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Abstract 

This paper presents two alternative approaches for the study of reinforced concrete beams under 

blast loads. In the first approach, the beam is modeled by means of Euler-Bernoulli’s theory and its 

elastic-plastic behavior is expressed through a new nonlinear relationship between bending moment 

and curvature. In the second approach, instead, the beam is idealized as a single degree of freedom 

system. The effects of strain rate, which are of paramount relevance in blast problems, are taken 

into consideration by introducing time-variable coefficients into the equations of motion derived 

from the two models. The latter are employed to assess the time-history of the maximum deflection 

of a simply supported beam subjected to a uniformly distributed blast load. By comparing the 

theoretical results with some experimental findings available in literature and with the solution 

obtained from a commercial finite element software, it is found that the first approach is capable of 
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accurately evaluating the maximum deflection of the beam at failure; on the other hand, the second 

approach provides a less precise prediction, however it is simpler to implement in practice because 

it requires less computational effort. 

Keywords: Reinforced concrete beams; blast loads; continuous beam model; SDOF model; strain 

rate; deflection time-history. 

1.  Introduction 

The effects of explosions on structures can be tremendously dangerous, since they can cause severe 

damage to buildings and, consequently, loss of lives. Explosions can be ascribed to military events 

or civilian accidents, like detonations of bombs or other weapons, reactions of certain chemicals, 

bursts of gas cylinders, and so on. Since the loads due to blast overpressure can be very intense, 

structural elements should be endowed with enough strength and, above all, ductility to resist such 

loads. In this paper, the attention is focused on under-reinforced concrete beams, which generally 

exhibit flexural failure. 

Experimental results of structural elements subjected to blast loads are hardly found in literature. 

This is due not only to national security reasons (the spread of knowledge on this topic is often 

limited by Countries for defense purposes), but also to the fact that experiments of this kind are 

costly and difficult to carry out. Fortunately, there are some remarkable exceptions. For instance, 

Hudson and Darwin [1] damaged several reinforced concrete beams using explosives and, after 

strengthening some of them with carbon fiber reinforced polymers, examined if the repaired beams 

exhibited enhanced flexural capacity with respect to the unrepaired ones. Magnusson and Hallgren 

[2-5] subjected many reinforced concrete beams made of normal or high strength concrete, with or 

without steel fibers, to air blast loading; they discovered that the beams with a high reinforcement 

ratio and without steel fibers failed in shear, while those with a low reinforcement ratio failed in 

flexure. It is important to mention also the experimental works by Remennikov and Kaewunruen 

[6], Fujikake et al. [7] and Tachibana et al. [8], in which reinforced concrete beams under impact 

loads were investigated, and the contributions by Alves and Jones [9], Lawver et al. [10] and Nassr 
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et al. [11], who analyzed the behavior of steel members under impact or blast loads; though quite 

interesting, the results of these studies are not considered in the present paper, since they are not 

relevant to the scope of this work. 

The determination of the dynamic response of a reinforced concrete beam under blast loads is not 

an easy task, partly because of the complexity in modeling the structural element (considering that 

the behavior of the beam under such loads is generally nonlinear and that the properties of the 

materials are functions of the strain rate) and partly because of the difficulty in defining precisely 

the time variation and the space distribution of the load. Therefore, different simplified methods 

have been proposed so far. The most elementary and common approach consists in schematizing 

the beam with a single degree of freedom (SDOF) system [12-15,11]; this approach simplifies both 

the theoretical formulation of the problem and the calculations, but it usually requires the 

introduction of empirical formulae and, in addition, it does not provide full information on the beam 

response. More advanced methods are based on multi-degree of freedom (MDOF) discretization, 

whereby the beam is divided into finite elements along its length; in the most sophisticated 

formulations, each element is also subdivided into fibers along its depth, in order to take into 

account the variation of strain rate over the cross-section [7,16]. 

In this paper, a continuous model for the reinforced concrete beam (that is referred to as 

“continuous beam model” in the following) is proposed, in which the inelastic behavior of the beam 

is represented by a smooth relationship between bending moment and curvature and in which the 

effects of strain rate are taken into account, as described in Section 2. Furthermore, an idealization 

of the beam through an equivalent SDOF system is presented in Section 3, where again strain rate 

effects are considered. The continuous beam model and the SDOF model are employed in Section 4 

to derive the time-history of the maximum deflection of a simply supported reinforced concrete 

beam under blast loads; the validity of these two theoretical approaches is checked by comparing 

the results they produce with experimental data available in literature and with the solution given by 

a commercial finite element code. Finally, some concluding remarks are provided in Section 5. 



Please cite this document as: G. Carta, F. Stochino”Theoretical models to predict the flexural failure of 
reinforced concrete beams under blast loads” Engineering Structures, Volume 49, April 2013, Pages 306-315  

http://dx.doi.org/10.1016/j.engstruct.2012.11.008 

 4

2.  Continuous beam model 

2.1  Equation of motion of beams under distributed loads 

In order to model a reinforced concrete (RC) beam before collapse, Euler-Bernoulli’s theory is 

adopted, which assumes that plane sections remain plane and perpendicular to the beam axis after 

deformation. An infinitesimal segment of the beam in its deformed configuration is represented in 

Fig. 1, where v denotes transverse displacements, M is the bending moment, V is the shear force and 

q is the transverse distributed load. All these quantities are generally functions of both the 

undeformed axis coordinate x and time t. 

 

 

 

 

 

 

 

 

 

Fig. 1: Internal and external forces acting on an infinitesimal element of the beam. 

 

Equilibrium conditions require that [17,§ 3.1.1] 
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for an under-reinforced concrete beam a bilinear relationship* between bending moment and 

curvature is commonly assumed. Though quite convenient from a computational point of view, this 

relationship hardly mimics the real behavior of the beam, which rarely exhibits a sharp transition 

between the elastic and the plastic deformation regimes. Therefore, in this work a smoother 

relationship between the bending moment M and the curvature  is introduced, which reads 

 
2

2tanh tanh
          

K K vM M M
M M x

. (2) 

The hyperbolic tangent function is used in Eq. (2) because it does not present any slope 

discontinuity and is capable of fitting well a bilinear function by a proper choice of its coefficients. 

The parameter M  and K  appearing in Eq. (2), which represent the equivalent ultimate bending 

moment and the initial flexural rigidity of the beam respectively, depend on the sectional and 

constitutive properties of the beam (as illustrated in more detail in Subsection 2.2). The minus sign 

in front of the right-hand side term takes into account that a positive bending moment (which, 

conventionally, causes compression in the top fibers and tension in the bottom ones) produces a 

negative curvature in the reference system chosen in Fig. 1. It should be observed that the right-

hand side term of Eq. (2) is obtained by assuming small deformations and rotations in the beam. 

The introduction of a unique relation between bending moment and curvature also allows to use a 

single equation of motion, without the need to split Eq. (1) into one equation for the elastic range 

and another one for the elastic-plastic range, as instead required if a bilinear relationship is 

considered. Moreover, unloading can be ignored in dynamic problems concerning explosions, since 

the maximum response of the beam to blast loads is usually found before unloading occurs [18].† 

By substituting Eq. (2) into Eq. (1), the following differential equation of motion in the only 

unknown v is derived: 

                                                
* A more sophisticated approach would be to adopt a trilinear relationship between bending moment and curvature, 
which would take into account also the initial state before concrete cracking occurs. Here this initial state is not 
considered, since the tensile strength of concrete will be neglected, as stated in Subsection 2.2. 
† This is the reason why damping has been neglected from the formulation. 
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. (3) 

2.2  Neutral axis depth and bending moment at the yield and ultimate states 

The parameters M  and K  appearing in Eqs. (2) and (3) can be determined from the values of the 

neutral axis depth and of the bending moment at the yield and ultimate states, as it will be explained 

in the following. 

First of all, the constitutive properties of the materials of which the RC beam is made should be 

specified. They are extracted from the fib Bulletin n. 55 [19]. In particular, the uniaxial stress-strain 

relation of concrete is given by [19,§ 5.1.8.1] 

  
 

2
c c1 c c1

c cm c c,lim
c c1

/ / for
1 2 /
   

  
 

 
 

  
kf

k
, (4) 

where c (<0) and c (<0) are concrete compressive stress and strain, respectively, while fcm, c1, 

c,lim and k are quantities that depend on the concrete grade [19,Table 5.1-8]. The compressive 

stress-strain diagram of concrete for a generic concrete grade is shown in Fig. 2a. It should be 

pointed out that the tensile strength of concrete is neglected. 

The uniaxial behavior of reinforcing steel - both in tension and in compression - is approximated by 

an elastic - perfectly plastic diagram, as shown in Fig. 2b [19,§ 5.2.9]. In this figure, Es denotes the 

Young’s modulus of steel, fyk indicates its yield strength and sy stands for its yield strain. 
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Fig. 2: Stress-strain diagrams for concrete (a) and reinforcing steel (b) adopted in this work. 

 

It is assumed that the yield state of the beam is reached as soon as the stress in the tensile 

reinforcement s equals the yield strength fyk. The neutral axis depth at the yield state, which is 

denoted by xy, can be obtained by imposing translational equilibrium. By referring to Fig. 3, where 

a doubly reinforced concrete beam is considered, translational equilibrium requires that the 

following equation be fulfilled at each instant of time: 

 
y

c ss ss yk s
0
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x

b y A f A . (5) 

Here the subscripts “s” and “ss” are appended to quantities corresponding to tensile and 

compressive reinforcements, respectively, while the subscript “c” refers to concrete. The meanings 

of all the geometric quantities relative to the beam cross-section can be inferred from Fig. 3a. By 

substituting into Eq. (5) the expression of c given by Eq. (4) and by using the linear strain diagram 

plotted in Fig. 3c, Eq. (5) becomes‡ 

                                                
‡ It is supposed that ss < fyk, as it usually occurs; otherwise, ss should be substituted by fyk. The same consideration 
applies to Eq. (7). 
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from which the neutral axis depth at the yield state (xy) can be calculated. The resistant bending 

moment of the section at the yield state (My) may be determined from the equilibrium of rotation 

around the tensile reinforcement, which leads to the following formula: 
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Fig. 3: (a) Sketch of the cross-section of a doubly reinforced concrete beam; (b) stress diagram at the yield 

state; (c) strain diagram at the yield state. 

 

The ultimate state is reached, instead, when concrete attains its maximum strain c,lim. In this case, 

the stress and strain diagrams over the cross-section are those depicted in Figs. 4a and 4b, 

respectively. The neutral axis depth at the ultimate state (xu) can be calculated again from the 

translational equilibrium condition, which - after using Eq. (4) and the linear strain diagram of Fig. 

4b - is given by one of the following two equations: 
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The rotational equilibrium around the tensile reinforcement provides the expression of the resistant 

bending moment at the ultimate state (Mu): 
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Fig. 4: (a) Stress distribution over the cross-section at the ultimate state; (b) strain diagram at the ultimate 

state. 
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diagram of the RC beam, which is drawn in Fig. 5a. In this figure, y and u denote the curvatures at 

the yield and ultimate states, which are given by 

 sy
y

y-


 
d x

 (10) 

and 

 c,lim
u

ux


  , (11) 

respectively. 

The parameters K  and M  appearing in Eqs. (2) and (3) can be derived from the bilinear diagram 

of Fig. 5a. More specifically K , which represents the slope of the diagram plotted in Fig. 5b at  = 

0, can be calculated by this ratio: 

 y

y


M
K . (12) 

The parameter M , which represents the equivalent ultimate bending moment, can be obtained by 

equating the areas A1 and A2 under the curves shown in Fig. 5a and 5b, respectively. The 

equivalence of A1 and A2 leads to the following equation: 

  2
u u y y u

uln cosh
2

  

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M MM K
K M

, (13) 

where the left hand term has been obtained by integrating Eq. (2). In this way, the bilinear bending 

moment - curvature relationship can be substituted by a smoother diagram, which better 

approximates the real behavior of the beam. In fact, the bending moment – curvature diagram of a 

real RC beam presents a gradual change of slope when yielding of the tensile reinforcement occurs, 

as in Fig. 5b, and hence there are no tangent discontinuities, as in Fig. 5a. For this reason, the 

diagram of Fig. 5b should be preferred to the diagram of Fig. 5a. 
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Fig. 5: (a) Bilinear bending moment - curvature relation; (b) smoother bending moment - curvature diagram 

adopted in this work. 

 

2.3  Strain rate effects for the continuous beam model 

The constitutive quantities introduced in Subsection 2.2 are valid only in the static regime. Since 

dynamic loads are considered in this work and since concrete and steel are strain rate sensitive 

materials, the static constitutive quantities are updated by using the relations provided by the CEB 

Information Bulletin n. 187 [20] (refer also to the recent manuscript by Asprone et al. [21]). 

First, the strain rates of concrete and steel reinforcements are easily determined by knowing the rate 

of curvature and the value of the neutral axis depth. Next, the dynamic properties of concrete and 

steel reinforcements are evaluated. 

For what regards concrete [20,§ 3.3.1], its dynamic strength is given by 

 
1.026

1c
cm,dyn cm c6 if 30s

30 10








     

 f f ; (14a) 

  1/ 3 1
cm,dyn cm c cif 30s       f f . (14b) 

In the formulae above, c  is the strain rate of concrete, while  = 1/(5+3∙fcm/4) and  = 10^(6.156∙-

0.492). The concrete strains c1 and c,lim are augmented by the following expressions (see also 
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For what concerns steel [20,§ 3.4.2], its dynamic strength is calculated as 

 
s

s 1
yk,dyn yk 5

yk

61 ln if 10s
5 10

f f
f


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  , (17) 

where s  is the strain rate of either tensile or compressive reinforcement. If s  > 10 s-1, the limit 

value 10 s-1 is assigned to s  in Eq. (17). On the contrary, the module of elasticity Es is taken as 

constant [20,§3.4.3; 21,§2]. 

It should be pointed out that the dynamic properties of concrete and steel are updated at each time 

step of the calculation, as detailed in the next subsection. 

2.4  Iterative procedure for the integration of the equation of motion 

First, the static mechanical characteristics (i.e. the neutral axis depth and the bending moment at 

yield and ultimate states), which are determined from Eqs. (6)-(9), are used to calculate the 

parameters K  and M  through Eqs. (12) and (13). Then, the initial conditions are imposed and the 

space and time steps are specified. 

Next, an iterative procedure is performed, which consists in evaluating at each time step the 

following quantities: 

1) the vertical displacement v, which is obtained by solving Eq. (3) (for instance, by employing 

either an explicit or an implicit version of the Finite Difference Method, after setting the proper 

initial and boundary conditions), where K  and M  are varied at each time step due to strain rate 

effects; 

2) the curvature  = -∂2v/∂x2 and the rate of curvature   = ∂/∂t; 

3) the bending moment M corresponding to the curvature  from Eq. (2); 

4) the neutral axis depth from rotational equilibrium around the tensile reinforcement under the 
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applied bending moment M; 

5) the strains of concrete and steel reinforcements by using the linear deformation diagram and the 

value of curvature; 

6) the strain rates of concrete and steel reinforcements; 

7) the updated dynamic properties of materials by means of Eqs. (14)-(17); 

8) the updated values of the mechanical characteristics (xy, My, xu, Mu), by which the values of K  

and M  are modified. 

The loop is ended when the collapse criterion, which has been defined as the attainment of the 

maximum concrete strain (ultimate state), is satisfied. 

3.  SDOF model 

In this section it is discussed how to assess the dynamic response of the beam by means of a single 

degree of freedom (SDOF) model. In Fig. 6a a real beam is depicted (which, as an example, is 

supposed to be simply supported and subjected to a uniformly distributed load, as that examined in 

Section 4), while its equivalent SDOF system is sketched in Fig. 6b. It should be noted that 

damping is disregarded, since successive cycles of loading are not considered; in fact, the first peak 

displacement is the more severe condition, because it is unlikely that the structure collapses after 

unloading [18]. 

 

 

 

 

 

 

Fig. 6: (a) Real beam; (b) equivalent SDOF model of the real beam. 

 

3.1  Load-displacement diagram of the SDOF system 
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The elastic-plastic behavior of the SDOF system can be represented by a bilinear load-displacement 

diagram, as shown in Fig. 7b. The latter can be derived from the bending moment - curvature 

diagram of the beam (plotted first in Fig. 5a and re-drawn in Fig. 7a), as described in the following. 

 

 

 

 

 

 

 

Fig. 7: (a) Bilinear bending moment - curvature diagram of the beam; (b) corresponding bilinear load - 

displacement diagram of the equivalent SDOF model. 

 

The yield load Py is easily determined from the yield bending moment My by means of equilibrium 

considerations: 

 
2

y y
y y y

8
8
 

    
q l M

M P q l
l

, (18) 

where qy is the uniformly distributed load acting on the beam at the yield state. The yield 

displacement vEy can be calculated from the well-known formula provided by the linear elastic 

theory of beams: 

 
4 3

y y
Ey

5 5
384 384
   

 
 

q l P l
v

K K
, (19) 

where y y/K M  is the elastic bending rigidity of the beam (see Fig. 7a). Hence, the elastic 

stiffness of the SDOF system is given by 

 y
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v l
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The ultimate load Pu can again be obtained from equilibrium conditions: 

 
2

u u
u u u

8
8
 

    
q l MM P q l

l
, (21) 

where qu is the uniformly distributed load on the beam at the ultimate state. The ultimate 

displacement vEu is evaluated by assuming that a concentrated plastic hinge is formed at the mid-

span section of the beam, as shown in Fig. 8a. Here p indicates the plastic rotation at any time after 

the generation of the plastic hinge, while vEp represents the corresponding plastic displacement at 

the mid-span section. At the ultimate state p = pu, hence the total plastic displacement vEp = vEpu 

can be calculated as 

 pu
Epu 2 2


 

lv . (22) 

By introducing the plastic hinge length lp (see Fig. 8b) and by denoting the total plastic curvature by 

p (p = u - y), which is assumed to be constant over lp, the ultimate displacement vEu can be 

finally derived: 

  pu p p
Eu Ey Epu Ey Ey Ey u y p

1
2 2 2 2 4
 

 


             
ll lv v v v v v l l . (23) 

Finally, the plastic stiffness of the SDOF system is given by 

 u y
E,pl

Eu Ey





P P

K
v v

. (24) 

 

 

 

 

 

 

 

Fig. 8: (a) Plastic deflections of the beam with a concentrated plastic hinge at the mid-span section; (b) 
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schematic representation of the plastic hinge. 

 

The main drawback of this approach is that the plastic hinge length lp cannot be determined a priori. 

Many approximate expressions for lp are available in literature. Here, the simple formula provided 

by Mattock (see [7]) is adopted: 

 p 0.05  l d l . (25) 

3.2  Equations of motion of the SDOF system 

The motion of the SDOF system under an external dynamic force PE is described by the following 

set of ordinary differential equations (refer to Figs. 6b and 7b): 

        
2

E
E,el E,el E E E Ey2

d for 0
d

   
v tM K t v t P t v v
t

; (26a) 

             
2

E
E,pl E,pl E E,el E,pl Ey E Ey E Eu2

d for
d

     
v tM K t v t K t K t v P t v v v
t

. (26b) 

It is important to observe that the elastic and plastic stiffnesses (KE,el and KE,pl) depend on time t, 

since they are updated at each step of the calculation due to strain rate effects, as explained in 

Subsection 3.3. 

The equivalent load PE is simply given by PE = q∙l. The elastic and plastic equivalent masses (ME,el 

and ME,pl) are obtained by multiplying the total mass of the beam (Mb) by a “load-mass factor”, 

which depends both on the type of regime (either elastic or plastic) and on the beam supports and 

loads; in particular, for a simply supported beam with a uniformly distributed load, ME,el = 0.78∙Mb 

and ME,pl = 0.66∙Mb [12,Table 5.1]. 

3.3  Strain rate effects for the SDOF system 

The effects of strain rate are taken into account for the equivalent SDOF model too. Since the 

dynamic properties of the materials are given in terms of their strain rates (see Eqs. (14)-(17)), it is 

necessary to relate the SDOF system to the associated (real) beam, by which the strain rates of 

concrete and steel can be assessed. 
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Once the equivalent displacement vE and equivalent velocity E Ed / dv v t  are calculated at each 

time step by solving either Eq. (26a) or Eq. (26b), the curvature E and the curvature rate 

E Ed / d  t  at the mid-span section of the associated beam can be evaluated. In the elastic regime, 

E and E  are obtained from linear elastic theory; in particular, for a simply supported beam with a 

uniformly distributed load, they are given by: 

 E
E E Ey2

48 for 0
5

 
  


v v v
l

; (27a) 

 E
E E Ey2

48 for 0
5

 
  


 v v v

l
. (27b) 

In the plastic regime, instead, it is supposed that a concentrated plastic hinge is generated at the 

mid-span section of the associated beam, as shown in Fig. 8a. Accordingly, in this case E and E  

can be evaluated through the following expressions: 

 p Ep E Ey
E y y y Ey E Eu

p p p

1 12 2 for
/2 /2


   


           

v v v
v v v

l l l l l
; (28a) 

 E
E Ey E Eu

p

12 for
/2

     
 v v v v
l l

. (28b) 

At each step of the calculation, the value of E (given by either Eq. (27a) or Eq. (28a)) allows to 

determine the value of the bending moment M from the bending moment - curvature diagram of 

Fig. 7a. Then, by imposing rotational equilibrium about the tensile reinforcement, the neutral axis 

depth (here denoted as x ) can be easily evaluated. Finally, the strain rates of concrete and of tensile 

and compressive steel reinforcements are calculated through the following formulae: 

 c E   x ; (29a) 

  s E    d x ; (29b) 

  ss E '    x d . (29c) 

The absolute values of the strain rates given by Eqs. (29) are introduced into Eqs. (14)-(17) to 
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update the properties of the materials. 

It is apparent that the procedure described above contains some approximations. This is one of the 

reasons why the continuous beam model discussed in Section 2 should be preferred to the simpler 

SDOF model presented here. 

4.  Application 

In this section, the theoretical models described in Sections 2 and 3 are applied to a practical 

example. In particular, a simply supported beam subjected to a uniformly distributed load generated 

by an explosion is considered. 

The theoretical results are compared with some experimental findings obtained by Magnusson and 

Hallgren [2], who tested several simply supported RC beams under shock waves produced by air 

blast. As the same authors point out in their paper, the explosive charge was located far enough 

from the beam to generate a plane wavefront, hence a uniformly distributed load. All the details 

regarding the beams examined in this work are reported in Appendix A. 

First, the beam labeled by B40-D5 is examined. The parameter chosen to compare the experimental 

data with the theoretical results is the deflection at the mid-span section of the beam, which 

obviously represents the maximum deflection and which is henceforth indicated by vmax. The 

experimental time-history of vmax relative to beam B40-D5 is plotted in solid black line in Fig. 9. 

The latter has been cut off when the maximum experimental concrete strain is reached, in 

accordance with the assumption made in this paper that failure occurs when concrete attains its 

maximum strain. 

The dashed black line of Fig. 9 represents instead the time-history of vmax obtained by integrating 

Eq. (3), which is derived from the continuous beam model proposed in this work. This partial 

differential equation is solved by means of the Finite Difference Method. Since the beam is at rest 

before the shock wave impinges on it, null initial conditions are imposed (which means that the 

displacements and velocities along the beam at the beginning of the calculation are taken equal to 

zero), while the boundary conditions state that the vertical displacement and the curvature must 
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vanish at the ends of the beam. All the derivatives (both in space and time) are computed with a 2nd 

order approximation. At each time step, the displacements in the beam are calculated explicitly§ by 

using the values at previous time steps. Convergence of results is reached by taking a time step of 

10-6 s and a space step of 0.05 m; in fact, the results produced by the Finite Difference code after 

decreasing the time and space steps do not show a significant variation. The maximum strains in the 

materials given by the continuous beam model are c,lim,dyn = 0.0044, s = 0.0056 and ss = 0.002. 

Yielding is reached only in the tensile reinforcement. 

The time-history of the maximum deflection predicted by the SDOF model is shown in dotted black 

line in Fig. 9. This curve is determined from the ordinary differential equations (26), which are 

integrated in time by employing again the explicit version of the Finite Difference Method and by 

imposing zero initial conditions (i.e. vE (t=0) = dvE/dt (t=0) = 0). The chosen time step is identical to 

that adopted for the continuous beam model. 

Finally, the grey curve of Fig. 9 corresponds to the finite element (FE) solution given by the 

commercial software Midas Gen 2012 (v2.1). In particular, the fiber model of this software is used, 

which consists in dividing the cross-section of the beam into concrete fibers and steel rebars. For 

what concerns the material models, a trilinear relationship between stress and strain is used for 

concrete, which approximates with high precision the compressive stress-strain diagram shown in 

Fig. 2a (the tensile strength of concrete is instead neglected, in agreement with the assumptions 

made in this work); for steel rebars, an elastic – perfectly plastic stress-strain diagram is adopted, as 

that shown in Fig. 2b. The variation of the compressive zone depth during time is computed by the 

Finite Element software, which thus handles the transition from compression to tension across the 

cross-section automatically. In order to take into consideration the effects of strain rate, which are 

not accounted for by Midas Gen 2012 (v2.1), the dynamic properties of the material given by the 

continuous beam model at the last step of the calculation (which correspond to the ultimate strain 

                                                
§ It should be noted that also an implicit version of the Finite Difference Method has been used, which requires a higher 
computational effort though providing the same results. 
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rates reached in the analysis of the continuous beam model) are introduced as constants into the FE 

model. If the static properties of the materials were used instead, the FE software would have 

provided an even lower ultimate deflection. The meshes in space and time used in the FE software 

are identical to those adopted for the continuous beam model. Lastly, it should be underlined that, 

since the software does not include a failure criterion for concrete crushing, the time-history 

provided by the FE solution is interrupted at the instant of time when the maximum concrete strain 

obtained from the continuous beam model (that is c,lim,dyn = 0.0044) is reached. 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Time-histories of the maximum deflection of beam B40-D5 (tested in [2]) calculated by means of 

different theoretical models, and comparison with experimental findings. 

 

The experimental time-history of the maximum deflection of another beam analyzed by Magnusson 

and Hallgren [2], labeled by B200/40-D3, is reported in Fig. 10, together with its theoretical 

predictions given by the continuous beam model, the SDOF model and the FE model. For this 

beam, the maximum concrete strain produced by the continuous beam model, which is used to 

truncate the deflection time-history derived from the FE model, is c,lim,dyn = 0.005. Whilst, the 

maximum steel strains calculated from the continuous beam model are s = 0.028 and ss = 0.0026; 
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also in this case, yielding is reached in the tensile reinforcement only. 

The maximum experimental concrete strains of both beams are reported for comparison in Table 

A.1. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10: Comparison between the experimental outcomes (provided in [2]) and the theoretical results 

provided by different approaches relative to beam B200/40-D3. 

 

Figs. 9 and 10 show that the continuous beam model presented in this work is the one that best 

agrees with experimental data.** In particular, the continuous beam model gives the most accurate 

assessment of the maximum deflection of the beam at failure. On the other hand, the FE solution 

always underestimates the maximum displacement of the beam at collapse, while the prediction of 

the SDOF model sometimes diverges from the experimental curve (see Fig. 10). 

Besides being capable of fitting well the actual time-history of the maximum deflection of the 

beam, the continuous beam model can also provide other useful information, such as the 

displacement and curvature profiles along the beam axis at a certain instant of time, which instead 
                                                
** This statement is confirmed by the investigation of other beams tested in [2], the outcomes of which are not reported 
here for the sake of brevity. 
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cannot be determined from the SDOF model. For instance, Figs. 11a and 11b show, respectively, 

the diagrams of the beam vertical displacements and curvatures at different instants of time relative 

to beam B40-D5. It can be observed from the figures that the vertical displacement and curvature 

profiles at the first instants of time (e.g. at t = 1 ms) exhibit changes in concavity along the length of 

the beam, due to inertia effects. As the time passes by, the deflection and curvature profiles assume 

the typical shapes they show in the static case. This interesting consideration could not have been 

drawn from the SDOF model, which can provide the values of deflection and curvature only at the 

mid-span section of the beam. 

 

 

 

 

 

 

 

 

 

Fig. 11: Vertical displacements (a) and curvatures (b) of beam B40-D5 at different times predicted by the 

continuous beam model. 

 

5.  Conclusions 

In this work, a continuous model which aims at predicting the behavior of reinforced concrete 

beams under blast loads has been described. The corresponding equation of motion, which is based 

on a smooth nonlinear relation between bending moment and curvature, is rather straightforward 

and easy to integrate (for example through the Finite Difference Method); nonetheless, it gives an 
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value at failure, as shown by comparison with experimental data. The efficacy of the model derives 

also from having included into the formulation the effects of strain rate on the properties of the 

materials. 

An alternative approach has also been presented, which consists in idealizing the beam as an 

equivalent SDOF system, as is common in practical applications. This approach, in which strain 

rate effects are again accounted for, is more convenient than the continuous beam model from a 

computational point of view, but it presents two main drawbacks: the first is that it requires the use 

of approximate formulae to define some quantities (such as, for instance, the coefficients which 

convert the total mass of the beam into the SDOF mass and the length of the plastic hinge); the 

second is that it cannot provide some useful information, like the profiles of displacement, rotation 

and curvature along the beam at any instant of time. Furthermore, it is less accurate than the 

continuous beam model. 

In concluding the paper, the two major limitations of the proposed continuous beam model should 

be emphasized: first, shear deformation and rotary inertia have been neglected, since Euler-

Bernoulli’s theory has been adopted; second, displacements and rotations have been assumed to be 

small. Thus, future research will focus on overcoming these limitations by employing 

Timoshenko’s theory and by considering large deformations, respectively. Furthermore, a different 

failure criterion could be defined: since the maximum displacement predicted by the proposed 

approach underestimates the actual value found experimentally, the calculation of the maximum 

deflection could be carried on after the first concrete fiber reaches its maximum strain (which 

represents the collapse criterion considered here); then, in order to account for the portion of 

crushed concrete, the depth of the cross-section could be decreased until equilibrium ceases to exist. 

Finally, future work will also check the validity of the continuous beam model when the beam is 

subjected to other dynamic loads, like concentrated forces produced by the impact of falling objects. 

Appendix A 

This appendix contains detailed information about the material properties and the loads relative to 
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the two beams - tested by Magnusson and Hallgren - analyzed in this paper, which are denoted as 

B40-D5 and B200/40-D3 in [2]. 

A sketch of the experimental apparatus set up by Magnusson and Hallgren is shown in Fig. A.1. All 

the beams were simply supported, had a span of 1.5 m and a rectangular cross-section, and were 

reinforced with both tensile and compressive bars and with stirrups. The other geometric and 

mechanical characteristics of the beams are summarized in Table A.1. 

 

 

 

 

 

 

 

 

 

Fig. A.1: Experimental apparatus used by Magnusson and Hallgren [2]. 

 B40-D5 B200/40-D3 

width of the cross-section 0.300 m 0.293 m 

depth of the cross-section 0.160 m 0.160 m 

cover 0.025 m 0.025 m 

tensile reinforcement 5 16 mm 5 16 mm 

compressive reinforcement 2 10 mm 2 10 mm 

concrete compressive strength a 43 MPa 173/54 MPa b 

registered maximum concrete strain 3.69 ‰ 5.03 ‰ 

steel yield strength 604 MPa 555 MPa 
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steel elastic modulus 210 GPa 204 GPa 

mass per unit length --- c 130 kg/m 

a It refers to the compressive strength of 150x300 mm concrete cylinders. 
b The beam was made of two concrete layers: the first value refers to the concrete in the 
compressive zone, while the second is relative to the concrete in the tensile zone. 
c This value has not been provided by the authors, so it has been assumed equal to 120 kg/m = 2500 
kg/m3 x 0.3 m x 0.16 m. 
 

Table A.1: Properties of the beams studied in this work (extrapolated from [2]). 
 

The two beams were subjected to the pressures shown in Figs. A.2 and A.3. Each figure presents 

two diagrams, since two pressure gauges were used by Magnusson and Hallgren to register the 

pressure generated by the explosive charge on each beam. The results of Section 4 have been 

obtained by applying, on each beam, the average pressure between the two curves. The diagrams of 

Figs. A.2 and A.3 have been interrupted at t = 6 ms, since for both beams the maximum deflection 

at failure occurs at a time t < 6 ms (see Figs. 9 and 10). It is important to remark that, after concrete 

crushing, both beams continued to move due to inertia effect, dissipating the amount of energy 

acquired from the blast load. The experimental gauges recorded these further displacements, but for 

our structural analysis they are meaningless since concrete is already crushed at this stage. 
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Fig. A.2: Recorded pressure for beam B40-D5 (derived from [2,Fig. A1.6]). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A.3: Recorded pressure for beam B200/40-D3 (derived from [2,Fig. A1.26]). 
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