
STAG: Smart Tools and Applications in Graphics (2024)
A. Caputo, V. Garro, U. Castellani, and A. Giachetti (Editors)

To What Extent Are Existing Volume Mapping
Algorithms Practically Useful?

Federico Meloni1 , Gianmarco Cherchi1 , Riccardo Scateni1 and Marco Livesu2

1Dept. of Mathematics and Computer Science, University of Cagliari, Italy
2CNR IMATI, Genoa, Italy

𝑖

𝑗

𝑘
𝑙

𝑖′

𝑗′
𝑘′ 𝑙′

Figure 1: Mapping a tetrahedral mesh into a new domain is a crucial task in several geometry processing applications. In this example, we
consider the model duck.mesh (left) in the G6 group of the VOLMAP dataset [CL23] and the provided boundary constraints, which map
its outer surface onto the surface of a polycube (blue surface on the right). We then compute the volumetric mapping of the interior vertices
with [HC23] (one of the two algorithms we analyzed in this work). In the middle, we highlight how a single tetrahedron is deformed during
the mapping pipeline.

Abstract
Mappings between geometric domains play a crucial role in many algorithms in geometry processing and are heavily used
in various applications. Despite the significant progress made in recent years, the challenge of reliably mapping two volumes
still needs to be solved to an extent that is satisfactory for practical applications. This paper offers a review of provably robust
volume mapping algorithms, evaluating their performances in terms of time, memory and ability to generate a correct result both
with exact and inexact numerical models. We have chosen and evaluated the two most advanced methods currently available,
using a state-of-the-art benchmark designed specifically for this type of analysis. We are sharing both the statistical results
and specific volume mappings with the community, which can be utilized by future algorithms for direct comparative analysis.
We also provide utilities for reading, writing, and validating volume maps encoded with exact rational coordinates, which is
the natural form of output for robust algorithms in this class. All in all, this benchmark offers a neat overview of where do we
stand in terms of ability to reliably solve the volume mapping problem, also providing practical data and tools that enable the
community to compare future algorithmic developments without the need to re-run existing methods.

CCS Concepts
• Computing methodologies → Mesh models; Volumetric models; Volumetric Mappings;

1. Introduction

Computing correspondences between two 3D shapes is a funda-
mental task in geometry processing. Nearly all applications that re-
quire the existence of a map demand that the function that puts into
correspondence two domains fulfills two properties: (i) it is one-to-
one, to reliably transfer a signal from one domain to the other with-

out deleting or creating multiple copies of the same information;
(ii) it has little geometric distortion, so that local neighborhoods in
the two domains maintain a comparable size and shape, enabling a
practically useful analysis and processing (Figure 1).

The first requirement is typically a hard one, meaning that a map
that is not one-to-one is not considered valid and cannot be used.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/stag.20241346 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0009-0003-8744-8026
https://orcid.org/0000-0003-2029-1119
https://orcid.org/0000-0002-0950-7372
https://orcid.org/0000-0002-4688-7060
https://doi.org/10.2312/stag.20241346


2 of 8 F. Meloni, G. Cherchi, R. Scateni, M. Livesu / To What Extent Are Existing Volume Mapping Algorithms Practically Useful?

The second is a soft requirement, meaning that geometric distor-
tion should be reduced to the minimum but is also expected to
be present, to some extent, because limiting to perfectly isomet-
ric maps with no distortion is too restrictive and maps of this kind
hardly exist in real applications.

Robust methods for the computation of one-to-one maps with
low geometric distortion heavily rely on a two-step pipeline in
which the hard validity constraint is first addressed without caring
about distortion, and then numerical algorithms are bootstrapped
with such a valid solution, reducing distortion without introduc-
ing collapsed or inverted elements in the domain. Indeed, such an
approach has been widely adopted by numerous authors in recent
years [RPPSH17, LYNF18, SS15, FW22, JSP17, FL16, SYLF20,
YSLF20, WZC∗23, Liv24b].

Identifying a valid initial solution is the most critical step for
this pipeline. For the surface case, a variety of different algo-
rithms can be used to create an initial one-to-one map by em-
bedding a triangle mesh onto a convex or star-shaped planar do-
main [Tut63, Flo97, SJZP19, FBRCA23, Liv24a, Liv24b]. Unfortu-
nately, none of these methods is known to extend to the volumetric
setting. The problem of embedding a tetrahedral mesh onto a con-
vex or star-shaped polyhedron remains a challenging open problem
in the scientific literature, with very few existing alternatives which
are, however, severely limited by running times that can stretch up
to more than one week of computation and excessive memory con-
sumption (Section 2).

The main goal of this paper is to consider the two most promi-
nent existing methods for the robust computation of one-to-one
correspondences between volumes and evaluate their performances
in realistic use cases where the runtime and memory requirements
cannot stretch indefinitely.

It is essential to underline that this is not a comparison between
the two algorithms. It is an attempt to understand to what extent
these methods meet the requirements of computer graphics appli-
cations. Our analysis confirms that even though both algorithms are
formally correct, they exhibit only a limited ability to operate in re-
alistic conditions (Section 4), suggesting that the quest for robust
and scalable volume mapping algorithms is still open and demands
further research by the geometry processing community.

Algorithms for computing volume mappings – including those
considered in this article – often employ critical geometric con-
structions, such as refinement operations in both the input and the
map, that, when implemented in floating point, may easily infringe
the bijectivity requirement due to lack of numerical precision. For
this reason, rational numbers (i.e., quantities encoded as fractions
between integers with arbitrary length) are often used to accurately
represent the coordinates of mesh vertices. An additional goal of
this article is to share with the geometry processing community
the maps we produced using [NCB23] and [HC23] in their exact
form. We also provide utilities to load, save and check the validity
of maps represented with rational numbers. These utilities, as well
as the produced models, have been incorporated into the VOLMAP
benchmark [CL23] to facilitate comparisons with new algorithms
and foster further research in this field.

2. Related works

We restrict our analysis to methods that guarantee the bijectivity of
the map between a volumetric (tetrahedral) mesh and a convex or
star-shaped polytope. For a comprehensive discussion on alterna-
tive numerical methods covering a broader class of maps but not
providing such theoretical guarantees of correctness, we point the
reader to two recent surveys [FSZ∗21, NNZ21].

Many authors considered the possibility of extending robust
surface mapping methods to the volume setting, obtaining only
poor results so far. For the volumetric extension of the Tutte
embedding [Tut63, Flo97], numerous failure cases have been re-
ported [Liv20b, Liv20a, CDL95, DVPV03, FPT06]. The Tutte em-
bedding was ultimately shown to operate correctly only on a very
restricted set of volume graph topologies, which was deemed insuf-
ficient to cover practically interesting cases [Ale23]. The Progres-
sive Embedding algorithm [SJZP19] does not extend to volumetric
meshes either, because of the difficulty of devising a valid edge col-
lapsing sequence of tetmesh edges during the removal of inverted
elements, as discussed in [Liv20b, Liv20a]. More recent methods
such as E 3A [FBRCA23], Advancing Front Mapping [Liv24a] and
Stripe Embedding [Liv24b] may potentially be extended to the vol-
umetric setting, but no results have been published so far.

To the best of our knowledge only the following three algorithms
can compute a provably bijective map between a tetrahedral mesh
and a convex or star-shaped polytope.

Simplicial Foliations [CSZ16] was the first algorithm to solve the
volume mapping problem for convex domains. The practical utility
of this method is hindered by a number of limitations, regarding
inefficiency, excessive mesh refinement (by orders of magnitude)
to produce a valid piece-wise linear map, and also the impossibility
of precisely control the mapping of the outer surface. In fact, users
can only choose between radial foliations, for sphere mapping, and
parallel foliations, for cube mapping, but not prescribe alternative
boundary conditions. This is a major limitation for block decom-
position methods that build a complex map by splitting the domain
into a number of simpler cuboids welded at shared interfaces, e.g.
for hexahedral meshing [BC23,PCS∗23]. To our knowledge, a ref-
erence implementation of Simplicial Foliations was never released,
and the algorithm was never used to solve concrete mapping prob-
lems.

The foliation idea was pushed further by the Galaxy Maps al-
gorithm [HC23], which relies on the same concepts but applies
them locally, starting from a non-bijective map (e.g., generated
with Tutte) and then operating only on small star-shaped clusters
containing inverted elements. The method also extended the class
of supported domains, from cubes and spheres to any star-shaped
polyhedron, fully supporting per vertex boundary conditions. Ac-
cording to the authors, Galaxy Maps gained huge speedups w.r.t.
Simplicial Foliations thanks to its local approach, sometimes even
by multiple orders of magnitude. However, running times still re-
main prohibitive and can stretch to even more than 10 days of com-
putation in certain cases (see Figure 18 in their article). Also, in
terms of refinement, Galaxy Maps may increase mesh size by more
than two orders of magnitude. Despite these limitations, Galaxy
Maps has been recently used to compute volume maps in the con-
text of hexmesh generation [BC23], where it was used as a fully

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



F. Meloni, G. Cherchi, R. Scateni, M. Livesu / To What Extent Are Existing Volume Mapping Algorithms Practically Useful? 3 of 8

hippo (G2)

cube

sphinx (G1)

tetrahedron

buddha (G2)

pyramid

david (G1)

octahedron

airplane1 (G5)

sphere

duck (G1)

star

duck (G6)

polycube

Figure 2: We tested the two analyzed algorithms [NCB23, HC23] in a subset of models from the VOLMAP [CL23] dataset, which provides
thousands of volumetric meshes whose surface is mapped onto the surface of different domains. In this figure, we show some examples of
models whose volumetric mapping on the domains of VOLMAP has been computed with [HC23]. Since we share with the community all the
produced maps, we report the models’ names and the groups they belong to in order to facilitate their identification among the data this work
provides.

robust remedy strategy in cases a non-robust numerical method
([GKK∗21]) did not produce a bijective map.

The last existing algorithm for robust volume mapping is Expan-
sion Cones [NCB23], based on the so-called “Shrink and Expand”
paradigm. The algorithm first collapses all internal mesh vertices at
one location (shrink), generating a mesh in which all internal cells
are completely collapsed. Then, in the expansion phase, inner ver-
tices are relocated so as to inflate collapsed cells. Vertex relocation
is operated to ensure that all elements obtain a globally coherent
orientation, generating a bijective map. To ensure the existence of
a valid configuration, the inflation phase may trigger mesh refine-
ment. Similarly to Galaxy Maps, also Expansion Cones is charac-
terized by long running times and excessive memory pressure due
to mesh refinement, with mesh growths that can exceed 1K times
the initial input size. The authors set a 12h maximum time limit on
their experiments, which was reached in 23.38% of cases tested in
their article.

It should be noted that all three methods discussed here of-
ten require performing on demand refinement in both the in-
put and the map, achieving unconditional numerical robustness
by using numeric types and geometric constructions with arbi-
trary precision. This is a common procedure in critical tasks such
as mesh generation and geometric modeling [CLSA20, CPAL22,
Lév24, ZGZJ16] and is known to decrease running times by or-
ders of magnitude. In the context of mapping algorithms, the
limits of the floating point system were not considered until re-
cently [SJZP19]. The use of fully robust numeric types has been
then explored [Liv24a, FBRCA23], observing similar degradation
of performances when switching to multi-precision floating points,
with one exception [Liv24b].

All in all, existing robust methods are mostly proof-of-concepts
that have been validated on limited datasets using high-end ma-
chines with almost unlimited hardware resources. In the next ses-
sion, we will explore the capabilities of these methods on a dedi-

cated dataset that was never considered before [CL23], also putting
tight bounds on the hardware capabilities.

3. Setup and contribution

As anticipated in the previous section, we focus our analysis
on the two most recent state-of-the-art algorithms: Expansion
Cones [NCB23] and Galaxy Maps [HC23]. For brevity, in the re-
mainder of the article, we will refer to them as EC and GM, respec-
tively.

All experiments have been executed by considering the refer-
ence implementation released by the authors, which we tested on
alternative input data that was not considered in the original arti-
cles. Specifically, we bootstrapped GM and EC with the data pro-
vided by the VOLMAP benchmark [CL23], which comprises both
input tetrahedral meshes and boundary conditions that map their
surface vertices to a variety of alternative target domains, both con-
vex (cubes, tetrahedra, pyramid, octahedra, and sphere) and star-
shaped (stars, polycubes).

Specifically, we considered the groups G1 (25 models) and
G2 (67 models) with boundary constraints on the cube, tetrahe-
dron, pyramid, octahedron, and star domains, G5 (26 models) with
boundary constraints on a sphere and G6 (4 models) on generic
polycubes. A mosaic with examples of models mapped into the
VOLMAP domains is displayed in Figure 2. Overall, our testing
data counts 486 pairs of input models and corresponding boundary
constraints.

For ease of further analysis and comparisons with new meth-
ods, we release the maps computed with the two algorithms in
VOLMAP [CL23], using the following syntax:

• model_input.mesh: contains both the connectivity of the
input mesh and its original vertex coordinates, expressed in
floating point. Note that both EC and GM apply on demand
refinement to permit the generation of a valid map. Therefore,
this is not a verbatim copy of the original mesh from VOLMAP,

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



4 of 8 F. Meloni, G. Cherchi, R. Scateni, M. Livesu / To What Extent Are Existing Volume Mapping Algorithms Practically Useful?

but rather a (possibly) refined version of it;

• model_input.txt: contains the vertex coordinates of the
mesh model_input.mesh, expressed as rational numbers.
To avoid redundancy, the mesh topology is not replicated in this
file;

• model_output.mesh: contains both the connectivity of the
computed volumetric map and the mapped vertex coordinates,
expressed in floating point. Mesh connectivity is the same as
model_input.mesh;

• model_output.txt: contains the vertex coordinates of the
mesh model_output.mesh, expressed as rational numbers.
Once again, to avoid redundancy, the mesh topology is not
replicated.

The models are packaged in .zip archives named G∗_EC.zip
and G∗_GM.zip, containing the models of the various groups
G∗ processed respectively with EC and GM, split into sub-folders
based on the domain used for the mapping. The input and out-
put .mesh files, containing models with floating point coordi-
nates, can be loaded, visualized, and processed with the tools in
VOLMAP [CL23]. Considering that working with rational coordi-
nates and arithmetic is crucial in this field, as explained in the pre-
vious sections, we also provide three new functionalities to man-
age the models with rational coordinates (.txt files) introduced
above.

• load_RT: loads a mesh representing an input model or a
map with vertices in rational coordinates. Vertex coordinates
are taken from the .txt file, while the connectivity from the
corresponding .mesh file;

• save_RT: saves a mesh representing an input model or a map
with vertices in rational coordinates into two files. Specifically,
the rational vertex coordinates are saved into a .txt file, while
the connectivity and the floating point coordinates are saved into
a .mesh file;

• map_checker: takes as input a model and the corresponding
volume map and checks the map’s validity, in terms of number
of flipped elements, considering both floating points and rational
coordinates. This tool has a twofold usage: it allows to verify the
correctness (bijectivity) of the map in exact rational coordinates,
and it also allows to verify whether a floating point version of
the same map retains bijectivity.

The aforementioned tools depend on CinoLib [Liv19] for basic
mesh processing and detection of inverted elements in arbitrary pre-
cision. CinoLib, in turn, depends on the GMP [Gra91] library for
this latter task. GMP does not need to be explicitly installed. Cino-
Lib conveniently provides it by defining the compilation symbol
CINOLIB_USES_CGAL_GMP_MPFR.

Time and hardware resources. The main goal of our experiments
is to verify to what extent EC and GM can be used in realistic condi-
tions where hardware and time resources are limited. We performed

the experiments on a machine equipped with an Intel i9-7920X pro-
cessor at 4.3 GHz with 12 physical cores (24 logic) and 128 GB of
RAM. We always had 20 mappings running simultaneously with a
time limit of 60 minutes each, and the RAM was shared between
all the mappings..

4. Discussion

We report here on the results obtained with our experiments. As we
stated before, we emphasize that this is by no meant to be intended
as a comparison between Expansion Cones and Galaxy Maps, but
rather as an attempt to understand to what extent these methods,
which represent the state-of-the-art in the field, are currently ca-
pable of addressing practical needs that applications in computer
graphics may desire. As it will become evident in the remainder of
the section, due to the shortage of resources imposed in our setup,
EC and GM converged on a valid map on largely disjoint sets of in-
put models, making any attempt to directly compare these methods
pointless.

Our analysis will be focused mainly on three aspects. Namely,
the ability to complete the mapping task within the dedicated time
budget, the amount of refinement introduced by the algorithms to
ensure the existence of a map, and the ability to provide a result that
not only is bijective when mesh coordinates are expressed exactly
with rational numbers, but also when such numbers are rounded to
the closest floating point, making the output result directly available
to downstream applications.

Timeouts. As it could be easily predicted from the runtimes pre-
sented in the original papers, both EC and GM struggled to com-
plete their mapping tasks within the given time budget, failing
to succeed in a significant number of cases. Of the 486 input
pairs tested, EC successfully produced a map in 11% of the cases,
whereas the success rate for GM was 51%. The most challenging
domain is undoubtedly the star-shaped for both methods, where
failures occurred in almost all cases (Table 1). The lower success
rate for EC could be explained by observing that this method al-
ways tries to compute the whole map from scratch. Conversely,
thanks to its local approach, GM only needs to operate on the
small portions of the mesh where the initial map (computed with
Tutte [Tut63]) fails to be bijective, thus reducing the computational
cost and also the likelihood to incur in slowdowns that are due to
refinement or excessive complexity of the rational numbers used
to express coordinates exactly. This local approach also makes the
running time for GM hardly predictable, as it does not correlate
with the global mesh size but rather with the amount and size of
the individual clusters of inverted elements in the initial map (Fig-
ure 3). Nevertheless, the overall success rate remains insufficient
for practical applications for both methods.

Mesh Growth. Both EC and GM ensure the existence of a valid
map by refining the input mesh on demand. Excessive mesh re-
finement plays a central role in increased runtimes and memory
pressure. Statistics and a visual plot of performances w.r.t. this as-
pect are showcased in Table 2 and Figure 4, respectively. The worst
cases registered are an increase of the 132% for EC and 444% for
GM. These numbers are comparable to the ones reported in the
original articles.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



F. Meloni, G. Cherchi, R. Scateni, M. Livesu / To What Extent Are Existing Volume Mapping Algorithms Practically Useful? 5 of 8

Time (s) 

Inp size 

1K

100

10

1

10K

1M500K100K50K10K

Time (s) 

Inp size 

1K

100

10

1

0.1

0.1

10K

1M500K100K50K10K

Expansion Cones

Galaxy Maps

Figure 3: In order to compute a valid map, EC operates globally on
the input mesh, and, as you can see, its running time is proportional
to the initial number of tetrahedra. Conversely, GM only needs to
operate on a local cluster of flipped elements, making the running
time unrelated to the input mesh size. In this plot, we show the mesh
size on the x-axis and the running time on the y-axis.

Floating Point Robustness. Recent literature in the field of sur-
face mapping clearly shows that even the most robust algorithms
may fail to provide a bijective map in floating point [SJZP19,
FBRCA23, Liv24a, Liv24b]. Unconditional robustness can only be
achieved if exact numerical models are used. The volume mapping
methods we considered employ rational numbers to achieve this re-
sult [NCB23,HC23,CSZ16]. On the other hand, downstream appli-
cations are mostly incompatible with exact numerical models and
require the map to be represented in floating point, requiring a lossy
conversion that may potentially spoil the correctness of the result.

The overall number of cases in which a floating point version of

Expansion Cones Galaxy Maps
Group Dom #BC #Maps % #Maps %

G1

cube 25 3 12% 24 96%
tet 24 5 21% 20 83%
pyr 25 1 4% 20 80%
octa 24 2 8% 19 79%
star 25 1 4% 1 4%

G2

cube 67 7 10% 49 73%
tet 66 9 14% 24 36%
pyr 66 8 12% 32 48%
octa 67 7 10% 32 48%
star 67 4 6% 0 0%

G5 sphere 26 7 27% 24 92%

G6 polycube 4 0 0% 4 100%

Total 486 54 11% 249 51%

Table 1: For our experiments, we set a timeout of 60 minutes for
each test. In this table, we report the number of tests for which the
analyzed algorithms are able to produce a valid map (considering
maps with rational coordinates) within the time limit. Specifically,
the “#BC” column represents the number of boundary conditions
in the VOLMAP dataset for each domain (“Dom”) in every group
G. The columns “#Maps” and “%” represent the number and the
percentage of valid maps computed with respectively EC and GM.

Expansion Cones Galaxy Maps
Group Dom #Maps %growth #Maps %growth

G1

cube 3 27/41/55% 24 1/10/72%
tet 5 27/45/80% 20 2/50/313%
pyr 1 132% 20 1/47/369%
octa 2 21/-/68% 19 2/22/252%
star 1 82% 1 444%

G2

cube 7 9/18/30% 49 1/16/98%
tet 9 8/22/55% 24 8/17/134%
pyr 8 7/20/54% 32 1/24/292%
octa 7 8/20/47% 32 1/23/297%
star 4 11/23/42% 0 -

G5 sphere 7 12/31/61% 24 0/3/10%

G6 polycube 0 - 4 2/3/4%

Table 2: The two algorithms we tested both require performing re-
finement operations on the input models, which increment the orig-
inal number of tetrahedra. In this table, we report the number of
valid maps produced with EC and GM in the “#Maps” columns,
while in columns “%growth” the corresponding percentage of
growth of the tetrahedra in the input models. Specifically, we report
the minimum, average, and maximum growth (min/avg/max%) for
each domain (“Dom”) in every group G.

the map was still bijective is reported in Table 3. As can be noticed,
EC did not manage to produce a single valid floating map, whereas
GM succeeded in a large number of cases (81.53%). As for the
comments on the timeouts, we conjecture that such a big difference
in the performances of the two algorithms is likely due to the fact
that for GM most of the map comes from Tutte, and only a minority

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



6 of 8 F. Meloni, G. Cherchi, R. Scateni, M. Livesu / To What Extent Are Existing Volume Mapping Algorithms Practically Useful?

Out size 

Inp size 

500K

100K

50K

10K

1M

1M500K100K50K10K

Expansion Cones

Galaxy Maps

Out size 

Inp size 

500K

100K

50K

10K

1M

1M500K100K50K10K

Figure 4: The original size of the input mesh is increased by the re-
finement operations that both algorithms perform to create a valid
map. This plot shows how the original mesh size (x-axis) can in-
crease when computing the map (y-axis). Note that, to emphasize
the analyzed behavior, we use a logarithmic scale in both axes, so
even a tiny deviation from the main diagonal can represent a sig-
nificant increment of the mesh size.

of the mesh vertices are relocated to secure bijectivity. Conversely,
EC needs to operate on all vertices, increasing the chances of trig-
gering issues with the machine’s precision.

It should be noted that, since both methods apply mesh refine-
ment, not only the mapped mesh but also the input one may po-
tentially contain inverted or vanishing elements (e.g., when an in-
put edge is iteratively split multiple times). In our experiments, all
maps but one contained inverted elements only in the target poly-
hedron. In one case (buste4 model of the G2 group mapped on

an octahedron domain), EC produced a refined version of the input
mesh where more than 800 tetrahedra were flipped.

Expansion Cones Galaxy Maps
Group Dom #Maps %FP valid #Maps %FP valid

G1

cube 3 0% 24 96%
tet 5 0% 20 95%
pyr 1 0% 20 100%
octa 2 0% 19 100%
star 1 0% 1 100%

G2

cube 7 0% 49 90%
tet 9 0% 24 100%
pyr 8 0% 32 59%
octa 7 0% 32 19%
star 4 0% 0 -

G5 sphere 7 0% 24 100%

G6 polycube 0 - 4 100%

Table 3: Both EC and GM need to perform refinement operations
in the mesh structure. In order to avoid possible numerical errors
due to the floating point numbers, they use rational arithmetic, in-
creasing both computational time and memory requirements. In this
table, we firstly report, for each domain (“Dom” column) in every
group, the number of computed valid maps using rational arith-
metic with the two algorithms (“#Maps”). Then, we report the per-
centage of corresponding maps (“%FP valid”) that are still flip-
free with the floating point representation.

5. Conclusions and Future Works

We presented an extensive analysis of the two most prominent algo-
rithms for the computation of provably bijective volume mappings:
Expansion Cones [NCB23] and Galaxy Maps [HC23]. We tested
their reference implementation on a sub-set of VOLMAP [CL23], a
benchmark explicitly tailored to challenge this class of algorithms.
Our analysis emphasizes that even though these methods provide
formal guarantees of correctness, restricting them to operate on a
limited time budget and memory dramatically decreases their suc-
cess rate, to an extent that is hardly compatible with real applica-
tions.

Besides the concrete maps and statistics, we share with the com-
munity the maps we produced and the code necessary to parse and
process such data, with the explicit intent to foster new research in
the field to produce a new class of algorithms that match the for-
mal guarantees of the existing ones but also complement them with
efficiency and scalability. Results will be shared both in exact (ra-
tional) and floating point form, to also facilitate future comparisons
in terms of compatibility with downstream applications that require
a valid floating point map. Software facilities to operate with ratio-
nal numbers are also included in the package we share.

The most natural extension of this work would be to expand the
analysis to the remaining part of VOLMAP (i.e., groups G3 and
G4), providing the community with up to 22k additional hypothet-
ical maps. Besides this, it would be interesting to experiment alter-
native time limits (e.g., 2 hours, 5 hours), so as to understand the
applicability of these algorithms in scenarios with different time

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



F. Meloni, G. Cherchi, R. Scateni, M. Livesu / To What Extent Are Existing Volume Mapping Algorithms Practically Useful? 7 of 8

constraints. Finally, we are aware of two forthcoming articles on
volume mapping [HBC24,NCB24], which could be included in our
future analysis and possibly improve the current results.

Acknowledgments

The authors are particularly grateful to Valentin Z. Nigolian and
Steffen Hinderink for their valuable support with the code of the
analyzed algorithms. F. Meloni acknowledges financial support
through the scholarship “Tecnologie innovative e abilitanti per
l’innovazione della pubblica amministrazione”, founded by PNRR,
DM 118/2022. G. Cherchi and R. Scateni gratefully acknowledge
the support to their research by project “FIATLUCS - Favorire
l’Inclusione e l’Accessibilità per i Trasferimenti Locali Urbani a
Cagliari e Sobborghi” funded by the PNRR RAISE Liguria, Spoke
01, CUP: F23C24000240006. G. Cherchi also aknowledges the
support to his activities by PRIN 2022 project “EUD4XR - End-
User Development for eXtended Reality”, funded by the Italian
Ministry of University and Research (MUR) and by the European
Union – NextGenerationEU, CUP: F53D23004380006.

References
[Ale23] ALEXA M.: Tutte embeddings of tetrahedral meshes. Dis-

crete & Computational Geometry (2023), 1–11. doi:10.1007/
s00454-023-00494-0. 2

[BC23] BRÜCKLER H., CAMPEN M.: Collapsing embedded cell com-
plexes for safer hexahedral meshing. ACM Transactions on Graphics
42, 6 (2023), 1–24. doi:10.1145/3618384. 2

[CDL95] CHILAKAMARRI K., DEAN N., LITTMAN M.: Three-
dimensional tutte embedding. Congressus Numerantium (1995), 129–
140. 2

[CL23] CHERCHI G., LIVESU M.: Volmap: a large scale benchmark for
volume mappings to simple base domains. Computer Graphics Forum
42, 5 (2023). doi:10.1111/cgf.14915. 1, 2, 3, 4, 6

[CLSA20] CHERCHI G., LIVESU M., SCATENI R., ATTENE M.: Fast
and robust mesh arrangements using floating-point arithmetic. ACM
Transactions on Graphics 39, 6 (2020). doi:10.1145/3414685.
3417818. 3

[CPAL22] CHERCHI G., PELLACINI F., ATTENE M., LIVESU M.: In-
teractive and robust mesh booleans. ACM Transactions on Graphics 41,
6 (2022). doi:10.1145/3550454.3555460. 3

[CSZ16] CAMPEN M., SILVA C. T., ZORIN D.: Bijective maps from
simplicial foliations. ACM Transactions on Graphics 35, 4 (2016), 1–
15. doi:10.1145/2897824.2925890. 2, 5

[DVPV03] DE VERDIERE É. C., POCCHIOLA M., VEGTER G.: Tutte’s
barycenter method applied to isotopies. Computational Geometry 26, 1
(2003), 81–97. doi:10.1016/S0925-7721(02)00174-8. 2

[FBRCA23] FINNENDAHL U., BOGIOKAS D., ROBLES CERVANTES P.,
ALEXA M.: Efficient embeddings in exact arithmetic. ACM Transac-
tions on Graphics 42, 4 (2023). doi:10.1145/3592445. 2, 3, 5

[FL16] FU X.-M., LIU Y.: Computing inversion-free mappings by sim-
plex assembly. ACM Transactions on Graphics 35, 6 (2016), 1–12.
doi:10.1145/2980179.2980231. 2

[Flo97] FLOATER M. S.: Parametrization and smooth approximation of
surface triangulations. Computer aided geometric design 14, 3 (1997),
231–250. doi:10.1016/S0167-8396(96)00031-3. 2

[FPT06] FLOATER M. S., PHAM-TRONG V.: Convex combination
maps over triangulations, tilings, and tetrahedral meshes. Advances in
Computational Mathematics 25 (2006), 347–356. doi:10.1007/
s10444-004-7620-5. 2

[FSZ∗21] FU X.-M., SU J.-P., ZHAO Z.-Y., FANG Q., YE C.,
LIU L.: Inversion-free geometric mapping construction: A survey.
Computational Visual Media 7 (2021), 289–318. doi:10.1007/
s41095-021-0233-9. 2

[FW22] FARGION G., WEBER O.: Globally injective flattening via a re-
duced harmonic subspace. ACM Transactions on Graphics 41, 6 (2022),
1–17. doi:10.1145/3550454.3555449. 2

[GKK∗21] GARANZHA V., KAPORIN I., KUDRYAVTSEVA L., PROTAIS
F., RAY N., SOKOLOV D.: Foldover-free maps in 50 lines of code.
ACM Transactions on Graphics 40, 4 (2021), 1–16. doi:10.1145/
3450626.3459847. 3

[Gra91] GRANLUND T.: Gnu mp - the gnu multiple precision arithmetic
library, 1991. URL: https://gmplib.org. 4

[HBC24] HINDERINK S., BRÜCKLER H., CAMPEN M.: Bijective volu-
metric mapping via star decomposition. ACM Transactions on Graphics
43, 6 (2024). doi:10.1145/3687992. 7

[HC23] HINDERINK S., CAMPEN M.: Galaxy maps: Localized foliations
for bijective volumetric mapping. ACM Transactions on Graphics 42, 4
(2023). doi:10.1145/3592410. 1, 2, 3, 5, 6

[JSP17] JIANG Z., SCHAEFER S., PANOZZO D.: Simplicial complex
augmentation framework for bijective maps. ACM Transactions on
Graphics 36, 6 (2017). doi:10.1145/3130800.3130895. 2

[Lév24] LÉVY B.: Exact predicates, exact constructions and combi-
natorics for mesh csg. arXiv preprint (2024). doi:arXiv:2405.
12949. 3

[Liv19] LIVESU M.: cinolib: a generic programming header only c++
library for processing polygonal and polyhedral meshes. Transactions
on Computational Science XXXIV (2019), 64–76. doi:10.1007/
978-3-662-59958-7_4. 4

[Liv20a] LIVESU M.: A Mesh Generation Perspective on Robust Map-
pings. In Proceedings of Smart Tools and Applications in Graph-
ics (STAG) (2020), The Eurographics Association. doi:10.2312/
stag.20201234. 2

[Liv20b] LIVESU M.: Mapping surfaces with earcut. arXiv preprint
(2020). doi:arXiv:2012.08233. 2

[Liv24a] LIVESU M.: Advancing Front Surface Mapping. Computer
Graphics Forum (2024). doi:10.1111/cgf.15026. 2, 3, 5

[Liv24b] LIVESU M.: Stripe embedding: Efficient maps with exact
numeric computation. ACM Transactions on Graphics 43, 6 (2024).
doi:10.1145/3687915. 2, 3, 5

[LYNF18] LIU L., YE C., NI R., FU X.-M.: Progressive parameter-
izations. ACM Transactions on Graphics 37, 4 (2018), 41. doi:
10.1145/3197517.3201331. 2

[NCB23] NIGOLIAN V. Z., CAMPEN M., BOMMES D.: Expansion
cones: A progressive volumetric mapping framework. ACM Transac-
tions on Graphics 42, 4 (2023). doi:10.1145/3592421. 2, 3, 5,
6

[NCB24] NIGOLIAN V. Z., CAMPEN M., BOMMES D.: A progres-
sive embedding approach to bijective tetrahedral maps driven by cluster
mesh topology. ACM Transactions on Graphics 43, 6 (2024). doi:
10.1145/3687992. 7

[NNZ21] NAITSAT A., NAITZAT G., ZEEVI Y. Y.: On inversion-
free mapping and distortion minimization. Journal of Mathemat-
ical Imaging and Vision 63 (2021), 974–1009. doi:10.1007/
s10851-021-01038-y. 2

[PCS∗23] PIETRONI N., CAMPEN M., SHEFFER A., CHERCHI G.,
BOMMES D., GAO X., SCATENI R., LEDOUX F., REMACLE J.-F.,
LIVESU M.: Hex-mesh generation and processing: a survey. ACM Trans-
actions on Graphics 42 (2023). doi:10.1145/3554920. 2

[RPPSH17] RABINOVICH M., PORANNE R., PANOZZO D., SORKINE-
HORNUNG O.: Scalable locally injective mappings. ACM Transactions
on Graphics 36, 4 (2017), 1. doi:doi.org/10.1145/2983621. 2

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/10.1007/s00454-023-00494-0
https://doi.org/10.1007/s00454-023-00494-0
https://doi.org/10.1145/3618384
https://doi.org/10.1111/cgf.14915
https://doi.org/10.1145/3414685.3417818
https://doi.org/10.1145/3414685.3417818
https://doi.org/10.1145/3550454.3555460
https://doi.org/10.1145/2897824.2925890
https://doi.org/10.1016/S0925-7721(02)00174-8
https://doi.org/10.1145/3592445
https://doi.org/10.1145/2980179.2980231
https://doi.org/10.1016/S0167-8396(96)00031-3
https://doi.org/10.1007/s10444-004-7620-5
https://doi.org/10.1007/s10444-004-7620-5
https://doi.org/10.1007/s41095-021-0233-9
https://doi.org/10.1007/s41095-021-0233-9
https://doi.org/10.1145/3550454.3555449
https://doi.org/10.1145/3450626.3459847
https://doi.org/10.1145/3450626.3459847
https://gmplib.org
https://doi.org/10.1145/3687992
https://doi.org/10.1145/3592410
https://doi.org/10.1145/3130800.3130895
https://doi.org/arXiv:2405.12949
https://doi.org/arXiv:2405.12949
https://doi.org/10.1007/978-3-662-59958-7_4
https://doi.org/10.1007/978-3-662-59958-7_4
https://doi.org/10.2312/stag.20201234
https://doi.org/10.2312/stag.20201234
https://doi.org/arXiv:2012.08233
https://doi.org/10.1111/cgf.15026
https://doi.org/10.1145/3687915
https://doi.org/10.1145/3197517.3201331
https://doi.org/10.1145/3197517.3201331
https://doi.org/10.1145/3592421
https://doi.org/10.1145/3687992
https://doi.org/10.1145/3687992
https://doi.org/10.1007/s10851-021-01038-y
https://doi.org/10.1007/s10851-021-01038-y
https://doi.org/10.1145/3554920
https://doi.org/doi.org/10.1145/2983621


8 of 8 F. Meloni, G. Cherchi, R. Scateni, M. Livesu / To What Extent Are Existing Volume Mapping Algorithms Practically Useful?

[SJZP19] SHEN H., JIANG Z., ZORIN D., PANOZZO D.: Progressive
embedding. ACM Transactions on Graphics 38, 4 (2019). doi:10.
1145/3306346.3323012. 2, 3, 5

[SS15] SMITH J., SCHAEFER S.: Bijective parameterization with free
boundaries. ACM Transactions on Graphics 34, 4 (2015), 1–9. doi:
10.1145/2766947. 2

[SYLF20] SU J.-P., YE C., LIU L., FU X.-M.: Efficient bijective pa-
rameterizations. ACM Transactions on Graphics 39, 4 (2020), 111–1.
doi:10.1145/3386569.3392435. 2

[Tut63] TUTTE W. T.: How to draw a graph. Proceedings of the London
Mathematical Society 3, 1 (1963), 743–767. 2, 4

[WZC∗23] WANG Q., ZHANG W.-X., CHENG Y.-Y., LIU L., FU X.-
M.: Practical construction of globally injective parameterizations with
positional constraints. Computational Visual Media 9, 2 (2023), 265–
277. doi:10.1007/s41095-022-0269-5. 2

[YSLF20] YE C., SU J.-P., LIU L., FU X.-M.: Memory-efficient bijec-
tive parameterizations of very-large-scale models. In Computer Graphics
Forum (2020), vol. 39, pp. 1–12. doi:10.1111/cgf.14122. 2

[ZGZJ16] ZHOU Q., GRINSPUN E., ZORIN D., JACOBSON A.: Mesh
arrangements for solid geometry. ACM Transactions on Graphics 35, 4
(2016), 1–15. doi:10.1145/2897824.2925901. 3

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/10.1145/3306346.3323012
https://doi.org/10.1145/3306346.3323012
https://doi.org/10.1145/2766947
https://doi.org/10.1145/2766947
https://doi.org/10.1145/3386569.3392435
https://doi.org/10.1007/s41095-022-0269-5
https://doi.org/10.1111/cgf.14122
https://doi.org/10.1145/2897824.2925901

