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Abstract

Using outcrop and microscale structural constraints on metamorphosed fragments of Carpathian-

Balkan exotic north Gondwanan continental crust amalgamated onto southeastern Eurasia 

(Moesia), we detect significant variability in outcrop scale deformation patterns. The structural 

style variability results from recurrent peripheral subduction processes producing a series of 

collisional orogens, Variscan suturing of ‘Median Dacides’ with Danubian/’Marginal Dacides’ 

(western Moesian realm), and postdating Alpine overprinting. The ‘Median Dacides’ comprise 

the two gneiss amphibolite-facies basement units, Serbo-Macedonian and Getic/Kučaj,  

embedded into Southern Carpathians (Romania) and Carpathian-Balkans (Serbia, North 

Macedonia, Bulgaria), and Hellenides (northern Greece). Variscan inliers were involved in the 

peripheral Paleozoic Variscan and Mesozoic Alpine geodynamic events (including tentative Late 

Triassic Cimmerian involvement). To unravel polyphase deformation processes on the two nappe-

stacked Carpathian-Balkan gneissic inliers, we have incorporated the data available in the reports 

on protoliths, metamorphic and exhumation events, coupled with new extensive structural field-

based analysis.

The composite review and new field data results show that far-traveled composite Serbo-

Macedonian and Getic/Kučaj exotic Peri-Gondwanan basements experienced different 

geodynamic conditions affecting the existing structural fabric. The deformation patterns expose 

polystage deformation history (D1-2) fashioned by the youngest Alpine overprinting (D3-4). The 

structural data and protolith analyses suggest a Lower Paleozoic Cadomian to Cenerian 
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geodynamic linkage between the two gneissic basement units.  Notably, the pre-Variscan 

anatexis, migmatitization, metamorphism (D1-1), and the formation of Cenerian (axial planar) 

foliation (D1-2) are precursors of the tight isocline Variscan folds (D2-1). After Variscan 

amalgamation with Danubian/Moesian Euxinic microcraton, the Serbo-Macedonian occupied the 

outboard position, whereby the Getic/Kučaj was tectonically amalgamated with the Danubian 

basement. Progressive deformation of the Variscan structural fabric (meter-scale folds) produced 

complete transposition (D2-2) with a few preserved meter-scale folds. The successor Alpine 

shortening (D3) (re)activated the existing remnants of Variscan axial plane cleavages (or 

overlapped foliation-to-cleavage planes), further producing the well-developed schistosity and 

new folding pattern. 

Keywords: Continental crust, Serbo-Macedonian gneiss, Getic/Kučaj gneiss, Cenerian 

deformation, Variscan deformation, Alpine deformation, transposition.

Introduction

In convergent margins, the configuration of subducting and overriding plates has often 

been used for constraints on collision-type geodynamics and associated driving forces (e.g., van 

Hinsbergen et al. 2005; Ellouz-Zimmermann et al. 2007; Murphy et al. 2012; Maffione and van 

Hinsbergen 2018; Neubauer et al. 2022; Bühler et al. 2023). Such configurations usually include 

significant spatiotemporal developments revolving around the timing of the observed hosting 

deformations. Most of the available studies deal with P–T–d paths of deformed rocks, offering a 

variety of geodynamic reconstructions that elucidate the tectonothermal history of exposed 

(polydeformed) metamorphic zones (e.g., Iancu et al. 1998; Henriques et al. 2017; Plissart et al. 

2017; Martinez et al. 2020; Trapp et al. 2020; Tropper et al. 2023). In the polydeformed 

Carpathians-Balkan belt case, available reconstructions mainly deal with the Alpine tectonic 

configuration of the exposed cluster of metamorphosed Cadomian-derived Cenerian and Variscan 

basement inliers (Krätner and Krstić 2002, 2006; Iancu et al. 1998, 2005; Seghedi et al. 2005; 

Balintoni et al. 2010a,b,c; Plissart et al. 2012, 2018; Zagorchev et al. 2012; Neubauer and Bojar 
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2013; Bonev et al. 2015; Antić et al. 2017; Balkanska et al. 2021a; Fig. 1abc, 2, 3). The 

chronology of deformation events, progressive development, and their effect on previously 

deformed metamorphic assemblages is not fully understood (see Oriolo et al. 2022 for a general 

discussion). The complex superimposition nature of multiple collisional imprinting (Vangelov et 

al. 2013; Iancu and Seghedi 2017; Spahić et al. 2021) led study attention mainly on the late Alpine 

tectonically-induced exhumation events (e.g., Dallmeyer et al. 1996; Medaris et al. 2003; 

Neubauer and Bojar 2013; Neubauer 2015; Antić et al. 2017; Balkanska et al. 2021b, 2022; Bonev 

et al. 2023; Kounov et al. 2023). Up to now, attempts to separate the tectonic events that produced 

underthrusting and medium to high-grade metamorphism from the stages reflecting progressive 

exhumation and cooling only offer a limited distinction between Variscan and Alpine structural 

imprints. 

Fig. 1. HERE
The investigated ‘Median Dacides or Getic-Supragetic, i.e., “Median Dacide gneiss 

units," stand for a set of displaced lithospheric-scale slices of continental crust amalgamated on 

rigid Moesian microcraton (Săndulescu 1984; Iancu et al. 1998, 2005; Krätner and Krstić 2002, 

2006; Spahić and Gaudenyi 2019; Figs. 2, 3). The Carpathian-Balkan fold-and-thrust-belt as a 

whole incorporates an essentially metamorphosed Variscan crust that is geodynamically reworked 

by the Alpine orogeny (Krätner and Krstić 2002, 2006; Iancu et al. 2005; Neubauer and Bojar 

2013). Variscan and Alpine deformations have obscured the structures related to the active 

Neoproterozoic - Lower Paleozoic Gondwana-related subduction-driven convergence (Balintoni 

et al. 2011, 2014; Spahić et al. 2021). As a result of plate tectonic configuration, Lower Paleozoic, 

Variscan, and Alpine orogens were superimposed (e.g., Krstić et al. 1996; Milićević et al. 1996; 

Stampli and Borel 2002; Stampfli et al. 2013; Spahić et al. 2019b). The early Paleozoic drifting 

of ‘Median Dacides’ produced Variscan amalgamation with Danubian-/’Marginal Dacides’. The 

amalgamated ‘Median Dacides’ had a lower crustal position (descending plate) during this event 

(Iancu et al., 2005; Spahić and Gaudenyi, 2019a; Fig. 3). Protracted Variscan crustal thickening 

was succeeded by the Mesozoic – Paleogene Alpine cycle and opening of (peri)Tethyan oceans. 
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NeoTethyan descending-type subduction zone underplated the ‘Median 

Dacides’/Danubian/Moesia during the terminal Alpine stages. Consequently, ‘Median Dacides’ 

changed the polarity during the Alpine cycle, occupying the upper crustal position over the 

descending Tethyan slab (Fig. 1c, 3). Within the late Alpine nappes, the original Lower Paleozoic 

to Variscan fabric is largely overprinted by the postdating Alpine tectonism (Dallmeyer et al. 

1996; Neubauer and Bojar 2013; Plissart et al. 2012, 2018). Thus, a variety of poorly explored 

ductile and brittle deformations of different ages are imprinted into the ‘Median Dacides’: (i) 

internal gneissic Getic/Kučaj unit (Sebeş-Lotru terrane; Iancu et al. 1998, 2005; Balintoni et al. 

2010a; Neubauer and Bojar 2013), (ii) intervening Supragetic greenschist facies unit 

disconnecting the two gneissic units, and (iii) external gneisses belonging the Serbo-Macedonian 

Unit (Antić et al. 2017; Spahić and Gaudenyi 2019; Figs. 1c, 2, 3).

Fig. 2. HERE
A focused study dealing with the structural features of broadly similar metamorphic 

rocks exposed in the Alpine nappe stack of eastern Serbia provides new insight into the 

deformation chronology and their progressive to polystage character. The recurring collisional 

processes occurred along the central portion of the southern margin of Alpine Eurasia, its Moesian 

microcraton (Fig. 1a). Initially, peripheral subduction at a north Gondwanan cratonic boundary 

produced Cadomian to Ordovician imprints to eventually be transported and embedded into the 

Variscan thickened continental crust (Fig. 1a, 2, 3). The thick Variscan crust is likely influenced 

by mild Cimmerian imprints (Spahić 2022a,b) dismembered during the early and late Alpine 

cycles (e.g., Săndulescu 1984; Iancu et al. 2005; Neubauer and Bojar 2013; Balintoni et al. 2014; 

Neubauer 2015; Antić et al. 2017; Spahić and Gaudenyi 2019; Fig. 1b). Despite a number of 

geodynamic reconstructions, comparison between different orogenic structural imprints in the 

investigated gneissic units lacking. To provide new constraints on the superimposed deformation 

phases, we look for structural markers: (i) rare Variscan folds, (ii) cleavage formation, (iii) 

incomplete and complete transposition cycles (Xypolias et al. 2013; Plissart et al. 2018), and (iv) 

brittle deformation overprinting fabric patterns of Alpine relevance (nappes). Thus, we focus on 
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structural evidence of Cadomian (late Neoproterozoic) to Cenerian (mid-Ordovician) and their 

role in Variscan and Alpine ductile-brittle deformations. In particular, we investigate two gneiss 

units across three key areas (Fig. 3, red circle numbers #1, 2, and 3) by mapping largely obliterated 

original structural elements and their involvement in complex Variscan and Alpine folding 

patterns. Such a complex structural restoration provided evidence of several transposition cycles 

responsible for such an intense overprinting in the first place.

Regional Setting

The South Carpathians and Carpathian-Balkan Mountain region is a segment of the 

Alpine fold-and-thrust belt, which is in an abutting position, encircling the Moesian Euxinic 

micro-craton (Iancu et al. 2005; Krätner and Krstić 2002, 2006; Balintoni and Balica 2016; Spahić 

and Gaudenyi 2019; Balkanska et al. 2021; Figs. 2, 3). This Alpine Carpathian-Balkan connects 

several Balkan countries: Romania in the north, Serbia in its central part, and Bulgaria in its 

western domain, whereby North Macedonia and Greece contain its southern limb that stretches 

into the Aegean Sea (Spahić and Gaudenyi 2019; Schmid et al. 2020). (Fig. 1, 3; Table 1). The 

geotectonic setting of the Carpathian-Balkan belt is consistent with the Alpine peripheral 

collision, which produced several large nappes displacing the Variscan configuration: ‘Marginal 

Dacides’ (Danubian) and ‘Median Dacides’ (Getic/Supragetic plus external Serbo-Macedonian) 

(Săndulescu 1984; Iancu et al. 1998; Krätner and Krstić 2002, 2006; Spahić and Gaudenyi 2018; 

Fig. 3). 

Fig. 3. HERE
Table 1. HERE

‘Marginal Dacides’ (Danubian)

The oldest Carpathian-Balkan gneissic basement unit is settled within the ‘Marginal 

Dacides’ represented by the two discrete units of the Danubian unit (Iancu et al., 2005; Spahić 

and Gaudenyi 2019; Figs. 2, 3). The Danubian gneiss unit consisted of an older Proterozoic 

Avalonian arc inheritance and was amalgamated onto the Moesia much prior to the Variscan event 
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(Balintoni et al., 2010c; Balintoni and Balica 2016; Spahić and Gaudenyi 2019). Thus, remote 

Danubian gneiss is out of the scope of this study. In addition, Variscan-age deformations among 

Alpine Carpathian-Balkan basements were mainly constrained for the Danubian unit (Plissart et 

al. 2012, 2018). 

The long-lasting Lower Paleozoic to Variscan-age subduction processes involving the 

‘Median Dacides’ as lower plate moving beneath Danubian led to the development of a Devonian 

back-arc (Plissart et al. 2017; Neubauer et al. 2020; Figs. 2, 3). The Devonian oceanic crustal 

extrusion was followed by the ophiolite obduction on top of the already docked stabile Danubian 

basement (Plissart et al. 2017; Fig. 2). The lithospheric-scale contact is interpreted as a set of 

sinistral transpressive mylonitic zones (Plissart et al. 2012, 2018) with an NW–SE shortening axis 

similar to the Southern Variscides where Schlingen folds developed (Bühler et al. 2023). 

Simultaneously, the Variscan underthrusting produced a Lower Carboniferous turbidite system 

scattered over both ‘Marginal’- and ‘Median Dacides’ (Boncheva et al. 2010; Spahić et al. 2019a). 

Finally, the ‘early Variscan’ collision was followed by the emplacement of ‘late Variscan’ 

granitoid complexes (Plissart et al. 2012; Jovanović et al. 2019; Fig. 2).

‘Median Dacides’

Getic/Kučaj/Sredna Gora unit

The largest unit of ‘Median Dacides’ of the Carpathian-Balkan fold-and-thrust belt, the 

Getic/Kučaj unit covers the area to the west of Danubian and to the east of the Supragetic unit 

(Spahić and Gaudenyi 2019; Figs. 2, 3). The Getic/Kučaj basement unit consists of various 

metamorphic rocks like gneiss, including abundant amphibolite-type gneiss, mica-rich gneiss, and 

augen gneiss, as well as the rare occurrence of eclogites and granulites (Iancu et al. 1995, 1998; 

Kräutner and Krstić 2002, 2006). According to some authors, this unit is an exception, 

experiencing relatively mild Alpine deformations (Getic/Kučaj/ Sredna Gora; Mukasa et al., 

2003; Plissart et al., 2018).
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Supragetic/”Vlasina”/Morava unit

Intervening between westernmost Serbo-Macedonian and more internal Getic/Kučaj is 

the aforementioned Neoproterozoic to Lower Paleozoic (Ordovician) greenschists/greenstones 

Supragetic basement (Iancu et al. 1998; Kräutner and Krstić 2002; Antić et al., 2016; Spahić et 

al. 2019; Machev et al. 2021; Fig. 3). Magmatic activity in connection with Suprgetic basement 

/”Vlasina unit” lasted from late Neoproterozoic until early Cambrian, wherein the gabbro, diabase 

records age of ca. 550 - 560 Ma (Antić et al., 2016). The Ordovician age of the upper Supragetic 

section is proven by the extraordinary findings of inarticulate brachiopods in southern Serbia 

(Pavlović 1959, 1962; see Spahić et al., 2019, and references cited therein). The greenschist-facies 

assembly consists of chlorite, biotite, muscovite, sericite, epidote schists, phyllites, quartzites, and 

conglomerates but also includes arc-related tholeiitic basalts and their tuffs, intruded by gabbros 

and granites dated between 577 Ma and 521 Ma (Kounov et al. 2012; Antić et al. 2016; Žak et 

al. 2020, and references cited therein).

Serbo-Macedonian Unit

The Serbo-Macedonian Unit represents a discrete nappe stacked westernmost gneissic 

basement unit of the Carpathian-Balkan fold and thrust belt, very similar to the Getic/Kučaj and 

Rhodopean Massif gneiss (e.g., Krenn et al. 2010; see Spahić and Gaudenyi 2021, for a 

discussion). The Serbo-Macedonian Unit occupies the flanking position during the Variscan and 

Alpine orogenic stages, formerly the central segment representing the Neotethyan Vardar 

continental margin (Figs. 1a, 3; Spahić and Gaudenyi, 2022). Consequently, the western Serbo-

Macedonian tectonically overlaps the subducted relics of the younger Neotethyan Vardar Zone 

(Marović et al. 2007a; Erak et al. 2017; Spahić and Gaudenyi, 2019b; Fig. 1c, 3). Such a position 

most likely was an essential factor that influenced the progressive development of a variety of 

Alpine compressional deformations (folds, oblique shear zones, metamorphism, transposition; 

Marović et al. 2007a).

 *
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With regards to the latest Neoalpine event (Neogene; Marović et al. 2007b), some 

geophysical studies show an essential difference in crustal thickness between more internal 

Danubian and Moesian crust compared to the external lithosphere thicknesses (Fig. 4a,b,c; 

Milivojević, 1993; Grinc 2013; Stanciu and Ioane 2021). The effect of Neogene extension is 

mainly observable beneath the Serbo-Macedonian, further affecting the current Cadomian, 

Variscan, and Alpine imprints (Fig. 4). The entire area of ‘Median Dacides’ is crosscut by a large 

number of extensional faults (Marović et al. 2007b).

Fig. 4. HERE
Approach and Methods 

Research status 

Variscan gneissic basement terranes of Carpathian-Balkan are scattered in Romania, 

Serbia, Bulgaria, and Greece, having rather partial correlation (e.g., Himmerkus et al. 2009; 

Balintoni et al. 2010, 2014; Kounov et al. 2012; Zagorchev et al. 2015; Antić et al. 2016; Abbo 

et al. 2020). Most reports deal with sediment provenance (parametamorphic rocks) and evidence 

of widespread anatexis and peraluminous magmatism (othoprotoliths). Despite a large field data 

repository (e.g., Savezni Geološki Zavod 1970; Kalenić et al. 1978; Bogdanović et al. 1978; Iancu 

et al. 1998, 2005; Kräutner and Krstić 2002, 2006; Kounov et al. 2010, 2017; Antić et al. 2015, 

2017; Plissart et al. 2018; Fig. 3), the superimposition imprints of (i) Variscan, (ii) 

(Eo)Cimmerian, and (iii) Alpine deformation have not been investigated in depth. The absence of 

comprehensive field structural studies within ‘Median Dacide’ gneiss units is likely due to several 

reasons:

Prioritizing the latest Alpine nappe-stacked configuration, including the Eoalpine 

extensional basin formation stage (Marović et al. 2007a; Schmid et al. 2008; Robertson et 

al. 2008; Robertson 2012; Maffione and van Hinsbergen 2018); 

Difficulties connected with multiple superimposed orogenic-type Cadomian, Cenerian, 

Variscan, Cimmerian and Alpine-type tectonic imprints (e.g., Balogh et al. 1994; Kräutner 
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and Krstić 2002, 2006; Medaris et al. 2003; Balintoni et al. 2010a, 2011; Kovacs et al. 2014; 

Antić et al. 2015, 2017; Jovanović et al. 2019; Abbo et al. 2020; Spahić et al. 2021, 2023; 

Machev et al. 2022; Spahić 2022a,b; Table 1); 

Variscan to Alpine geodynamic interaction and its differentiation (deformation history) is 

studied mainly by using constraints on magmatic imprints (Jovanović et al. 2019; Neubauer 

et al. 2020; Trapp et al. 2020; Balkanska et al. 2021); 

Focus on different tectonic exhumation times, inclusive constraints on dominant 

retrogressive metamorphic imprints (e.g., Bonev et al. 2013; Kydonakis et al. 2014; Kounov 

et al. 2011, 2017; Antić et al. 2015, 2017).

Synthesis and Mapping

To define the early Paleozoic geodynamic setting, we collected data describing the pre-

metamorphic protoliths and their ages across South Carpathians and Carpathian-Balkans (on both 

sides of the Danube River, southwestern Romania, and eastern Serbia; Figs. 2, 3). The Lower 

Paleozoic depositional and stratigraphic setting of the metamorphosed Serbo-Macedonian and 

Getic basement units was reconstructed starting from the available published data (mainly detrital 

zircons and biostratigraphic data, Kalenić et al. 1975; Fig. 5). Afterwards, these data were 

integrated with the field observations.

In the field, measured geometric characteristics of folds, analytic geometry, and 

stereographic projection were employed to estimate the orientation of the fold axis and axial 

surface (see Lisle and Layshon 2004). Fold axes and axial surfaces were constructed from 

measured fold limbs using the π pole method (construction of b axes of folds) or by directly 

measuring at outcrops (e.g., Ramsay and Huber 1987; Lisle and Layshon 2004). For the statistical 

analyses and computation of the fold axis from measured fold limbs as an intersection of planes 

and fold axial surfaces as a plane bisecting inter-limb angle between two planes (fold limbs), 

OpenStereo software has been used (Grohmann and Campanha, 2010). The different deformation 

stages and superposition relationships were separated by analysing geometrical orientation data, 
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tectonic foliation, and b- or fold axes measurements. The distinction between fold structures 

related to different folding stages in the field was not the case. Outcrops expose destroyed fold 

hinges, with just a few locations exposing intersecting cleavages. Despite a limited number of 

areas with the orientation of fold axes intersecting at high angles (Antić et al., 2017), we used 

statistical analysis of foliation trends. Thus, it was possible to distinguish the Variscan NE-

oriented fold axis from the Alpine NW-directed folding axis (see Đoković 1985 for details).

To study transposition cycles, we have mapped the foliation patterns and ductile 

deformations within the metamorphic systems (Bishop 1972; Antić et al. 2017; Plissart et al. 

2018). We limit our analysis to the Variscan and late Alpine intervals because of the unresolved 

controversy over the relatively mild effect and questionable presence of Cimmerian folds (Tari et 

al. 1997; Tschumachenko et al. 2004; Spahić et al. 2022a,b). Postdating Eo-Alpine extensional 

overprint and localised localized shear zones (Marović et al. 2007a; Erak et al. 2016; Stojadinović 

et al. 2013, 2022) as well as delimiting Variscan mylonites towards Danubian footwall were 

omitted too (different level of deformations and severity of overprint; Plissart et al. 2018). The 

focal point was the development of multiple foliation patterns in ‘Median Dacides’. This allowed 

us to distinguish progressive from polystage deformation and the chronology of the deformations 

(e.g., Oriolo et al. 2022). In addition to the discussion on the variety of protoliths, field 

observations show that the foliation is axial planar to the observed tight isoclinal Variscan folds, 

thus interpreted as the (initial) transposition foliation (e.g., Xypolias et al. 2013, and references 

cited therein). The younger crenulation cleavage in the outcrop is assumed to represent a 

secondary transposition cycle (Mortimer 1993; Grey 1995).

Fig. 5. HERE 
Results: Deformation patterns

Pre-Variscan to Variscan deformations

From the Late Proterozoic to the early Paleozoic, the northern edge of Gondwana 

underwent a peripheral Andean type Avalonian–Cadomian non-collisional orogeny (e.g., Samson 
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et al. 2005; Murphy et al. 2002, 2012; Balintoni et al. 2011; Henriques et al. 2017; Oriolo et al. 

2021). With a few exceptions (e.g., Oczlon et al. 2007; Şen 2023), there is a general agreement 

that most of the Carpathian-Balkan-Rhodope-Hellenic pre-Alpine basement inliers are exotic 

terranes of peripheral Cadomian of (north)eastern Gondwanan inheritance (Dallmeyer et al. 1996; 

Iancu et al. 1998; Balintoni 14; Kounov et al. 2012; Zagorchev et al. 2012; Bonev et al. 2013; 

Balintoni and Balica 2013; Neubauer 2014; Zulauf et al. 2014; Peytcheva et al. 2015; Antić et al. 

2016; Siegesmund et al. 2018; Stephan et al. 2018; Spahić et al. 2019a, 2021, 2023; Žak et al. 

2022; Gerdjikov et al. 2023; Fig. 1a). The presence of the intervening mid-Ordovician Cenerian-

Sardic and Permian-Triassic ‘Late Variscan’ or ‘Early Cimmerian’ imprints have just recently 

been discussed (Spahić et al. 2021, 2022a,b, 2023; Finger and Riegler 2023). Because the majority 

of these pre-Variscan imprints are obliterated by the following tectonic events, in addition to field 

data, we use available published data on protoliths, age of metamorphism, and emplacement of 

magmatic bodies. In that manner, we put new constraints and discuss the Early Paleozoic 

paleodepositional environment. The field study provided one of the most significant markers of 

intervening tectonic episodes – barely preserved Variscan folds.

Pre-Variscan to Variscan deformations in Getic/Kučaj basement unit

The Getic/Kučaj gneiss comprises several litho(stratigraphic) members dating back to 

Neoproterozoic – Lower Paleozoic depositional environments (Table 2). The gneiss included the 

oldest and deepest crustal augen gneiss and migmatites (D1-1), abundant mica schists, and biotite-

bearing gneiss. Ductile deformations within the gneiss itself are rare, exposing some meter-scale 

younger folds (Fig. 6a). In the field and thin sections, a notable scarcity of mantled porphyroblasts 

coating is observed by comparing the abundance in the Serbo-Macedonian gneiss (Fig. 6b, 7). 

Nevertheless, large portions of gneiss contain well-preserved quartz exudates, outlining the 

presence of relic lithology (sandstone protolith) (Fig. 6c; also Mukherjee et al. 2019). In addition, 

field mapping shows the presence of well-preserved serpentinite lenses embedded into the 

Getic/Kučaj gneiss (Fig. 6d). The evidence of original pre-Variscan mafic crust is in line with the 
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proposed Ordovician framework (Spahić et al., 2023). The presence of (late) Ordovician mafic 

rocks aligns with the east Rhodopean Upper Ordovician amphibolite protoliths) embedded into 

the same age gneiss (455 Ma; Bonev et al. 2013; Fig. 1b for location). The almost identical 

situation is in central-southern Serbo-Macedonian/Ograzhdenian amphibolites (Zagorchev and 

Milovanović 2006; Spahić et al., 2021).

In addition to documenting the presence of mafic orthoprotoliths, the most dominant 

member across the Getic/Kučaj basement area is massive amphibolitic gneiss (Fig. 7a,b,c,d). 

Massive amphibolite gneisses rarely expose foliation, represented exclusively in quartz-bearing 

competent thin inliers (Fig. 8a,b,c,d). The (pre-Variscan) foliation fabric is preserved as thin, often 

folded quartz-bearing mini-ribbons (presumably original thin layers with sandstone protolith or 

S0; Fig. 8a,b,c,d). The ribbons outline the observed tight folding geometry (subparallel limbs in 

Fig. 8b,e). In very few other amphibolite gneiss outcrops, rocks expose rare asymmetric drag 

folds. These δ-type aggregates are the same pre-Variscan Cenerian Ordovician age (Fig. 8e). 

Fig. 6. HERE
Table 2. HERE
Fig. 7. HERE

On a few occasions, the meter-scale folds are preserved (Fig. 6a, 8a,b,c). These 

presumably Variscan folds (D2-1) have NW-SE-orientated fold axis/b-axis 334/64 and b-axis 

146/15. Such a spatial orientation shows the Alpine trends, with no evidence of refolding (b-axis 

directed towards NW, Đoković, 1985). We observed different foliation patterns at the flanks (Fig. 

6a, compare S0 and S1). Please note that the tectonic shortening trends for Adria/Carpathian-

Balkan are taken from Đoković (1985). Despite Alpine alignment, meter-scale folds fit into the 

Variscan framework because the Alpine folds are often more prominent in scale but are not visible 

in the field (can only be inferred via statistical foliation analysis; see later in the text). Thus, the 

distorted orientation of the meter-scale Variscan folds provides evidence of structural rotation 

caused by the Alpine interference (Figs. 6a, 8a). The associated centimetre-scale mini-folds are 

apparently grown along the axial plane cleavage (Fig. 8c,d). In this case, the cm-scale folds 
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provide evidence of incomplete (Variscan) transposition because some fold structures are still 

preserved and visible. The Variscan tectonic reactivation apparently affected the older (Cenerian) 

foliation-to-cleavage generation (not fully developed D2-2;). 

Fig. 8. HERE
 Pre-Variscan to Variscan deformations in Serbo-Macedonian basement 

The dominant lithological member of Serbo-Macedonian is also gneiss, mostly mica-

rich gneissic rocks (Kalenić et al. 1978; Kalenić 2004; Spahić 2006, 2022b; Zagorchev and 

Milovanović, 2006; Marović et al. 2007a; Zagorchev et al., 2012; Antić et al. 2016, 2017; Spahić 

and Gaudenyi, 2020; Fig. 7e,f,g,h, 9). The metamorphic assembly includes migmatite, minor 

content of amphibolite, and amphibolite gneiss. Together with gneiss, Serbo-Macedonian 

contains various marbles, calkschists, and schists rich with organic matter.

Fig. 9. HERE 
 In addition to the oldest “quasi-layered” migmatites whose structure corroborates the 

complete obliteration of the original Lower Paleozoic configuration, vast portions of the Serbo-

Macedonian gneiss are by a well-foliated texture or S1 (Fig. 9, 10, 11). The widespread foliation 

is a significant difference relative to Getic/Kučaj gneiss, likely controlled by differences between 

ortho- and para-protoliths. Different foliation patterns with dominant sedimentary protoliths (e.g., 

Milovanović et al. 1998; Kalenić 2004) exhibit evidence that pre-Variscan/Variscan events 

obliterated the preexisting early fabric, allowing no detailed insight into field stratigraphy and 

superposition (D1, Fig. 9a, 11d). Nevertheless, we discovered a number of exceptionally exposed 

compressional-type deformations, particularly tight overturned folds (Fig. 9b,c,d, 11a,b,c). These 

folds represent a set of preserved compressional structures largely destroyed by foliation or 

“transposition foliation.” Destruction of the original configuration caused spatial alignment 

between the Lower Paleozoic AP1 to be parallel with the Variscan AP2 (Fig. 9b,c,d, 10b, 11a,b,c). 

The mapped folds are tight, overturned (D2, Fig. 11d), and transposed (transposition foliation; 

Fig. 9c,d). Such a development of “transposition layering” is the marker of the lower crustal levels 
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characterised by strain softening (e.g., Grey 1995). Regardless of the size of the preserved folds, 

their axis shows very consistent Variscan spatial arrangement and is plunging towards the 

SW(NE) (perfect fit with Variscan style; Fig. 9f). Such an arrangement indicates an excellent 

preservation of the Variscan trend, with a minor Alpine rotation (unlike in the Getic/Kučaj 

basement). Variscan folds have an NW-vergence, fitting with the observed centimetre- and meter-

scale folds (Fig. 9f).  

Fig. 10. HERE
Fig. 11. HERE

Alpine deformations

In addition to the observed foliation, folding patterns, and the documented presence of 

transposition processes (Fig. 11d), the observed Alpine deformations include ductile δ-type 

aggregates and schistosity, supported by evidence of refolding of Serbo-Macedonian gneiss. 

Together, such a structural pattern, in particular schistosity, is a good indicator of (another) 

transposition cycle (Fig. 11d). The dominance of late Alpine shortening across the area is aligned 

with mild late Alpine compressional deformation and nappe stacking (Schmid et al. 2008; Plissart 

et al. 2018). Retrogressive low-grade metamorphic ductile shear zones show protracted Alpine 

activity lasting from Permian to Cretaceous (40Ar/39Ar white mica; Neubauer and Bojar 2013). 

Getic/Kučaj unit. Statistical analysis of the measured foliation and fold data (b-axis; 

Fig. 12a,b) shows a typical overprinting fabric. The extracted foliation pattern in the area of Donji 

Milanovac yielded four different maxima, further exposing the two main shortening directions 

(dip-direction/dip in polar Schmid’s net, lower hemisphere; Fig. 12a,b). The first shortening 

direction outlined by the statistical fold axis is consistent with the Alpine configuration (Fig. 12a, 

#1), whereas the second has a slight deviation from the Variscan trend (indicating mild rotational 

movements; Fig. 12a, #2). As a result, most of the area underwent significant (brittle) structural 

rearrangement of Alpine relevance (mainly nappe stacking), preserving the record of precursory 

Variscan shortening. This actually means that Variscan folds, if preserved, will exhibit both 

Variscan and dominantly Alpine styles, depending on the locations.  The N-S striking brittle 
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reverse faults or nappes and their East-vergence (Fig. 3) are perpendicular with the resulting 

E(SE)-W(NW) directed displacement (Fig. 11c). This is consistent also with the direction of 

tectonic transport that is perpendicular relative to fold axis (in this case N-S striking axis). Thus, 

the observed general E-W displacement direction aligns with the Alpine e-vergent nappe 

configuration of N-S-striking thrusts (Figs. 2, 3). The incomplete transposition is presumed 

because some Variscan folds are preserved, and mylonitic displacements were not observed. The 

absence of Variscan ductile δ-type aggregates is consistent with the upper crustal position or 

mainly brittle deformation. Such interpretation fits with the scarce cleavage measurements, which 

show the same tectonic rotation trend, slightly deviating from the initial strike (Fig. 12c).  

Deformation and weak zones were likely controlled by the basement rheological and protolith 

differences (mainly massive amphibolite gneiss; Fig. 6, 8). 

Fig. 12. HERE
Serbo-Macedonian Unit. In the Serbo-Macedonian Unit, the foliation S2 represents the 

axial-plane cleavage of visible folds, including statistical anticlines or anticlines that are destroyed 

in the field and are solely visible in diagrams (Fig. 10a, 12c, 13).  The S3 represents a newly 

developed schistosity overlapping with the same foliation planes (Fig. 11d). The foliation and 

schistosity are frequently accompanied by the δ-type aggregate quartzitic porphyroclasts with top-

to-the-SSE(SE) tectonic transport (Fig. 10a). The observed folds have a largely preserved 

Variscan pattern, further characterized by the presence of subhorizontal cleavage (fracture-like 

planes pointed by yellow arrows at Fig. 10b). The cleavage indicates the presence of brittle 

deformations, showing the transposition process following the lineation striking in ca. E - W 

direction, L 106/32 (Fig.10 c,d). Indeed, the cleavage planes of older Variscan folds (Fig. 11a,b) 

are the main (subhorizontal) structures controlling the youngest transposition cycle (D3; Fig. 

11c,d). 

Fig. 13. HERE
  Discussion 
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Protolith types and their age: Constraints on early  tectono-depositional setting 

The investigated Carpathian-Balkan Cadomian-derived basement in Romania is 

subdivided into terranes or tectonic units: Cumpana, Sebeş-Lotru, and Fagaraş (Iancu et al. 1998; 

2005; Fig. 3). Their analogues to the south in Serbia (Serbo-Macedonian Unit; Antić et al. 2016; 

Spahić and Gaudenyi 2020) and Bulgaria (Ograzhden Supercomplex; Zagorchev et al. 2012; 

Machev et al. 2022) can be subdivided into crystalline fragments with the ortho- and paragneisses. 

The Serbo-Macedonian Unit is further striking across North Macedonia and includes the 

analogous basement unit referred to as the “Eastern Veles Series” (Antić et al. 2016; Spahić and 

Gaudenyi 2019; Spahić et al. 2019). From there, the Serbo-Macedonian gneissic ribbon continues 

into the northern Inner Hellenides as the Vertiskos unit, consisting mainly of ortho-protoliths 

(Himmerkus et al. 2009; Meinhold et al. 2009, 2010; Spahić et al. 2020; Abbo et al. 2020; Figs. 

1, 2; Table 2).

In Neoproterozoic – Lower Paleozoic paleogeographical terms, these peri-Gondwanan 

systems ‘Median Dacides’ (Serbo-Macedonian/Supragetic/Getic) were in an outer flank of the 

northeastern Gondwanan active margin (Fig. 15). A similarity in the age of the Serbo-Macedonian 

Unit and the northern gneissic analogue or Sebeş–Lotru composite terrane has also recently been 

raised (Antić et al. 2016). Southern analogous Rhodope massif is of similar inheritance, 

highlighted particularly by the occurrence of almost identical amphibolite packages documented 

within ‘Median Dacides’ (Bonev et al. 2023; Fig. 8). These gneissic crustal slices, including the 

Ograzhden supergroup in western Bulgaria (Zagorchev et al. 2012), have the identical yet 

combined Neoproterozoic and Lower Paleozoic protoliths (e.g., Săbău and Massonne 2003; Iancu 

et al. 2005, 2008; Seghedi et al. 2005; Balintoni et al. 2010a; Balintoni and Balica 2013; Balintoni 

et al. 2014; Fig. 5). A portion of protoliths of the Ograzhden gneisses and schists are similar 

clastic-type sedimentary rocks of pelitic and psammitic character like in Serbia (Kalenić 2004; 

Zagorchev et al. 2012; Spahić et al. 2021). Orthogneisses from the easternmost segment of the 

nappe stack, or Vlahina Mt., western Bulgaria, are classified as metagabbro-metadiorites having 

541 Ma in age (Machev et al. 2022). The mapped augen gneisses frequently change towards 
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migmatites, both widespread across Getic/Kučaj, Serbo-Macedonian Unit, and inclusive the 

Ograzhden unit (Fig. 14). Some portions of augen gneisses or augen-orthogneiss (Iancu et al. 

1998) have either a Mid-Ordovician or even Variscan age (Zagorchev et al. 2012).

The protolith analyses of the intervening Supragetic greenschist-facies basement unit, 

including adjoining analog units, indicate the presence of clastic volcano-sedimentary sequences 

with Ordovician fossils and the presence of basaltic volcanism (Pavlović 1959, 1962, 1977; 

Dimitrijević 1997; Iancu et al. 2005; Figs. 3, 15). Protoliths of these metamorphic rocks are pelitic 

and, to a lesser extent, are in the form of psammitic sediments, occurring together with the arc-

related tholeiitic basalts and their tuffs (e.g., Petrović 1969; Antić et al. 2016; Spahić et al. 2019a). 

The analogue crystalline basement of the Struma Unit consists of the variably deformed continent- 

and ocean-derived rocks of Ediacaran to early Cambrian protolith age derived from the 

Metasaharan craton (e.g., Kounov et al. 2012; Žak et al. 2020). 

Fig 14. HERE
Pre-Variscan tectonomagmatic imprints: Cenerian event  

Orthogneiss from the Cumpăna unit of Sebeş-Lotru terrane contains the zircons of the 

typical Cenerian crystallisation ages 466.0 to 458.9 Ma (Balintoni et al. 2010a; Figs. 2, 3). In 

addition, leucocratic dykes from southern Serbia are also the Ordovician in age (Antić et al. 2016). 

Orthogneiss in the same area has an age of 472 ± 4 Ma, including amphibolites ranging from 462 

± 6 Ma to 456 ± 2 Ma. These ages fit the Ordovician timeframe, thus interpreted as Cenerian 

tectonism (Zurbriggen 2015; Cocco and Funedda 2017; Cocco et al. 2023; Spahić et al. 2023). 

The oldest igneous emplacement resulting from Rb87-Sr86 gave late Cadomian 540 Ma on K-

feldspar granites of Juhor Mt., and Sr87/Sr86 showed 470 Ma. The pre-Variscan age of augen 

gneiss cropping out in central Serbia is documented by the postdating 350 Ma-old granite-gneiss 

intruded the former (Rb87-Sr86; Deleon et al. 1972; Spahić et al. 2021). With regards to deeper 

crustal deformations, the recycling trend lasted from the late Neoproterozoic to the Ordovician, 

and a gradual increase in εHf(t) from the Ordovician onwards is recorded (Spahić et al. 2021; 

Abbo et al. 2022). Such magma involvement corroborates a peripheral north Gondwana 
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Neoproterozoic to the Ordovician position of Serbo-Macedonian. Indeed, gneissic rocks of the 

Serbo-Macedonian Unit in the Juhor area (central Serbia) are lowermost Cambrian in age (541 

Ma on Sr87-Sr86 on biotite and mica; Deleon et al. 1972; Fig. 5b). In addition, detrital zircons from 

the parametamorphic rocks collected from southern Serbia (near Sijarinska Banja) indicate that 

the maximum depositional age is near 565 Ma (Antić et al. 2016). The pre-gneiss magmatic and 

sedimentary assemblages are newly formed continental lithosphere (Kalenić, 2004; Spahić et al., 

2021).

Metamorphism

The metamorphic events recorded within the investigated gneissic units record from 

early Paleozoic to Variscan times, including overwhelming evidence of Alpine overprints 

(Haydoutov 1989; Balogh et al. 1994; Haydoutov and Yanev 1997; Liégeois et al. 1996; Medaris 

et al. 2003; Zagorchev and Milovanović 2006; Balintoni et al. 2010a,b Bonev et al. 2013a,b; 

Macheva et al. 2016; Balintoni et al., 2010a,b; Plissart et al. 2018; Spahić et al. 2023; Fig. 15). 

Several tectonometamorphic episodes affect the Serbo-Macedonian Unit as a whole: (i) the oldest 

metamorphic event occurred between Precambrian to latest Cambrian (Balogh et al. 1994; 

Zagorchev and Milovanović 2006), (ii) the youngest are of Mesozoic age (Balogh et al. 1994; 

Zidarov et al. 2002; Himmerkus et al. 2009), or (iii) even belonging to the Cenozoic events (Ricou 

et al. 1998; Abbo et al. 2020). Most post-Paleozoic evidence of amphibolite-type overprint comes 

from Rhodopean gneissic massif, whereby magmatic protoliths have a mean age of 455 Ma 

(Bonev et al. 2013a,b). Variscan age-different HP metamorphism is proven on Getic-Supragetic 

units (excluding Serbo-Macedonian Unit; Iancu et al. 1998; Medaris et al. 2003). The 

amphibolite- and eclogite facies are confirmed in Getic/Supragetic and may mark the early 

subduction stage leading to Variscan orogeny (Iancu et al. 1998; Săbău and Massonne 2003). 

However, external gneiss (Serbo-Macedonian Unit) experienced slightly older than Variscan or 

latest Cambrian-Ordovician metamorphic imprints (Balogh et al. 1994; Fig. 15). The 

Neoproterozoic - Ordovician stage includes widespread evidence of peraluminous mid-
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Ordovician anatexis (Zagorchev and Milovanović 2006; Zagorchev et al. 2012; Spahić et al. 

2021; Fig. 15).

Deformation asymmetry and transposition cycles 

The structural data complement metamorphic imprints in Paleozoic terms, showing that 

the metamorphism fits the Cenerian framework. At the same time, Getic/Kučaj fits with the 

proposed back-arc opening of north Gondwana characterised by the massive presence of mafic 

rocks (now represented by amphibolite gneiss; Bonev et al., 2013; Spahić et al., 2023). However, 

there is a significant asymmetry in the post-Cenerian deformations between Serbo-Macedonian 

and Getic/Kučaj gneissic units (Fig. 1b). The main difference between the two investigated gneiss 

segments is the variable presence of imprinted ductile structures, particularly folds. Apart from 

the missing ductile folds and δ-type aggregates within amphibolite gneiss in the Getic/Kučaj unit, 

there is a difference in the postdating Alpine overprinting styles. Protolith-controlled foliations 

represent another critical difference. Foliation is rare in the Getic/Kučaj unit, whereas in the 

Serbo-Macedonian Unit, it is widespread across the entire segment in Serbia. With regards to the 

postdating Alpine overprinting styles, counterintuitively, the Serbo-Macedonian Unit as a 

segment of the Neotethyan Vardar margin (Figs 3, 5a) has well-preserved the Variscan folding 

(NE-directed fold axis instead of the expected NW-directed fold axis). At the same time, the 

observed folds within the remote Getic/Kučaj unit are almost entirely rotated towards the NW, 

outlining the Alpine-type compressional style (Fig. 12, 13). Such a deformation pattern is 

asymmetric, meaning basements near NeoTethys have better preserved Variscan imprints. It is to 

be noted that the observed deformation in the investigated eastern Serbian sector differs from 

other parts of the Carpathian-Balkan belt (e.g., Kreszek et al. 2013, 2023).

By definition, transposition disrupts the folded layer, so the orientation of the individual 

segments no longer fits in the gross orientation of the parent layer (Bishop 1972). As shown, new 

field and statistical data indicate several cycles of transposition. The earliest Cadomian to 

Ordovician Cenerian magmatic arc stage obliterated the preexisting early fabric. The earliest 
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rocks were associated with juvenile continental crust and interchanging deposition (Kalenić, 

2004). During Cenrian paroxysm, these early depositional systems were mainly embedded into 

gneisses and underwent migmatitization and anataxis; see, e.g., Balintoni et al. 2014; Zagorchev 

et al. 2015; Spahić et al. 2021, for details; Fig. 9a, 15a). Early north Gondwana's latest Cambrian-

Ordovician metamorphism of Cenerian relevance (Balogh et al. 1994), including barely preserved 

ductile shear zones, obliterated the pre-existing fabrics (complete transposition; TrCicle#1; Fig. 

6a, 15b). Data further show that the original fabric was succeeded by the formation of similar age 

or slightly younger foliation (AP1 II AP2, D2, S1; Fig. 9a). Microstructural imprints of these older 

events remain in the form of porphyroclastic mineral fabrics, suggesting that every lithological 

layer behaved as a separate rheological unit or mineral aggregate (Fig. 7, 15b). 

The relics of complete transposition (TrCicle#1) are loose shear zones (Spahić et al., 

2021). The successor progressive (Variscan) deformation formed m- to cm- folds that are mainly 

transposed along the “transposition foliation” (by definition, newly formed isoclinal folds of a 

preexisting foliation; Xypolias et al., 2013). Consequently, the second transposition cycle 

(TrCicle#2) affected the pre-existing fabrics, foliations S1 and S2 (Fig. 6a, 9b). The Variscan folds 

are precursors to the second shearing stage, further displaced with their fold's axis/hinge lines 

perpendicular to the transport direction (slightly deviated from the Alpine fold axis). The 

transposition occurred accounting for the shearing of a preexisting steeply inclined foliation 

oriented nearly parallel to the stretching direction (Fig. 9c,e, S2) or the foliation planes that are 

roughly parallel to the axial plane cleavage (Fig. 9b). The successor Alpine shortening is best 

reflected by the observed spaced axial plane cleavage (Fig. 10b). Brittle fracturing along axial 

plane cleavage (Fig. 10b, AP3) indicates the presence of a new cycle of (inherited) deformations. 

A brittle domain suggests that deformation occurred under lower temperature levels. Such 

deformations progressed to the areas of lower pressure using tectonic exhumation (E-vergent 

nappes, supported by evidence of the top-to-the-ESE movements; Fig. 10b). Bounded by the 

nappes, coupled with brittle axial plane cleavage observed within gneissic basements, such a 
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configuration suggests the presence of another but incomplete structural transposition 

(TrCicle#3). The upward-directed tectonic transfer by brittle reverse faults affected the rotation 

of the remnants of the pre-existing Variscan foliation fabric (Fig. 15c). The rotation could further 

be induced by the latest Eo-Alpine stage (Marović et al., 2007b).

Fig. 15. HERE
Concluding remarks

This study shows the superimposed deformations depicted in the complex Carpathian-

Balkan fold-and-thrust belt. The regional research shows, for the first time, a field observation 

that allowed a new interpretation of the polystage deformation history involving the oldest 

tectonically overprinted Cadomian to Cenerian gneiss systems embedded into the Carpathian-

Balkan belt of the Alpine age. For the first time, the restored deformations are separated into the 

Cenerian, Variscan, and Alpine orogenic stages. Other conclusions are as follows: 

- The Lower Paleozoic Carpathian-Balkan crustal amalgamation and its original 

geometry were obliterated by several post-dating primary deformation cycles 

spanning Lower Paleozoic metamorphism, Variscan, and Alpine overprinting 

episodes, D1 – D4;

- The first deformation event (D1) is characterised by the Lower Paleozoic Cenerian 

metamorphism and anatexis, the formation of numerous shear zones, which 

completely obliterated the paleodepositional north Gondwanan configuration;

- The first generation of visible yet rare folds (D2) is produced during the Variscan 

orogeny by compensating the bending of the S1 foliation. It consists of linear forms 

(b-axis) oriented NE-SW, whereby the folds have NW-vergence. The Variscan 

folds were mainly transposed along the foliation planes, parallel to the axial plane 

cleavage;

- The second generation of folds (D3) resulted from the contraction and bending of 

previously folded and transposed Variscan configuration. The new Alpine stage 
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produced folds with the new arrangement of linear forms (b-axis) oriented NW-

SE;

- Newly depicted Alpine deformation asymmetry between the Serbo-Macedonian 

Unit and its imprints into the Getic/Kučaj gneiss. The asymmetry or different 

intensity and character of deformations between two gneiss units is expected 

because of the proximity of the Neotethyan Vardar European margin segment. The 

direct contact with Neotethys and colliding late Alpine Apulia/Adria/Dinarides had 

the westernmost Serbo-Macedonian Unit. However, despite the proximity to the 

late Alpine deformation front, Serbo-Macedonian still contains a number of 

preserved Variscan folds (several outcrop-scale folds). The more internal 

Getic/Kučaj gneiss unit (relative to Neotethys) records the rotation of rare Variscan 

folds. The folds are rotated towards the NW, being aligned with the Alpine 

compressional style;

- The study put additional constraints on the three discrete transposition cycles 

(visible only in the upper crustal domain; Serbo-Macedonian and Getic/Kučaj 

basement units), two complete- or Lower and Upper Paleozoic age, and one 

incomplete transposition cycle of Alpine age: (i) Cadomian to Ordovician cycle, 

which obliterated the early complex juvenile continental crust configuration, (ii) 

Variscan, and (iii) Alpine incomplete transposition. Transposition by the 

development of foliation along the axial plane of tight folds was introduced in the 

nearby southernmost Serbo-Macedonian Unit (Marović et al. 2007; Antić et al. 

2017) and Hellenides in the area of Cyclades (Xypolias et  al. 2013);

- Quantitative displacement was not possible to constrain, but the distance between 

the parallel main Alpine nappes can be used as an approximation (horizontal 

displacement of ca. 35-40 Km; Fig. 3);
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- Despite the transposition cycles having been defined, the major shear zones and 

simple-shear-dominated deformation of the lower domain need further 

investigation (Spahić et al. 2021).
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Table captions

Table. 1. Reports describing the main tectonic events imprinted into the Carpathian-
Balkan basements. Blue colours are basements of Cadomian inheritance, and orange is 
Avalonian.

Table 2. Main age constraints on metamorphism and exhumation of Carpathian-Balkan 
metamorphic (C-B) assembly. Please see Figure 8 for the main sampling regions.
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Figure captions

Figure 1. a. The distribution of the peri-Gondwanan affinities in Europe, including the Balkans: 
Serbo-Macedonian Unit, Getic/Supragetic, Danubian, and Moesia (positioned westward of the 
Trans European Suture Zone). Affinities of the Alpine Europe and peri-Moesian basement 
assemblage after Garfunkel (2015), Spahić, and Gaudenyi (2018). Abbreviations: Af—Cadomian 
ourcrops in Afyon zone; Bit—Bitlis massif; BM—Bohemian massif; K—Kraracahisar; LH—
Tregor-La Hague terrane; M—St. Malo and Mancellian terranes; MD—Moldanubian zone; 
Men—Menderes massif; MG—Mid-German Crystalline High; N-Ar—northern Armorican 
massif; Nr—Narcea antiform; OMZ—Ossa Morena zone; Pelagonian—Pelagonian zone; StB—
Baie de St. Berieuc Terrane; S-Th—Saxo-Thuringian zone; Sn—Sandikli; T—Tauern Window; 
TB—Tepla-Barrandian zone, Py – Pyrenees. b. Sampling and field mapping locations across the 
Serbo-Macedonian gneissic unit, including Ograzhden, Vertiskos, and Sebeş-Lotru terranes in the 
Southern Carpathians. c. Lithostratigraphic units of Carpathian-Balkan belt in Romania and 
Serbia (see Fig. 1a for a position; inset from Neubauer and Bojar 2013, significantly modified), 
key: 1 - Avalonian basement with Devonian ophiolites; 2 - Carboniferous (Pennsylvanian); 3 - 
Permian (in Romania); 4 - Permian-Triassic up to Upper Triassic followed by the regional-scale 
unconformity; 5 - Lower Jurassic; 6 - Middle Jurassic; 7 - Upper Jurassic; 8 - "Neocomian" to 
Barremian; 9 - Aptian to Albian unconformity; 10 - 11 - Turonian - Maastrichtian; 12 - Severin 
nappe (in Romania), 12 - Getic thrust; 13 - Supragetic thrust; 14 - Serbo-Macedonian Unit: west-
vergent over Vardar Zone (VZ, green) and east-vergent over Supragetic unit, D - Danubian; A - 
Ariana nappe; S - Severin nappe; G- Getic nappe; SG - Supragetic nappe; SMU - Serbo-
Macedonian Unit.
Figure 2. Main tectonic units/nappes of eastern Serbia, without the Serbo-Macedonian Unit. 
(simplified according to Kräutner and Krstić 2002), Jovanović et al., 2019). Number#1 in the 
rectangle shows the area of fieldwork. A thick dashed white line designates the approximation of 
the tectonic contact between Getic/Supragetic and Danubian fragments (note that the line is 
approximated due to the Alpine displacement, so there is also the Getic or Sebeş-Lotru thrust 
sheet on top of the Danubian basement to the east of the line; see also Fig. 3). The position of the 
former tectonic contact between descending vs. overriding plates is outlined (in the Variscan 
reference frame).
Figure 3. The compiled geological sketch map of the lithotectonic units connecting the South 
Carpathians with the Carpatho-Balkanides, including the Serbo-Macedonian Unit (modified after 
Kräutner and Krstić 2002, 2006). The compiled map shows a highly complex geometry between 
basement units and their Paleozoic, Mesozoic, and Neogene sedimentary covers. Abbreviations:  
GE-Getic Unit; SMU-Serbo-Macedonian Unit; SG-Supragetic Unit; LD-Lower Danubian; UD-
Upper Danubian; VZ-Vardar Zone. Numbers in the red circle indicate the areas covered with field 
mapping.
Figure 4. a. 1D inversion model of the lithospheric thickness in the Carpathian–Pannonian Basin 
region (see Grinc 2013 for further explanation). b and c. 3D inversion for Carpathian Pannonian 
Basin region with standard parameters: surface densities, the average crustal densities (inset from 
Grinc 2013, slightly modified).
Figure 5. Main sampling area for detrital zircon analyses, including the areas mapped in this 
study: 1. Getik/Kučaj area, 2. Central Serbo-Macedonian, 3. Jastrebac Mt. area, Serbo-
Macedonian: b. Chart of detrital zircon datasets extracted from gneissic basements. Numbers 
designate data extracted from each particular basement inlier: (1) Antić et al. (2016); (2) Žak et 
al. (2020); (3) Kounov et al. (2012); (4) Himmerkus et al. (2006); (5) Himmerkus et al. (2009); 
(6) Peytcheva et al. (2009), (7) Haydoutov et al.(2010), (8) Balintoni et al. 2010, (9) Balintoni 
and Balica 2013; (10) Šoster et al. 2020, (11) Abbo et al. 2020, (12) Zagorchev et al. 2012, (13) 
Zagorchev et al. 2015 (14) Deleon et al. 1972.
Figure 6. Examples of deformations within Getic/Kučaj gneiss, area of Donji Milanovac. a. Rare 
meter-scale anticline, juxtaposed to the main foliation trends. b. Rare distorted quartz grains 
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resembling δ-type aggregates. c. The entire area is filled with quartz exudates. d. Relics or 
serpentinite lenses surrounded by marble.
Figure 7. Photomicrographs of the most common microstructures depicted within Getic/Kučaj 
and Serbo-Macedonian units. a. Augen gneiss with micro zonation, showing undulate extinction 
in an XZ structural section (parallel Nicols) b. Augen gneiss with orthoclase porphyroblasts 
(crossed nicols). Micrograph showing the shape-preferred orientation of orthoclase crystals and 
aggregates parallel to the macroscopic S1 foliation in an XZ structural section. Orthoclase crystals 
with sigmoidal morphology; c. Amphibolitic gneiss (parallel nicols). Note that there are two 
generation cleavage planes: (i) parallel to the foliation (trending from the upper left corner to the 
lower right one in hornblende), and (ii) roughly perpendicular to macroscopic foliation; d,e,f. 
Biotite gneiss (parallel and crossed nicols), please note that the “f” photo shows augen (biotite) 
gneiss. Macroscopic foliation on the micrograph parallels cleavage (from the lower left to upper 
right corner); g—mica-rich gneiss with staurolite (parallel nicols parallels). Note extraordinary 
cleavage planes within staurolite grain, roughly perpendicular to macroscopic foliation—
sigmoidal, slightly elongated staurolite porphyroblasts with a chlorite strain fringe in textural 
equilibrium.
Figure 8. Tight folds are observed in the Getic/Kučaj basement, comprised mainly of amphibole 
gneiss across this area. a,b. Competent cm-scale quartz ribbons outline the precursory tectonic 
foliation. c. An example of axial plane cleavage and minor offset along cleavage planes. The 
exposed cm-scale is symmetrical, with parasitic folds in the hinge zone. d. Partially preserved 
fold hinge. e. Rare asymmetric drag folds, δ-type aggregates.
Figure 9. Extraordinary deformations across the Serbo-Macedonian Unit. a. Migmatites; b. 
Isocline tight folds and axial plane cleavage; c. Extraordinary preservation of tight isocline folds; 
d. An example of preserved fold exposing displacement of the cm-scale anticline; e. The same 
fold as in Fig. 11e with the position and fit of the foliation—an indicator of transposition foliation. 
f. Measured flanks of the same tight fold on Schmid’s diagram perfectly fit Variscan trends (b-
axis).
Figure 10. Examples of mixed deformations embedded into the Serbo-Macedonian Unit. a. 
Schistosity, crenulation cleavage, including δ-type aggregates showing top-to-the-SSE 
movements in muscovite-rich schists. Exceptional example representing an S1/S2/S3 composite 
foliation developed by multiple transposition processes. On top of the fully transposed structures 
(foliation), the mapping data show a developed schistosity (S3; a potential indicator of another yet 
younger transposition cycle). The shape of the δ-type aggregate shows a high simple shear 
component. b. cm-scale folds in amphibolite schists. Folds are exposing spaced fractures/cleavage 
(brittle). Folds are rotated towards the SSE. c. The rare intersection point of the two foliation 
trends. d. The late Alpine fault follows the foliation fabric. The kinematic indicators, including 
offset, are likely marking the (partial) transposition. In addition, the presence of brittle features 
makes this phenomenon rarely uncovered and mapped into the Alpine stage. Stretching lineation 
directed top-to-ESE (106/32).
Figure 11. a and b. Exceptionally well-preserved pre-Alpine folds containing the organic matter, 
graphitic schists cropping out within the Serbo-Macedonian Unit, Jastrebac Mt. (see also Spahić 
2006; Marović et al. 2007); c. Field study in the wider Jastrebac Mt. area exposed another outcrop 
with exceptionally well-exposed evidence of transposition: displaced meter-scale Variscan fold. 
d. Schematic drawing of the deformation patterns – folding and transposition. Deformation stages 
start from the original but largely obliterated Lower Paleozoic configuration, including the 
Cenerian event (D1). The mechanism of Variscan progressive deformations, folding, and 
subsequent transposition (D2). The Alpine refolding mechanism reaches the incomplete 
transposition stage (D4) (details are in the text). Stages D2 (Variscan) and D3 (Alpine) are 
consistent with the deformation stages elaborated in Antić et al. (2017).
Figure 12. Statistical data, Schmid's diagrams, lower hemisphere, measured foliation, and b-axis 
within the Getic/Kučaj area. a. Statistical b-axis exposing four maxima or two main deformation 
stages producing folds with different spatial configurations. b. Measured b-axis in the exact 
location, exposing two maxima, NW to SE. Perfect with the Alpine deformation style. c. 
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Juxtaposed Alpine overprint (b-axis) onto the cleavage planes. The combined structural elements 
show the primary or dominant transposition directions, E(N)E - W(S)W.
Figure 13. Statistical data, Schmid's diagrams, lower hemisphere, measured foliation and b-axis 
within the Serbo-Macedonian area. a and b. The statistical b-axis exposes the two maxima or fold 
with the axial plane axis striking N-S. Such a spatial arrangement indicates rotated elements from 
the NE towards the NW. c The measurements also depict the Variscan axial plane relics and b-
axis.
Figure 14. Two types of augen gneiss: a & b – Getic/Kučaj gneiss (Donji Milanovac area), c and 
d. Serbo-Macedonian Unit (vicinity of Jastrebac, i.e., Kruševac area).
Figure 15. a. Complete deformation history of the Serbo-Macedonian and Getic/Kučaj gneiss, 
including the intervening Supragetic (explanation in the text; data from Balintoni et al. 2010a, 
2014; Neubauer and Bojar 2013; Petrović et al. 2015; Plissart et al. 2017, 2018; Antić et al. 2017; 
Spahić et al. 2019a,b, 2021, 2023;). b. Cadomian to Ordovician cycle, c. Variscan cycle, d. Alpine 
orogenesis.
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Reverse Fault
d
WSW ENE
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a b

c d

Microphotographs of the main gneissic lithotypes (Serbo-macedonian unit)

Microphotographs of the main gneissic lithotypes (Getic basement)

       
1.      Q – Quartz, 2.       Pl – plagioklase, 3.       BI – Biotite, 4.       
Mu – mica/muscovite, 5.       Ho – hornblende, 6.       Hlo – 
hlorite, 7.       Gr – granate, 8.       St – staurolite, 9.      Mi - 
Microcline, 10.     Or - Orthoclase.

Legend:
g

e f

Lithologies at microphotographs:

a & b. Augen gneiss; 
c. Amphibolitic gneiss; 
d, e, f. Biotite gneiss (f. Augen gneiss); 
g. Mica-rich gneiss with staurolite

Fig. 7
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Decimeter scale fold

Getic/Kucaj basement gneiss (dominant amphibolitic gneiss, Donji Milanovac area)

Foliation is exclusively outlined by competent 
cm-scale quarz ribbons

b-axis =146/15

EW

Sf 215/43 (upper lim
b)

Sf 201/41(lower limb)

EW EW

EW
Quarz ribbon 

Ductile deformation with Alpine deformation style,
fold axis plunging towards the SE (146/15) 

Preserved
cm-scale fold
hinges

a b

d

e

c

Fig. 8
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Lower Paleozoic deformation,
including late Cambrian 

metamorphic events (488 Ma)

Upper Paleozoic Variscan 
compressional-type 
deformation

Transposition

Field evidence of transposition, 
see also Fig.10

Limb 110/27 

Overturned limb 346/44 

Migmatites Folding (evidence of isocline cm-scale folds) 

Tectonically shifted 
 fold hinge

Evidence of cleavage-related transposition

Measured b-axis 
279/14

Rare evidence of folding later destroyed by Alpine event

LPz

UPz

UPz

UPz

UPz

UPz

LPz

a

d
c

b

Legend

e

f

S1

There is no S0 preserved
 across the entire area!

 S1

DF1 (ductile folding)

S2*

 S1

 S1    S2

 S1    S2

S1

S2

 NOTE: in most cases S1 = S2, or

S2* - Axial plane cleavage (Variscan folds; also Fig.9d)
in next orogenic stage becomes perpendicular

 to S1 & S2 (see Fig. 11)

S1

S1

S2

Statistical 
b-axis 57(237)/19 

(SW-NE, 
fits in the Variscan style)

Fig. 9

S1  S2
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Uncovered foliation surface
(marble/calkschist)

Axial plane cleavage
(amphibole-rich gneiss) 

Sigma grain

S477/15

Crenulation
cleavage 
parallel to

AP cleavage

Crenulation
fold Ductile

Folding
(DF2)

(DF3)

b-axis = 22/7

ESESSE

Foliation S1 105/15

C e n t r a l  S e r b o - M a c e d o n i a n   U n i t  
(presumed Alpine deformations area near city of Lapovo, eastern Serbia) 

Crenulation cleavage & sigma grain
(muscovite-rich schist, gneiss)

Intersection between two foliation trends
(mica-rich gneiss)

S2 325/7

S2 335/76

BF 

L 106/32

ESE

S2   S3

S1    S2    S3* S2

* Developed schistosity (S3) on 
foliation-former  AP cleavage

Quarz exhudates

S4 (or AP3)- New AP cleavage 
(Alpine overprint, no major displacement)

BF - Alpine deformation 

Slickensides

Younger slickensides

a b

c d

Alpine

Alpine Alpine

Alpine

   
   

   
   

   
   

    
  tr

an
sp

os
iti

on
 plan

e

Fig. 10
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Axial plane cleavage (*) 

Relics of Variscan folding

Relics of Variscan folding

Jastrebac Mt.

Jastrebac Mt.

Jastrebac Mt.

An extraordinary example of transposition of Serbo-Macedonian Unit
(folds are not preserved)

An extraordinary example of cm-scale isocline folding of Serbo-Macedonian Unit

Extraordinary preserved cm-scale isocline folds of Variscan age

(*) - Red arrows just approximate the direction of offset and transposition 

Graphitic schists 
(preserved intrafoliative folds)

a

b

c

Axial plane    folds limbs
(future S2 or AP2)

AP1 II AP2

AP1 II AP2
Axial plane of original 
configuration is parallel 
to axial plane 
of intrafoliative folds

D2/D2-1 - Variscan folding

D4 - Alpine transposition 

D3 - Refolding, followed by (incomplete*)
transposition 

visible D2 including reconstructed D1: 
D1-1 is the initial group of deformations, pre-Variscan 
migmatitization, metamorphism;
D1-2 is stage of Cenerian-Sardic imprints, anatexis, 
including tectonic foliation;
D2-1 is the main folding stage during Variscan event;
D2-2 is a complete transposition (rarely preserved folds);

 

 AP2

NE(SW) ca. 45

 AP1
(*) 

(*) - Original AP obscured by penetrative foliation 

b-axis (*) 

(*) - Variscan fold axis (relics, see Fig. 12)

Kinematics and relative motions

Deformation stagesExtraordinary preserved outrop scale deformations

Axial plane cleavage

Relic foliation

not to scale

o

W(SW)

E(NE)

 AP2  AP1  AP1 = S0

1

Data from from area #2, Figure 8

d

 AP3

 AP2

Variscan fold axis
(strike to NE)

Alpine fold axis
(strike to NW)

(*) - Refoldiing and incomplete Alpine transposition 
because foliation unravelled two patterns, see Fig. 12a

Fig. 11
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Measured foliation in Getic, wider area of Donji Milanovaca

Measured bi-axis in Getic gneiss wider area of Donji Milanovacb

Measured AP cleavage in Getic gneiss wider area of Donji Milanovacc

The position of measured statistical b-axis. 
Spatial arrangement shows the involvement 
of Variscan event more westward rotation 
from the initail position
 

Two trend and four maxima and their statistical planes

Rotation

Perfect fit

N = 30

N = 13

N = 2

1

1
2

2

1

Fig. 12

1
Data from from area #1, Figures 3, 8

Suggested position of  Alpine b-axis, taken
 from literature or towards NW (as per Ðokovic, 1985)

Suggested position of Variscan b-axis, taken
 from literature or towards NE 

(as per Ðokovic, 1985)

The position of measured foliation, 
first maxima: (1) statistical b-axis shows the 

involvement of Alpine event, the statistical axis shifted 
more westward or ditrectly to NW 

The position of measured foliation,
second maxima: (2) statistical b-axis shows the 

involvement of Variscan 
event more souhtward 

rotation from the initail position
 

The position of measured cleavage planes 
relative to statistical b-axis. Spatial arrangement 

shows the cleavage form Variscan
time has  general strile SW - NE, 
consistent with the initial buckling 

Transposition direction along the Varscan AP 
cleavage. The fold axis is

alligned with the Alpine trend 
(sligth rotation of cleavage 

as well, yellow trace)

Measured axial plane cleavage AP2 
is  aligned with the axis of tight  Variscan folds. 

It is note that the AP2 is perpendicular
to Alpine axis (see Fig. 13 

for detials)
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Measured foliation in Serbo-Macedonian, wider area of Lapovo

Lapovo area, foliation in Serbo-Macedonian

Field-meaasured b-axis, wider area of Lapovo, foliation in Serbo-Macedonian

NE-plungung of b-axis has 
perfect fit with with the Variscan 

deformation style

ESE-WNW -directed compression 
fits more with the Variscan event (effect

of the Alpine overprint)

Data show significant scattering,
implying strong overprinting motions

Suggested position
of  Alpine b-axis, taken

 from literature or towards NW
(as per Ðokovic, 1985)

Suggested position
of Variscan b-axis, taken

 from literature or towards NE 
(as per Ðokovic, 1985)

Position
of the 

compressional 
Sigma 1

Statistical position
of b-axis, or towards NW, 

corroborates 
involvement of the Alpine 

event (as per Ðokovic, 1985)

APAP

AP - Statistical axial plane

a

b

c

2
Statistical data, Schmid's diagrams, lower hemisphere

Data from from area #2, Figure 8

The resulting foliation pattern: 
Statistical b-axis shows the 

Alpine interference 
(N-S direction, westward rotation) N = 39

N = 39

N = 11

* green, red and violet stars    designate positions of principal stress axes (relative to foliation data)

Fig. 13
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Augen gneiss; Central Serbo-Macedonian Unit (Kruševac area)

Augen gneis 
(Donji Milanovac area)

a b

c d

Limited ca. 10 m long oucrop
or site of the oucrops  mapped 

as  augen gneiss; 
(Donji Milanovac area)

Non-coated mantle K-feldspar in augen gneiss, porphyroclastics mainly K-feldspars

Fig. 14
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(Neoproterozoic)Lower Paleozoic subduction zone

Variscan event in Carpathian-Balkas

Inital stages 'early Variscan' collsion (end subduction stage, 358 Ma, Medaris et al., 2003)

C
om

plete 
transposition layer:

 G
neiss, greenschists,

eclogites

Getic/Kucaj

north Gondwana

Supragetic

Serbo-Macedonian 

Getic/Kucaj

Supragetic
Danubian

Devonian oceanic 
back-arc basin ophiolites
as per Plissart et al., 2017) 

Moesia

paleo-SOUTH

b

a

metamorphism

Oceanic lower crust

Juvenile continental crustCratonic type contiental crust

Eclogites

Two Late Cretaceous subduction zones: NeoTethys & Severin-Cahlau (Alpine Tethys)

Incom
plete

transposition layer

Serbo-Macedonian Getic/Kucaj
Supragetic

Danubian Moesia

 AP3

Severin (Alpine Tethys)

Neotethys 
(relics with 

Jurasic crust)

Ma 560 Ma 470 Ma 380 Ma 310 Ma 250 Ma 70 Ma100 Ma165 Ma

Cadomian to Cenerian arc stage: 
Subduction, magmatic arc, 
formation of continental crust

Deposition and tectonic transport 
towards Moesia (latest Ordovician,
 Silurian, partially Devonian)

Migmatitization

M
et

am
or

ph
is

m
(g

ne
is

s)
 

Devonian 
ophiolites

340 Ma

M
et

am
or

ph
is

m
 &

 tr
an

sp
os

iti
on

 
(H

P 
gr

an
ul

ite
, e

cl
og

ite
)

Variscan
collision

Alpine
collision

Neotethys
ophiolites until 
late Jurassic

Si
na

ia
 F

ly
sc

h 
Ex

hu
m

at
io

n 
of

 G
et

ic
/S

up
ra

ge
tic

48
8 

M
a

34
0 

M
a

Tr
C

yc
le

#2

56
0 

- 4
60

 M
a

Tr
C

yc
le

#1

ca
.7

0 
M

a
Tr

C
yc

le
#3

Fo
rm

at
io

n 
of

 V
ar

is
ca

n
 o

ro
ge

n 
(b

ec
om

in
g 

up
pe

r c
ru

st
)

Rheic / Moldanubian / 
Paleotethys ocean

D
et

ac
hi

ng
 o

f
 n

.G
on

dw
an

a
Jurassic/Cretaceous 
Severin 
ophiolite-bearing unit

Subduction/Magmatic arc stage
early anatexis, migmatitization, 
Ordovician massive
peraluminous magmatism.  
Destruction (late anatexis)
of original setting 
and inferrence on a  
complete transposition800 C

600 Co

o

800 C
600 Co

o

Serbo-Macedonian 

Lower Paleozoic "docking"

S1 = AP1

S0

c

d

Exhumation related
shear zone

Sea-level

Sea-level

Not to scale

Not to scale

Not to scale

paleo-NORTHEAST

EAST

Greenscists to gneissic 
metamorphic level (foliation S1)

Oceanic lower crust

Harder segments
(quartz)Soft segments

AP2

AP2 = schistosity

S1

Deformations timeline, focus on folding and transposition

D1 D2 D3 & D4

Sea-level
1

23

Transposition at areas 2 and 3

sinistral transpression (as per Plissart et al., 2018)

ooo

ooo

Preserved Variscan style
(folds)

Dominant Alpine overprint
(rotation of folds)

3 Areas covered by field mapping
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Bimodal magmatism

'Late Variscan' emplacement of granitoides (Jovanovic et al., 2019)

I

II

II

I

Retreat

Fig. 15
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Tectono-
magmatic 

events

Serbo-Macedonian 
Unit (gneiss; Serbia, 

North Macedonia, 
Greece)

Getic/Kučaj basement 
unit/Sredna Gora 

(sliced gneiss)
Danubian s.l.

Cadomian 
(Neoproterozoic)

• Pyrgadikia 
mylonitic granite 
588 Ma (1)

• granite 571 Ma (2) 

Balintoni & Balica  
(2013), granites in 
orthogneiss (7); Sebeş 
unit, granites in 
orthogneiss: Balintoni 
et al., (2010a) (5)

N / A

Cenerian(Sardic) 
(Ordovician) 
/this study/

Granitic augen gneiss 
(1) , (11) 

Lotru unit (6).
Apuseni Mts. (7)

 
N / A

Variscan
Granite of the Arnea 
pluton, 300 Ma (1)

Brnjica, Neresnica, 
Ziman, Gornjane–
Tanda–Blizna (Getic 
unit), (4); Variscan age 
of eclogites (8)

Aldinac, Janja, 
Ravno Bučje, 
Plavna, and 
Suvodol 
batholiths of 
mainly Variscan 
ages (4)

(Eo)Cimmerian 
/this study/

- Granitic Orthogneiss, 
254 Ma(1);
-meta-mafic rocks (9);
- Skrut granitoid (10)

Leucocratic granites:
Strelcha and 
Karavelovo (289.5 ± 7.8 
Ma (3)

N / A

Early Alpine Numerous granitoid 
bodies (2)  

Late Alpine Granite of Sithonia
Peninsula, 65 Ma (1) 

and other numerous 
reports

Severin-Cehlau oceanic 
crust, Neubauer & 
Bojar (2013)

N / A

(1) Abbo et al. (2020); (2)  Antić et al. (2016); (3) Balkanska et al., (2022); (4) Jovanović et al. (2019); (5) 

Balintoni et al., (2010a); (6) Balintoni et al., (2010b);   (7)  Balintoni & Balica  (2013); (8) Medaris et 
al. (2003); (9) Bonev & Dilek, 2008; (10) Zidarov et al. (2007); (11) Spahić et al. (2021); (12) 
Neubauer & Bojar (2013). N / A – designates not studied or not existing tectonic stages.

Table. 1. Reports describing the main tectonic events imprinted into the Carpathian-Balkan 
basements. Blue colours are basements of Cadomian inheritance, and orange is Avalonian.
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Variscan & Alpine 
deformation events 
imprinted in Serbo-
Macedonian Unit and 
analog units (1)

Metamorphism Exhumation
(fission-track analysis)

Age of protoliths

-
ca. 129 – 32 Ma, gradual 
cooling after 75 Ma
(on apatites and zircons)

Greenschist-facies retrogression in 
the SMU probably occurred in the 
Early Jurassic (195 Ma)

Jurassic thermal event 
(40Ar/39Ar)

Southern Serbia SMU2,6, 11 

(1) Eclogite-type was in 
Neoproterozoic, whereas (2) 
medium amphibolitic facies was in 
Variscan time. (3) Latest Jurassic - 
Early Cretaceous greenschist-
facies retrogressive stage 
(Supragetic)

Pelitic and psammitic sediments are usually 
considered protoliths of the felsic 
metamorphic rocks, and tholeiitic within-
plate basalts and related tuffs as protoliths 
of the amphibolites. Parametamorphic 
protolith is of 569 Ma.

3- Minor Neoproterozoic, mainly in 
Phanerozoic (U/Th). Rutile shows 
the latest 35 Ma stage.

Biotite gneiss E of Sochos, 468 Ma

Vertiskos unit3,5

5-Minor Triassic event, in 
connection to granitic bodies 
(single grain evaporation method)
ca. 300 Ma (Sm –Nd mineral –
whole-rock isochrons for garnet 
amphibolite)

post-Variscan exhumation 
of the entire C-B system 
Supragetic, Getic, and 
Danubian basement units of the 
South Carpathians (330–300 
Ma);

The event recorded by U/Pb La-
ICP MS in orthogneiss of 
Campagna ca.549 Ма, and the 
same rocks of Lotru of 459 Ма

Sebeş-Lotru group 
(inclusive Supragetic and 
Getic)4,6,8, 10, ,14

Study based on high-pressure 
relicts (eclogite, granulite): 
amphibole~quartz eclogites, 
metagabbro of probable Variscan 
age 

Rb87/Sr86, on K-feldspar of 540 Ma, the 
isochronal age of the entire rock sample is 
475 Ma. Emplaced granite-gneiss is of 380 
Ма.

Central Serbia SMU7,12

 Rb/Sr and K/Ar,  87Sr/86Sr ratio 
yields temperatures above 500°C at 
488 Ma 

Resetting muscovite, biotite, 
and K-feldspar ages was a 
younger event that cooled 
below 145±15 °C 127.34.8 Ma 
age (Lower Cretaceous). A 
cooling rate of the muscovite 
and K-feldspar ages pinpoints 
the time interval from 150.6 Ma 
to 127.3 Ma

Ograzhden supergroup9
Cadomian event on ca. 550 – 530 
Ma) on gneiss-migmatitic 
supercomplex

Isotopic U-Pb, LA- ICP-MS on zircons 
show Ordovician to Silurian age on 
metagranites

Sredna Gora13 Variscan event 398 Ma – 336 Ma 
(to 333 Ma)

Early Alpine thermal event at 
about 140–138 Ma

Late Alpine apatite FT dating 
65 – 55 Ma

Paragneisses, metaigneous rocks, 
migmatites with minor garnet 
amphibolites, and high-pressure eclogites 
of continental and oceanic affinities 

(1) – Serbo-Macedonian analog units: Ograzhden supergroup (Bulgaria), Vertiskos unit (Greece), Sebeş-Lotru terrane (Romania), “Eastern Veles Series” (North 
Macedonia); 2 - Antić et al., 2015; 3 – Abbo et al., 2020; 4 – Medaris et al., 2003; 5 – Himmerkus et al., 2009; 6 – Antić et al., 2017; 7 – Deleon et al., 1972; 8 - Balintoni 
et al., 2010; 9 – Zagorchev et al., 2012; 10 – Iancu et al., 1998; 11 – Antić et al., 2016; 12 – Balogh et al., 1994; Žak et al., 2020; 13 – Balkanska et al., 2022; 14 
Dallmayer et al., 1996.

Table 2. Main age constraints on metamorphism and exhumation of Carpathian-Balkan metamorphic (C-B) assembly. Please see 
Figure 8 for the main sampling regions.
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