.721 1011  0 

11 0.89  0.0035 1  0 1325  0.717 1017  0 

12 0.89  0.04 14  0 14083  1.8 0  100 

13 0.89  0 15  0 15000  1.91 0  100 

Fig. 4 shows the green cottage's yearly electricity demand and supply. The inverter extracted 871 kWh 278 

per year from 917 kWh over 7239 operational hours. Converting AC to DC loads wastes 45.8% of 279 

energy. 280 

 

 

a: Consumption of Electricity.   

 

 

b: Supply of Electricity from Renewable Sources.  

Figure 4. The Green Cottage's Annual Electricity Demand and Supply.  281 

Each subsystem contributes a fraction to the generation of the required energy. Annually, 331 kWh are 282 

generated by the solar subsystem. The WT with high penetration equivalent to 40.8% generated 675 283 

kilowatt-hours of energy annually and the other demand supply unit was DE with a share of 39% and 284 

annual production of 647 kilowatt-hours. System architecture No. 2 requires 253 liters of fuel, with a 285 

specific fuel demand for power output of 0.37 liters per kilowatt-hour. This unit will likewise be started 286 

589 times a year and has a useful life of 11.2 years. There was a notional yield of 27.1%. The operation 287 

of the backup and battery energy storage subsystem is depicted in Figure 5. 288 
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a: condition of the subsystem for energy storage.   

 
 

b: DE subsystem power.   

Figure 5. The backup and energy storage subsystem.  289 

The BESS installation showed that 12 volts is sufficient. BESS inputs 577 kWh and produces 446 kWh 290 

annually. Outages averaged 111 kWh per year, and batteries provided 499 kWh. The battery energy 291 

storage option can provide the green cottage's electrical needs for 7.03 hours for 0.112 USD per 292 

kilowatt-hour. The cottage's electricity use is mostly determined by its hybrid renewable energy 293 

conversion system.  294 

Fig. 6 Shows the optimization HRES used forecasting situation and optimal hybrid energy investment 295 

value. The initial phase is termed as unit commitment and energy management under boost voltage DC-296 

DC with predictive analytics and dynamic decision algorithm. 297 
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 302 

Fig. 6 displays the renewable energy fraction and net investment value utilizing a dynamic choice 303 

procedure and monthly average electric output. Average wind speed and fuel prices decrease net 304 

investment value. 305 

 

a: Renewable Energy Proportion.  

 

b: Economic Scenario's Monthly Average Electricity Production. 

Figure 6. The percentage of renewable energy and average monthly electricity generation.  306 

Increasing investment by more than $3,300 USD is not cost-effective and rapidly boosts the price of 307 

energy production. The development and use of a micro turbine and the lack of DE led to the use of 308 

three batteries and the expansion of the capacity of the solar and wind subsystems. This brought the 309 

price of renewable electricity down to 0.402 USD per megawatt-hour. 310 
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The cost-benefit analysis of the systems has been solved by obtaining 20-year economic data of Iran 311 

and based on the assumption of DE fuel equal to 0.12 USD and MG feed-in tariff equal to 0.05 USD 312 

with an average discount rate of 16.7%. From their commencement in 2020 until their depreciation in 313 

2040, it is estimated that the projects will last three months. In the first scenario, the green cottage is 314 

powered for "economical" reasons. In this scenario, renewable energy accounts for 23.8% of total 315 

energy consumption, whereas nonrenewable energy accounts for 407 liters of gasoline. The second 316 

scenario, with a fuel usage of 253 liters, employs 54 percent solar and wind to accomplish the aim of 317 

being "renewable and cost-effective." The third scenario is to completely power the eco-friendly home 318 

with renewable energy. As a consequence, fossil fuels are removed, and the energy source of the eco-319 

friendly cottage is entirely dependent on battery power. In the first scenario, the green cottage produces 320 

1697 kWh of energy each year. In this research, following the stochastic behavior, in the practical 321 

evaluation of the systems, three progressive scenarios of High penetration of RESs were carried out 322 

with the HRES system. The first scenario has solved the basic penetration of RESs by 23.8%, the second 323 

scenario by 54%, and the third scenario by demand management as 100% of RES resources. however, 324 

Scenario 3 is not economically feasible in Iran. Despite the substantial environmental implications, this 325 

scenario should nevertheless be undertaken. Sustainable development has demonstrated that today's 326 

demands may be met with fewer fossil fuels. 327 

 

a: Analysis of sensitivity.  
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b: The impact of the discount rate on three scenarios. 

Figure 7. Financial analysis of system variables.  328 

In addition, the NPV is 553,68 US dollars, and the IRR is 21.49%. Prior to the completion of the plan 329 

to sell power to the Green Cottage in 2040, a total of $2,710.79 USD worth of energy had been acquired. 330 

In normal mode (2029), the payback period is 9.10 years, whereas in dynamic mode it is 15.71 years. 331 

The sensitivity analysis for Scenario 1 of the project reveals that the feed-in tariff has the greatest 332 

influence, followed by operational expenses, with a cost-benefit ratio of 1.38. Scenario 1 is ecologically 333 

favorable since the DE is powered by 407 liters of gasoline per year, which is equivalent to 1,065 kilos 334 

of CO2 annually. Under the second scenario, the HRES produces 1652 kWh of energy annually. The 335 

NPV will be 341,471 US dollars, and the IRR will be 19.5%. The green cottage power revenue program 336 

ended in 2039 with total energy sales of $2,638.90 USD. In standard mode (2029), the payback period 337 

is 9.8 years; in dynamic mode, it is 17.61 years. The project's sensitivity analysis indicated that the cost-338 

benefit ratio is 1.21, with the feed-in tariff having the most significant impact, followed by an increase 339 

in fixed assets. The use of 253,443 liters per year, which is equivalent to 633 kilos of carbon dioxide, 340 

makes Scenario 2 environmentally benign. The third scenario yields an annual energy output of 1,933 341 

kWh. The net present value is -379.09 dollars, and the internal rate of return is 15.08%. At the 342 

conclusion of the green cottage power sales program in 2039, a total of 3,087.77 USD worth of energy 343 

had been sold. If the NPV is negative, the project is not economically justifiable and the depreciation 344 

period exceeds the life of the project. The majority of the effect is attributable to a boost in sales income, 345 

followed by an increase in fixed assets, and the implementation of this scenario does not result in 346 

greenhouse gas emissions. 347 

According to statistical analysis of the variables influencing the system's power and performance, solar 348 

radiation with a wavelength of between 0 and 1200 W.m-2 will always have a favorable effect on the 349 

system's power. Figure 8 depicts the impact of Environmental variables on the electrical power 350 
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consumption of the green cottage. The effect of the rising sun and growing radiation intensity up to 900 351 

W.m-2 has a considerable impact on the system power, while the effect of the rising sun and increasing 352 

radiation intensity up to 1200 W.m-2 has a smaller but positive slope. Temperature has a negative effect 353 

on the performance of solar systems, decreasing their power production by increasing their internal and 354 

external resistance. In contrast, increases in solar photovoltaic surface temperature beyond 80 degrees 355 

Celsius have a greater effect on decreasing the system's power consumption. Wind turbines with wind 356 

speeds of between 4 and 8 m/s will produce the most power. It has been established that the ideal wind 357 

speed for micro turbines (400 watts) is more than or equal to 4 m.s-1.  358 

 359 

Figure 8. The average consequences of the MG's demand management.  360 

4. Conclusions 361 

In this article, taking into account the uncertainty of RESs and forecasting the load demand of the unit 362 

of consumption, firstly, with connecting real data, the non-homogeneous Markov model for the wind 363 

energy source and the homogeneous Markov model for the solar energy source are solved, and then the 364 

microgrid system is applied. HRES with SUC and ED terms was optimized. The results showed that 365 

forecasting models have sufficient accuracy in predicting the behavior of RESs. The green cotage MG 366 

costs are strongly affected by wind speed on any given day. Temperature caused the greatest power loss 367 

(15.8%), whereas subsystem wiring caused the least.   In locations with high discount rates and low 368 

feed-in tariffs, the same as Iran, using 100% renewable electricity to supply a single-family house isn't 369 

cost-effective. Feed-in tariff increase optimizes cost-benefit analysis of HRES. NPV with a 16.7% 370 

discount rate is $70.93 and payback is 10.68 years. The crucial feed-in tariff for renewable electricity 371 

in Iran is 0.6 $ / kwh, according to a sensitivity analysis. Scenario 3 has a lower project implementation 372 

risk than 2 and 1. Therefore, green cottage's electrical supply has a lower investment cost and a 373 

significant blackout risk. HRES use three energy architecture, AC, DC, and AC/DC power supplies. 374 

The DC subsystems are connected to the DC line and include renewable energy sources [3]. These 375 
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systems have the simplest renewable energy integration plan. If the inverter fails, the system will fail 376 

[4]. Paralleling low-voltage inverter connections with AC electricity solved this problem [6]. AC line 377 

hybrid system is similar DC line, except customers are directly connected to AC [5]. Most Iranians 378 

consume 220 volts at 50 Hz. In current study, the HRES has sent the green cottage's load on AC. Linear 379 

algorithms, AI, and fuzzy control are used to manage hybrid systems off-grid. Networked systems 380 

employ linear algorithms, AI, and fuzzy control. SCADA and ZigBee algorithms predict and manage 381 

energy for intelligent control systems. In these methods, hybrid systems contained a DE for optimization 382 

[8]. Dynamic control optimizes input and output ports. HRES-optimized Voltage-Based Multi-Agent 383 

Control maximized under Boost voltage. Sensing, monitoring, and analyzing voltage to determine and 384 

hybrid local multi-microgrids source voltage. Calculating the battery's measured voltage and reporting 385 

the result as a percentage. The signals voltage switching relays of sources to charge and discharge 386 

batteries and start the DE. Improved microgrid signals in the microcontroller provide non-binary, 387 

continuous battery power based on real data. In [9], SCADA was employed to manage solar, wind, fuel 388 

cell, and fixed generator energy. The source [17] presented energy data via ZigBee. Despite 389 

optimization, these systems were expensive and would shut down if a DE failed. While optimizing 390 

energy and not requiring a DE for continuous operation (using backup diesel), it has delivered power 391 

to green cottage for more than 7 hours. In [26], A 10% drop in average unit price enhanced wind power's 392 

appeal by 5.8%. The cost-benefit analysis of Iran's HRES will change with a 20% increase in feed-in 393 

tariffs to $0.06. In [25], photovoltaic subsystems, wind, and ZigBee are suggested for buildings and 394 

homes. These systems cannot employ low voltages from renewable energy sources, and flashing has 395 

damaged certain grid. In [26], a system to monitor smart home voltage was proposed. By integrating 396 

renewable energy sources with energy management strategies, this algorithm was able to save 33% of 397 

the electricity cost during off-peak hours. In this study, 100% of green cottage's electricity demand was 398 

supplied by renewable energy sources. This system's energy production cost $0.446/kWh. Feed-in 399 

tariffs assist low economies employ renewable energy. Lower energy costs. First scenario has 1065 400 

kg/yr of CO2 emissions, second has 633 kg/yr.  401 
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