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Abstract

A curved beam element based on Timoshenko model and NURBS (Non-
Uniform Rational B-Splines) interpolation both for geometry and displace-
ments is presented. Such element can be used to suitably analyze plane
curved beams and arches. Some numerical results will explore the effective-
ness and accuracy of this novel method by comparing its performances with
those of some accurate finite elements propesed in the technical literature
and also with analytical solutions: for those cases where such closed form
solutions were not available in the literature, they have been computed by
exact integration of the governing differential equations. It is shown that the
presented element is almost insensitive to both membrane- and shear-locking,
and that such phenomena can be easily controlled by properly choosing the
number of elements or the NURBS degree.
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1. Introduction

Finite element models usually do not replicate the exact geometry of
a solid defined by a Computer Aided Design (CAD) representation: the
finite element mesh is only an approximation of the exact CAD geometry,
so the precision of the finite element (FE) analysis can be affected by errors
originating from geometric description. Isogeometric analysis, whose name
was coined by Hughes [1], attempts to avoid this problem, by integrating the
geometry model defined by CAD into the FE analysis in order to solve the
underlying problem without any shape approximation.

In the last years, many efforts in the framework of isogeometric analysis
have been done (see e.g. [2] and [3]) and there are interesting results for a
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wide range of problems such as vibrations and wave propagations, nearly
incompressible solids, fluids, fluid-structure interaction. The geometric set-
tings, however, mostly concern 2-D and 3-D continuum models or shell-like
structures [4].

It appears that, up to the last two years, special structural elements for
1-D problems based on the isogeometric concept were still lacking, even if the
use of B-spline had been reported, for instance, in [5], [6] and [7]. Recently,
however, a strong interest for such elements has been developing, and several
contributions appeared: see, for instance [8], [9], [10], [11], [12], [13], [14],
[15]. In these papers both straight and spatial Timoshenko beams have been
considered, with particular emphasis on locking control.

Here, a plane curved Timoshenko beam element based on NURBS inter-
polation for both geometry and displacements, which is able to analyze plane
arches and beams, has been developed. In Section 2 we discuss the basic key
points of the mechanical model besides to the guidelines of the NURBS in-
terpolation giving all the details useful to implement the numerical model.
Successively, in Section 3, various numerical results are presented with the
goal to explore the effectiveness and accuracy of this novel method by com-
paring its performances with those of finite elements already available in the
technical literature and with analytical solutions. In particular, some exact
solutions, which were not yet available in the literature, have been computed
in order to test the numerical solutions and verify the reference values used
by other authors forcomparing their results. Finally, in Section 4, some
concluding remarks and future developments are briefly reported.

2. NURBS representation of plane curved Timoshenko beams

We consider a curved plane beam (see Figure 1) whose centroid line is a
plane curved parametrized by the arc-length s € [0; ¢]. We suppose also that
one of the principal inertia axis and the shear center of the cross-section lie
in the same plane. Let the global reference system be denoted by (O; z1, x2)
and the local one by (o; t, r), t and r being respectively the tangent and the
normal unit vectors to the curve. Moreover, we denote by R the curvature
radius and by (-)’ the derivatives with respect to the arc-length s. With this
notation, the differential form of equilibrium and kinematic compatibility
equations and the constitutive law describing the curved Timoshenko plane
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Figure 1: Plane curved beam: centroid line and reference systems.

beam problem in the local reference system are:

T N
N ——+¢ =0, T 4+ —= +¢q. =0, M —T+m=0, (1)

R R
5:1/_%’ vzw'+%+% x=¢, (2)
N=FEAs, T=GAp, M=EIy. (3)

Here, N, T and M denote the generalized stresses (axial and shear force and
bending moment, see Figure 1 for the definition of positive quantities) and
¢, ¢- and m the generalized external forces per unit length (tangent and ra-
dial forces and distributed couple moments). In the local reference system u
and w are the displacements of the axis line and ¢ the section rotation while
g, v and y denote the generalized strains (axial, shear and curvature bend-
ing). Finally, symbols E, G, A, Ar and I indicate, respectively, the Young’s
modulus, the shear modulus, the cross-section area, the shear reduced cross-
section and the area moment of inertia. The curved beam problem can be
set in an equivalent variational formulation, such as the classical principle of
total potential energy, which is certainly more suitable for a solution strategy
based on finite elements:

1 [ ¢
arg min {5 / (BA* + EIN* + GAry?)ds — / (qru + qpw + mgp)ds} :
0 0

U,W,P
(4)
As a first step in order to discretize (4), we describe the geometry of a
curved beam by means of NURBS interpolation (for a complete and more
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accurate description of this kind of interpolation we refer to specialized
books, [16]).

We say that x has a p-degree NURBS representation when there exist
n € N, control points P; € R?, weights ¢; € R, i = 1...n, and a knot vector,
le.aset BE={0=¢& <& < ... <&uqpp1 = 1} such that, for any € € [0;1]:

x(§) = X Rip()Pi, (5)

where the NURBS basis {R;,(£)} can be expressed as:
_ Bip(£)gi
> i1 Bin(§)gi’

in terms of B-splines bases {B;,(£)} defined by the Cox-De Boor recursive
formula:

Rip(€) (6)

_ 1 if § <6<
Bio€) = { 0 otherwise ¢ (7)
B;,(¢§) = %Bi,p—l(f) T+ fii—if:—l__gilBH-l,p—l(f)' (8)

The so-called knot vector B defines a partition of the parameter space
[0; 1] similar to the classic finite element subdivision. Non-uniform knot
vectors and repeated-knots are the key ingredients of NURBS flexibility and
produce refined geometric descriptions. Weights ¢; related to i-th control
point enlarge the capabilities of the B-splines interpolation allowing also an
exact representation of conic sections.

Among all the properties of NURBS interpolation the most interesting is
the high-degree of continuity. More precisely, each p-th order function is of
class CP~1 i.e. it is continuous with its derivatives up to the (p —1)-th order,
and in particular it is smooth across the boundaries. However, if necessary,
continuity degree can also be lowered by using repeated knots.

The main idea of the isogeometric approach is to exactly describe the
geometry of the problem by NURBS interpolation and to use the same in-
terpolating basis to represent the generalized displacements:

w() =Y Rip@ui  w@m ) Rip(&wi Q) = Y Ripl€)es
=1 =1 =1 (9)
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by means of control points u;, w;, and ;.
Using the dot to denote the derivatives with respect to ¢ and denoting
by J the Jacobian of the transformation, we have:

J3
J: G — 2 '2, R: T a1 10
§=\/25 + 235 T (10)

thus, the generalized strains take the form:

X = % (11)

By using the position:

1 Eet1
e = = / (BA + EIN* + GApy?) JdE,
2 Je.
ton (12)
Ae = / (qu + gow + me) JdE,
&e

problem (4) can now be discretized as:

arg min {Z Te — )\e} . (13)
=1

u,w,p e

where n, is the number of subdivision of the parameter space. Imposing (13)
produces a linear system of equations where the unknowns are the control
points u;, w; € ;.

To set up the stiffness matrix and the load vector it is necessary to eval-
uate the integrals: this can be performed numerically by using the Gauss
quadrature rule, even if the integrand functions are somewhat different from
polynomials. By referring to [3] for some guidelines about the number of
Gauss points to be used for an efficient quadrature, here we resort to a sim-
ple rule suggested by some numerical tests and validated by the numerical
results presented in the next section. This is also useful to prevent locking
problems such as described in [15].

3. Numerical results

In this section we present a series of numerical tests devoted to explore
the performances of the proposed isogeometric finite element family. Their
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3.1 Tests devoted to calibrate the numerical model 6

results are compared with analytical solution, classical Lagrangian compati-
ble elements, and some special (i.e. mixed or hybrid) finite elements reported
in technical literature.

Comparison with reference solutions is particularly devoted to:

e asses the convergence rate of the proposed element also by compari-
son with classical elements such as those belonging to the Lagrangian
family;

e test the influence of locking phenomena (if any);

e check these results against those produced by special elements partic-
ularly effective for curved beams;

e explore influence of the Gauss point number on the numerical results;

e make a critical analysis of the results produced by the NURBS element
family devoted to select the most effective. order.

All the numerical tests are built-by using an ad hoc developed code which
is essentially based on NURBS algorithms reported in [16] and coded in a
NURBS library and on the GeoPDEg library of [17].

3.1. Tests devoted to calibrate the numerical model

Following the guidelines developed in [3] and bearing in mind the obser-
vation reported in [15], we consider the simple numerical tests reported in
Figure 2. For both tests a reference solution is easy to evaluate. Further-
more, the first is a pure bending problem and the second a pure extensional
problem. So they can use to highlight possible locking problems.

First, we consider the cantilever circular arch sketched in Figure 2(a). For
this case, where the only generalized stress different from zero is the bending
moment, the reference solution can be easily computed. In particular the
free end vertical displacement is:

W R?
= — 14
where symbols which are not shown in Figure 2 are the Young’s modulus, £,
and the area moment of inertia of the cross-section, I.
Table 1 reports the free end vertical displacement by keeping fixed the
number of elements, n, = 8, and varying both the NURBS order p and the
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Figure 2: Sketch of cantilever circular arch subjected to a couple at the free end and of
ring under internal pressure.

Gauss points number n, in the range p, ..., 4p. Reference value is obtained
for a rectangular cross-section with thickness 6=0.2 m, depth h=0.01 m, and
unitary values for W, R, E, i.e.. W=1 Nm, R=1 m, E=1 GPa.

These results suggest that a number of Gauss points n, equal to the
NURBS order p is the best choice, since it furnishes accurate results with
a low computational cost. Finally, we noticed that when n, < p, i.e. the
number of Gauss points is less than-the NURBS order, some ill-conditioning
of the stiffness matrix occurs, in particular for higher values of p. Therefore,
for the sake of conciseness, only values of n, > p have been shown in Table 1.
Moreover, unless otherwise noticed, the choice n, = p has been adopted for
all tests, whose results are shown in the sequel.

Table 1: Cantilever circular arch subjected to a couple at the free end: vertical displace-
ment of the free end by varying the NURBS order p and the number of Gauss points n,
(ne = 8, reference value of the vertical displacement f =6 cm).

Ng
P p+1 2p 4p
5.9975 4.7793 4.7806 4.7806
5.9996 5.9994 5.9994 5.9994
5.9999 5.9999 5.9999 5.9999
5.9999 5.9999 5.9999 5.9999

T W N
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3.1 Tests devoted to calibrate the numerical model 8

Table 2 is again referred to the test reported in Figure 2(a) and reports
the numerical solution for the vertical displacement f of the free end; this
time it is either the number of elements, n., or the NURBS order, p, which is
going to be increased. Besides the accuracy of the results, it is worth noticing
that the computational cost is essentially linked to the number of degrees of
freedom (dofs) of the problem. Since n. elements of order p give 3(n. + p)
dofs, it is interesting to compare results having the same computational cost,
i.,e. by keeping fixed the value of n. + p. We point out, to this end, that
increasing the order p produces better results than increasing n..

Table 2: Cantilever circular arch subjected to a couple at the free end: vertical displace-
ment f of the free end for different number of elements n. and NURBS order p (reference
value f =6 cm). The adopted number of Gauss points is, in all shown cases, ngy = p.

p
Ne 2 3 4 o

4 5.9565 5.9852- 5:9991 5.9999
8 5.9975 5.9996 5.9999 5.9999
16 5.9998 5.9999. 5.9999 5.9999
32 5.9999 5.9999 °5.9999 5.9999

Keeping in mind the observations reported in [15], we consider for the
same test the vertical displacement f as a function of the R/h ratio and
the NURBS order p, but keeping fixed the number of elements: in this case
ne. = 8, see Table 3. We note that the results for low NURBS order p are
poor when the R/h ratio increases and this is a symptom of the occurrence
of locking. To better investigate this phenomenon, the behaviour of 2nd- and
3rd-order NURBS for the case R/h = 10* and R/h = 10° has been studied
by increasing n.. From Table 4 we deduce that also in this extreme cases,
convergence is recovered by simply increasing n..

As a second test we choose the ring under internal pressure depicted in
Figure 2(b). In this case, the only non-zero generalized stress component is
the axial force N. Thanks to the polar symmetry it is straightforward to
evaluate the reference solution. In particular, the axial force N, and the
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3.1 Tests devoted to calibrate the numerical model 9

Table 3: Cantilever circular arch subjected to a couple at the free end: vertical displace-
ment f of the free end, scaled by the reference solution, varying R/h ratio and NURBS
order p (n, = 8).

R/h 2 3 1 5

102 0.99958 0.99993 0.99998 0.99998
103 0.98815 0.99660 0.99995 0.99998
10*  0.49402 0.86520 0,99702 0.99997
10°  0.00968 0.06190 0.98163 0.99912

Table 4: Cantilever circular arch subjected to a couple at the free end: vertical dis-
placement f of the free, scaled by the reference solution, varying n. for R/h = 10%. and
R/h=10° (p =2 and p = 3; ny, = p).

R/h  ne 2 3
16 0.98163 0.99500

104 32 0.99910 0.99985
64 0.99997 0.99998
16°.0.37252 0.79427

105 32 0.97168 0.99198
64 0.99902 0.99838

radial displacement w,¢ are given by:

Nref = qR7
W qR? (15)
ref — EA

In Table 5 the radial displacement w and the axial force N are reported
versus p and n. (the number of elements being referred to a quarter of the
whole ring). Both values of w and N are scaled by the reference solution.
The results are relative to the following set of data: ¢ = 1 kN/m, R = 1 m,
E =1GPaand A=1cm?

First, also for this test the influence of the number of Gauss points has
been investigated. The results confirm that n, = p is again the best choice,
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3.2 Cantilever circular arch under shear load at the free end 10

even though they are not reported here for space-saving reasons. Successively,
the accuracy of the results has been checked by computing N and w (properly
scaled by the reference solutions) as a function of the number of elements,
ne, and of the NURBS order, p.

Again, as in the previous test, the conclusion is that the effect of the
so-called p-refinement (i.e. increasing p) produces better results than the h-
refinement (corresponding to increasing the number of elements, n.). Indeed
a relatively poor mesh can provide accurate results as long as p is suitably
increased.

Table 5: Ring under internal pressure: radial displacement w and axial force N (both
scaled for the reference solution) varying the number of element n. and NURBS order p.

P

2 3 4 b}

e w/wref N/Nrof w/wref N/Nref w/wref N/Nrof w/wref N/Nref

2 0.99816 1.0035 1.0000  1.0000 0.99824 1.0000 1.0000 1.0000
4 099464 1.0012 0.99981 1.0000 0.99999 1.0000 1.0000 1.0000
8 0.99601 1.0002 1.0000  1.0000.- 1.0000  1.0000 1.0000 1.0000
16 0.99971 1.0000 1.0000 ~+1:0000 1.0000  1.0000 1.0000 1.0000
32 0.99998 1.0000 1.0000 = 1.0000 1.0000  1.0000 1.0000 1.0000

We point out that convergence is not uniform: this comes out by the
k-refinement scheme implemented in our code for obtaining the numerical
results. This kind of refinement, which is typical of isogeometric analysis,
is different from the h- and p-refinement schemes of classical finite elements;
see [1] and [18] for details.

Remembering the foregoing test and the loss of accuracy for small values
of n. and p, we also control the accuracy when the R/h ratio increases.
Table 6 reports the radial displacement w and the axial force N, both scaled
for the respective reference values, for the 2nd-order NURBS and n, = 4,
when the R/h ratio varies in the range 102, ...,105. In this case there is no
loss of accuracy, even for high values of R/h.

3.2. Cantilever circular arch under shear load at the free end
As a third test we consider the cantilever circular arch, see Figure 3,
loaded with a vertical unit force P (in N) acting on the free end. We further
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3.2 Cantilever circular arch under shear load at the free end 11

Table 6: Ring under internal pressure: radial displacement w and axial force N (both
scaled for the reference solution) at varying R/h values for NURBS order p = 2 (n, = 4).

R/h
10? 10° 10% 10°
w/wrer  0.99464  0.99429  0.99429 0.99426
N/N,s 1.0012 1.0013 1.0013  1.0013

assume the values R = 2 m for the arc radius, £ = 80 GPa for the Young’s
modulus, ¥ = 0.2 for the Poisson’s ratio. Finally, a rectangular cross-section
with tickness b = 0.2 m and depth A = 0.01 m is considered.

iP
\wm

4 R {

——

i
t
Figure 3: Sketch of the cantilever arch under shear load.

Also in this case, reference solution can easily be calculated and written
as:

u=—P(ci(siny + ¢ costh) + cosine)), w = Peyosineg, ¢ = —Pegsin,
(16)
where u, w, and ¢ are the tangential displacement, the radial displacement
and the cross-section rotation, respectively, expressed in terms of the angle
1 = s/R (see again Figure 3) and of the following compliance coefficients:

_1(R_ R R (R B _ R
“=5\EA"Ga;, "TEI) T \ga, "EI) T EI
(17)
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3.2 Cantilever circular arch under shear load at the free end 12

Generalized stresses N, T" and M and strain energy ® = %Pw|7r/2, assume
the values:

™

1
N = —Pcos, T = Psint, M = —PRcos 1), P = 5132(;15.
(18)
In Table 7 the vertical displacement f = w|,/ of the free end as a function of
the NURBS order p and the number of elements n,. is reported. Even in this
case, if we compare analyses performed with the same computational cost,

i.e. with the same value of n. + p, it comes out that the higher the degree p,
the better the result is.

Table 7: Cantilever arch under shear load: vertical displacement f of the free end as a
function of the element number n, and NURBS order p (reference value=4.7124 mm).

p
Ne 2 3 4 Y

1 4.4665 4.7059 4.7120 - 4.7124
2 3.8229 3,4257 4.6090 4.7080
4 3.8794 4.5343 . 4.7059 4.7122
8 4.6329 4.7076 -4.7124 4.7124
16 4.7108 1 4.7124 4.7124 4.7124
32 40124 47124 4.7124 4.7124

Table 8 reports the only non-zero reactions at the clamped end: the ver-
tical force V4 and bending moment M, for various NURBS order p and
element number n.. Naturally, since our NURBS elements are based on a
displacement-type compatible formulation, it is expected that stress quan-
tities exhibit relatively poor performances; nonetheless good results can be
obtained even with few elements by suitably increasing the NURBS order p.

In order to compare the performances of NURBS to those of classical
Lagrangian interpolation, we report in Table 9 the vertical displacement of
the free end f and the reactions at the clamped end V, and M4 for different
order p and number of element n.. We notice the superior computational
performances of NURBS interpolation with reference to the Lagrangian one.
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3.3 Incomplete ring under vertical load

13

Table 8: Cantilever arch under shear load: reactions at the clamped end vs. the element

number n, and NURBS order p.

P TNe VA [N] MA [Nm]
2 16 4.1624  2.0008
32 17861  2.0001
64 1.1960  2.0000
3 8 0.78097 1.9992
16 0.97405 1.9999
32 0.99680 2.0000
64 0.99960 2.0000
4 4 1.1809  1.9945
8 1.0044  2.0000
16 1.0001  2.0000
32 1.0000 +2.0000
64 1.0000 2.0000
5 2 1.5499 ©1.9861
4 1.0041 2.0015
8 0.99903 2.0000
16 ..0.99997 2.0000
32 ~1.0000  2.0000
64 1.0000  2.0000
analytical” 1 2

3.3. Incomplete ring under vertical load

This numerical test was chosen since it allows a comparison with a large
number of finite elements reported in technical literature. According to [19]
and later [20], the problem sketched in Figure 4 was analyzed using these
data: load P = 1 lb; radius R = 2.935 in; Young’s modulus F = 1.05 x 107
psi; Poisson’s ratio v = 0.3; rectangular cross-section with thickness b =
1.2 in and depth A = 0.125 in.

For this test we have also computed the analytical solution by integrating
the system of six linear first-order ODEs resulting from (1)—(3) and properly
enforcing the boundary conditions (BCs), account taken of symmetry with
reference to the vertical axis. The generalized stresses N, T', M are given by
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3.3 Incomplete ring under vertical load

14

Table 9: Cantilever arch under shear load: vertical displacement f of the free end and
reaction components V4 and M4 at the clamped end as a function of the element number
n. and of the order of Lagrangian interpolation py,.

DL ne f[mm] V4 [N] My [Nm]
2 16 4.1337  320.22  1.6637
32 4.6685 96.007  1.9737
64 4.7098  25.068  1.9984
3 8 4.7087 0.83102 2.0124
16 4.7116  0.97569 2.0026
32 4.7122  0.99862 2.0005
64 4.7124  0.99994 2.0001
4 4 4.7124 85569  2.0116
8 4.7124  0.18327 2.0003
16 4.7124  0.94724 ~.2.0000
32 4.7124  0.99669. 2.0000
64 4.7124 -0.99979 2.0000
5 2 47126 0.29883 1.9959
4 4.7124 1.0093  1.9999
8 4.7124 ~ 1.0003  2.0000
16 4.7124,  1.0000  2.0000
32447124 1.0000  2.0000
64 4.7124  1.0000  2.0000
analytical 4.7124 1 2

(see again Figure 4 for the definition of the angle 1):

N =A; cosyp + Agsin,
T =Aycosy) — Apsin,
M :AQR SiIl’gD — AlR(]_ — COS 'QD) + Ag,

(19)

while the tangential and radial displacement and the cross-section rotation
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Figure 4: Sketch of incomplete ring under vertical load.

are:

u

Aqer (¢ costh +sin)) — cosin®) — ez R(siny — )]+

Aslarysing — ¢z R(1L= cosv)] +-Ascs(siny — 1),

w =As[ci (Y costp —sine) + exsiny — c3Rsin]— (20)
Aile1ysiny — esR(1 = cos )] — Ases(1 — cos ),

© =Ajc3(siny) — )+ Ascz(1 — cos ) + Ascsth/R.

In (20) the same compliance coefficients ¢y, cs, c3 defined in (17) are used as
a short-hand notation, while constants A;, As and A3 appearing in (19)—(20)
assume these values:

2P[ci(a?/R) — c3(1 — cos )] sina
 4ey(a?/R) — 2¢5(1 — cos 2a) + 2asin 2a(c1 /R — ¢ /R + ¢3)’
A _ 2P[ci(a/ R)(avcos a +sin ) — cp(a/R) sina — ey sin a(sina — )]
7 4¢1(a?/R) — 2¢5(1 — cos 2a) + 2asin2a(c1 /R — ca/R+ ¢3)
A= 2P[cia(l — cosa — asina) + (¢1 — ¢2) sina(cos av — 1))]
> 4e1(a?/R) — 2¢3(1 — cos 2a) + 2asin 20(c1 /R — ¢y /R + ¢3)

A =

(21)

Setting o = 77 /8, for the given data the vertical displacement f of the
incomplete ring middle point results in f = 1.063161841 x 10® when all strain
contributions are taken into account; on the other hand, if shear deforma-
tion is discarded f|,—o = 1.059622233 x 10, while if both extensional and
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3.4 Clamped-clamped semi-circular arch under distributed load 16

shear deformation are disregarded it results f|,—p.—0 = 1.058121422 x 10°.
The analytic solution provided by [19], f = 1.06364 x 103, does not seem
compatible with the assumed geometric and mechanical data.

Table 10 reports the vertical displacement f under the unitary load vary-
ing the NURBS order p and the numbers of element n. on one-half of the
structure. In the same Table are reported both the analytical solution and
the results obtained in [19] and [20] with several type of finite elements. In
order to simplify the comparison, a column with the number of nodes n,
is also reported. The Table shows the good performances of the NURBS
element family.

Table 10: Incomplete ring under vertical load: middle point vertical displacement f.

D ne n, fx1073 Formulation Geometry
8 10 0.99727 compatibility exact
2 16 18 1.06201 ” 7

32 34 1.06314 X K
8§ 11 1.05863 K 7
3 16 19 1.06311 K "
32 35 1.06316 K K
8 12 1.06301 K K
4 16 20+ 1.06316 K 7
3236 ~ 1.06316 K 7
8 13. 1.06315 K 7

5 16 21 ~1.06316 7 7
32 37 1.06316 7 7
analytical — — 1.06316 — —
[19] 8 16 1.05641 compatibility exact
[19] 8 16 1.05641 hybrid exact
[19] 8 16 1.05619 mixed exact
[20] 1 3 1.07069  equilibrium  cubic parametric
[20] 2 6 1.06384  equilibrium  cubic parametric

3.4. Clamped-clamped semi-circular arch under distributed load

Now, we consider the clamped-clamped semi-circular arch depicted in
Figure 5. This time, we assume R = 1 m, a square cross-section with side
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3.4 Clamped-clamped semi-circular arch under distributed load 17

b = 0.1 m, Young’s modulus £ = 1 GPa, Poisson’s ratio v = 0 and, finally,
a load ¢ = 1 N/m. The analytical solution is provided again by integrating
the system (1)—(3), properly enforcing BCs and symmetry with reference
to the vertical axis. In this case, by taking into account that the load is
uniformly distributed per unit of projection, it results: ¢, = —¢siny cosvy
and ¢, = ¢sin?¢. The generalized stresses N, T, M and displacements u, w
and ¢ are, respectively, given by:

N =A,sint) — qR cos? ),
T =Ascos) + qRcossin ), (22)
M =AyRsint + Az — qR?*/2(1 + 1/2 cos 2¢),
and
u =Asc1tpsin — c3R(1 — cos )] — Ases(¢ — singh )+
Assin ) — qR[sin 2¢0(2/3¢; — 1/6¢2 — 1/8¢sR) — e R /2],
w =As[c1(1 costh — sint)) + cosin) — ez Rsin ] — Azes(1 — cos )+
Ascosp + qRlcy — 1/2¢ + 1/2¢3R — cos2¢(1/3¢; + 1/6¢2 — 1/4c3R)],

o =A31/Rez — Ascz(cosp — 1) — qRes(v/2 + 1/8sin 24)).
(23)

As before, in (23) the compliance coefficients ¢y, ¢a, ¢3 defined in (17) have
been used for brevity, while constants Ay, A3 and As appearing in (22)—(23)
assume the values:

_ 8mq(c1 — c2) + 3mqRes

A, =
> 672(c1/R) — 24cs
2 _ 2
A, :qR B 16mqR(cy — ¢o) + 6mgR 03’ (24)
2 6m3(c1/R) — 24mes
2qR(c; — ) 3qR%c3
A5 —_ - .
3 4

For the given data, the vertical displacement of the arch middle point,
evaluated in exact form with a Computer Algebra System is vo = 1.018188371 mm
when all strain contribution are taken into account; if shear deformation is
discarded ve|y—p = 0.982381687 mm, while if both extensional and shear
deformation are disregarded it results ve|y—p.e—0 = 0.817230149 mm. The
reactions at point A are instead: Hs = 0.554438 N, V4 = 1.000000 N and
M4 = 0.102966 Nm.
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3.5 Three-hinged lancet arch under self weight 18

We point out that some results of the analytical solution provided by [20],
i.e. vo = 1.02086 mm, H4 = 0.554915 N, M4 = 0.103980 Nm differ from the
analytical solution presented above.

v

Figure 5: Sketch of the clamped-clamped semi-circular arch under distributed load.

Table 11 reports the values of the vertical displacement v of the point
C and the reactions at the clamped end A: the horizontal, H 4, and vertical,
V4, force components and bending moment, M4, for different NURBS order
p and number of elements n, (referred to one half of the arch), along with our
analytical values. In the same table, the results obtained by [20] neglecting
transverse shear deformation are reported.

We remark the high accuracy of our results, for both displacements and
generalized stresses even.if convergence rate for stresses is slower and a large
number of elements or a higher NURBS degree is required to achieve a good
quality approximation.

3.5. Three-hinged lancet arch under self weight

The three-hinged pointed arch reported in Figure 6 is taken into con-
sideration with the following set of data: £ =1 GPa, v = 0.2, R = 1 m,
b=02m, h=0.0l mand go =1 kN/m.

As before, the analytical solution has been computed by integrating (1)—
(3) and imposing the relative boundary and symmetry conditions. In partic-
ular at the arch tip, i.e. for & = 7/4, the following BCs, which involve the
bending moment M, the horizontal displacement h, and the vertical compo-
nent of the internal force V', must be met:

M|y =0; hlo =ulasinat+w|,cosa=0; V|, = N|,cosa—T|,sina = 0.

Since the load is uniformly distributed per unit of arc-length (and not per
unit of projection), it results ¢ = —qocos®y and ¢, = gosint. Then, the
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3.5 Three-hinged lancet arch under self weight 19

Table 11: Clamped-clamped semi-circular arch under distributed load: middle vertical
displacement and clamp reactions.

D ne vo [mm] Hy [N] Vi [N] My [Nm]
2 16 1.01812 0.728620 0.932677 0.102130
32 1.01819 0.598888 0.981880 0.102778
3 8 1.01811 0.571273 0.968679 0.103210
16 1.01819 0.556235 0.996308 0.102981
32 1.01819 0.554667 0.995452 0.102968
4 8§ 1.01819 0.553398 1.00105  0.102945
16 1.01819 0.554405 1.00003  0.102966
32 1.01819 0.554437 1.00000  0.102966
5 8§ 1.01819 0.554595 0.999814 0.102966
16 1.01819 0.554440 0.999995 © 0.102966
32 1.01819 0.554438 1.000000 0.102966

analytical —  1.01819 0.554438 1 0.102966
[20] 1 1.02135 0:555009. 1.0 0.104159
[20] 2 9.9091 ~0.500476 - 1.0 0.092636
[20] 4 1.00177 0.540775 1.0 0.101238

generalized stresses N, T', M are given by:
N = Aj cosy + Ay sin + qoRip cos 1,

T =Aycosy — Ay siny — qoRY sin 1, (25)
M = A R(cosy) — 1) + AyRsint) + qoR?*(¢ cos ) — sin ),
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3.5 Three-hinged lancet arch under self weight 20

Figure 6: Sketch of the three-hinged lancet arch under self weight.

while displacements and cross-section rotation are:

u=Aj[c1¢p costh + (¢c1 — ca — c3R) sin ) +c3RY| 4 Ay cos )+
Aslerpsinyy + cgR(cosp — 1))+ AgR(cos — 1)+
Qoler R(1?/2) costp + (¢1 — ca) R(cos ) + 20 sine)) /4—
c3R?*(2 cos ) + hsina)],
w=A[—c1¢siny + c3R(1 —cos))] — Ay sinp+
Asley (1 cosip —sine)) 4 cosinyy — csRsin ] — AgRsin ¢+
qol(ca — 1) R(2thcostp —sin ) /4 — 1 R(4? /2) sin g+
5 R¥(sin ) — bos )],
w =Ajcs(siny — 1Y) + Ases(1 — cos ) + Ag + qocsR(2 cos ) + 1 sin ).
(26)
In (26) the compliance coefficients c¢;, ¢, c¢3 defined in (17) have been

used to simplify notation, while constants Ay, Ay, Ay and Ag appearing
in (25)—(26) assume these values:

A; = — qRa,
Ay =qoR(1 — o/ sinav),
Ay =qoR[2¢csR + (c2 — ¢1) /4],
Ag = — qo[cra?/sin? a + (¢ — ¢3)(1/2cos o — a/ tan o) —
(c1 + co)a/(2sina) + csR(1 + o + a/ tana — a/ sin a + cos a)].
(27)
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For the given data, the vertical displacement of the arch middle point,
evaluated in exact form with a Computer Algebra System is vo = 5.47802398 mm
when all strain contribution are taken into account. The reactions at point
A are instead: H4 = 110.72073454 N, V, = 785.39816340 N.

Table 12 reports the values of the vertical displacement v and the reac-
tions at support A, the horizontal, H 4, and the vertical, V, force components
for different NURBS order p and number of element n. (only one half of the
arch was considered due to the symmetry).

Table 12: Three-hinged lancet arch under self weight: tip displacement and reaction forces
at the support A.

e ve [mm]  Ha [KN] Vs [KN]
32 5.47801 0.314991  0.790041
3 16 5.47800 0.146215 0.771868

32 547802 0.114962 0.783706

8 547802 0.115145 0.782591
4 16 5.47802  0.110882 0.785265
32 547802 0.110727 0.785391
§ 547302 ~ 0.110620 0.785651

NIk

S 16 _ 5.47802 0.110723 0.785402
32 5.47802 0.110721 0.785398
analytical ~— 547802 0.110721 0.785398

4. Concluding remarks

In this paper, NURBS finite elements for the analysis of plane curved
beams have been investigated. Numerical results show, for this family of
finite elements, good performances. In particular, accuracy and convergence
ratio by varying both the number of elements and the NURBS order have
been thoroughly studied. The influence of the number of Gauss points on the
results was considered too, and a simple rule was proposed, which consists
of using p Gauss points to integrate the stiffness matrix corresponding to
a p-th order NURBS finite element. Besides numerical results, some new
analytical solutions have been provided in order to expand those available in
the technical literature. This paper has surely given some useful guidelines
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about the isogeometric approach for plane curved beams but there are a few
aspects which, in our opinion, deserve further extensions. What we consider
the most interesting ones are listed below:

1.

The first extension descends from observing the generalized stress re-
sults produced by the numerical model. Since they are clearly less ac-
curate than the corresponding displacements, a possible improvement
could be found in the framework of mixed formulations, like those pro-
posed in [21], or in special stress recovery techniques (see [22]).
NURBS interpolation is somewhat different from polynomial interpo-
lation, so that using the same integration rules, (i.e. standard Gauss
formulae which rigorously apply only to polynomials) might not be the
best way to obtain accurate results or the most suitable from the point
of view of computational cost. Different solutions have been proposed,
for example, in [23]. For these reasons, we think that this issue would
require additional investigations.

Some possible applications of the Timoshenko beam model and non-
classical applications of 1D beam-like model are worth mentioning.
Among them there is the analysis of beams made of composite and func-
tionally graded materials where proper relations for 1D elastic proper-
ties are established ([24]); the extension of the Timoshenko beam model
to the thermal problems for beams within the framework of two tem-
perature model ([25]); the description of particular phenomena like a
line tension of phase interfaces in 2D structures such as a martensitic
film ([26]).

The promising results obtained for plane curved beams suggest an
extension to space-curved beams and also to more complicated two-
dimensional structures such as shells. Moreover, extensions to inves-
tigate problems where both geometric and material nonlinearities can
occur ([27]), or to linear and non-linear structural dynamics ([28], [29])
and buckling ([30], [31]) could be achieved, as well as the search for
fundamental solutions through Green’s operator ([32]).

Some applications require considering continuum models which are
richer than the standard Cauchy one: it would be possible then trying
to extend the proposed isogeometric approach to second and higher-
order continua (see [33], [34], [35], [36]).

. A foreseable application is the study of larger systems made of many

NURBS special elements, for example for the analysis of damage me-
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chanics in the framework of structural health monitoring (see [37],
[38], [39], [40]) or along the statistical approach developed for Hookean
spring networks (see [41], [42], [43]).

Finally, an interesting application would involve tackling composite or
porous ([44]) or fibrous materials ([45]), even in cases when complex
physical problems like bio-medical ones whose evolution is governed
by integro-differential operators and material properties are subject to
sudden changes ([46], [47], [48]). In all these cases it is believed that
the ability of properly modulating the regularity of the basis function
through the use of NURBS could make more tractable such problems.
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