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Abstract—5G-Advanced and Beyond claims a 3D ecosystem
with cooperation between terrestrial and non-terrestrial networks
to achieve seamless coverage, improve capacity, and enable
advanced applications with strict quality of service (QoS) re-
quirements. This complex environment requires a disaggregated
Radio Access Network (RAN) deployment with open interfaces,
such as the architecture promoted by the O-RAN Alliance.
This architecture, supporting the slicing paradigm, is a promi-
nent solution to guarantee dynamism and differentiated traffic
management. Furthermore, intelligence is critical for future wire-
less networks to enable Machine Learning (ML)-based optimiza-
tion for autonomous RANs, handling ultra-dense heterogeneous
environments, and adapting to numerous scenarios. This paper
presents an enhanced Dynamic Radio Access Network Selec-
tion (eDRANS) algorithm based on Federated Double Deep Q-
Network (F-DDQN) and inserted in the novel O-RAN architec-
ture. The proposal selects the most suitable base station (BS) to
satisfy multiple service requests, optimizing QoS and slicing re-
source utilization. Moreover, the solution employs a Cooperative
Game Theory (CGT) approach to manage resources in overload
situations. This load-balancing process enables the acceptance
of new clients without abruptly degrading the active users’
perception. eDRANS is adapted to diverse network conditions,
multiple service constraints, and several user types with different
priorities and mobility behaviors. The proposal is validated
through network-level simulations, recreating a heterogeneous
environment composed of terrestrial-airborne nodes and using
the Max-SINR criterion, a heuristic algorithm, and centralized
and distributed ML solutions as benchmarks. Results show
that eDRANS correctly learns during multiple trial-and-error
interactions with the environment, fulfilling the Service Level
Agreement (SLA) and maximizing user satisfaction.

Index Terms—5G-Advanced and Beyond, Federated Deep
Reinforcement Learning, Game Theory, Network Slicing, QoS.

I. INTRODUCTION

In the current landscape, the research community focuses
on developing future wireless networks to serve many high-
quality demanding users with diverse mobility behaviors and
varying service requirements. The Third-Generation Partner-
ship Project (3GPP) has recently presented the project update
for Radio Access Network (RAN) Release 18, marking the
start of 5G-Advanced [1]. The 5G-Advanced and Beyond
will enable various advanced applications, including extended
reality, cloud gaming, massive Internet of Things (IoT) device
updates, and emergency vehicle warnings. These applications
impose stringent key performance indicators (KPIs) that can
directly impair user perception and overall experience. The
research community is actively working towards addressing

these challenges and pushing the boundaries of wireless
communication technologies to meet the evolving demands
of users and various industry sectors.

One of the prominent features of 5G-Advanced and Be-
yond is the utilization of high-frequency bands, such as
the millimeter–wave (mmWave) and terahertz (THz) bands,
along with flexible spectrum allocation. Path losses, signal
penetration, and blocking effects are critical concerns in these
high-frequency bands [2]. Therefore, effectively managing
network resources and the network selection process is crucial
to mitigate these challenges and prevent negative impacts on
handover performance and quality of service (QoS).

The network slicing paradigm represents another essential
characteristic of future networks for assurance and service
provisioning [3]. RAN slicing, in particular, involves parti-
tioning the physical resources to create independent logical
network slices (NSs). These NSs are tailored to accommodate
various application scenarios and enable differentiated traffic
management. Resources can be dynamically assigned based
on service requests, priorities, and network load conditions
[4]. This approach allows one base station (BS) to support
multiple NSs. Each NS can host several service instances,
enabling enhanced dynamism and scalability in network re-
source allocation.

The ultra-dense heterogeneous environment is a crucial fea-
ture of future wireless networks. The effective coexistence of
terrestrial and non-terrestrial networks (TN-NTNs) increases
complexity but endows flexibility in resource management and
improves service area and capacity [4]. NTNs play a vital role
due to their capability as slice extensions to achieve seamless
service coverage [3], enhance network performance during
overcrowded scenarios, and cover unconnected areas or zones
affected by natural disasters. Consequently, the cooperation
among TNs, unmanned aerial vehicles (UAVs) [5], [6], high-
altitude platforms (HAPs), and satellite constellations will
conform the 3D ecosystem of 5G-Advanced and Beyond [7].

Managing and optimizing this complex environment re-
quires a dynamic Open RAN deployment, such as the archi-
tecture promoted by the O-RAN Alliance. This architecture
uses virtualized, disaggregated, and software-based elements
to enable intelligence, resilience, and reconfigurable RANs
[8]. The BSs are connected to RAN intelligent controllers
(RICs) through open interfaces to perform control actions and
policies (e.g., RAN slicing, network selection, handovers, load
balancing, and scheduling policies). The network selection
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process is complicated but meaningful since multiple types
of users request various services with tight QoS requirements
simultaneously over a heterogeneous infrastructure. Multiple
users compete for finite resources; then, it is necessary for
an effective strategy to improve user satisfaction and opti-
mize resource utilization [9]. In addition, load balancing is
a special ingredient to ensure adequate on-demand resource
management and avoid saturation.

Several papers have addressed this issue using heuristic
methods like Multi-Attribute Decision-Making (MADM) [10],
[11]. Nevertheless, these traditional methods are not the most
appropriate solution for dynamic decisions in a massive and
complex environment where scalability is critical. A significant
drawback is their high computational complexity (CC) since
handling extensive data is required for a complete (if possible)
system knowledge [12], [13]. Consequently, 5G-Advanced and
Beyond must incorporate Machine Learning (ML) solutions as
a prominent feature to manage highly dynamic environments
and make proactive decisions adapting the network to multiple
scenarios. Specifically, Deep Reinforcement Learning (DRL)
is presented in the recent literature as a valuable prospect
thanks to the trial-and-error learning process [3]. Additionally,
the Federated Learning (FL) paradigm and DRL combination
(F-DRL) is a suitable solution, benefiting from collaborative
ML training while preserving data privacy and considerably
reducing communication overhead compared with traditional
ML approaches [14].

Considering the challenges above, we propose the enhanced
Dynamic Radio Access Network Selection (eDRANS) algo-
rithm integrated within the O-RAN architecture. This proposal
aims to select the best BS to satisfy multiple users’ requests
during diverse network conditions, improving QoS and op-
timizing slicing resource utilization. The network selection
process is based on F-DRL utilizing Double Deep Q-Network
(DDQN) (termed in the following as F-DDQN). Furthermore,
the solution employs Cooperative Game Theory (CGT) as a
load-balancing mechanism during overload situations, facili-
tating resource adjustments to accommodate additional clients
without abruptly compromising the active users’ perception.
The validity and performance of the proposed approach are
evaluated through rigorous network-level simulations. In sum-
mary, the technical contributions of this paper include the
following:

1) The eDRANS algorithm is based on F-DDQN and
CGT to deal with the network selection problem and
guarantee a dynamic slice allocation for diverse network
conditions, user types and priorities, service require-
ments, and mobility behaviors.

2) The proposed solution is inserted in the O-RAN ar-
chitecture, where multiple ML Local Models cooperate
in training an ML Global Model inserted in the RIC
to satisfy multiple service requests while enhancing
data privacy and reducing communication overhead. The
framework includes a Selector Module to make a final
global decision considering the previous actions taken
by each ML Local Model (i.e., one for each BS).

3) The proposal recreates a heterogeneous environment
composed of terrestrial and airborne nodes. Comprehen-

sive simulation results are obtained by optimizing re-
source utilization, considering multiple critical features
such as throughput, delay, energy consumption, over-
loading, NS availability, and Service Level Agreement
(SLA) satisfaction.

The remainder of the paper is structured as follows. Sec-
tion II presents the related works. Section III details the
system model and problem formulation. Section IV describes
the network selection algorithm and the complexity analysis.
Section V shows the load balancing process. Next, Section VI
discusses the link-level simulations and the results. Conclu-
sions are drawn in Section VII.

II. RELATED WORKS

Due to the limited nature of resources and the heterogeneous
conditions of RANs, users, and applications, selecting the
most suitable BS to satisfy the user demand has been in the
crosshairs of many researchers. This section surveys the state-
of-the-art related to network selection, slicing resource alloca-
tion, and load balancing strategy during overload situations.

A. Network Selection and Slicing Resource Allocation

In the paper by Montalban et al. [15], a heuristic algorithm
is proposed that utilizes MADM and the Analytical Hierarchy
Process (AHP) to address service requests within a conver-
gent architecture that encompasses broadcast, broadband, and
cellular services. Similarly, Desogus et al. [11] introduced the
TYDER algorithm, which is also based on MADM and AHP
but focuses on diverse unicast traffic requirements. However,
their approaches did not fully leverage the benefits of the NS
paradigm as demonstrated in Gonzalez et al. [10]. Their work
employed MADM to manage the network selection process
and attend to multiple service requests, dynamically adjusting
NS resources over different traffic conditions.

In the context of 5G-Advanced and Beyond, the increasing
complexity of massive, dynamic, and heterogeneous systems
has rendered heuristic algorithms impractical [16]. Traditional
algorithms like MADM iterate among all possibilities to find
the best solution for each generated event. Therefore, it is
challenging to formulate an accurate mathematical model to
get global optimal results in a short time [17]. Consequently,
recent papers have shifted their focus towards solving network
selection through ML approaches. Although ML methods have
a high cost of offline training, they can quickly make near-
optimal decisions once trained. Moreover, ML solutions do
not depend on accurate mathematical models, which makes
them appealing for very complex network scenarios [13].

Particularly, DRL increases attention thanks to its capacity
to solve complex problems with a large state space. It does
not require extensive datasets since it learns through trial-
and-error interactions with the environment [12], [16]. In
[12], the authors proposed a centralized DDQN algorithm
aided by dynamic NS allocation to serve multiple users with
different priorities and service preferences. Zhang et al. [18]
considered a centralized agent to manage user association
and resource allocation over a heterogeneous environment.
However, centralized schemes suffer scalability issues in real
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deployments, and only small networks can benefit from this
strategy [9]. The authors of [19] presented a distributed algo-
rithm where each BS, based on its local information, shows
its willingness to attend the service request. Additionally,
a superior entity makes a random final decision among all
available BSs. This proposal is suboptimal because it does
not guarantee that the best BS is always selected according
to momentum. Sun et al. [20] proposed a distributed DRL
mechanism with slicing deployment to minimize the long-
term handover cost while ensuring the user’s QoS. The agents
consider the priority, throughput, delay, and central processing
unit usage. As a weak point, the NS’s bandwidth allocation
is static. Thus, this paper does not exploit the potential of
dynamic slicing allocation for different network conditions.
In general, distributed ML strategies reduce the overhead and
complexity regarding centralized systems. However, the no
round-trip fashion between an aggregated unit and the agents
limits the generated local models to only use the individual
information without any benefit from peer’s data [14]. In the
case of [21], a DRL multi-agent solution is proposed, in which
the BSs are the agents to manage resource allocation and
reduce frequent handovers. The authors offered an effective
combination of states from adjacent BSs, and their coefficients
are jointly computed to improve results. Nevertheless, this
solution does not inquire about privacy issues.

Recent studies have been focused on F-DRL to overcome
the limitations of centralized and distributed ML processes. In
[22], the authors presented an algorithm based on F-DRL and
GT, where multiple Mobile Edge Computing (MEC) domains
collaborate on building an efficient learning model preserving
privacy and adjusting the virtual resources over Industrial IoT
(IIoT) scenarios. Liu et al. [23] introduced a device association
scheme for RAN slicing. They leveraged a hybrid F-DRL
approach to enhance throughput and reduce handover costs.
The authors of [24] employed a user-centric F-DRL algorithm
to select the proper BS and Resource Blocks (RBs) to access
the requested service. However, this strategy raises concerns
regarding selecting agents for the training phase, particularly in
environments with diverse types of users, battery limitations,
and varying mobility patterns. Additionally, the effectiveness
of user decisions relies on a higher-level entity that ultimately
determines whether to accept the proposed BS association by
the user. This introduces complexity, mainly because multiple
users compete for the same resources.

Wang et al. [25] proposed a Support Vector Machine
(SVM)-Federated Learning solution where multiple high-
altitude balloons cooperate as local agents in building an SVM
model to determine the user association that reduces overall
energy and time consumption. In [26], the authors presented
an F-DRL algorithm inserted in the O-RAN architecture to
take advantage of this disaggregated framework. According
to the number of NSs at each BS, multiple parallel layers are
deployed on the RIC to enhance local resource allocation. The
action space is a set of discrete numbers of RBs, assuming
the presence of a preliminary admission mechanism such as
presented in [24]. Abouaomar et al. [27] proposed an F-DRL
algorithm where multiple mobile virtual network operators
(MVNOs) collaborate to improve the performance of their

RAN slicing models based on the O-RAN architecture. In
[28], the authors presented an F-DRL solution where several
BSs participate in training a common ML model to perform
power allocation of their users. Thus, due to diverse mobility
behaviors, [28] does not consider user association and the
handover process. The papers [22]–[28] did not include either
user priority differentiation or a heterogeneous RAN infras-
tructure (TN-NTN integration), which represents one of the
future wireless networks’ pillars [4], [29].

B. Load Balancing

Load balancing is a crucial and challenging strategy to
optimize slicing resource utilization and satisfy multiple users’
requests. This process becomes even more critical in overload
situations, where dynamic resource reallocation is required
to accept new clients while current users’ satisfaction is not
abruptly degraded.

The previously analyzed works, except [10], did not con-
sider resource adjustments during overload situations. Gonza-
lez et al. [10] incorporated a load-balancing process during
periods of overload to select the optimal combination of NS
resources. The authors of [30] proposed a heuristic network
selection algorithm and offered a CGT solution for load
balancing. Anedda et al. [31] dealt with overloading by
gradually decreasing the throughput of current users to accept
new customers on the network. This solution is based on
the Markov Decision Process. Additionally, they considered
different users’ priorities (business and typical) and several
screen resolutions. The papers [30], [31] only focused on video
content delivery without exploiting the slicing paradigm.

In [32], the authors proposed a deep-learning model for
congestion control. This proposal aims to select the proper NS
according to the service requests and network conditions. If a
particular NS fails or exceeds a defined threshold in terms of
capacity (93%), the incoming traffic is automatically assigned
to a master NS. As a weak point, each NS is configured with
fixed resources, and there is no applied resource adjustment
to already users in the overloaded NS.

The authors of [29] analyzed the TNs-NTNs integration
to increase coverage and capacity. They proposed a heuristic
load-balancing solution in which some traffic of an overloaded
cell is migrated to a neighbor cell or another BS (e.g., satel-
lite) with enough resources. Initially, the users are randomly
distributed among terrestrial cells without applying a network
selection process. The NTN assists the terrestrial infrastructure
only when it is overloaded. The proposal is limited to the
number of BSs without considering bit rate adaptation.

Compared with the previous works, eDRANS stands out
as an integral solution inserted in the emerging O-RAN
architecture. This proposal addresses the challenge of dynamic
network selection and slice allocation over a heterogeneous en-
vironment to satisfy multiple users with diverse priorities, mo-
bility patterns, and service requirements. It is considered the
cooperation among terrestrial and airborne nodes to improve
network capacity and coverage. One of the critical advantages
of eDRANS is its foundation on the F-DDQN approach, which
is well-suited for handling large and diverse state spaces while
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TABLE I: State-of-the-art summary.

Paper eDRANS [10] [24] [26] [30] [31] [32]
Action target BS selection/

NS allocation
BS selection/
NS allocation

BS selection/
RB allocation

NS allocation BS selection/
RB adjustment

RB allocation NS selection/
allocation

Method F-DDQN+CGT Heuristic F-DDQN F-DDQN Heuristic Heuristic SVM
Overloading ✓ ✓ × × ✓ ✓ ✓

O-RAN
framework

✓ × ✓ ✓ × × ×

RAN slicing ✓ ✓ × ✓ × × ✓
User priority ✓ ✓ × × × ✓ ×
TN-airborne ✓ × × × × × ×

enhancing data privacy and reducing communication overhead.
The algorithm makes a preference statement for BSs without
overloading, selecting the BS that maximizes user satisfac-
tion. Furthermore, eDRANS tackles overload situations by
employing CGT among RBs in the selected BS. This enables
balancing resources among active users and accepting new
clients while guaranteeing satisfactory QoS levels. Overall,
the eDRANS proposal provides a comprehensive solution that
handles the complexities of network selection, slice allocation,
and resource management in a dynamic and heterogeneous
environment. Table I summarizes the distinguished features of
our proposal compared with some of the state-of-the-art works.

III. OVERVIEW OF THE PROPOSED SOLUTION

In this section, we illustrate the scenario, define the used
notation, and provide an overview of the proposed algorithm.

A. The O-RAN Framework

Fig. 1 shows the proposed RAN softwarized high-level
architecture based on the O-RAN approach [8]. O-RAN is an
open architecture conceived for the interoperation of multiple
vendors and technologies in constructing a dynamic and disag-
gregated mobile network. In this context, we consider diverse
service types (i.e., services 1-L), which are mapped into
multiple RAN slices (i.e., NSs 1-M) supported by Software
Defined Network (SDN) and Network Function Virtualization
(NFV) technologies.

The most critical elements in the O-RAN architecture are
the Non-Real Time RIC (Non-RT RIC) and the Near-Real
Time RIC (Near-RT RIC) [33]. The Non-RT RIC is a Service
Management and Orchestration (SMO) framework component.
It can implement RAN optimization’s actions through mi-
croservices termed rApps on a time scale superior to 1 s
[8]. It trains and updates ML models that will be executed
by structures nearer to the end-user (e.g., Near-RT RIC).
Moreover, the Non-RT RIC realizes long-term monitoring of
RAN slices via the O1 interface and sends A1 policies and
enrichment information to the Near-RT RIC to drive slices
and end-to-end SLA assurance.

The Near-RT RIC is deployed at the network’s edge and
operates in control loops between 10 ms and 1 s. It conducts
monitoring tasks through the E2 interface to detect whether
the performance is out of the target KPIs indicated via A1
policies or to collect new service requests. Furthermore, the
Near-RT RIC can execute RAN optimization actions through

microservices termed xApps based on E2, O1, and A1 infor-
mation.

In this framework, we propose integrating the eDRANS
algorithm to fulfill multiple users’ requests over a heteroge-
neous environment. The proposal aims to select the best RAN
and optimize the utilization of NSs’ resources according to
network conditions, user types and priorities, mobility patterns,
and service constraints.

To handle the network selection problem, we deploy multi-
ple xApps with one ML Local Model each (i.e., one per BS).
These agents use local knowledge (i.e., data from the BS they
are related to) to decide whether to attend or not the service
requests. Then, the Selector Module, located in the Near-
RT RIC, performs the final decision based on the previous
actions of the ML Local Models. Subsection III.C provides
more details. Our approach assumes that the envisioned O-
RAN deployment must be robust enough to collect data from
multiple E2 interfaces and integrate xApps from different
vendors, guaranteeing data security and isolation. The xApps’
isolation is critical for the independent operation of O-RAN
services and the accurate Near-RT RIC decision-making. In
this context, the Security, Conflict Mitigation, and Subscription
Management components play a crucial role [8], [34].

According to the F-DRL process (described in Section IV),
the ML model parameters locally obtained during training are
collected in the Non-RT RIC to compute an enhanced ML
Global Model. Next, the updated ML Global Model parameters
are sent back to the local agents, so knowledge earned by all
the agents is leveraged for the individual action selection. This
data exchange occurs in predefined intervals that might change
according to the network characteristics. No user-related or
safety-critical data is transmitted among local agents or from
the Near-RT RIC to the Non-RT RIC. Sending to the ML
Global Model only the model parameters locally obtained
enhances privacy and reduces communication overhead.

Once the ML training is finished, it undergoes a validation
process to ensure efficiency. If this validation is successful, the
resulting ML-trained model is published on the ML Catalog.
The ML Catalog must also include under which specific
conditions the ML-trained model delivers the best performance
(e.g., required resources to instantiate and execute the model,
input types, expected outputs, and latency requirements [35]).
According to the O-RAN specifications, the training process
is offline [8]. However, this does not exclude online training.
Each ML Local Model previously trained (i.e., F-DRL process)
can be fine-tuned and updated based on architectural changes
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Fig. 1: The RAN softwarized architecture based on the O-RAN alliance.

or inefficiencies detected through the E2 interface (online ar-
rival data in the execution environment). Continuous operation
is crucial in the ML workflow to improve online the previously
trained ML models [36].

B. System Model

We assume that the network serves a set of U user equip-
ment (UE), randomly distributed, denoted by U with the sub-
index u ∈{1, 2, . . . , U}. According to the provider and tenants’
defined SLA [31], [37], the users can belong to one of the
priority levels pu={1, 2}. Priority “high” (pu=1) corresponds
to premium clients paying more to guarantee the best possible
QoS level. In contrast, priority “low” (pu=2) corresponds to
regular users who pay less and are satisfied with the minimum
quality according to the service’s requirements. We distinguish
two classes of users: sensors with static mobility and “high”
priority (i.e., due to their critical application type) and cellular
UE with static or random way-point (RWP) mobility and one
of the possible priority levels.

The set of B BSs is defined by B, with the sub-index
b ∈{1, 2, . . . , B}, where B = T ∪ N. T is the group of TN-
BSs, whereas N is the set of NTN-BSs. The set of M NSs
denoted by M, with the sub-index m ∈{1, 2, . . . , M}, can
be available or not in different BSs. They can host several
service instances defined by the QoS parameters and specific
demanding resources (e.g., high-data-rate applications).

The notation ℘u specifies the requested service by the user.
The set of NSs to accommodate the UEu request is denoted
by Mu, where Mu ⊆M. Additionally, hu

b details the historical
association of the user with the BSb.

Each BSb has a capacity defined in terms of RBs of a
fixed bandwidth (BWRBb

, expressed in MHz). Due to the
finite number of resources and the dynamic variations in the
service requests, predefining RBs for each NS may lead to
inefficient resource usage with a negative impact on QoS.
Then, we consider a slicing model without fixing the resources

TABLE II: wTh, wD, wEc values for VI, VR, and IIoT.

Service type wTh wD wEc

VI 0.65 0.1 0.25
VR 0.6 0.2 0.2
IIoT 0.15 0.15 0.7

for each NS. The available RBs (RBav
b ) in the BSb must

be dynamically assigned considering the number of requests,
users’ priorities, mobility behavior, and QoS constraints. The
variable rbm ∈{0,1} denotes the availability of resources for the
NSm in the BSb, where 0 means that the number of RBav

b

are insufficient to assign the minimum Th required by the
user for the NSm (Thmin

m ). The accessibility of the NSm via
the BSb is denoted by dbm ∈{0,1}, where 0 means that the
NSm is unavailable from the BSb due, for example, to the
impossibility to access the service or missing functionality.

The set of L possible services is defined by L, with the
sub-index l ∈{1, 2, . . . , L}. In this work, we consider three
services: video (VI), virtual reality (VR), and IIoT application,
characterized by different requirements in terms of throughput
(Th), delay (D), and energy consumption (Ec). Therefore, we
assume that each service is mapped into a different NS.

The importance that each specific service gives to the QoS
parameters is denoted by the weights wTh, wD, and wEc,
with wTh + wD + wEc = 1. The AHP [10] determines these
values according to the relevance’s relation among them for the
different analyzed services VI, VR, and IIoT. Table II details
the resulting weight values.

The Th that a UEu can receive regarding BSb (Thu
b,m)

depends of the user reception conditions (w.r.t. BSb), and the
assigned RBs (RBu

b,m) from the RBav
b . This term, expressed

in Mb/s, is defined as

Thu
b,m = euffb ∗RBu

b,m ∗BWRBb
, (1)

where RBu
b,m ≤ RBav

b . The euffb is the efficiency (in b/s/Hz)
corresponding to the modulation coding scheme received by
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the UEu regarding BSb. The reception conditions bound the
maximum modulation efficiency supported by the user.

Du
b,m, expressed in seconds, is the delay experimented by

the user to access the required service through the BSb, and
it is calculated as

Du
b,m = Du,Tx

b,m +Du,Q
b,m , (2)

where Du,Tx
b,m is the transmission delay, and Du,Q

b,m is the
queuing delay.

Ecub,m, expressed in joule (J), is the energy consumption
calculated by the user accessing the requesting service via the
BSb

Ecub,m = P ∗Du
b,m, (3)

where P , expressed in watt (W), is the power consumed by
the user equipment for the specific service reception.

The normalized Th value (Thu,Norm
b,m ) is calculated using

the utility function upward criterion’s (UFup) equation:

UFup =


0, if x < xmin

1− xmax−x
δ′×(xmax−xmin)

, if xmin ≤ x ≤ xmax

1, otherwise.
(4)

On the contrary, to obtain the normalized D and Ec
values (Du,Norm

b,m and Ecu,Norm
b,m ), we use the utility function

downward criterion’s (UF down) equation:

UF down =


1, if x < xmin

1− x−xmin

δ′×(xmax−xmin)
, if xmin ≤ x ≤ xmax

0, otherwise,
(5)

where δ
′ ≥ 2 is a tuned steepness parameter [10], and xmin

and xmax are the minimum and maximum tolerated values
according to each service constraint and the specific utility
function.

To evaluate the network conditions to satisfy each service
request, we define the dimensionless score function (SFu

b,m)
∈ [ 0, 1] . This metric combines multiple normalized attributes
considering the NS accessibility, resource availability, user,
and application profiles. The SFu,t

b,m = 1 means that the BSb

can satisfy the request maximizing the QoS. It is computed
for each BSb as

SFu
b,m =


Su
b,m, if rbm = 1

Cu
b,m, if rbm = 0

0, if PNorm
RBb

=0 ∨ Du,Norm
b,m =0 ∨ Ecu,Norm

b,m =0.
(6)

Su
b,m represents the score to attend the user request by

the BSb when the network has enough resources and can be
defined as

Su
b,m = dbm ∗ (wTh ∗ Thu,Norm

b,m + wD ∗Du,Norm
b,m +

wEc ∗ Ecu,Norm
b,m ).

(7)

On the other hand, Cu
b,m is the score value during an

overload situation expressed by

Cu
b,m =

dbm
δ′′ ∗ (wThsat ∗ Th

average
sat,b + wPRB

∗ PNorm
RBb

), (8)

where δ
′′
> 1 is a scale factor that adjust the Cu

b,m value to
benefit the BSs without overload situations.

TABLE III: Main Mathematical Notations.

Notation Definition
U(u ∈{1, 2, . . . , U}) Set of U users
pu={1, 2} Users’ priority levels
B(b ∈{1, 2, . . . , B}) Set of B BSs
M(m ∈{1, 2, . . . , M}) Set of M NSs
L(l ∈ {1, 2, . . . , L}) Set of L services
SFu

b,m Score function to evaluate network conditions
Su
b,m Score value with enough resources

Cu
b,m Score value with overloading

rbm Availability of resources in the BSb

dbm Accessibility of the NSm in the BSb

Thu
b,m, Du

b,m, Ecub,m Throughput, delay, and energy consumption
UFup, UF down Utility function upward, downward criteria
RBu

b,m Number of assigned resource blocks
euffb

Efficiency of a user regarding the BSb

RBav
b Available resource blocks in the BSb

BWRBb
Bandwidth of the resource block

PRBb
Potential release resources

Thu
sat,b Throughput satisfaction

Iu,t SLA satisfaction indicator
P, P∗ Set of players of GT, and subset from P
Cmin Minimal winning coalition
RBC

release Resources that coalition C can release
RBu

pot Resources that UEu can release
ν(C) Coalition’s characteristic function
Uaff Affected users at each saturation point
ξ Residual value of Th after releasing resources
℘u Service request
hu
b Historical association with the BSb

t
′ ∈{1, 2, . . . , T

′} Decision intervals
E, T,H Total events, TTIs and episodes
f
′
, F

′
Time period and number of federated episodes

stb,e, a
u,t
b,e , rw

u,t
b,e State, action and reward

θg,t
′
, θb,t

′
Parameters of ML Global and Local Models

ytb,e Target value for each ML Local Model
|K|, |B| Mini-batch size, buffer size
Ξt
b,e Experiences to store in the buffer B

LG(θg),Lb(θ
b) Loss functions (ML Global, Local Models)

PRBb
(dimensionless) represents the potential RBs that BSb

can release until all the users belonging to it have the minimum
possible Th according to the service constraints and the user
priority. The normalization of PRBb

(PNorm
RBb

) is computed by

PNorm
RBb

=


0, s.t. Cond1

PRBb

RBu,max
b,m

, s.t. Cond2

1, otherwise.

(9)

Cond1: PRBb
< RBu,min

b,m ,
Cond2: RBu,min

b,m ≤ PRBb
≤ RBu,max

b,m ,
where RBu,min

b,m and RBu,max
b,m are the minimum and

maximum number of RBs to obtain the Thmin
m and Thmax

m ,
respectively, according to user’s signal reception conditions
and service’s constraints. Point out that the Thmin

m for pre-
mium clients is higher than the Thmin

m for regular users,
ensuring a superior perception for the clients with high priority
according to the SLA (more details in Section V).

The throughput satisfaction (Thu
sat,b) is a dimensionless

value that ranges between 0 and 1. It computes the ratio
between the assigned Thu

b,m and the Thmax
m supported by

the requested service. Additionally, the Thaverage
sat,b value is
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Fig. 2: The eDRANS algorithm flowchart.

obtained averaging the Thu
sat,b of all users in the BSb. A

Thu
sat,b value equal to 1 means that the BSb is capable of

assigning to the UEu the maximum number of requested
resources. The relevant weight values attributed to PNorm

RBb
and

Thaverage
sat,b are wPRB

and wThsat
, where wPRB

+wThsat
= 1.

For better understanding, Table III summarizes the main
mathematical notations used in the paper.

C. eDRANS Overview

Fig. 2 shows the algorithm flowchart, highlighting the main
processes: network selection and load balancing. At each
transmission time interval (TTI) t, each Local Monitoring
Module collects the following events: new users’ service
requests, existing user’s service updates, or existing user’s
channel quality indicator (CQI) variation according to a certain
threshold (to avoid the ping-pong effect preventing unneces-
sary handovers [15]). The events detected individually by each
xApp are collected by the General Monitoring Module for a
total of E events. As shown in Fig. 2, at the end of each
particular event e, the algorithm attends the next event e + 1
from the number of identified events in the specific TTI t.
The rejected event requests are stored at the beginning of the
queue for the next TTI t+ 1.

After each ML Local Model makes its individual decision
based on the specific data regarding the BSb for the event e,
the Selector Module, allocated in the Near-RT RIC, selects the
BS with the highest SFu,t

b,m among all ML models that chose to
attend the service request. The Selector Module does not know
the BSb’s local data. It only receives the resulting SFu,t

b,m,
preserving privacy and reducing communication overhead.

eDRANS considers a variable bit rate traffic according
to network conditions, user priority, and service constraints.
When the network has enough capacity, the algorithm assigns
the number of RBs for a Thmax

m considering the service
requirement and disregards the user’s priority. On the other
hand, if the selected BS does not have enough resources,
eDRANS applies a load-balancing strategy according to the
service performance and the SLA to benefit more users and

avoid the abrupt general QoS degradation. The load balancing
aims to release resources and attend to the new user based
on CGT while the general user satisfaction is kept as high
as possible. Details can be found in Section V. Then, if the
chosen BS is not the user’s current network, the handover
process will be executed as shown in Fig. 2. However, if the
service request corresponds to a new user in the network, the
selected BS proceeds to the resource allocation process in the
corresponding NS.

Suppose none BS is selected (BS = 0) because there
are insufficient potential resources to release and satisfy the
minimum constraints (i.e., PRBb

< RBu,min
b,m ,∀b ∈ B). In that

case, the system reaches a terminal state (flag end = 1), and
new events cannot be attended. This transitory condition holds
until resources are released.

eDRANS aims to select the best BS to satisfy each user re-
quest and optimize the slicing resource utilization at each TTI
t. Therefore, the algorithm can be formulated as a long-term
utility optimization problem to maximize the SFu,t

b,m,∀u ∈ U:

max lim
T→∞

T∑
t=1

U∑
u=1

SFu,t
b,m (10a)

s.t. Thmin
m ≤ Thu,t

b,m ≤ Thmax
m , (10b)

Du,t
b,m ≤ Dmax

m , (10c)

Ecu,tb,m ≤ Ecmax
m , (10d)

dbm = 1, (10e)

PNorm
RBb,t

> 0, (10f)

where T is the total number of TTIs. The optimization variable
SFu,t

b,m directly impacts QoS and user perception, considering
diverse network conditions, user types, service constraints, and
slice accessibility, as represented in (6). Then, to guarantee at
least the minimum requirements for the UEu’s request, the
selected BSb must ensure (10b-f). In that case, the SFu,t

b,m > 0,
and the SLA is satisfied as expressed with the indicator (Iu,t

∈{0,1}) equal to 1; otherwise, both metrics are 0. The resource
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allocation must always be oriented to assign the maximum
possible resources without exceeding the Thmax

m .

IV. NETWORK SELECTION PROCESS

The eDRANS network selection process is based on DDQN,
employing Federated Learning to build an ML Global Model
cooperatively. The local agents collaborate to find the policy
π∗ that maximizes the long-term QoS for all the users in
the network and optimizes the resource utilization, subject to
the diversity of users’ demands and service constraints. We
consider a time-slotted system, where t

′
represents a specific

decision interval, t
′ ∈{1, 2, . . . , T

′}, and T
′
= H × T × E.

E is the number of events at the TTI t. In this case, T is the
number of TTIs during an episode h, and H is the number of
episodes during the training process.

Initially, an ML Global Model located in the Non-RT RIC
initializes random global parameters θg and shares them with
the ML Local Models situated in the Near-RT RIC. Each local
agent, one for each BSb, executes the training process for
every event e in the TTI t, based on the received parameters
and its dataset, obtaining new local parameters θb. Then, to
avoid communication overhead, only for every f

′
decision

interval, the local parameters are sent to the ML Global Model,
which aggregates them via a Federated Averaging (FedAvg)
method [24] to obtain a new global model as

θg,t
′
+1 =

1

B
×

B∑
b=1

θb,t
′

, (11)

where B is the number of local agents participating in the
training, as shown in Fig. 1.

Later, the resulting aggregated model weight is sent back
to the ML Local Models. This iterative process is repeated
until the ML algorithm converges to the optimized ML Global
Model θg

∗
. All local agents will use these same parameters

θ1 = ... = θB = θg
∗

without sensitive data transfer among
them.

We formalize the interactions between each ML Local
Model and the environment as a Markov Decision Process
(MDP) considering the tuple of states, actions, and rewards
⟨S,A,R⟩:

State Space: It is defined for each ML Local Model as Sb
and contains user, application, and network data regarding
BSb. Specifically, the state observed by each ML Local Model
associated with the BSb during an event e in the TTI t is
constructed as the following vector:
stb,e= [℘u,t, pu,t, hu

b , d
b
m, rb,tm , eu,tffb

, PNorm
RBb,t

, Thu,t
b,m, Thaverage

sat,b,t ,

Thmax
m , Thmin

m , Du,t
b,m, Dmax

m , Ecu,tb,m, Ecmax
m ].

Action Space: The set of possible actions to be taken by
each local agent is defined by A = {0, 1, 2}. Specifically, the
action taken by the local agent during an event e in the TTI t,
regarding UEu request, is termed au,tb,e . In particular, au,tb,e = 1
means that the BSb can attend the service request with enough
resources, whereas with au,tb,e = 2 the BSb can also serve the
request, but it must perform a load balancing process due to
overloading. In contrast, if the local agent selects au,tb,e = 0, the
BSb cannot attend the service request, and the SFu

b,m = 0.
Then, the BSb is not a candidate for the Selector Module.

Nevertheless, if some BS can satisfy the service demand, but
all actions are 0, the user request is rejected, affecting the QoS
performance.

Reward: Each ML Local Model receives a reward (rwu,t
b,e )

due to the action performed to contribute to the learning pro-
cess. The local agents are trained to maximize the cumulative
reward given by

R =
∑
t

∑
e

γ × rwu,t
b,e , (12)

where γ ∈ [0, 1) is the discount factor that controls how future
rewards are accounted for.

Suppose the local agent corresponding to the BSb decides
to attend the service request (i.e., au,tb,e = 1). The decision
is correct if the BSb can satisfy (10b-e) and, consequently,
Iu,t = 1 and SFu

b,m > 0. In that case, the reward equals the
SFu,t

b,m value. Moreover, suppose the agent correctly decides
not to serve the request due to the BSb’s impossibility of ad-
justing the resources of the current users or the inaccessibility
to the requested service. Then, the reward is a positive value
equal to 0.5. On the other hand, if the agent decides to attend
the request, but it is wrong about network conditions (i.e.,
au,tb,e = 1 and the BSb presents overloading), the reward is
0.1. Other bad decisions are penalized with a -1 reward value.
Mathematically, the local agent’s reward is defined as

rwu,t
b,e =


SFu,t

b,m, s.t. Cond1, Cond2
0.5, s.t. Cond3
0.1, s.t. Cond4, Cond5
−1, s.t. otherwise.

(13)

Cond1: au,tb,e = 1 ∧ rb,tm = 1 ∧ (10b-e),
Cond2: au,tb,e = 2 ∧ rb,tm = 0 ∧ (10c-f),
Cond3: au,tb,e = 0 ∧ (not(10c) ∨ not(10d) ∨ not(10e) ∨
(not(10f) ∧ rb,tm = 0)),
Cond4: au,tb,e = 1 ∧ rb,tm = 0 ∧ (10c-f),
Cond5: au,tb,e = 2 ∧ rb,tm = 1 ∧ (10b-e).

Considering our optimization problem, the continuous state
space, and the discrete action space, DDQN is the DRL tech-
nique used for each ML Local Model to deal with the network
selection task. Fig. 3 shows the diagram of the local inter-
actions of each DDQN agent with the environment. DDQN
improves the learning’s stability and avoids over-optimistic
reward estimations by employing two neural networks (NNs)-
based function approximations of the value function instead of
only one [38]. The first Q-value function Q(s, a, θ), where θ
stands for the vector of NN weights, is used to make the action
choice. In contrast, the second Q-value function Q̂(s, a, θ−)
is used to evaluate the action reward. Initially, we assume that
θ− = θ. Then, the Q̂ parameters are updated based on the
target network’s updating rate (τ ) [39].

The agents apply an epsilon (ε)-greedy strategy to select
the actions and prevent stalling at a local minimum. Each
agent takes the best action (argmaxa∗ Qb(s, a, θ)) according
to previous experiences with a probability of 1 − ε. On the
contrary, the agent selects a random action with a probability
of ε. The value of ε is gradually reduced through an ε-decay
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Fig. 3: The DDQN diagram.

process [39]. Initially, the system requires higher levels of
exploration, whereas, after some time, more exploitation is
necessary.

Additionally, each agent uses experience replay to increase
efficiency and ensure that the learning process is not only
based on the most recent experiences. The experiences Ξt

b,e =

(stb,e, a
u,t
b,e , rw

u,t
b,e , s

t+1
b,e ) are stored in the experience replay

buffer B initialized without elements. Then, when the number
of stored experiences |B| is big enough to randomly sample
them in the mini-batch of size |K|, the agents execute this
action.

The target value of each ML Local Model during training
is expressed as

ytb,e = rwt
b,e + γ × Q̂b(s

t+1
b,e , argmax

a∗
Qb(s

t+1
b,e , atb,e; θ

b); θb−).

(14)
If the system reaches the terminal state, the target value equals
rwu,t

b,e [39].
The Q-value is updated by

Qb(s
t+1
b,e , at+1

b,e ; θb) = (1− α)×Qb(s
t
b,e, a

t
b,e; θ

b) + α× ytb,e,

(15)

where α ∈ (0, 1] is the learning rate that controls the learning
speed of the algorithm.

Each ML Local Model computes the loss function and uses
it to reduce the training error. This function is based on the
mean squared error (MSE) [40] and expressed as

Lb(θ
b) =

1

|Kb|
∑
k

(yk −Qb(sk, ak, θ
b))2, (16)

where k is the sub-index to iterate among all the elements in
the mini-batch.

Finally, the global loss function (LG) is

LG(θ
g) =

1∑B
b=1 |Kb|

B∑
b=1

|Kb| × Lb(θ
b). (17)

Algorithm 1 describes the F-DDQN process, where H is the
number of episodes during training to guarantee an optimum
θg

∗
(i.e., LG(θ

g∗
) less than or equal to some defined target).

Algorithm 1: The F-DDQN training process

Input: Sb, A, R, ε, α, τ , γ, |Kb|, f
′
, H

Initialize: t
′
= 0, F

′
= 0, ML Global Model: θg ,

ML Local Models: θb = θb
−
= θg , |B| ←− ∅

Output: θg
∗

foreach episode h = 1, ...,H do
Initialize Sb, flag end = 0
while flag end = 0 do

foreach TTI t do
foreach event e ∈ E do

t
′
++

Local Models (Near-RT RIC):
foreach ML Model b ∈ B do

Observe current state stb,e
Agent takes au,tb,e based on ε-decay
Agent gets its rwu,t

b,e

Environment changes to st+1
b,e

B stores Ξt
b,e

if |B| > |Kb| then
Sample a mini-batch |Kb| from
memory buffer B

Calculate ytb,e as (14)
Calculate Lb as (16)
Update θb by the Lb’s

backpropagation
Update
θb

− ←− τθb + (1− τ)θb
−

end
end
if mod(t

′
, f

′
) = 0 then

F
′
++

Global Model (Non-RT RIC):
Collect θb,t

′

and θb,t
′
−

Apply FedAvg as (10)
Calculate LG as (17)
Broadcast θg,t

′
+1 and θg,t

′
+1− to

each ML Model b
end

end
end

end
if ε > 0.1 then

Apply ε-decay strategy
end

end

Each episode starts from an initial state (i.e., without users in
the network) and runs until the network does not have enough
resources to satisfy a new request (flag end = 1). F

′
is the

number of federated episodes. The FedAvg equation updates
both θg,t

′

and θg,t
′
− according to the DDQN structure [41].

In the proposed F-DDQN solution, each ML Local Model
runs independently and in parallel. Then, the CC regarding
the local agents during training is O(H × T × E(S0nx=1 +∑X−1

x=1 nxnx+1) + 2|Sb|2 × |A| + log2 |B|) [42], [43]. S0 is
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the input layer’s size, X is the number of NNs layers and nx

is the number of neurons in the x-th layer. Specifically, we
use two fully connected hidden layers with 2 × (|Sb| + |A|)
neurons [44].

In the case of the ML Global Model (Algorithm 1), the
CC is O(F ′ × (2 × B)). This term depends linearly on the
number of federated episodes and agents. Factor 2 responds
to the DDQN structure. Finally, the total CC for the network
selection task based on F-DDQN is O(H ×T ×E(S0nx=1 +∑X−1

x=1 nxnx+1) + 2|Sb|2 × |A|+ log2 |B|+ F
′ × (2×B)).

In our proposal, each local agent only observes the locally
relevant information Sb. Then, the state space is not affected by
the number of BSs. On the contrary, in a centralized learning
process, the unique agent must gather the information of B
BSs to attend to each service request. This approach has com-
plete knowledge of the environment with a negative impact
on the privacy and communication overhead, which becomes
more critical with the increment of the state space. Specifically,
for a centralized ML scheme, the collected state vector for
each action increases B times regarding the F-DDQN solution,
negatively impacting CC. The same happens with a heuristic
solution, iterating among all possibilities to select the most
suitable BS. Then, the CC is affected by the number of
BSs, making scalability a critical concern. In a distributed
ML scheme, each agent only observes its local data Sb, and
there is no interaction with a central unit. Then, the increment
in the number of BSs does not affect the state space. The
distributed ML solution has less CC than F-DDQN, centralized
DDQN, and heuristic algorithms. However, this scheme limits
the agents to only learn from individual interactions with the
environment, affecting algorithm performance.

V. LOAD BALANCING PROCESS

The load balancing is based on CGT and must be executed
when the selected BS is overloaded. At each saturation point,
the current users in the selected BS cooperate to release
the minimal necessary resources to achieve a specific target
(i.e., the required RBs (RBreq) to satisfy the new service
request) without abruptly compromising their perception. We
consider a weighted voting game with a dynamic coalition
structure [45], [46] to find the coalition (C) that better sat-
isfies the new service request. The players can adapt their
coalition structure to changes such as the arrival/departure
of users, position variations, network conditions, and service
constraints. Additionally, the number of resources that users
can contribute to the coalition depends on their priority,
potentially available resources, the service requirements, and
the new user’s characteristics.

The potential released resources of each user UEu,
belonging to the BSb, can be expressed as Pu

RBb
= RBu,b

pot1+

RBu,b
pot2. RBu,b

pot1 represents the resources that a user can
release to reduce his Thu

b,m to a medium Th value (Thmed
m )

according to the service constraint (s.t., Thmed
m < Thu

b,m ≤
Thmax

m ). On the other hand, the RBu,b
pot2 are the resources

that the UEu can free up by reducing his Thu
b,m to the

Thmin
m subject to the service constraint and his priority (s.t.,

Thmin
m < Thu

b,m ≤ Thmed
m ). The premium users are benefited

Fig. 4: Possible actions to perform during the coalition forma-
tion in the CGT.

from a superior service perception, being the Thminp1

m =Thmed
m

2 ,
where Thminp1

m > Thmin
m . In contrast, the minimum Th for

users with low priority (Thminp2

m ) coincides with the Thmin
m

according to the service constraint.
If all users have reached the minimum Th according to their

priorities and service constraints, the game is over, and it is
unfeasible to accept new users on the network (Fig. 2). This
is a transitory state and holds until, for example, some users
leave the network, and new resources are available. In this
case, new service requests can be attended, or a user whose
Th has been affected due to an overload situation can revert
to the previous state, as shown in Fig. 4.

The set of players of the CGT is formed by the RBs of the
users belonging to the BSb and can be written as

P = {RB1,b
pot1, RB1,b

pot2, ..., RBU,b
pot1, RBU,b

pot2}. (18)

The influence on the outcome at each load balancing time
is related to the resources in possession by the active users
and the possible actions to perform according to Fig. 4,
avoiding an abruptly Thaverage

sat,b degradation. During the load
balancing, some users are favored according to the priority-
based scheduling:

1) Users with low priority release their resources first until
the Thmin

m is reached.
2) Users with Thmax

m are selected to release their resources
first regarding users with Thmed

m and the same priority.
3) If the service request is VI or VR, the marginal contri-

bution of active users in the BS utilizing the IIoT service
is not critical because the IIoT’s Th requirement is con-
siderably less than VI and VR applications. Therefore,
if the new service request is VI or VR, the active users
using these services prefer to contribute their resources
to the coalition formation concerning the IIoT users.

It must be pointed out that two users with the same priority,
service, and the same Th level can contribute differently to the
game. A user with bad reception conditions requires more RBs
to achieve the QoS requirements. Therefore, his contribution is
more significant and can result in fewer affected clients during
the load balancing.

Particularly, P∗⊆P, is a subset of P obtained following the
priority-based scheduling, s.t. RBP∗

release ≥ RBreq, where

RBP∗

release =

|P∗|∑
i=1

RBi
release +RBav

b . (19)
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Algorithm 2: Load balancing process
Input: P, pu, RBreq , RBav

b , Services constraints
Initialize: Cwin = {}, Cmin = 0, νmax(C)=0
Output: Cmin, Uaff , ξ, RBCmin

release

Apply priority-based scheduling P→ P∗

foreach C ⊂ P∗ do
if
∑|C|

i=1 RBi
release +RBav

b ≥ RBreq then
Compute UaffC , ξC
Cwin.append(C)

end
end
for z ∈ Cwin do

Calculate ν(Cz)
if ν(Cz) > νmax(C) then

νmax(C) = ν(Cz)
Cmin = Cz

end
end
RBCmin

release =
∑|Cmin|

i=1 RBi
release +RBav

b

RBP∗

release represents the sum of the available resources in
the BSb and the total released resources by all the players
belonging to the set P∗.

Cwin is the set of possible winning coalitions from P∗

that satisfies the new request (RBreq). To find a winning
coalition, it must be guaranteed that PNorm

RBb
> 0 with

PRBb
≥ RBC

release. The overall worth of each coalition C
is described by the characteristic function ν(C)

ν(C) =

{
1
4 ∗ U

Norm
aff + 3

4 ∗ ξ
Norm, if RBC

release ≥ RBreq

0, otherwise,
(20)

with
UNorm
aff = 1− Uaff

U
, (21)

ξNorm =
RBreq

RBC
release

. (22)

The UNorm
aff is the normalized number of affected users,

and ξNorm is the normalized value of the residual RBs.
ξNorm = 1 means that the network could release precisely the
required resources of the new user. The characteristic function
reflects a preference for ξNorm regarding UNorm

aff . As a result,
Cmin ∈ Cwin is the winning coalition with the maximum
ν(C) value (νmax(C)), minimizing the residual RBs and the
number of affected users. Point out that this kind of GT is
generally not superadditive because we cannot guarantee that
the grand coalition structure (GC), where GC = P∗, is the
Cmin [45]. Algorithm 2 describes the load balancing process.

VI. RESULTS AND DISCUSSION

To evaluate the performance of our proposal, we recreate
a heterogeneous environment composed of three RANs: a
macro-BS, a micro-BS, and a UAV-BS. The airborne node is
opportunistically located in the grid to support the terrestrial
infrastructure by increasing coverage and network capacity.
All RANs support all NSs except the micro-BS, where the

TABLE IV: Simulation parameters.

Macro-BS Micro-BS UAV
Operating frequency (GHz) 28 28 28

Bandwidth (MHz) 400 400 400
RB’s bandwidth (MHz) 1.44 1.44 1.44

Subcarrier spacing (kHz) 120 120 120
Component carriers 2 2 2
BS/user height (m) 25/1.5 10/1.5 100/1.5

Transmission power (dBm) 40 26 30
Small-scale fading model Jakes Jakes Jakes
Large-scale fading model [48] [48] [48]

TABLE V: Hyperparameters configuration.

Parameter Value
Number of episodes H 50

Optimizer Adam
Learning rate (α) 0.01

Exponential decay rates (β1, β2) 0.9, 0.999
Discount factor (γ) 0.99

Target network update (τ ) 0.001
Initial ε value 1

Mini-batch size |K| 64
Maximum buffer size |B|max 10000

IIoT slice is unavailable. We assume a new user requests one
of the available services every two seconds until it reaches 150
users. 90% of the users are pedestrians with RWP mobility,
while 10% are stationary users, including sensors.

Link-level simulations have been conducted using an ad-
hoc developed Python-based tool to obtain the Signal-to-
Interference Noise Ratio (SINR) and CQI values for all the
links between users and BSs during the simulation time [47].
Simulation parameters are specified in Table IV. The path loss
model applied for TNs is detailed in [48], whereas the model
for UAV-BSs can be found in [49].

A. Training

Regarding the DDQN model of each local agent, the NN
implementation has an input layer that accepts an R1×15 state
vector described in Section IV. The output layer produces an
R1×3 vector of Q-values corresponding with the three possible
actions for each BS. We use two fully connected hidden layers
with 36 neurons (i.e., 2×(15+3)) and the rectified linear unit
(ReLU) activation function in both hidden layers. The output
layer uses the linear activation function to predict the long-
term reward values of the actions in the given state. Tests have
demonstrated that increasing the number of hidden layers does
not improve the algorithm performance but increases the CC.

Table V details the hyperparameters’ configuration. The
α value, |K|, and the optimizer were obtained experimen-
tally through parameter tuning to provide the algorithm’s
best performance. We use the Adam optimizer, proven as
robust and efficient for a wide range of DRL optimization
problems [39], [44]. The maximum size of the experience
replay buffer (|B|max) is large enough to store all experiences
during the training phase. The number of episodes and the
maximum number of users for each episode are selected
such that the algorithm correctly converges. Fig. 5 shows
the loss function behavior (LG(θ

g)) as a result of three ML
Local Models’ updates (i.e., one for each BS) to training the
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Fig. 5: Loss function for Adam optimizer, different α, and
mini-batch sizes.

Fig. 6: Loss function for Adam and SGD optimizers, and
different α values.

enhanced ML Global Model. Different results are evidenced
with α = {0.0001, 0.001, 0.01}, |K| = {32, 64, 128} and
Adam optimizer. The algorithm presents a faster convergence
and lower loss values for α = 0.01 and |K| = 64. The
training process is slower for lower α values. Fig. 6 also
shows the F-DDQN training process in terms of loss, but in
this case, for α = {0.0001, 0.001, 0.01}, |K| = 64 and two
different optimizers: Adam and stochastic gradient descent
(SGD) with momentum = 0.9. As Fig. 6 shows, the loss
function with Adam optimizer decreases faster and presents
a smoother behavior than SGD with a less training cost [39],
[50], especially for lower α values. Furthermore, much higher
α values may lead to instability.

Fig. 7 presents our proposal’s reward average during
training. Besides, we use the DDQN centralized and dis-
tributed ML models as benchmarks. Our F-DDQN algorithm
shows a similar trend to the DDQN centralized training model
regarding the reward average without the necessity to share
sensitive data among agents or to the aggregation unit. In
contrast, the centralized ML algorithm uses a unique central
trainer responsible for collecting all data and deciding which
BS best satisfies the service request based on accumulated
experiences. The centralized method has complete knowledge
of the environment that favors the training process but lacks
privacy and causes communication overhead, which becomes
more critical with the increment of the state space. On the
other hand, distributed training shows the worst learning
performance because each BS trains its ML model with local

Fig. 7: Reward average during the training process.

Fig. 8: Thsat average for an incremental number of users.

experiences only. There is no information exchange among
agents or agents and a central unit, limiting the local models
to use only individually collected data. Finally, this scheme
selects the BS randomly among all BSs that decide to serve
the user request based on [19].

B. Validation

For the eDRANS validation process, we asses its effec-
tiveness against four state-of-the-art benchmark solutions: the
Max-SINR method, a variation of the heuristic algorithm
DASA [10], and the DDQN centralized and distributed ML
models. Results were achieved by averaging 30 simulation
runs to ensure a 95% confidence interval.

The baseline Max-SINR method is a variation of the tra-
ditional received signal strength (RSS) criterion. In this case,
we assume that Max-SINR selects the BS that provides the
highest reception conditions and considers the NS accessibility
without evaluating the QoS parameters and the occupation of
resources in the BSs. In contrast, the heuristic solution based
on the DASA algorithm iterates among all BSs in the coverage
area of the user to find the best solution for each generated
event. Then, this algorithm performs optimally in the recreated
use case and provides a superior performance bound. However,
this solution must collect information from all BSs in the
network to make the decision. Therefore, communication
overhead and CC are negatively impacted by the number of
BSs. This heuristic approach suffers from reduced scalability
for future massive and heterogeneous deployments.

Fig. 8 shows the Thaverage
sat of the system over time for an

incremental number of users. Thaverage
sat remains equal to 1
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Fig. 9: Thsat for different user priorities (eDRANS algorithm).

Fig. 10: ADR average for an incremental number of users.

until the network does not have enough resources to satisfy
the new user request according to his priority and service
constraints. Due to the scarcity of resources, the algorithm
follows a collaborative attitude (i.e., bit rate adjustment),
splitting the resources among active users in the selected
BSb. Then, the new service request is accepted at the ex-
pense of gradually affecting the Thaverage

sat performance. The
Max-SINR algorithm performs significantly worse because
it does not consider the QoS parameters and the overload
situations. This scheme only evaluates the signal reception
conditions to make the decision. Consequently, it has high
sensibility regarding the users’ mobility behavior, leading to
frequent handovers, multiple clients accessing the same BS,
and, therefore, degradation of the Thsat from only 35 users
in the network. Our proposal has a similar behavior to the
heuristic algorithm and a superior performance regarding the
other benchmark solutions, maintaining a higher Thaverage

sat

value for an incremental number of users. Specifically, for 150
users in the network, our proposal and the heuristic algorithm
outperform the centralized and distributed ML models and the
Max-SINR criterion in terms of Thaverage

sat by 2%, 3.1%, and
24%, respectively.

Fig. 9 evidences the superior service perception of premium
users concerning regular users in terms of Thaverage

sat apply-
ing the eDRANS algorithm. While the network has enough
resources, all clients maintain a Thmax

sat without a difference.
However, during an overload situation, a CGT is performed
among the RBs of the active users in the BSb, prioritizing
the clients with high priority versus those of low priority.
Therefore, the Thmax

sat of premium clients is equal to 1 until

Fig. 11: D average for an incremental number of users.

Fig. 12: Ec average for an incremental number of users.

all regular users in the BSb have the Thmin
sat according to the

services’ requirements. At this moment, the clients with high
priority start to gradually release their resources to satisfy the
new service request until reaching a Thminp1

m , always superior
to the minimum of regular clients based on the SLA. For 150
users in the network, the Thaverage

sat for premium clients is
0.98, whereas for regular users is 0.73.

Then, Fig. 10 shows the aggregated data rate (ADR) for
an incremental number of users. Results evidence the superior
performance of our proposal and the heuristic algorithm. An
increasing trend is observed when the network has enough
resources until the load balancing starts affecting the overall
ADR to satisfy new service requests. The load balancing
process gradually releases RBs from current users to assign
them to new clients, always ensuring the minimum constraints
according to the service characteristics and users’ priorities.
Our proposal and the heuristic algorithm present higher ADR
than the centralized and distributed ML models and the Max-
SINR criterion by 1.2%, 3.9%, and 42.6%, respectively, for
150 users in the network.

Fig. 11 and 12 display the D and Ec average for an
incremental number of users. The outcome graphs show how
D and Ec trends directly relate to network conditions. During
overload situations and the corresponding resource reduction
of active users in the selected BSb, D and Ec are affected
and increase their average values over time. The Max-SINR
criterion performs poorly because it only considers signal re-
ception conditions and does not analyze the QoS parameters to
make decisions. As expected, eDRANS performs similarly to
the other benchmark solutions with enough network resources
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Fig. 13: Cumulative Ec for an incremental number of users.

Fig. 14: SLA indicator (I) for an incremental number of users.

and guarantees less D and Ec average values during overload
situations regarding the Max-SINR criterion, the centralized
and distributed ML models. For example, eDRANS and the
heuristic algorithm evidence 1.5%, 3.9%, and 27% less D
average than the centralized and distributed ML models and
the Max-SINR criterion, respectively, for 150 users.

Fig. 13 shows the cumulative Ec for an incremental number
of users averaging 30 simulation runs. Our proposal and the
heuristic algorithm have the best performance. Specifically,
eDRANS and the heuristic algorithm guarantee 6%, 16%, and
44% less system’s Ec than the centralized and distributed ML
models and the Max-SINR criterion, respectively, for 150 users
in the network.

As results show, eDRANS performs similarly to the heuris-
tic algorithm regarding all analyzed metrics, proving its
effectiveness and optimal decision under diverse network
conditions. The heuristic model must centrally collect all
information and iterate among all candidate BSs to make
the decision, negatively impacting communication overhead,
complexity, and privacy issues. Specifically, the collected data
size for each action increases B times (i.e., the number of
BSs) regarding our proposal. In contrast, eDRANS benefits
from collaborative ML training while enhancing data privacy
and considerably reducing communication overhead compared
with the centralized ML model and the heuristic solution.
The presented outcomes demonstrate that F-DDQN correctly
learns during multiple trial-and-error interactions with the
environment to select the best BS and dynamically perform
slicing resource allocation.

Finally, Fig. 14 evaluates the proposed load-balancing

strategy using the SLA indicator (I). We compare our proposal
against two benchmarks: eDRANS without any resource ad-
justment during overloading and a variation of the algorithm
proposed in [32] (i.e., F-DDQN with fixed RBs per NS). In
the second approach, each NS (one for each service and a
master NS) is initialized with a fixed number of RBs. When
an NS’s capacity exceeds a threshold, the incoming traffic is
allocated to a master NS. The master NS supports all the
services available in the BS. Additionally, there is no applied
resource adjustment to already users in the overloaded NS.

For the evaluated specific conditions, eDRANS outperforms
the other solutions with an I average value equal to 1,
guaranteeing an effective resource adjustment. Consequently,
the SLA is satisfied for the 100% of the users in the net-
work. The I average will remain equal to 1 until all users
have the Thmin

m according to their priorities and the service
constraints. At this point, it is unfeasible to accept new clients,
which affects the SLA satisfaction. In contrast, the eDRANS
proposal, without any load-balancing strategy, presents an I
average value equal to 0.79 for 150 users in the network. The
average number of rejects is 32. The algorithm with fixed
RBs for each NS shows the worst performance. Even with
a master NS to alleviate saturation of the rest of the NSs,
the dynamic variations in service requests, mobility behavior,
and user priorities negatively impact resource usage and SLA
satisfaction. Specifically, this algorithm presents an I average
value equal to 0.75 and 38 rejects for 150 users in the network.

VII. CONCLUSIONS

This work presents the enhanced Dynamic Radio Access
Network Selection (eDRANS) algorithm based on Federated
Double Deep Q-Network (F-DDQN) to select the most suit-
able BS/NS combination over the envisioned heterogeneous
environment of future wireless networks. The proposal is
inserted into the novel O-RAN architecture, where multiple
ML Local Models in the Near-RT RIC, one for each BS,
jointly train an ML Global Model in the Non-RT RIC. The
algorithm is adapted to diverse network conditions, users with
different priorities and mobility behaviors, and various service
constraints regarding throughput, delay, and energy consump-
tion. eDRANS manages overload situations with a Cooperative
Game Theory (CGT) strategy, splitting resources among active
users and accepting more clients without abruptly decreasing
the Thaverage

sat , as evidenced in the presented results.
Diverse simulation tests are conducted to validate the pro-

posal. First, the impact of multiple hyperparameters during the
training phase is shown. Second, the network selection process
is validated by comparing it with four state-of-the-art bench-
marks: the Max-SINR criterion, the heuristic DASA algorithm,
and the centralized and distributed ML models. Results show
that eDRANS performs similarly to the heuristic algorithm,
proving its effective learning process during multiple trial-
and-error interactions with the environment, enhancing data
privacy and reducing communication overhead. Furthermore,
our solution optimizes the overall system’s QoS regarding the
evaluated metrics through efficient slicing resource utiliza-
tion. Specifically, eDRANS outperforms the considered ML
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solutions in Thaverage
sat by at least 2% and the Max-SINR

by 24% for 150 users in the network. Moreover, eDRANS
guarantees 6%, 16%, and 44% less system’s Ec than the
centralized and distributed ML models and the Max-SINR
criterion, respectively. On the other hand, the results show
the effective treatment of users with different priorities during
overloading, always prioritizing premium clients and ensuring
a superior perception based on the defined SLA.

Additionally, we evaluate the proposed load-balancing
strategy regarding SLA satisfaction. The outcome
demonstrates the necessity of applying a dynamic slicing
resource adjustment in a heterogeneous environment with
multiple user requests and diverse service requirements.

In future works, we will include additional spatial/physical
input variables (e.g., BS type, size, mobility information,
propagation losses) to better address the diversity among BSs
(e.g., ground, airborne, and satellite nodes). We must go deep
inside into the impact of the dynamic and heterogeneous
nature of the local agents on the FL framework. Moreover,
we must be aware of possible synchronization issues when
collecting/processing ML parameters from nodes at different
altitudes.
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