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Semi-global fixed-time state estimation
and unknown input reconstruction via

first-order sliding mode observers with delay
Alessandro Pilloni , Alessandro Pisano , Elio Usai

Abstract— This paper addresses the state estimation
and unknown input reconstruction in strongly observable
linear systems under the so-called matching conditions.
Our proposal extends previous approaches to predefined-
time state estimation, which involved the use of a pair
of time-delay observers, adapting them to the framework
of sliding mode observation in the presence of unknown
inputs. As a result, a novel sliding mode-based observation
algorithm is developed, which exhibits desirable properties
such as global finite-time convergence or semi-global fixed-
time convergence. Notably, the method is also capable of
reconstructing the unknown inputs without requiring any
low-pass filtering or continuous approximations of the dis-
continuous observer signals. The convergence properties
are proven through a formal stability analysis and validated
through numerical simulations.

Index Terms— Unknown input observer, state estimation,
sliding mode control, fixed-time stability, linear systems

I. INTRODUCTION

STATE ESTIMATION in the presence of unknown inputs
(UIs) has been extensively studied and it has a well-

developed theoretical foundation [1]–[3]. However, design
techniques for Unknown Input Observers (UIOs) continue
to evolve due to their variegate range of applications [4],
including fault detection [5], robust output-feedback control
[6], cyber-physical systems monitoring [7], and large-scale
systems [8], [9], among others. The majority of existing results
are focused on developing UIOs for linear time-invariant (LTI)
systems [4]–[9]. The existence of a UIO generally requires
that: i) the plant must be strongly detectable with respect to
the UIs, meaning that it cannot possess any unstable invariant
zeros, and ii) the rank (or matching) condition holds, implying
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the existence of a transformation that expresses the UIs as
a function of the first derivatives of the plant outputs. If
these conditions are met then the resulting UIO will exhibit
a convergence rate that cannot be faster than exponential for
each system’s mode associated with a stable invariant zero.
This is because the convergence rate of an unobservable mode
cannot be adjusted by feedback.

Instead, if the invariant zeros set is empty, the system is
referred to as strongly observable, and finite-time or fixed-
time converging UIOs can be designed [4].

With reference to strongly observable LTI systems, the
milestone work [10] offers a comprehensive overview of
linear (full-order, reduced-order, or functional) UIO design
techniques which aim to identify a change of coordinates
allowing to decouple the dynamics of the states to be estimated
from the UIs [1].

More recently, a novel approach to finite-time observation
has been proposed in [11], which employs a pair of time-
delay observers to guarantee the prescribed time UIO stability
in a deadbeat-like fashion. In [12] the approach was further
developed to address the state estimation problem within
a fixed time despite the presence of UIs. However, these
approaches have some limitations: i) the state estimates in
[11], [12] are meaningless at any time instant preceding such
predefined convergence time, and ii) neither [12] nor [1], [10]
allow for the unknown input reconstruction (UIR), which is a
desirable feature in fault detection and fault tolerant control
applications [5].

To achieve UIR, first-order sliding mode observers (FOS-
MOs) such as the Walcott-Zak [13] and unit-vector FOSMOs
[5], [14] have been utilized under the matching condition
[3, Chapter 6]. While FOSMOs ensure finite-time UIR, the
convergence of the unmeasurable component z of the system
state x ∈ Rn, where x 7→ (z; y) and y ∈ Rp denotes the
system output, is only guaranteed with an exponential rate.

As far as we know, the only available techniques ensuring
at the same time finite-time state estimation and UIR are those
based on higher-order sliding mode observers (HOSMOs)
[15]–[19]. It is also worth noting that these approaches are
often combined with (bi)-homogeneous feedback terms to
provide fixed-time convergence [20].
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A. Objective of the study and main contributions
Based on the previous discussion, to the best of our knowl-

edge there are currently no FOSMO design techniques that
can address the state estimation in finite or fixed time while
also allowing the finite-time UIR. To achieve this goal, we
propose a FOSMO scheme to be integrated into the prescribed-
time estimation architecture introduced by [11]. Our method
involves developing a pair of ad-hoc FOSMOs, whose esti-
mates are combined to ensure that the resulting estimation
error converges within a predetermined time, provided that
sliding modes along their local output estimation error ŷi − y
are established. Moreover, our proposal uses a combination of
discontinuous and polynomial output injection terms, resulting
in a UIO featuring global finite-time convergence or semi-
global fixed-time convergence concerning state estimation
and UIR, thus yielding a step beyond the current FOSMOs
literature [3, Chapter 6].

Additional major contributions of this study can be summa-
rized as follows: i) Compared with [12], with which we share
the main basic ideas, our method further enables the UIR; ii)
Compared with [11], [12], our method relaxes the limitation
that the estimate of the state is meaningless for all time instants
preceding the finite or fixed convergence time, thus making the
scheme well-suited for output feedback applications, see [12,
Remark 2].

We also remark that the proposed design differs from known
FOSMO designs in the following aspects: i) The change of
coordinates at the basis of our design is consistent as it does
not rely on specific observer gain matrices (differently from
existing results such as, e.g., the transformations (6.10) or
(6.71) of [3]). This consistency is necessary to integrate our
FOSMOs within the design framework of [11]; ii) The type of
output injection terms adopted. While existing methods (e.g.
[5], [13], [14]) employ unit-vector based injection terms of
the type P (ŷi − y)/∥P (ŷi − y)∥, where P > 0 is a design
parameter, we consider component-wise discontinuous output
injection terms. Indeed, the inherent coupling of the unit-
vector-based output injection terms, due to the normalization
factor ∥P (ŷi−y)∥, prevents the possibility of integrating them
into the decoupled design framework of [11].

B. Structure of the paper
Preliminary concepts of finite-time and fixed-time stability

are discussed in Section II, while the problem statement is
formulated in Section III. The proposed UIO and the key
results of this study are presented in Section IV, followed by
numerical simulations that corroborate the theoretical findings
in Section V. Finally, Section VI provides concluding remarks.

C. Mathematical notation
The integer, strictly positive real, and complex numbers are

denoted by Z,R>0,C. For xi ∈ R, x = (x1; x2; · · · ; xn)T ∈
Rn is a column vector, and xT ∈ R1×n its transpose. The
component-wise absolute-value operator is |x|, and sign(x) :
Rn 7→ [−1, 1]n is the component-wise set-valued sign-
operator, which i-th output is 1 if xi > 0, −1 if xi < 0, other-
wise [−1, 1], whereas the i-th entry of sigα(x) is |xi|αsign(xi),

and α ≥ 0. The p-norm of x is ∥x∥p = (
∑n

i=1 |xi|
p
)

1
p

with p ≥ 1, whereas ∥x∥∞ = maxi |xi|. For x, y ∈ Rn,
p, q ∈ Z>0 : 1/p + 1/q = 1, then xTy ≤

∣∣xTy∣∣ ≤ ∥x∥p∥y∥q.
Note that ∥x∥1 ≥ ∥x∥p ≥ ∥x∥∞. For M ∈ Rn×n, its j-th
eigenvalue is λj(M) ∈ C, where the eigenvalues are ordered
by their real parts such that ℜ(λ1) ≥ ℜ(λ2) ≥ · · · ≥ ℜ(λn).
If M = MT and λj(M) ∈ R>0 ∀ j, then M is positive
definite (M ≻ 0). The matrix exponential operator of M is
eM =

∑∞
k=0

1
k!M

k. diag(M1,M2) returns a block-diagonal
matrix with their arguments, in order of occurrence, on the
main diagonal. 0n,h is the all-zero n × h matrix. If h = 1
we simply write 0n. For a full rank R ∈ Rn×h, with n > h,
its pseudo-inverse is R+ = (RTR)−1RT : R+R = Ih, and
Ih is the h × h identity matrix. For n < h, the column null-
space of R is NR where R ⊥ NR =⇒ RNR = 0n,h−n.
Given two scalar functions f1(τ) and f2(τ), the notation
f2(τ) = o(f1(τ)) means that lim

τ→+∞
|f2(τ)|
f1(τ)

= 0.

II. NOTIONS ON FINITE-TIME AND FIXED-TIME STABILITY

Consider the nonlinear dynamical system

ż(t) = g(t, z(t)), z(0) = z0, (1)

with state z : R≥0 7→ Rn, and the locally measurable non-
linear function g : R≥0 × Rn 7→ Rn may be discontinuous
with respect to z. The initial condition is z0 ∈ Rn, and the
origin z = 0n is assumed to be an equilibrium of (1).

Since the right-hand side of (1) may be discontinuous, their
solutions will be understood in the Sense of Filippov [21].
Basics of finite-time and fixed-time stability are now recalled.

Lemma 1 (Lyapunov Stability [22]) Let V : Rn 7→ R≥0

be a differentiable radially unbounded function and satisfies
V (z) = 0 ⇔ z = 0n. If V̇ (z(t)) < 0 ∀ z ̸= 0n. Then the
origin is globally asymptotically stable. Additionally:

1) If V̇ (z(t)) ≤ −κα V α(z(t)) for some κα > 0, α ∈
(0, 1). Then, the origin is globally finite-time stable,
namely z(t, z0) = 0n ∀ z0 ∈ Rn, t ≥ T(z0), where
T(z0) : Rn 7→ R≥0 is called settling-time function.

2) If V̇ (z(t)) ≤ −κα V α(z(t)) − κβ V β(z(t)) for some
κα > 0, κβ > 0, α ∈ (0, 1), β > 1. Then, the origin
is globally fixed-time stable and T(z0) has a uniform
upper-bound Tmax such that

T(z0) ≤ Tmax =
1

κα(1− α)
+

1

κβ(β − 1)
∀ z0 ∈ Rn. (2)

□

III. PROBLEM FORMULATION AND PRELIMINARIES

Consider an uncertain linear dynamical system of the form

ẋ(t) = Ax(t) + Bu(t) + Dξ(t, x, u), x(0) = x0, (3)
y(t) = Cx(t), (4)

with state x ∈ Rn, known input u ∈ Rm, and measured
output y ∈ Rp, where p < n. The unknown input vector
ξ : R≥0×Rn×Rm 7→ Rq represents exogenous or parametric
perturbations, or actuator faults. Similarly to several related



papers on fixed-time UIO’s such as [11], [12], [15]–[19] we
make the following assumptions:
A1 Matrices C ∈ Rp×n and D ∈ Rn×q are full-rank, with

p > q, and such that rank(CD) = q;
A2 The triplet (A,D,C) does not possess invariant zeros;
A3 The unknown input ξ(t, x, u) fulfills the inequality

∥ξ(t, x, u)∥∞ ≤ µ∥u∥+ρ(t, y) where µ is a known scalar
and ρ : R≥0 × Rp 7→ R>0 is a known function.

A. Objective A: Global Finite-time state estimation
The goal is to design a FOSMO that is able to reconstruct

both the state x ∈ Rn and the unknown input ξ ∈ Rq of (3)-(4)
in finite time, using only the known input u ∈ Rm and output
y ∈ Rp. More formally, let z ∈ Rn−p be the unmeasurable
component of x such that x 7→ (z; y). Our first objective is
to ensure that the estimates of z and y, resp. ẑ and ŷ, satisfy

ẑ(t)− z(t) = 0
ŷ(t)− y(t) = 0 ∀ x0, ξ, t ≥ T(x0), (5)

where T(x0) : Rn 7→ R>0 denotes the estimation settling time.
In addition, the UIR, namely ξ̂(t) → ξ(t), is also desired.

B. Objective B: Semi-global fixed-time estimation
Under the additional assumption that z evolves into a

known, and possibly arbitrarily large in size, open domain
Z ⊂ Rn−p, such that

∃ Z : ∥z∥ ≤ Z ∀ z ∈ Z, (6)

our second objective is to demonstrate that the proposed
observer, designed to guarantee (5), is such that

∃ T̄max > 0 : T(x0) ≤ T̄max ∀ x0, ξ, (7)

where T̄max is a design parameter that can be chosen freely.
It is worth noting that relation (7) implies that the designed

observer exhibits semi-global fixed-time convergence concern-
ing the state estimation errors in (5). Then, the UIR is wanted.

Remark 1 Assumptions A1 and A3, coupled with the require-
ment that the triplet (A,D,C) has no unstable invariant zeros,
imply that (3)-(4) is strongly detectable. These assumptions
are standard in the design of FOSMOs [3, Chapter 6.3.2].
Additionally, we introduced Assumption A2, which is more
stringent than the simpler requirement of the absence of
unstable invariant zeros but is necessary for the design of
finite-time or fixed-time observers [11], [12] and Higher-
Order Sliding Mode Observers (HOSMOs) [4, Section 5.3].
Specifically, if the triple (A,D,C) had invariant zeros then
an unobservable subspace would exist (refer to Lemma 2 for
details). However, Assumption A2 ensures the absence of such
unobservable subspace. ■

C. An Instrumental Lemma
The next Lemma, which is instrumental to several subse-

quent developments, is recalled.

Lemma 2 (cf. Lemma 6.1 of [3]) Consider a linear system
of the form (3)-(4) with p > q and rank(CD) = q. Then a

change of coordinates exists such that the transformed triplet
(A,D,C) in the new coordinates has the following structure:

A =

[
A11 A12

A211
A212

A22

]
, (8)

where A11 ∈ R(n−p)×(n−p) and A211 ∈ R(p−q)×(n−p).
Moreover it results that

A11 =

[
Ano
11 Ao

12
0n−p−r,r Ao

22

]
, A211 = [0 Ao

21] , (9)

where Ano
11 ∈ Rr×r, with r ≥ 0, corresponds to the unobserv-

able subspace, while Ao
21 ∈ R(p−q)×(n−p−r) is such that the

pair (Ao
22, A

o
21) is observable. Furthermore, the eigenvalues

λj(A
o
11), with 1 ≤ j ≤ r, correspond to the invariant zeros

of (A,D,C).

D =

[
0n−q,q

0p−q,q

D2

]
(10)

where D2 ∈ Rq×q is non-singular.
C =

[
0n−q,q T

]
, where T ∈ Rp×p is an orthogonal,

namely T−1 = TT. □

D. Preliminary manipulations

We are going to illustrate the essential steps to map the state
x of (3)-(4) to (z; y) through the mapping T̄ = T3T2T1, where

x
T17−→ (z̄; y)

T27−→ (z̄; ȳ)
T37−→ (z; y).

Let T1 = (NT
C; C) with CNC = 0p,n−p. We begin by

deriving the (z̄; y) dynamics as follows

[
˙̄z
ẏ

]
=

Ā=T1AT−1
1︷ ︸︸ ︷[

Ā11 Ā12

Ā21 Ā22

] [
z̄
y

]
+

B̄=T1B︷ ︸︸ ︷[
B̄1

B̄2

]
u+

D̄=T1D︷ ︸︸ ︷[
D̄1

D̄2

]
ξ, (11)

y =
[
0p,n−p Ip

]︸ ︷︷ ︸
C̄=CT−1

1

[
z̄
y

]
. (12)

Then, under Assumption A1, and by exploiting Lemma 2, a
second transformation is performed with the associated matrix

T2 =

[
In−p −D̄1D̄

+
2

0n−p,p T

]
, (13)

such that (11)-(12) is rewritten as

[
˙̄z
˙̄y

]
=

A=T2ĀT−1
2︷ ︸︸ ︷ A11 A12[

A211

A212

]
A22

[
z̄
ȳ

]
+

B=T2B̄︷ ︸︸ ︷[
B1

B2

]
u+

D=T2D̄︷ ︸︸ ︷[
0n−p,q

D2

]
ξ,

y =
[
0p,n−p T

]︸ ︷︷ ︸
C=C̄T−1

2

[
z̄
ȳ

]
, D2 =

[
0p−q,q

D̂2

]
, (14)

where A21 = [A211;A212] and the pair (A11, A211) is ob-
servable. The first row of T2 enables us to decouple the
unknown input ξ from the unmeasurable state dynamics in



(14). Meanwhile, the second row performs the resulting lower
decomposition of D2 = [0p−q,q; D̄2]

1.
Finally, taking advantage of the straightforward relation

TTT = Ip the mapping (z̄; ȳ)
T37−→ (z; y) is further applied,

with T3 = diag(In−p, T
T), thus obtaining[

ż
ẏ

]
=

 A11 A12[
A211

A212

]
A22


︸ ︷︷ ︸

A=T3AT−1
3

[
z
y

]
+

[
B1

B2

]
︸ ︷︷ ︸
B=T3B

u+

[
0n−p,q

D2

]
︸ ︷︷ ︸

D=T3D

ξ

y =
[
0p,n−p Ip

]︸ ︷︷ ︸
C=CT−1

3

[
z
y

]
, D2 =

[
0p−q,q

D̂2

]
(15)

Note that T̄ has been developed ad-hoc to meet our design
needs and it differs from traditional FOSMOs design schemes
like the Utkin’s and the Walcott-Zak’s observers. Only T1 and
T2 are shared with the unit-vector SMO design of [3, Chapters
6.2 and 6.3.2].

IV. THE PROPOSED SCHEME

Consider the pair of FOSMOs

ṙi =A11ri +A12wi −Ri(wi − y) + B1u+ L̃ivi (16)
ẇi =A21ri +A22wi −Wi(wi − y) + B2u+ vi (17)

with i = 1, 2, A21 = [A211;A212], and the output injection
vector

vi = −a sigα(wi−y)−b sigβ(wi−y)−c(t, y, u) sign(wi−y),
(18)

with parameters a > 0, κβ > 0, α ∈ (0, 1), β > 1 and b >

κβ/p
β−1
2 , where c(t, y, u) is any scalar function satisfying

c(t, y, u) ≥ ∥D2∥(µ∥u∥+ ρ(t, y) + η). (19)

To ensure that (5) is satisfied, it is enough to select any η >
0. If the more strict tuning inequality η > ∥A211∥Z/∥D2∥1
is in force, where Z is the upper-bound to the norm of z as
defined in (6), then the fixed-time convergence condition (7)
additionally holds. The design matrices are

Ri = A12 + L̃i(A21L̃i −A∗
22) + FiL̃i, L̃i =

[
Li 0n−p,q

]
,

Fi = A11 − LiA211, Wi = A22 +A21L̃i −A∗
22, (20)

where the gain matrices A∗
22 and Li ∈ R(n−p)×(n−q) are

selected such that the next constraints are satisfied

ℜ(λj(F2)) < ℜ(λℓ(F1)) ∈ R<0, ∀ j, ℓ = 1, . . . , n− p, (21)
ℜ(λj(A∗

22)) ∈ R<0, ∀ j = 1, . . . , p. (22)

Finally, by stacking the states and the output injections of
(16)-(17) as r = (r1; r2), w = (w1;w2), and v = (v1; v2), the
estimations of z, y and ξ are constructed as follows:

ẑ(t) =K
[
r(t)− eFτr(t− τ)

]
(23)

ŷ(t) =Qw(t) (24)

ξ̂(t) =D+
2 Qv(t) (25)

1The MATLAB instructions to determine T in (13) are
“[T,~]=qr(T1*D);T=flipud(T’);” where D and T1 are assumed to
be defined in accordance with the treatment of Section III-D.

where τ > 0 is a time-delay parameter and the constant
matrices K ∈ R(n−p)×2(n−p), F ∈ R2(n−p)×2(n−p) and
H ∈ R2(n−p)×(n−p) take the form

K =
[
In−p 0n−p,n−p

] [
H eFτH

]−1
, (26)

F =

[
F1 0n−p,n−p

0n−p,n−p F2

]
, H =

[
In−p

In−p

]
, Q =

1

2

[
Ip Ip

]
.

A. Main results
A preliminary Lemma is proven before of investigating the

convergence properties of the proposed observer.

Lemma 3 Consider system (3)-(4) and let the Assumptions
A1-A2 be satisfied. Let the observer matrices L1 and L2

in (20) be such that relation (21) holds. Then, matrix[
H eFτH

]
, where F and H are defined in (26), is invertible

for almost all τ > 0. □

Proof: It follows from Lemma 2 that the pair (A11,A211)
is observable. Therefore, the eigenvalues of Fi = A11 −
LiA211 can be arbitrarily placed by an appropriate choice of
Li in (20). Consider now (26), which yields that[

H eFτH
]
=

[
In−p eF1τ

In−p eF2τ

]
(27)

=

[
In−p 0n−p,n−p

In−p −In−p

] [
In−p eF1τ

0n−p eF1τ − eF2τ

]
.

Straightforward manipulations of (27) yield the next relation

det
([
H eFτH

])
= G(τ) = (−1)

n−p
det

(
eF1τ − eF2τ

)
= (−1)

n−p
G1(t)G2(t) (28)

with G1(τ) = det
(
eF1τ

)
and G2(τ) =

det
(
In−p − e−F1τeF2τ

)
. Note that G2(τ) is zero at

τ = 0 whence G(0) = 0. Due to (21), eF2τ = o(eF1τ ),
and thus limτ→∞ eF2τe−F1τ = 0n−p,n−p. It means that
limτ→∞ G2(t) = 1. As a result, (28) is a non-identically
vanishing polynomial function, thus it is an analytic function.
By applying the Principle of isolated zeros [23] it follows
that (28) possesses only isolated zeros. Thus,

[
H eFτH

]−1

exists for almost all τ > 0.
From the previous statement, it follows that any value of

the time delay τ far enough from the isolated zeros of G(t)
can be taken to avoid too large entries in the matrix K, which
is inversely proportional to G(t).
We are now in a position to state our first main result.

Theorem 1 (Global finite-time state estimation) Consider
system (3)-(4) and let A1-A3 be satisfied. Consider
the observer (16)-(18) with outputs (23)-(24), and
parameters chosen as in (19)-(21). Then (5) is verified
∀ a > 0,b > κβ/p

β−1
2 ,κβ > 0,α ∈ (0, 1),β > 1,η > 0 and

almost all τ > 0. □

Proof: The proof of Theorem 1 is divided into three parts.

Part A (Global quadratic stability): Consider x T̄7−→ (z; y) with
T̄ = T3T2T1, then (3)-(4) is rewritten as in (15). Let

er,i = ri − z, ew,i = wi − y. (29)



Using (15)-(17), and (20) one derives the error dynamics

ėr,i =A11er,i − (L̃i(A21L̃i −A∗
22) + FiL̃i)ew,i + L̃ivi

ėw,i =A21er,i + (A∗
22 −A21L̃i)ew,i +

[
vi,1

vi,2 − D̂2ξ

]
(30)

where vi is decomposed into vi,1 ∈ Rp−q , and vi,2 ∈ Rq . Let
us further define the auxiliary error vector

ẽr,i = er,i − L̃iew,i. (31)

Using (20) and (30) one obtains the corresponding auxiliary
error dynamics

˙̃er,i = ėr,i − L̃iėw,i = A11er,i − FiL̃iew,i − L̃iA21er,i

= (A11 − LiA211)(er,i − L̃iew,i) = Fiẽr,i. (32)

Replacing (31) into (30) one obtains

ėw,i = A21ẽr,i +A∗
22ew,i +

[
vi,1

vi,2 − D̂2ξ

]
. (33)

where, due to (21)-(22), ℜ(λj(Fi)) ∈ R<0, ℜ(λj(A∗
22)) ∈

R<0, ∀ j, i = 1, 2. Let Ji,1 ∈ R(n−p)×(n−p) be a positive
definite matrix, such that

A∗
22 + (A∗

22)
T = −J, J̃i = AT

21J
−1A21 + Ji,1, (34)

then, notice that, J̃i = J̃T
i ≻ 0. Moreover, let Pi,1 ≻ 0 be the

solution to the Lyapunov equation

Pi,1Fi + (Fi)
TPi,1 = −J̃i,1. (35)

Now, by differentiating along (32)-(33) the candidate Lya-
punov function Vi(ẽr,i, ew,i) = ẽTr,iPi,1ẽr,i + eTw,iew,i, yields

V̇i ≤− ẽTr,iJ̃iẽr,i + ẽTr,iAT
21ew,i − eTw,iA21ẽr,i

− eTw,iJew,i + 2eTw,i

[
vi,1

vi,2 − ∥D̂2∥1∥ξ∥∞

]
(36)

Define ẽw,i = (ew,i − J−1A21ẽr,i). Then, the next relation
holds

ẽTw,iJẽw,i ≡ eTw,iJew,i − 2ẽTr,iAT
21ew,i + eTr,iAT

21J
−1ẽr,i.

By the assumption A3 and relations (18)-(19), the right-hand
side of (36) is upper-estimated as

V̇i ≤− ẽTr,iJiẽr,i − ẽTw,iJẽw,i − 2aeTw,isig
α(ew,i)

− 2beTw,isig
β(ew,i)− 2η∥D̂2∥1∥ew,i∥1 < 0. (37)

Hence, the Lyapunov function Vi is non increasing, and
thus uniformly bounded, and system (30) is at least globally
quadratically stable.
Part B (Finite-time output error stability) Consider the new
Lyapunov function Wi(ew,i) = ∥ew,i∥22. By differentiating
Wi then substituting (18) and (33), and upper-estimating, it
follows that

Ẇi ≤ 2∥A21ẽr,i∥∞∥ew,i∥1 − 2η∥D̂2∥1∥ew,i∥1. (38)

It follows from (32) that ẽr,i → 0n−p. In the domain R =
{(ẽr,i, ew,i) : ∥A21ẽr,i∥ < ∥D̂2∥1η − γ}, where γ > 0
is arbitrary, the estimation Ẇi < −2η∥ew,i∥1 ≤ −2η

√
W i

holds. The domain R is finite-time attracting and invariant.

Then, Wi tends to zero in finite time. This implies that a
sliding motion along the manifold ew,i = 0p takes place for
all t ≥ Ti(x0) and i = 1, 2.

The equivalent control concept [3] entails the computation
of the equivalent control by nullifying the right-hand side of
(30). It follows that vi,2

eq−→ D̂2ξ asymptotically, as the error
ẽr,i approaches the origin.
Part C (Finite-time unmeasurable error stability) Con-
sider (16), (31) and (32) and t ≥ T(x0), then wi(t)=y(t). By
using the equivalent control concept, we can further deduce
that L̃ivi = Livi,1

eq
= −LiA211er,i, ∀ i = 1, 2. Thus,

ṙi
eq
= A11ri +A12y + B1u− LiA211er,i ∀ t ≥ T(x0). (39)

Consider now (15), (20), (39), and let E = (L1;L2)A211, then

d

dt
(r −Hz)

eq
= Fr +H(A12y + B1u) + Ez (40)

−H [A11z + LA211y + B1u] + (FHz − FHz)

=F (r −Hz) + [FH −HA11 + E] z = F (r −Hz),

where r = (r1; r2). Therefore it results

r(t)−Hz(t) = eFτ [r(t− τ)−Hz(t− τ)] , t ≥ T(x0) + τ
(41)

Now, consider the definitions of K and H in (26). By
applying the block matrix inversion rule it yields[

H eFτH
]−1

=

[
In−p −eF1τ (eF1τ − eF2τ )−1

0n−p,n−p (eF1τ − eF2τ )−1

]
×

[
In−p 0n−p,n−p

In−p −In−p

]
. (42)

By (23), (26) and (42), and noticing that KH = In−p and
KeFτH = 0n−p,n−p, one derives that

ẑ(t) = K
[
r(t)− eFτr(t− τ)

]
+ z(t)−KHz(t) (43)

= z(t) +K [r(t)−Hz(t)]−KeFτ [r(t− τ)−Hz(t− τ)] .

By (41) and (43) it yields that ẑ(t) = z(t) ∀ t ≥ T(x0) + τ ,
irrespective of the initial conditions of ẑ(t) for t ∈ [−τ, 0].

Drawing from the problem statement and assumptions out-
lined in Section III-B, we will now proceed to present the
second main result of this study.

Theorem 2 (Semi-global fixed-time state estimation)
Consider (3)-(4) and let A1-A3 be satisfied. Further assume
z(t) ∈ Z ⊂ Rn−p, and there exists a known Z > 0
such that (6) holds. Consider the observer (16)-(18) with
outputs (23)-(24) and parameters chosen as in (19)-(21)
where η > ∥A211∥∞Z/∥D̂2∥1. Then (7) is verified ∀
a > 0,b > κβ/p

β−1
2 ,κβ > 0,α ∈ (0, 1),β > 1, and almost

all τ > 0, and almost all τ > 0. □

Proof: The proof of Theorem 2 is divided into three parts.
Part A (Global quadratic stability): All development and
results derived in the Part A of the proof of Theorem 1 apply.
Thus, global quadratic stability of system (30) is at least in
force
Part B (Semi-global fixed-time output error stability) Con-
sider the quadratic Lyapunov function Wi(ew,i) = ∥ew,i∥22.



By evaluating its time derivative, substituting in the resulting
expression (18), (33) and η = ∥A211∥Z/∥D̂2∥1 + ϵ, for some
small scalar ϵ > 0, and then upper-estimating the resulting
right-hand side, one obtains

Ẇi ≤− eTw,iJew,i − 2aeTw,isig
α(ew,i)− 2beTw,isig

β(ew,i)

− 2∥A21ẽr,i∥∞∥ew,i∥1 − 2η∥D̂2∥1∥ew,i∥1
≤− 2a∥ew,i∥1+α

1+α − 2b∥ew,i∥1+β
1+β − 2ϵ∥ew,i∥1 (44)

where, due to the exponential stability of ẽr,i, it yields
∥A211ẽr,i(t)∥∞ ≤ ∥A211ẽr,i(0)∥∞ ≤ ∥A211∥∞Z. Moreover,

∥ew,i∥1 ≥ ∥ew,i∥1+α ≥∥ew,i∥2 =
√
Wi, ∀ α ∈ (0, 1),

√
p∥ew,i∥1+β ≥∥ew,i∥2 =

√
Wi, ∀ β > 1. (45)

Thus, from (45), and because of b > κβ/p
β−1
2 with κβ > 0,

it turns out that (44) can be further manipulated as follows

Ẇi ≤ −2aW
1+α
2

i − 2bp
β−1
2 W

1+β
2

i = −2aW ᾱ
i − 2κβW

β̄
i , (46)

where ᾱ = 1+α
2 ∈ (0, 1), and β̄ = 1+β

2 > 1. Using
Lemma 1, we can establish the existence of a fixed time
Tmax = 1/(a(1− ᾱ)) + 1/(κβ(β̄ − 1)) after which a sliding
motion along ew,i = 0p is established. This implies wi

eq
= y,

∀ t ≥ Tmax, i = 1, 2, and z ∈ Z ⊂ Rp.
Part C (Fixed-time unmeasurable error stability) Finally,
by analogous developments as those in Proof of Theo-
rem 1:Part C, it follows ẑ(t) = z(t) for all t ≥ Tmax + τ ,

B. Performance discussion and Implementation hints

The results presented in Theorem 2 demonstrate the ef-
fectiveness of observer (16)-(20) as a semi-global fixed-time
UIO for (3)-(4). Semi-globality derives from the working
assumption (6), dictating that z is confined within a known
domain. However, as proven by Theorem 1, the unmeasured
state estimation error in (41) is globally uniformly finite-
time stable at the origin even if the system exceeds the
specified range at the startup for any reason. More precisely,
convergence within a fixed time remains guaranteed once
the unmeasured estimation error decreases below Z in norm.
Acknowledging the presence of input/output port saturation
constraints in controller devices, as well as state limitations
across various output feedback scenarios [24], we emphasize
that the observer’s semi-global stability does not pose a
limitation in practice.

Let us now discuss some implementation aspects. First,
notice that our UIO is numerically well-posed for any initial
condition r(t) in the interval t ∈ [−τ, 0]. However, undesired
overshoots may occur in ẑ(t) until convergence is achieved.
This is because the unmeasured state estimation inherits major
limitations from [11], [12]. Indeed, ẑ(t) in (23) is meaningless
for any time instant preceding the convergence time. To
address this, we propose a simple and effective switching
rule to replace (23). Since both the estimations ri(t) are

TABLE I: Pendulum-cart system parameters [5, Chapter 5.6.3].

M m J l Fq Fθ g

3.2 0.534 0.062 0.365 6.2 0.009 9.807
kg kg kg m2 m kg/sec kg m2 m/sec2

meaningful, we suggest replacing (23) with

ẑ(t) :

{
Q′r(t), if [ ∥ew,1 + ew,2∥1 ≥ λ ∧ t < Tmax + τ ]

K
[
r(t)− eFτr(t− τ)

]
, otherwise.

(47)
Here, Q′ = [Ip, Ip]/2 is an averaging matrix, as Q in (26),
and λ > 0 is a small threshold detecting the sliding regime.
See Fig. 3 for a comparison between (23) and (47).

Referring instead to the chattering problem, its effect is
known to have a lesser impact on estimation problems than
control. However, it can still introduce distortions in the
estimations, potentially compromising the control system per-
formance. To address this issue, we propose incorporating Q
from (26) into the output estimation ŷ, as shown in (24).
Specifically, ŷ is calculated by averaging the two estimations
ŵ1 and ŵ2 provided by our pair of FOSMOs. This allows for
mitigating the chattering and improving the accuracy of the
estimation by inherently smoothing out any high-frequency
distortion through averaging [25].

Similar ideas will also be applied to the UIR process using
(25). First, we recall that in SMOs the UIR is achieved by ex-
tracting the equivalent control from the output injection vector
(18). One common approach is to low-pass filter the signal vi
to retrieve veqi = D2ξ and derive ξ̂ = D2v

eq
i = D̂+

2 v
eq
i,2 → ξ.

Nevertheless, this introduces complexity and necessitates ad-
hoc tuning of the filter’s time constant. Another strategy
involves utilizing smooth sigmoidal approximations for vi, but
this may limit the observer robustness [5]. Alternatively, we
suggest using (25), which is rewritten here for clarity:

ξ̂(t) = QD+
2 v(t) = (D̂⊺

2 D̂2)
−1D̂⊺

2

(v1,2(t) + v2,2(t)

2

)
. (48)

Relation (48) implements a static averaging between the
two output injections provided by the two observers and
it represents the instantaneous sample mean between two
realizations of the same noisy estimation [25]. This method
filters out the high-frequency noisy components corrupting
veq(t) obtaining similar results of low pass filtering without
requiring filter dynamics and careful ad-hoc time-constant
tuning. Figures 4 and 5 provide a comparison between the
UIR process using (48) and that using a low pass filter with a
cutoff frequency of 1kHz, in the case of a smooth and noisy
UIs. Simulations show that (48) exhibits remarkable filtering
capabilities.

V. SIMULATIONS

To evaluate the UIO performance, we conducted numerical
simulations in MATLAB/Simulink using the Euler fixed-step
solver with a sampling time of Ts = 10−4.

Consider the pendulum-cart system depicted in Fig. 1, with
parameters specified in Table I. The manipulable horizontal



force u ∈ R is applied to the cart to maintain the rod in the
upright position while controlling the cart position q ∈ R.
A disturbance force ξ also affects the system’s motion. The
corresponding motion equations are

(M +m)q̈ + Fqq̇ + ml(θ̈ cos θ − θ̇2 sin θ) = u+ ξ (49)

Jθ̈ + Fθ θ̇ −mlg sin θ +mlq̈ cos θ = 0 (50)

Denote the state vector by x =
(
q; θ; q̇; θ̇

)
, and the output

by y =
(
q; θ; q̇

)
. Linearizing around the unstable equilibrium

point 04 yields the system dynamics in the form (3)-(4) where

[
A D
C −

]
=



0 0 1 0 0
0 0 0 1 0
0 −1.933 −1.987 0.0091 0.321
0 36.977 6.259 −0.174 −1.011
1 0 0 0
0 1 0 0 −
0 0 1 0


,

and B = D. Following Section III-D, the system dynamics
given by (3)-(4) are rewritten in the form (15), where[

A11 A12[
A211
A212

]
A22

]
=

 −0.1453 0 30.8890 0.4586
0 0 0 1
1 0 0 −3.1495

0.0091 0 −1.9330 −2.0157

,

D =


0
0
0

D̂2

 =

 0
0
0

0.3205

, T̄ =

 0 0 3.149 1
1 0 0 0
0 1 0 0
0 0 1 0

,
and C =

[
03 I3

]
. The UIO (16)-(20) is implemented with

a = 100, κβ = 3, ρ = 2, α = 0.2, β = 3, τ = 0.01,
A∗

22 = diag(−20,−21,−22), and L1 =
[
0 19.8547

]
, L2 =[

0 20.8547
]

such that F1 = −20 > F2 = −21.
Note that, in accordance with (2), the given tuning provides

a Tmax = 0.125, and T(x0) ≤ Tmax + τ = 0.135.
To show the effectiveness of the proposed UIO for observer-

based control purposes, the estimated state x̂ is fed back to
assign closed-loop poles at {−4.2,−4.4,−4.6,−4.8}, through
the static feedback u(t) = Kx̂(t), with x̂ = T̄−1(ẑ; ŷ), and
K =

[
−36.0641 −161.8473 −39.5484 −27.6301

]
.

Two different classes of UIs ξ are considered: a smooth
biased sine wave ξ = ξ0, where ξ0 = 0.2 + sin(2πt) has
a power of P = 1W (top plot of Fig. 4), and its noisy
counterpart ξ = ξ0+N (0, N0) (top plot of Fig. 5), obtained by
passing ξ0 through an additive white Gaussian noise (AWGN)
channel [26] characterized by an SNR of 20dB. The channel
bandwidth is B0 = 1/(2Ts) = 5kHz, as per the sampling
theorem. By the definition of SNR = P/(N0B0), the band-
limited white noise N has a single-sided power spectral
density of N0 = P/(B010

20dB/10) = 2 × 10−6, and zero
mean. Note that the finite energy of a band-limited white noise
implies ξ is Lebesgue continuous.

Figures 2 and 3 depict the errors in state estimation as-
sociated with the proposed UIO, which exhibit convergence
to the origin in finite time according to Theorem 1. These
figures correspond to a scenario where the unknown input
is noisy, such that ξ = ξ0 + N (0, N0). Notably, the errors
converge to zero within the fixed time interval [0,Tmax + τ),
thereby corroborating Theorem 2, assuming that |θ̇| ≤ Z is
constrained by some mechanical upper bounds. More pre-
cisely, Fig. 3 compares the unmeasured state estimation error

Fig. 1: Schematic of an inverted pendulum with a cart.
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Fig. 2: Output estimation error ŷ(t) − y(t) for the test with
the noisy UI ξ = ξ0 +N (0, N0).
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Fig. 3: Unmeasured state estimation error ẑ(t)− z(t) for the
test with the noisy UI ξ = ξ0 +N (0, N0).

computed using equations (23) and (47). It is evident that (47)
eliminates the presence of large overshoot in the unmeasured
state estimation error while providing a meaningful estimation
for all t ≥ 0. Furthermore, such estimation converges to the
true value within the expected time Tmax + τ = 0.135.

Finally, Figures 4 and 5 provide a performance comparison
of the UIR process using (48) and the conventional lowpass
filtering approach with a cutoff frequency of 1kHz, in the
case of a smooth (ξ = ξ0) and noisy (ξ = ξ0 + N (0, N0))
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Fig. 4: Smooth unknown input ξ = ξ0 (top-plot), and estima-
tions using (48) and a lowpass filtering (1kHz cutoff).
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Fig. 5: Noisy unknown input ξ = ξ0+N (0, N0) (top-plot), and
estimations using (48) and a lowpass filtering (1kHz cutoff),
with ξ0 = 0.2+sin(2πt) and N (0, N0) is a band-limited noise

unknown input. Simulations demonstrate that the proposed
approach (48) exhibits remarkable filtering capabilities.

VI. CONCLUSIONS

Our proposal extends previous approaches to continuous
predefined-time state estimation, which involved the use of
a pair of time-delay observers, by adapting them to the frame-
work of sliding mode observation. As a result, we propose
a novel FOSMO design that allows for finite-time state es-
timation using first-order sliding-mode algorithms. Moreover,
the scheme exhibits semi-global fixed-time convergence and
allows for unknown input reconstruction without explicitly
implementing low-pass filters or continuous approximations
of the discontinuous signals.

Among the problems to be tackled shortly, a challenging
and promising direction for further investigations is the adap-
tive extension of the scheme to guarantee global fixed-time
convergence properties. Moreover, we are currently studying
extensions such as functional, unit-vector-based, and HOSMO
approaches. Also, we are exploring the application of the
proposed method for quickly detecting and isolating faults and
reconstructing cyber attacks in large-networked applications.
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[19] E. Jiménez-Rodrı́guez, A. J. Muñoz-Vázquez, J. D. Sánchez-Torres,
M. Defoort, and A. G. Loukianov, “A lyapunov-like characterization of
predefined-time stability,” IEEE Trans. Autom. Control, 65(11), 4922–
4927, 2020.

[20] J. A. Moreno, “Arbitrary order fixed-time differentiators,” IEEE Trans.
Autom. Control, 67(3), 1543–1549, 2022.

[21] A. F. Filippov, Differential equations with discontinuous righthand sides:
control systems. Springer Sci. & Business Media, 2013, vol. 18.

[22] A. Polyakov, “Nonlinear feedback design for fixed-time stabilization of
linear control systems,” IEEE Trans. Autom. Control, 57(8), 2106–2110,
2011.
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