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Abstract—For the upcoming 5G-Advanced, the multi-
cast/broadcast services (5G-MBS) capability is one of the most ap-
pealing use cases. The effective integration of point-to-multipoint
communication will address the ever-growing traffic demands,
disruptive multimedia services, massive connectivity, and low-
latency applications. This paper proposes novel approaches for
the dynamic access technique selection and resource allocation for
multicast groups (MGs) subject to the 5G-MBS paradigm. Our
proposal is oriented to address and contextualize the complexity
associated with multicast radio resource management (RRM) and
the implications of fast variations in the reception conditions
of the MG members. We propose a solution structured by a
multicast-oriented trigger to avoid overrunning the algorithm, a
K-means clustering for group-oriented detection and splitting,
a classifier for selecting the most suitable multicast access
technique, and a final resource allocation algorithm. To choose the
multicast access technique that better fits the specific reception
conditions of the users, we evaluate heuristic strategies and
machine learning (ML) multiclass classification solutions. We
consider the conventional multicast scheme (MCS) and sub-
grouping based on orthogonal/non-orthogonal multiplex access
(OMA/NOMA) as access techniques. We assess the effectiveness
of our solution in terms of the quality of service (QoS) parameters
and complexity. The proposed technical solution is validated
through extensive simulation for a single-cell 5G-MBS use case
in the microwave (µWave) and millimeter wave (mmWave) band
with different mobility behaviors.

Index Terms—5G-MBS, Computational Complexity, Machine
Learning, mmWave, Multicast Access Techniques, NOMA

I. INTRODUCTION

The 5G New Radio (NR) development stage has a
bottleneck in fulfilling future enhanced mobile broadband
(eMBB) applications, such as augmented/virtual/extended re-
ality, massive connectivity, and low latency. For this reason,
academia and industry are extending their attention to the
5G-Advanced systems and integrating the best available and
under-development wireless communication technologies to
fulfill future demands and forecast performance [1]. Nev-
ertheless, this upcoming evolution can significantly increase
the network complexity, adding new computational levels,
constraints, and hardware needs. Consequently, radio resource
management (RRM) solutions must effectively cope with the
trade-off between optimal network performance and computa-
tional complexity (CC) [2]. Moreover, this upcoming evolution
will be tied to a three-dimensional ultra-dense heterogeneous
network (HetNet) with differentiated services, tight require-
ments, and the always best-connected (ABC) vision, making
managing and exploiting network resources even more com-
plex [3].

Over the years, point-to-multipoint (PTM) communications
have proved high efficiency in delivering high-quality mul-
timedia services over wireless networks. It can enable a
considerable capacity gain into the B5G ecosystem through
cost-effective and high-quality delivery mechanisms optimized
to face the requirements of the future massive Internet of
Things (IoT) deployments, huge software updates, and massive
multicast multimedia content delivery. For this reason, the 3rd
Generation Partnership Project (3GPP) is working on the new
phases of the 5G standard in the novel multicast/broadcast
services (5G-MBS) paradigm that provides an effective con-
vergence between unicasting and the multicast/broadcast ca-
pability [4].

Multicasting to users with different channel conditions
without a tailored resource allocation strategy can degrade
the quality of service (QoS) of the whole multicast group
(MG) and produce an unfair resource allocation [5]. In recent
years, works such as [5]–[9] have addressed this challenging
trade-off in the 5G context, with solutions mainly based
on grouping the MG members according to their specific
reception conditions and using a multi-rate modulation coding
scheme (MCS) to deliver the service taking advantage of
orthogonal/non-orthogonal multiplex access (OMA/NOMA)
techniques, the spatial diversity of the users, and single/multi-
antenna approaches. However, none of the previous research
delves into the implications of fast variations in the reception
conditions of the MG member in the RRM strategies CC.
Significant variations in the channel quality conditions of the
MG members imply the recalculation of the delivery solution.
A non-optimized multicast RRM could exponentially increase
CC and associated delay with a constant recalculation toward
an optimal solution, which could not be tolerated in 5G-
MBS scenarios. Thus, novel multicast RRM solutions should
consider the CC a critical element in network performance
[10].

Considering the previous analysis, this paper proposes novel
low-complex multicast RRM strategies for dynamic access
technique selection and resource allocation subject to the
5G-MBS paradigm. Our proposal is oriented to address and
contextualize the complexity associated with the multicast re-
source allocation process and the implications of fast variations
in the reception conditions of the MG members due to the
users’ mobility behaviors and the impact of mmWave propa-
gation. The research’s main contributions can be summarized
as follows:

(i) We address the CC associated with the dynamic multicast
RRM strategies in 5G-MBS use cases and highlight the impli-
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cations of fast variations in the MG members’ reception condi-
tions; (ii) We evaluate the advantage of the dynamic selection
of the multicast access technique based on [5] and propose two
alternative solutions aided multiclass classification machine
learning (ML) algorithms with multi-layer perceptron (MLP)
and extra tree classifier (ETC). The proposed solutions allow
for tailoring the radio resource allocation regarding users’
distributions, multimedia service constraints, and network pa-
rameters; (iii) We propose the use of a K-means clustering
unsupervised ML approach for detecting and splitting group-
oriented MGs based on the collected channel quality indicator
(CQI) values at the base station (BS); (iv) We propose a multi-
cast oriented trigger to avoid overrunning the entire algorithm
subject to the temporal variations of the MG CQI distribution,
reducing the induced latency over the timeslots lattice; (v) Our
proposed approaches allow addressing the trade-off between
optimal network performance and CC by maximizing specific
QoS parameters through non-optimal-solutions considerably
reducing the CC of conventional exhaustive mechanism for
specific 5G-MBS use cases.

The remainder of the paper is structured as follows. Section
II presents the related works, including some theoretical fun-
damentals and CC analysis oriented to the RRM. Section III
details the system model with the mathematical formulation.
In Section IV, we formulate the problem by highlighting the
CC. Section V gives the proposed solutions. Next, section V
discusses the conducted simulations and their results. Conclu-
sions are drawn in section VI.

II. BASIC CONCEPTS AND RELATED WORKS

This section summarizes related works and defines several
concepts to understand better and frame our proposal.

A. 5G-MBS and Radio Resource Managment

For the upcoming 5G-Advanced, the RRM is progressively
increasing its critical role. As defined in the survey [10], the
RRM schemes must implement flexible resource allocation
that dynamically allocates available resources with different
constraints, such as system throughput and energy awareness.

Over the years, PTM communication has proved its effi-
ciency in delivering high-quality QoS multimedia services to
multiple users through cost-effective mechanisms. This is an
appealing capability for the upcoming B5G standards, as an
essential element of the RRM toolbox, helping to address
the ever-growing traffic demands, massive connections, and
stringent service requirements [1]. In [11], the authors ana-
lyzed the integration of 6G NTNs and the M/B capability to
enable scalable services through efficient broadcasting strate-
gies, streaming content to large areas, and offloading popular
content to the network edge caching. In [12], Zhou et al.
delved into the importance of the 5G-MBS capability for 6G
massive vehicular IoT in emergency information delivery as
a fundamental component of modern transportation systems.
As defined in [13], the 5G-MBS standardization is being
conducted for the overall 5G system architecture from next-
generation radio access and core networks perspectives. The

future Release 18 will embrace artificial intelligence technolo-
gies providing data-driven RRM solutions [14]. These new
potentialities will be the base for the upcoming MBS over
B5G.

B. Multicast Access Techniques

The multicasting techniques are divided into single-rate and
multi-rate [15]. The single-rate solutions are based on CMS,
where the MG is served with the same MCS selected based
on the user with the worst channel quality conditions. This
traditional solution does not handle the multiuser diversity
and tends to suffer from a low capacity efficiency and unfair
resource allocation [16].

In the multi-rate schemes, the MG members are served with
different MCSs according to the particularities in the channel
quality conditions defined by the spatial users’ distribution
and the heterogeneity of the wireless channels. This approach
overcomes the limitations of the single-rate techniques by
exploiting the multiuser diversity throughout a group-oriented
resource allocation. In [17], the authors proposed the sub-
grouping techniques as a practical scheme to serve all the
users requesting the same content by allocating group-oriented
resources to each MG subgroup. This solution allocated the
resources to the different users applying subgrouping based
on OMA (SOM) as the baseline multi-rate technology. Never-
theless, in [6], [18], the authors proposed using subgrouping
based on NOMA (SNOM) in the envisaged 5G environments,
where different quality video services were delivered to a
group of users interested in the same content. Moreover,
in the previous stage of this research [5], we proposed
a dynamic multicast access technique selection algorithm
(DMATS) based on CMS, SOM, and SNOM for 5G-MBS
use cases. The proposal shows the advantages of dynamically
selecting among the available multicast access techniques.
In [19], we defined theoretical thresholds of outperformance
among CMS, OMA, and NOMA, where the most effective ac-
cess technique is selected based on multiple factors (i.e., CQI
variations of the MG members, the percent of users grouped
as low channel quality users, and the service constraints). In
the last years, multiple works have been specifically oriented
to compare the performance gain of NOMA over OMA, such
as [20]–[22].

C. Computational Complexity of the Multicast RRM

As defined in [10], recent research about RRM has been
mostly oriented on optimizing resource management, spectrum
utilization, and interference mitigation, but the associated
complexities have been given minor attention. Nevertheless,
upcoming RRM solutions and use cases like 5G-MBS sig-
nificantly increase the network complexity, adding new com-
putational levels, constraints, and hardware needs to provide
seamless connectivity and real-time response [10]. In [2], the
authors presented a survey on ML-based RRM solutions in
B5G networks. The authors explained how ML-based solutions
can relax the RMM-associated computational burden and face
the trade-off between optimal network goals and CC. In
[23] was highlighted how, for the delay aware services, high
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induced latency cannot be tolerated during the RRM, making
the CC critical during the design of the solutions.

In such a context, one of the challenges of multicast RRM
is the CC of the subgrouping techniques for an effective
subgroup creation and resource allocation that maximizes a
specific cost function. To simplify such complexity, in [24],
[25], the authors proved that the subgrouping techniques
achieve the best results when creating just two subgroups. The
proposed solution achieved optimal subgrouping with reduced
complexity considering each user’s SINR and corresponding
CQI. In [6], the author considered the CC as a KPI in the RRM
algorithm. They defined the CC assisted to the implemented
solution for multicast subgrouping based on OMA and NOMA
and analyzed the implication of the resource blocks and the
injection level. Regarding the use of NOMA, in [26], the au-
thors proposed several methods to reduce the implementation
complexity and delay of NOMA-based transmission.

In [9], the authors proposed using ML techniques for
optimal multicasting, evidencing a trade-off between accuracy
and CC for the multicast grouping task. The results offer a CC-
efficient solution for optimal multicast grouping in mmWave
with directional multi-beam antennas. Moreover, in [27] was
considered a resource allocation framework for a 5G mmWave
MBS system with beamforming techniques to identify a low-
complexity and resource-efficient mechanism that allocates the
resources to different UE groups, considering users’ priority.

To the authors’ knowledge, none of the previous research
delves into the implications of fast variations in the reception
conditions of the MG member in the dynamic multicast RRM
strategies over 5G-MBS use cases. Our proposal aims to
fill this gap by analyzing and recreating specific conditions
that increase CC due to the users’ mobility behaviors or the
implications of mmWave propagation and evaluating its impli-
cations. Moreover, we propose multicast access techniques so-
lutions to cope with the specific network condition, effectively
handling the trade-off between optimal network performance
and CC. The proposal is inserted into an HetNet scenario
with multiple 5G next-generation BSs (gNBs), such as urban
macro/micro stations (UMa/UMi) or unmanned aerial vehicles
(UAVs) acting as BSs, supporting differentiated traffic with
tight requirements and multiple concurrent users with different
mobility behaviors. Assuming a 5G-MBS use case, the BSs
can deliver a multicast multimedia service to numerous users
requesting the same multicast-oriented content, as shown in
Fig. 1.

III. SYSTEM MODEL

We consider a gNB with an effective channel bandwidth
equal to B and a total number of scheduling resource blocks
(RBs) equal to R. One RB is the smallest frequency resource
that the gNB can allocate. An RB corresponds to 12 consecu-
tive and equally spaced subcarriers [28]. The 5G NR defines
multiples numerologies (µ) for different Subcarrier Spacing
(SCS) values, according to ∆f = 15× 2µ, expressed in kHz.
B0 is the bandwidth of an RB, being B0 = 12 × ∆f and
also equal to B/R [28]. For better understanding, Table I
summarizes the main mathematical notations used throughout
the paper.

Fig. 1: 5G-MBS capability embedded in an HetNet scenario.

TABLE I: Mathematical Notations.

Notation Definition
R Total number of RBs of the BS

RM Number of RBs assigned to the multicast
session

R∗
M Effective number of RBs used for

resource allocation
B0 Bandwidth of the RB

Thmin, Thmax Minimum and maximum throughput of
the service

Pusers Percent of users to be served
K, K Set of users in the MB and total

number of users
uk User k belonging to K

CQIMG Set of CQI values reported by
the K users in MG

CQImin Minimum CQI in CQIMG
M ≤ 15 Number of different CQI values

in CQIMG
SINRmin Minimum SINR in the MG

S Number of subgroups, S = 2
G1, G2 Group 1 and Group 2
KG1, KG1 Set of users belonging to G1,

number of users of G1
KG2, KG2 Set of users belonging to G2,

number of users of G2

CQIG1
min, CQIG2

min Minimum CQI in G1 and G2
Ck Capacity of user k

CCMS, CSOM, CSNOM Capacity of CMS,
SOM, and SNOM

eff efficiency value of the MCS
effmin = effG1

min Minimum eff in the MG and G1

SINRUL,G1
k SINR of the UL after SINR adaptation

SINRLL,G2
k SINR of the LL after SINR adaptation

effUL,G1
min Minimum eff in G1 after SINR adaptation

effLL,G2
min Minimum eff in G2 after SINR adaptation

We assume RM RBs dedicated to the enabled multicast
session, with minimum and maximum throughput (Thmin,
Thmax) as multimedia service constraints. The number of
allocated resources to accomplish the multimedia service re-
quirement is R∗

M , with R∗
M ≤ RM ≤ R. As a constraint, the

resource allocation must guarantee to deliver correctly at least
the Thmin to a predefined percent of the MG users (Pusers,
e.g., 95 %, 98 %, 100 %). We assume K users requesting
the same multicast multimedia service, where the sub-index k
identifies each user uk in the MG, with k ∈ {1, 2, 3, . . . ,K}.
Let K be the set of MG users, with K = |K|.

Each uk reports the experienced channel quality through
the uplink channel state information (CSI) throughout the CQI
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[28]. The array of CQI values reported by MG is CQIMG =
{CQIk=1, CQIk=2, . . . , CQIk=K}. We define M as the num-
ber of different CQI values reported by the MG (in the service
area of the gNB) with M ≤ 15. Let us define the users’ CQI
distribution vector UMG = {uCQI=1, uCQI=2, . . . , uCQI=15}
from the CQIMG array, where uCQI=x is the number of
users in K that report a CQI equal to x. Each CQI has
associated a specific code rate and efficiency (eff ) value of
the corresponding MCS according to Table 5.2.2.1-3 in [28].

The reported CQIk is directly related to the SINR ex-
perienced by the uk. This SINR is higher than or equal to
the minimum SINR (SINRmin) required to decode the MCS
associated with the reported CQI correctly. In our proposal, we
assume perfect CSI estimation. The impact of imperfect CSI
estimation in the presented results is out of the scope of this
research. Nevertheless, in [24], the authors concluded that the
imperfect CSI estimation minimally impacts the results when
adopting a subgrouping approach.

During the subgrouping creation for SOM and SNOM, we
assume that the MG is split into S subgroups. In our proposal,
we assume S = 2, according to the results presented in [24],
[29]. We use the terms G1 and G2 to identify subgroups
1 and 2, respectively. G1 is confirmed by the low channel
quality users, identified as the set KG1 with KG1 users (uk1,
with k1 ∈ {1, 2, 3, . . . ,KG1}). The set KG2 identifies the
high channel quality users grouped into G2, with KG2 users
(uk2, with k2 ∈ {1, 2, 3, . . . ,KG2}). K = KG1 + KG2,
K = KG1 ∪ KG1, and KG1 ∩ KG2 = 0. Moreover, we de-
fine CQIG1

MG = {CQIk1=1, CQIk1=2, . . . , CQIk1=KG1
} and

CQIG2
MG = {CQIk2=1, CQIk2=2, . . . , CQIk2=KG2

}, as the
CQI values of the MG, grouped in G1 and G2, respectively,
with CQIMG = CQIG1

MG ∪ CQIG2
MG.

The capacity (C) assigned to each uk, expressed in bit/s, is
calculated as rk ×B0× effk, where rk is the number of RBs
assigned to the uk and effk, represented in bits/s/Hz, is the
efficiency value associated to the CQI feedback of uk. From
the multicast perspective, we define the C for the considered
multicast technique as

CCMS = R∗
M ×B0 × effmin, (1)

CSOM = rG1 ×B0 × effG1
min + rG2 ×B0 × effG2

min , (2)

CSNOM = rG1 ×B0 × effUL,G1
min + rG2 ×B0 × effLL,G2

min .
(3)

In the case of CMS, the effmin is the minimum eff corre-
sponding to the MCS assigned to the uk that reports the lowest
CQIk (CQImin) in the MG. Therefore, the CMS technique
assigns the same capacity CCMS to the entire MG, based on
the user uk with the lowest channel quality.

For SOM, the effG1
min is the eff corresponding to the MCS

assigned to the uk1 belonging to G1 that reports the lowest
CQI (CQIG1

min, after the subgrouping creation). Therefore,
the SOM technique assigns the same capacity C1SOM to all
members of the multicast subgroup G1.

The effG2
min is the eff corresponding to the MCS assigned

to the user uk2 belonging to the G2 that reports the lowest

CQI (CQIG2
min). Therefore, the capacity C2SOM is assigned to

the entire multicast subgroup G2 members. The CQIG2
min is

always higher than or equal to CQIG1
min.

In the SOM technique, the rG1 and rG2 (rG2 = R∗
M −rG1)

represent how the R∗
M are split into G1 and G2 to accomplish

with the throughput constraints of the multicast multimedia
service. The resulting capacity of G1 (CG1) and G2 (CG2) are
the first and second part of (2), respectively. The final resource
allocation is s.t. Thmin ≤ CG1 < CG2 ≤ Thmax.

In the case of the multicast technique SNOM, the effUL,G1
min

and effLL,G2
min are the result of the SNR adaptation [30] in

the layer division multiplexing (LDM) approach. We assume
that the lowest channel quality users grouped into G1 are
powered multiplexed into the upper layer (UL) and the highest
channel quality users G2 into the lower layer (LL). The SINR
adaptation allows calculating from the real SINR (in dB) of
each uk (SINRk) the corresponding SINR (in dB) for the UL
(SINRUL,G1

k ) or for the LL (SINRLL,G2
k ), as defined in [30].

We consider the IL values between -25 and -5 at steps of 1
and between -5 and 0 at steps of 0.5, with l equal to 31 [6].

A. QoS Performance Criteria

To evaluate the performance of the proposal from the QoS
perspective, we consider the following criteria: the system
ADR, proportional fairness (PF), and minimum dissatisfaction
index (MDI) as defined in [18], [24].

The ADR is the sum of the Ck delivered to each uk in the
MG. For the subgrouping approaches, it will be the sum of the
total capacity delivery to G1 and G2, respectively. It enables
us to compare how efficiently the proposed multicast access
strategies allocate their resources, maximizing the sum of the
total experienced throughput of the MG. The drawback of this
metric is the lack of information about how fair the available
multicast RBs were distributed among users regarding their
CSI diversity [5].

The PF and MDI are two well-known metrics to assess
how fair the available resources were allocated among the
MG members [5]. In [31], the authors demonstrated that one
unique fair allocation exists, and it is obtained by maximizing
the sum of the logarithm of the data rate of each uk. The
MDI is computed as the sum of the ratio between the data
rate achieved by each uk and the maximum possible data rate
value achieved if all RBs (R∗

M ) are assigned to the uk [18].

IV. PROBLEM FORMULATION: COMPLEXITY ASSOCIATED
WITH THE DYNAMIC MULTICASTING STRATEGIES

An effective 5G-MBS RRM strategy aims to maximize
the QoS of the MG members by efficiently allocating the
available resources of the multicast sessions. The metrics to
evaluate how efficiently the resources were allocated could be
the above-mentioned or a weighted combination of them and
additional complex metrics. Nevertheless, the envisaged ultra-
dense HetNet (Fig. 1) with differentiated services and tight
QoS requirements is a dynamic scenario, making managing
and exploiting network resources even more complex [3].

In such a context, the necessity of a constant recalcula-
tion and the intrinsic convergence time of the best multicast
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access technique and resource allocation (to maximize the
CF) strategies could become a critical factor from the com-
putational complexity point of view and for delay-sensitive
traffic, increasing the control plane delay, the total end two
end delay (e2eDelay) and inducing a critical extra latency in
the communication. Therefore, CC is also considered a KPI for
our proposed dynamic access technique selection and resource
allocation solution for MGs subject to the 5G-MBS paradigm.

A. Dynamic Multicasting Complexity

The problem space of the dynamic selection of the best
multicast access technique and resource allocation, from the
CC perspective, can be divided into three main phases: (a)
the selection of the best multicast access technique (i.e., MCS,
SOM, or NSOM for our approach); (b) the MG subgrouping
for the multi-rate solutions; (c) the selection of the optimal
resource allocation that maximizes a specific CF.

Selecting the best multicast access technique through an
exhaustive search strategy (ESS) implies evaluating the N
available multicast access techniques (i.e., N = 3 in our
analysis). This ESS multicast access technique selection (ESS-
MAT) has a CC equal to the sum of the intrinsic CC of the
N techniques, as presented below.

The CC of CMS (CCCMS), when the Thmin, Thmax and
Pusers are considered as the constraints of the service, can be
defined as O(M ∗ RM ). M is the number of different CQI
values reported by the MG in CQIMG (M ≤ 15), and RM

the available RBs to iterate over subject to the throughput
constraints. If the Pusers is assumed as 100 %, the CMS
algorithm only considers the CQI value corresponding to
the low channel quality user (i.e., the CQImin of the MG).
Therefore, the M term has no impact on the CC. Moreover,
if Thmax is assumed as infinity, R∗

M is equal to RM , and
RM have not impact in the complexity. For these specific
conditions, the CC of CMS can be assumed as insignificant.
In the following, we will assume Pusers as 100 % and Thmax

as ∞ to simplify the analysis.
The subgrouping process for the multi-rate solutions has

an essential contribution to the CC of these techniques. In
[24], the authors defined that the subgrouping process solved
through an ESS has a CC equal to O(MS), where S is the
number of considered subgroups, assumed as equal two (i.e.,
O(M2)). Following the assumption of Pusers as 100 %, such
CC can be redefined as O(M) because the CQIG1

min is fixed to
the CQImin of the MG, then the algorithm only has to iterate
over the remaining M − 1 combinations.

The multi-rate approaches for each subgrouping alternative
must evaluate the best resource allocation that maximizes
the specific CC, returning the best combination overall. For
SOM, the CC (CCSOM ), including the subgrouping process
(for ESS), can be defined as O(MS ∗ RM ) and redefined
after the assumptions as O(M ∗RM ). In the case of SNOM,
the CC (CCSNOM ), including the subgrouping process (for
ESS), can be defined as O(MS ∗RM ∗ l), and redefined after
the assumptions as O(M ∗ l). Regarding the assumptions,
SNOM uses all the available RM ; therefore, this factor is not
considered in the CCSNOM .

We can summarize the analysis by defining the CC of the
dynamic selection of the best multicast access technique and
resource allocation based on an ESS, (CCESS−MAT ) as equal
to CCCMS + CCSOM + CCSNOM , defined as:

CCESS−MAT = O(M ∗RM ) +O(M ∗ l). (4)

According to the above-mentioned assumptions, the
CCCMS is considered insignificant. The inefficiency of the
ESS-MATS approach in terms of CC reaches its maximum
expression each time CMS is selected as the best multicast
access technique. The major drawback of ESS-MATS is that
CCESS−MAT is constant independently of the MG CQI
distribution and increases linearly with the number of M,RM ,
and l.

To assess the effectiveness of our proposals and the bench-
mark algorithms in terms of CC, we measure the central
processing unit (CPU) execution time (Et) in seconds of the
evaluated algorithms using a predefined function of the Python
library Time [32]. The Et method only measures the CPU’s
time executing the code without including the time spent
waiting for input/output resources or sleeping time.

B. Implications of the Channel Quality Conditions Variation

The complexity analysis can not be just faced from the
perspective of the intrinsic CC associated with the dynamic
multicast access technique selection and resource allocation
process, as defined in the above Subsection. How often the
RRM has to recalculate these solutions can directly affect the
network performance, increasing the control plane delay and
overhead and affecting delay-sensitive traffic.

As the frequency increase, increases as well, the large and
small-scale fading, with higher path loss attenuation, higher
penetration loss, and higher shadowing and fast fading atten-
uation [33]. If this frequency dependence is essential at the
traditional µWave (below 6G) band, it becomes more critical
at mmWave [33]. Another essential factor directly correlated
with the dynamics in the channel conditions is the mobility
behavior of the users, and the dimensions of its impact are
also highly frequency dependent.

Let us define the metric CQI changing ratio (CCR) as the
percent of uk in the MG that change its reported CQI from
the instant t− 1 to the instant t concerning K. Fig. 2 shows
how the CCR is affected by the increment in the propagation
frequency and the users’ velocity. In the Figure, we can see
how the CCR increases almost linearly with the speed and
the frequency. These simulations were carried out through our
homemade numerical link-level simulator [34], for K = 50,
60 seconds of simulation with 100 ms of the resolution, and 20
simulation runs. Section VI presents additional details about
the simulation setup.

As the worst case, in terms of CC, let us assume a dynamic
multicast access technique solution based on ESS-MAT that
executes the algorithm at each simulation time-step with a
long Et and independently of the user’s CQI variation. For
these ESS-MAT solutions, the mean Et over 60 s of simulation
will remain almost constant (s.t. the intrinsic CC of ESS-MAT)
independent of the users’ velocity and frequency. This optimal
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Fig. 2: CQI change ratio regarding the propagation frequency
and users velocity.

solution can be considered the superior bound in terms of CC
for our specific problem. If we consider a basic trigger that
enables to run off the ESS-MAT (btESS-MAT) algorithm if
more than 20 % of the MG members change their reported
CQI from the time-step t− 1 to t, it will considerably reduce
the mean Et over the 60 s of simulation.

This basic trigger solution based on the 20 % can imply
overrunning the algorithm where the CQI changes are not in
the low-channel quality users or letting users without service
because its CQI change does not represent the 20 %. To
address this challenge, we propose an MG-oriented trigger
solution that considerably reduces the mean Et and is less
affected by users’ velocity and propagation at high mmWave.

V. PROPOSED SOLUTION

Bearing the previous analysis, we aim to propose novel
approaches for the dynamic access technique selection and re-
source allocation for MGs with dynamic reception conditions,
specific multimedia service constraints, and network param-
eters. Our proposal is oriented to highlight and address the
complexity associated with the multicast resource allocation
process regarding the change ratio in the reception conditions
of the MG members.

Our proposal can be divided into two main components:
(i) a classifier for the selection of the best multicast access
technique that better suits the network conditions, (ii) a K-
means clustering for detecting and splitting group-oriented
user distributions and a trigger algorithm that allows executing
the entire algorithm dynamically.

A. Multicast Access Technique Selection

As presented in [5], selecting the best multicast access
technique that better suits the specific network conditions
can be found heuristically based on outperformance equations
(OEs) among CMS, SOM, and SNOM. Such outperformance
equations can be defined as

∆SOM
CMS = 1− effG1

min(κη)
−1

effG1
min + effG2

min(1 + (κη)−1 − κ−1 − η−1)
,

(5)

∆SNOM
CMS = 1− effG1

min(κ)
−1

effUL,G1
min + effLL,G2

min (κ−1 − 1)
, (6)

Algorithm 1: OE-MAT

Input: CQIG1
min, CQIG2

min, B0, RM , I, Thmin

Output: Multicast access technique selection
1: From CQIG1

min and CQIG2
min determine effG1

min

and effG2
min from Table 5.2.2.1-3 in [28].

2: Apply SINR adaptation [30] to find:
effUL,G1

min and effLL,G2
min

3: Compute rG1:
rG1 = Thmin/(B0 × effG1

min)
4: Compute κ and η:
κ = KG1/K; η = rG1/RM

5: Compute 5, 6 and 7
if ∆SOM

CMS ≤ 0 and ∆SNOM
CMS ≤ 0 then

return: CMS
else if ∆SOM

CMS ≥ 0 and ∆SNOM
SOM ≤ 0 then

return: SOM
else if ∆SNOM

CMS ≥ 0 and ∆SNOM
SOM ≥ 0 then

return: SNOM
end

∆SNOM
SOM = 1− effG1

minη + effG2
min(η + κ−1 − ηκ−1 − 1)

effUL,G1
min + effLL,G2

min (κ−1 − 1)
,

(7)

where κ = KG1/K and η = rG1/RM . With these equations,
we can determine which multicast technique performs best in
the QoS criteria system ADR subject to the specific network
conditions. Following the methodology presented in [5], we
propose a heuristic solution called OE-MAT to select the
multicast access technique. The pseudo-code for implementing
OE-MAT is presented on Algorithm 1.

To take advantage of the existing correlation among the
specific service constraints, the network conditions, and the
MG members’ CQI distribution by selecting the best multicast
access technique, we face the problem as a supervised ML
multiclass classification [35]. Supervised ML classification
algorithms are oriented to develop a learning model from a
labeled dataset [36].

In our specific problem, we have a training dataset
(Dtrain) of Strain samples of the form (Xf , y), where f ∈
{1, 2, . . . , F} and y ∈ {1, 2, . . . , C}, with F features and one
label y of C classes. The goal of the training process is to
obtain a learning model H such that H(Xf ) = y for unseen
samples of a testing dataset (Dtest) with Stest samples [35].
In this multiclass classification problem, we have a C equal
to three classes, i.e., CMS, SOM, and SNOM, labeled 1, 2,
and 3, respectively.

To obtain a set of features that represent the ac-
tual state of the network, s.t. our specific problem,
we consider the users’ CQI distribution vector UMG di-
vided by the K multicast group members UK

MG, such
as {uCQI=1/K, uCQI=2/K, . . . , uCQI=15/K}. We also in-
cluded the features K,RM and Thmin, for F = 18 features.

In Fig. 3, a diagram is presented with the main components
of the dataset creation and ML algorithms training. The
complete process was carried out in a Python environment. For
dataset creation, at each iteration, we generate a random value
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Fig. 3: Diagram of the dataset creation and ML algorithm
training process.

of K between 25 and 100 users, a Thmin of the multicast
multimedia service between 1 Mbps and 60 Mbps, and a RM

value between 100 and 250 RBs (with a resolution of 50)
enabled for the multicast session. The Thmin range allows to
recreate of a wide range of eMBB services, as seen in [37].
For the available RBs, we consider the 5G NR numerology
µ = 2 for an SCS equal to 60 kHz and B0 = 720 kHz as
recommended in [38] for µWave and mmWave application.

To generate the CQIMG, we define four variables subject to
the following bounds: 1 ≤ minG1 ≤ 15, minG1 ≤ maxG1 ≤
15, maxG1 ≤ minG2 ≤ 15 and minG2 ≤ maxG2 ≤ 15.
We randomly generate these variables as the CQI limits of
possible group-oriented CQI distribution. Then, we randomly
generate from 30 % to 70 % of the K CQI values, between
minG1 and maxG1, and the remainder between minG2 and
maxG2. This approach enables us to recreate group-oriented
CQI distribution with different percentages of the users as low
and high-channel quality. Under these constraints, we generate
a dataset of 20000 samples.

We opt for a numerically generated dataset because it en-
ables us to obtain extensive data, covering a wide action space
and directly oriented to our specific problem. Each sample
created by the Random feature generator plus other extra
network parameters are used to run the ESS-MAT algorithms
for the multicast access technique selection and to add the
corresponding label to each feature set Xf in the dataset.
The resulting dataset has 9680 samples of SNOM (3), 4545
samples of SOM (2), and 4438 samples of CMS (1). The
remaining samples got the label 0 and were deleted from the
dataset because it means that for these samples, the randomly
generated CQI distribution and RM values can not satisfy the
Thmin constraint, with any of the available access techniques.
To lead with the unbalanced dataset, we use the Python library
SMOTE (Synthetic Minority Oversampling Technique) [39]
that oversamples the minority classes in the dataset.

The training process of the ML algorithms includes

data normalization, data train/test split, grid-search/cross-
validation, and, finally, the evaluation of the algorithms
through specific error metrics [40]. We apply the Min-Max
scaling method for normalization, transforming all features
into the range [0, 1] [40]. The dataset was split into 80 % and
20 % for the training and testing, respectively. We apply Grid-
search and k-fold (with k = 5) cross-validation to evaluate
multiple combinations of the hyperparameters associated with
each ML algorithm and use as a tuning criterion the F1 score
[40].

To solve the problem, we evaluate in the above-described
training process the performance of several scikit-learn na-
tive multiclass classifiers [40]. These estimators have multi-
learning support as described in [35]. After multiple iterations,
the best multiclass classifiers learning models H were ob-
tained with Multilayer Perceptron (MLP) [41] and Extra-Trees
Classifier (ETC) [42] as HMLP and HETC , respectively. The
ETC algorithm builds an ensemble of unpruned decision or
regression trees according to the classical top-down procedure.
After the tuning process, the number of estimators to form
the ensemble was set to 450, with 100 as the maximum
depth of the trees. The number of features to consider for
the best split was set as the square root of the total number
of features in the dataset. In the case of the artificial neural
network (ANN) algorithm MLP, after the tuning process,
the selected activation function was ReLU (Rectified linear
activation function), Adam (Adaptive Moment Estimation) as
the optimization algorithm, a learning rate of 0.03, and one
hidden layer of 150 neurons.

To assess the effectiveness of the proposed classifiers, we
consider the metrics accuracy and F1 score, including a 3x3
confusion matrix analysis [40]. The accuracy of predicting
each one of the classes can be defined as

Accuracy =
CP

T
, (8)

where CP = TP + TN is the percent of correct classified
predictions, including the true positive (TP ) and true negative
(TN ). T = TP + TN + FP + FN is the total number
of predictions, including the false positive (FP ) and false
negative (TN ). The TP , FP , TN , and FN are computed
based on the correct and incorrect multicast access technique
selection for a specific feature set Xf regarding the actual
y label obtained with the optimal ESS-MAT algorithm. The
model’s accuracy will be the mean of the accuracy of each
class.

The F1 score is the harmonic mean of the metrics precision
and recall giving a balanced measurement of these metrics
[40]. This expression is preferable to evaluate unbalanced
datasets with an individual evaluation of multiple classes. The
precision, recall, and F1 score metrics are defined in [40].

In Algorithm 2, we present the description of the dynamic
multicast access technique selection based on MLP (MLP-
MAT), and ETC (ETC-MAT), respectively.

Regarding the CC analysis presented in Section IV, let
us define the CC of the proposed dynamic selection algo-
rithms (DSAs) as CCDSA. Then we can define the CC
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Algorithm 2: MLP-MAT—ETC-MAT
Input: HMLP |HETC , CQIMG, RM , Thmin,K
Output: Multicast access technique selection
1: From CQIMG and K determine:
UK

MG = {uCQI=1/K, uCQI=2/K, . . . , uCQI=15/K}
2: Conform Xf as {UK

MG, RM , Thmin,K}
3: Predict y with HMLP |HETC and Xf :
y = HMLP .predict(Xf )|HETC .predict(Xf )
5: Select the multicast access technique
if y = 1 then

return: CMS
else if y = 2 then

return: SOM
else if y = 3 then

return: SNOM
end

of the proposed solutions, CCOE−MAT , CCMLP−MAT and
CCETC−MAT as

CC =


CCDSA, if CMS

CCDSA +O(M ∗RM ), if SOM

CCDSA +O(M ∗ l), if SNOM

(9)

where CCDSA equals the CC of the proposed solutions to find
the best multicast access technique. In the case of OE-MAT,
we can define CCDSA as O(l) because the solutions have to
iterate over the l IL values to compute the outperformance
equations in Algorithm 1. Hence, using OE-MAT suppose
a CC equal to O(l) plus the specific CC of the selected
technique. As can be seen, the improvement in terms of CC of
OE-MAT concerning ESS-MAT in (4) reaches its maximum
value when the selected access technique is CMS because
ESS-MAT still has to compute the three access techniques.

B. Subgrouping and Trigger based on K-means Clustering

As presented in the above Section IV, the MG subgrouping
process significantly contributes to the CC of these techniques.

Aimed to split CQIMG, we based our solution on the ML
K-Means [43] algorithm. The K-Means is a simple unsuper-
vised ML algorithm capable of clustering unlabeled datasets
in a few iterations [40]. Based on K-Means, our proposed
solution applies a partitional clustering of CQIMG, dividing
the CQI values into two non-overlapping groups of CQI values
labeled as 0 for G1 and 1 for G2. If all the CQI values are
labeled as 0, all the reported CQI in the MG have the same
value. Let us assume our K-Means learning model as Hkm,
with Hkm(X

km
f ) = ykm, where Xkm

f will be the M ≤ 15
unique CQI values in CQIMG, and ykm the M labels (0
or 1) for each unique CQI in CQIMG. Algorithm 3 shows
a pseudocode that describes the functions of the proposed
clustering strategy.

From the K-Means clustering algorithm, we implement an
MG-oriented trigger intending only to run the algorithm OE-
MAT, MLP-MAT, or ETC-MAT and recompute the resource
allocation strategy if either CQImin = CQIG1

min or CQIG2
min

Algorithm 3: K-Means clustering
Input: CQIMG

Output: flag, CQImin =
{CQIG1

min, CQIG2
min}, CQIG1

MG, CQIG2
MG

1: Conform Xkm
f as a sorted array with just the

unique values in CQIMG:
Xkm

f = sort(unique(CQIMG))

2: Predict ykm with Hkm and Xkm
f :

ykm = Hkm.predict(X
km
f )

3: If all the ykm are equal 0, flag = 0:
if ykm = 0 then

return: flag = 0, CQImin = min(CQIMG)
else if ykm ̸= 0 then

then:flag = 1
4: Find CQIG2

min as the minimum CQI value in
Xkm

f labeled as 1:
CQIG2

min = min(Xkm
f |ykm=1)

5: Conform CQIG1
MG and CQIG2

MG from
CQIMG, CQIG1

min, CQIG2
min :

return:flag, CQIG1
min, CQIG2

min, CQIG1
MG, CQIG2

MG
end

change from the RRM timeslot t− 1 to t. The trigger can be
defined as

triggert =


1, if flagt ̸= flagt−1

1, if CQImin,t ̸= CQImin,t−1

1, if CQIG2
min,t ̸= CQIG2

min,t−1

0, otherwise

(10)

where trigger = 1 means that RRM must recompute the mul-
ticast access technique selection and the resource allocation;
otherwise, it will not. In Fig. 4, we present a diagram with the
interconnection among the proposed K-Means clustering, the
trigger, and the dynamic multicast access technique solutions:
OE-MAT, MLP-MAT, or ETC-MAT.

VI. RESULTS AND DISCUSSION

The evaluation is conducted through two scenarios based on
link-level simulation and an extensive simulation set covering
a wide range of configurations. Metrics to assess the ML
classification task, the QoS, and the CC are the common
thread of the results and discussion of this section. In the
following, we will refer to the proposed solutions using the
flow diagram presented in Fig. 4 as OE-MAT, MLP-MAT, and
ETC-MAT. Only to highlight the advantage of the proposed
trigger, we include the index ”kt” to differentiate the solution
with the trigger (ktOE-MAT, ktMLP-MAT, and ktETC-MAT)
and without the trigger (OE-MAT, MLP-MAT, and ETC-
MAT).

A. Scenarios description

The two recreated validation scenarios are based on an ad-
hoc developed Python-based link-level simulator [34] oriented
to recreate 5G-MBS use cases. Table II summarizes the main
simulation parameters.
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Fig. 4: Flow diagram of the proposed K-Means clustering, the
trigger, and the dynamic multicast access technique solutions.

Scenario A) We consider a UMi Street Canyon open area
with a single gNB in the middle of a grid of 60x60 meters
operating at 28 GHz. We consider the 5G NR numerology
µ = 2 for an SCS equal to 60 kHz and B0 = 720 kHz
as recommended in [38]. The goal of these scenarios is to
generate 1000 samples of uncorrelated network configurations
where for each sample, we generate a random number of
stationary users K between 25 and 100 users, a Thmin of the
multicast multimedia service between 1 Mbps and 60 Mbps,
and a RM value between 100 and 250 RBs (with a resolution
of 50). The RRM must ensure the service is correctly delivered
to 100 % of the users. We consider each sample a network
snapshot where the simulator’s output will be the instantaneous
CQIMG and network parameters. With the outputs of the
simulator, we generate a Dtest with 1000 samples of unseen
data for the proposed dynamic multicast access technique
solutions.

Scenario B) We consider a UMi Street Canyon open area
with a single gNB in the middle of a grid. We consider the
5G NR numerology µ = 2 for an SCS equal to 60 kHz
and B0 = 720 kHz as recommended in [38] compatible
with µWave and mmWave applications. The BS provides
multicast multimedia service with a Thmin of 50 Mbps and
200 available RBs. The RRM has to ensure delivering the
service correctly to 100 % of the users. For each simulation,
we consider 50 MG members in the service area of the BS,
with a random directional mobility model [44], at the same
constant speed during 60 s of simulation (with 100 ms of
resolution). In this scenario, we test different user’s speeds
from 0.5 to 3 mps at a resolution of 0.5, and from 3 to 30 mps
at a resolution of 3, for 15 different speeds. The selected speed

TABLE II: Simulation parameters.

Parameter Scenario A Scenario B
Scenario type UMi Street Canyon UMi Street Canyon

Frequency (GHz) 28 2, 4, 6, 16, 28,
39, 50

Numerology µ 2 2
RBs bandwidth (kHz) 720 720
Available RBs, RM 100-250 200
BS/user height (m) 10/1.5 10/1.5

Transmission power (dBm) 10 10
BS/user antenna gain (dB) 10/0 10/0
Large-scale fading models [45] [45]
Small-scale fading model Jakes Jakes

Dynamic line of sight Yes Yes
Antenna Sectorial (120°) Sectorial (120°)

Mobility Models Stationary Random Directional

TABLE III: Multiclass classification task evaluation.

OE-MAT / MLP-MAT / ETC-MAT
Class precision (%) recall (%) F1 (%) support
CMS 93/95/95 100/97/95 97/96/95 373
SOM 98/99/98 100/96/93 99/97/95 356

SNOM 100/92/94 87/94/94 93/93/91 271
mean F1(%) 96.4/95.7/94.1
Accuracy(%) 96.0/96.0/94.0

range is oriented to evaluate typical pedestrian and vehicular
mobilities. We also evaluate the scenario for different µWave
and mmWave frequencies 2, 4, 6, 16, 28, 39, and 50 GHz. We
adjust the grid size for each frequency to ensure collecting
CQI values from 1 to 15 at each run. For each combination
of velocity and frequency 15 × 7, we generate 20 random
simulation runs.

B. Multiclass Classifier Assessment

To validate the performance of OE-MAT, MLP-MAT, and
ETC-MAT to select the best multicast access technique that
better suits the specific conditions of the network, we use the
dataset Dtest from Scenario A. We employ the optimal solution
found by ESS as a reference result. The validation is based on
the accuracy, F1 score, precision, and recall metrics. Table III
summarizes the evaluation results.

As shown in Table III, the best multiclass classification
performance in terms of mean F1 score and accuracy was
achieved with the heuristic solution OE-MAT. The worst result
with OE-MAT was achieved for the SNOM samples with an
F1 score of 93 %. This degradation is due to the 87 % of recall,
meaning SNOM samples were misclassified. In contrast, the
precision classifying SNOM was 100 %, which means that all
the samples classified as SNOM were SNOM. The best ML-
based solution was achieved with MLP-MAT with the same
global accuracy of 96 % that OE-MAT and a difference of
less than 1 % of the mean F1 score.

For the three solutions, the worst performance was classi-
fying SNOM samples. In the case of the ML solutions, one of
the reasons for this behavior could be the unbalanced dataset
during the training process, where SOM doubled the number
of samples concerning SNOM. In the case of the solution
based on MLP, the 92 % of precision classifying SNOM
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Fig. 5: QoS performance losses for ESS-MAT.

samples is because 1.4 and 0.3 percent of the SNOM samples
were wrongly classified as CMS and SOM, respectively.
Moreover, 1.1 and 1 percent of the CMS and SOM samples
were classified as SNOM, reducing the recall to 94 percent.

The multiclass classification assessment shows that the three
proposed solutions are considerably effective, with accuracy
and F1 score values higher than 94 percent. In the case of the
ML solutions, the results could be improved by increasing the
dataset and balancing the classes.

C. QoS Assessment

The performance of the proposed sub-optimal OE-MAT,
MLP-MAT, and ETC-MAT was evaluated regarding the met-
rics system ADR, MDI, and PF. In every case, their perfor-
mance was compared with the optimal solution ESS-MAT. The
validation was based on Scenario A, measuring the average
performance losses of the proposals concerning the ESS-
MAT for the 1000 samples. The results are shown in Fig. 5,
evidencing the QoS performance of the proposed solutions and
ESS-MAT is almost the same. Specifically, the performance
losses of the proposed solutions for ESS-MAT for the three
QoS metrics are lower than 0.21 %. The ESS-MAT solution
optimizes the system ADR, and OE-MAT and MLP-MAT
have a minor ADR performance degradation on the order of
0.1 %. Moreover, OE-MAT and MLP-MAT outperform the
ESS-MAT regarding MDI minimally (i.e., a negative value in
Fig. 6). It happens because even when the resource allocation
of the proposed algorithms is optimized for the ADR, the miss-
classification during the selection of the best multicast access
technique tends to favor fairer multicast strategies for ESS-
MAT. The same happens for the metric PF with MLP-MAT
and ETC-MAT.

To help visualize the evolution of these metrics along the
1000 samples, Fig. 7 shows the difference in cumulative
ADR between the proposed solutions and ESS-MAT. In this
Figure, for the worst case, the cumulative difference over
1000 samples equals 85.1 Gbps. This value, with ETC-MAT,
represents a mean system ADR difference of 85.1 Mbps
(85.1 Gbps/1000), the 0.207 % respect to the mean ADR
of ESS-MAT over the 1000 samples, equal to 41.138 Gbps.
An equivalent analysis can be made for OE-MAT and MLP-
MAT, where the mean ADR difference over the 1000 samples
equals 39.44 Mbps and 42.8 Mbps.

Fig. 6: Difference in cumulative ADR of the proposed solu-
tions and ESS-MAT.

D. CC Assessment

After validating the performance of the proposed solutions
in terms of QoS, let us evaluate its CC improvements. As we
define above, we evaluate the CC in terms of the Et metric. The
simulations were launched in a server with 1 x Barebone Asus
ESC4000 G4 1+1 1600W RPSU 4 x GPU 2 x Processor Intel
Xeon Gold 6238 2,1GHz 22C 140W 8 x Samsung Memory
DDR4 2933MHz 32GB.

Continuing with Scenario A, Fig. 8 presents the cumulative
Et reduction of the analyzed solutions regarding ESS-MAT. As
we can see, the best performance is achieved with MLP-MAT
and OE-MAT. The MLP-MAT reduces the mean Et concerning
ESS-MAT over 1000 samples by more than 96 %. The solution
based on the ETC learning model takes longer to converge,
with an improvement of around 15 %. From this result, we
can validate the advantage of using a non-optimal solution for
the MG splitting and the multicast access technique selection
regarding the CC. The proposed algorithms reduce the intrinsic
CC associated with this dynamic process in 5G-MBS use
cases.

To assess the performance of the proposed MG-oriented
trigger, we use Scenario B to evaluate the impact of the CQI
change ratio increment due to the propagation frequency and
user velocity. First, we added the proposed trigger to the ESS-
MAT and compared it with the performance of btESS-MAT
(ESS-MAT with the 20 % trigger) presented in ??. In this
simulation, we find the mean Et of each solution over 60
seconds and 20 simulation runs for each possible combination
of users’ speed and frequency.

Fig. 9(a) illustrates the extra Et reduction added by the
proposed MG-oriented trigger with ESS-MAT (ktESS-MAT)
concerning ESS-MAT and btESS-MAT. For the mmWave
cases, the improvement is always bigger than 20 %. This
improvement increases with the velocity in all cases. The
most important outcome of this simulation is the change in
the behavior introduced by the proposed trigger regarding the
velocity. We can see how the results for ktESS-MAT have
a minimal variation with the velocity increase, which means
that the proposed strategy for the trigger is less affected by
the increment in the general CQI changing ratio of the MG.

Fig. 9(b) shows the Et reduction of the entire proposal,
including the trigger, the K-MEans clustering, and the MLP-
based multicast access technique solution. The improvement
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(a)

Figs/Difference in cumulative MDI.png

(b)

Figs/Difference in cumulative PF.png

(c)

Fig. 7: Difference in cumulative ADR (a), MDI (b), and PF
(c) of the proposed solutions and ESS-MAT.

Fig. 8: Cumulative ET reduction regarding ESS-MAT.

(a)

(b)

Fig. 9: Cumulative Et reduction of btESS-MAT, ktESS-MAT
(a), and ktMLP-MAT (b) concerning ESS-MAT.

with respect to ESS-MAT is around 99 % for all cases. We can
see how the Et reduction increases at around 3 % concerning
the result in Fig. 8(b). Such outcomes validate the performance
of the proposed solution in terms of CC with an approach that
is less sensitive to high CQI changing ratios. This is important
in handling high mobility use cases and mmWave scenarios.
Moreover, the performance of the solution in terms of QoS
is almost the same as the optimal ESS-MAT solution. The
validation results show a worthy trade-off between a non-
optimal QoS performance of less than 0.25 % with respect
to the optimal solution and an improvement of 99 % of CC
reduction.



12

VII. CONCLUSIONS

This research was oriented to contextualize and address
the complexity associated with the multicast RRM process
regarding the fast variations in the reception conditions of
the MG members subject to the 5G-MBS paradigm. We
propose a dynamic multicast access technique selection and
resource allocation strategy based on an MG-oriented trig-
ger, a K-means clustering for detecting and splitting group-
oriented user distributions, and a classifier for selecting the
best multicast access technique. For the dynamic selection
of the multicast access technique that better fits the specific
reception conditions of the MG members, we propose a novel
approach base on ML-multiclass classification with MLP,
ETC algorithms. The proposal results show a worthy trade-
off between a non-optimal QoS performance of less than
0.25 % concerning the optimal solution and an improvement
of 99 % of CC reduction. The proposed dynamic multicast
access technique solution and the following strategies can
contribute to the envisaged 5G-MBS use cases. It helps reduce
the complexity of RRM and the induced latency in communi-
cation. Our approach effectively handled the trade-off between
the multicasting gain and the multiuser diversity highlighting
the implications of the existing correlation between the users’
velocity, the propagation frequency, and the variations in the
channel conditions. The proposed solutions allow tailoring
the multicast access technique and radio resource allocation
regarding users’ distributions, multimedia service constraints,
and network parameters.
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