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Abstract
A model of quantum computation is discussed in (Aharanov et al 1997 Proc.
13th Annual ACM Symp. on Theory of Computation, STOC pp 20–30) and
(Tarasov 2002 J. Phys. A: Math. Gen. 35 5207–35) in which quantum gates
are represented by quantum operations acting on mixed states. It allows one to
use a quantum computational model in which connectives of a four-valued logic
can be realized as quantum gates. In this model, we give a representation of
certain functions, known as t-norms (Menger 1942 Proc. Natl Acad. Sci. USA
37 57–60), that generalize the triangle inequality for the probability distribution-
valued metrics. As a consequence an interpretation of the standard operations
associated with the basic fuzzy logic (Hájek 1998 Metamathematics of Fuzzy
Logic (Trends in Logic vol 4) (Dordrecht: Kluwer)) is provided in the frame of
quantum computation.

PACS numbers: 03.67.Lx, 02.10.−v

(Some figures in this article are in colour only in the electronic version)

Introduction

In the usual representation of quantum computational processes, a quantum circuit is identified
with an appropriate composition of quantum gates, mathematically represented by unitary
operators acting on pure states of a convenient (n-fold tensor product) Hilbert space ⊗n

C
2

[30], and only takes into account reversible processes. But for many reasons this restriction
is unduly. On the one hand, it does not encompass realistic physical states described by
mixtures. In fact, a quantum system rarely is in a pure state. This may be caused, for example,
by the in-complete efficiency in the preparation procedure and also by manipulations on the
system as measurements over pure states, both of which produce statistical mixtures. Besides,
systems cannot be completely isolated from the environment, undergoing decoherence of their
states. Non-pure states, namely mixed states, are described by density operators. On the
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other hand, there are interesting processes that cannot be encoded in unitary evolutions, as
measurements in the middle of the process. Several authors [1, 2, 6, 15, 32] have paid attention
to a more general model of quantum computational processes, where pure states and unitary
operators are replaced by density operators and quantum operations, respectively. In this
case, time evolution is no longer necessarily reversible. In this powerful model we shall give
a probabilistic-type representation for a family of functions known as continuous triangular
norms.

Triangular norms (t-norms for short) where introduced by Menger [25] in the framework
of the probabilistic metric spaces. These spaces may have an important application in quantum
particle theory, particularly in connection with both string and ε(∞) theory [8]. In these spaces,
t-norms allow us to generalize the triangle inequality for the probability distribution-valued
metrics. They also play an important role in other areas such as decision making [9, 13],
statistics [29] or cooperative games [3]. Formally, a t-norm is a binary operation � on the real
interval [0, 1] that satisfies the following:

(1) x � 1 = x,
(2) x1 � x2, y1 � y2 �⇒ x1 � y1 � x2 � y2,
(3) x � y = y � x,
(4) x � (y � z) = (x � y) � z.

Since the 1980s, the interest in many-valued logics has increased enormously. In particular,
the logics with truth values in [0, 1] emerged as a consequence of the 1965 proposal of fuzzy
set theory by Zadeh [33] called fuzzy logic. In these logics, triangular norms were naturally
proposed as interpretations of the conjunction. Seminal results of Hájek [16] have justified
this choice. In fact, in the mentioned monograph, a system of fuzzy logic called basic fuzzy
logic or logic of continuous t-norms is developed where it is possible to establish a genuine
relationship between conjunction and implication; in this system the continuity of the t-norm
plays an important role. The following are the three basic continuous t-norms:

(1) x �P y = x · y, (Product t-norm)
(2) x�Ł y = max{x + y − 1, 0}, (Łukasiewicz t-norm)
(3) x �G y = min{x, y}. (Gödel t-norm).

These t-norms are remarkable since each possible continuous t-norm can be obtained as an
‘adequate combination’ of the mentioned three [10, 21].

Our aim in this paper is to contribute to this research trend by focusing on a probabilistic-
type representation of the three basic continuous t-norms in the model of quantum computation
with mixed states [1].

This would allow us to establish a connection between quantum computation with mixed
states and the fuzzy logic of continuous t-norms, thus providing a physical justification to
several algebraic structures related to quantum computational logic with mixed states, such as
quasi-MV -algebras [22, 23, 28], quasi-PMV -algebras [7], etc [11, 14, 18]. In fact, quantum
computational logics with mixed states [5, 7, 15] may be presented as a logic 〈Term, |�〉, where
Term is an absolute free algebra (i.e. a language), whose natural universe of interpretation is a
set D of density operators and whose connectives are naturally interpreted as certain quantum
gates (i.e. quantum operations in the model of quantum computation with mixed states), which
are formally introduced in section 2. More precisely, canonical interpretations are T erm-
homomorphisms e : T erm → D. To define a relation of the semantic consequence ‘ |� ’ based
on the probability assignment, it is necessary to introduce the notion of canonical valuations.
In fact, canonical valuations are functions over the unitary real interval f : T erm → [0, 1]
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such that f can be factorized in the following way:

≡
Term [0,1]

f

e
p

where p is a probability function obtained via the Born rule, also to be made precise in
section 2. We will refer to these diagrams as probabilistic semantics [17, 31]. Then the
semantical consequence |� related to D is given by

α |� ϕ iff R[f (α), f (ϕ)],

where R provides a relation between f (α) and f (ϕ). An interesting case is the semantical
consequence based on probability values equal to 1, more precisely, α |� ϕ iff p(α) = 1
implies p(ϕ) = 1.

The connection between quantum computational logic with mixed states and fuzzy logic
comes from the election of a system of quantum gates such that, when interpreted under
probabilistic semantics, they turn out in some kind of operation in the real interval [0, 1]
associated with fuzzy logic, as the continuous t-norms. The above-mentioned quasi-MV -
algebras and quasi-PMV -algebras are some of the structures which represent algebraic
counterparts of the probabilistic semantics conceived from the continuous t-norm.

On the other hand, the use of fuzzy logics (and infinite-valued Łukasiewicz logic in
particular) in game theory and theoretical physics was pioneered in [26, 27], linking the
mentioned structures with Ulam games and AF − C∗-algebras, respectively. We will pay
special attention to the study of the Łukasiewicz t-norm due to its relation with Ulam games and
its possible applications to error-correcting codes [24] in the context of quantum computation.

The paper is organized as follows: in section 1 we recall some basic notions about the
model of quantum computer based on mixed states and quantum operations. In section 2
we introduce the concept of polynomial quantum operation and we establish a Stone–
Weierstrass-type theorem for quantum operations. This provides a general framework for a
probabilistic-type representation of continuous functions in the real interval [0, 1] as quantum
operations in the sense of [19]. In section 3 we show an explicit representation as polynomial
quantum operation for the product t-norm. In section 4, we give a representation for the
Łukasiewicz and Gödel t-norms, approximating it by polynomial quantum operations and
analyzing the error of the approximant; moreover, we study the efficiency of the method and,
by use of numerical arguments, we provide more efficient representations.

1. Basic notions

A quantum bit or qbit, the fundamental concept of quantum computation, is a pure state in
the Hilbert space C

2. The standard orthonormal basis {|0〉, |1〉} of C
2, where |0〉 = (1, 0) and

|1〉 = (0, 1), is sometimes called logical basis. This name refers to the fact that truth is related
to |1〉 and falsity to |0〉. Thus, the pure states |ψ〉 in C

2 are coherent superpositions of the
basis vectors with complex coefficients: |ψ〉 = c0|0〉+c1|1〉 where |c0|2 + |c1|2 = 1. Quantum
mechanics reads out the information content of a pure state via the Born rule. By these
means, the qubit probability value we will be interested in is p(|ψ〉) = |c1|2 corresponding to
the basis vector associated with truth. In the usual representation of quantum computational
processes, a quantum circuit is identified with an appropriate composition of quantum gates,
mathematically represented by unitary operators acting on pure states of a convenient (n-fold
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tensor product) Hilbert space ⊗n
C

2 [30]. In other words, the standard model for quantum
computation is mathematically founded on ‘qbit-unitary operators’. In what follows we give
a short description of the powerful model for quantum computers.

In terms of density matrices, a pure state |ψ〉 can be represented as a matrix product
ρ = |ψ〉〈ψ |. As a particular case, we may associate with each vector of the logical basis of
C

2 two density operators P0 = |0〉〈0| and P1 = |1〉〈1| that represent the falsity property and
the truth property respectively in this framework. Due to the fact that the Pauli matrices:

σ0 = I, σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

where I = I (2) is the 2 × 2 identity matrix, are a basis for the set of operators on C
2, an

arbitrary density operator ρ for n-qbits may be represented in terms of tensor products of them
as ρ = 1

2n

∑
μ1,...,μn

aμ1,...,μn

(
σμ1 ⊗ · · · ⊗ σμn

)
where μi ∈ {0, x, y, z} for each i = 1, . . . , n

and |aμ1,...,μn
| � 1. We denote by D(⊗n

C
2) the set of all density operators on ⊗n

C
2. Let us

consider the operator P
(n)
1 = ⊗n−1I ⊗ P1 on ⊗n

C
2. By applying the Born rule, we consider

the probability of a density operator ρ ∈ D(⊗n
C

2) as follows:

p(ρ) = T r
(
P

(n)
1 ρ

)
.

Note that, in the particular case in which ρ = |ψ〉〈ψ | where |ψ〉 = c0|0〉 + c1|1〉, we obtain
that p(ρ) = |c1|2. Thus, this probability value associated with ρ is the generalization, in this
model, of the probability value considered for q-bits.

A quantum operation [19] is a linear operator E : L(H1) → L(H2) where L(Hi) is
the space of linear operators in the complex Hilbert space Hi (i = 1, 2), representable as
E(ρ) = ∑

i AiρA
†
i where Ai are the operators satisfying

∑
i A

†
iAi = I (Kraus representation).

It can be seen that a quantum operation maps density operators into density operators. The
new model ‘density operators–quantum operations’ also called ‘quantum computation with
mixed states’ [1, 32] is equivalent in computational power to the standard one but gives a place
to irreversible processes as measurements in the middle of the computation.

2. Polynomial quantum operations

We first introduce some notations and preliminary definitions. The term multi-index denotes an
ordered n-tuple α = (α1, . . . , αn) of non-negative integers αi . If k is a natural number, α � k

means that αi � k for each i ∈ {1, . . . , n}. The order of α is given by |α| = α1 + · · · + αn.
If x = (x1, . . . , xn) is an n-tuple of variables and α = (α1, . . . , αn) is a multi-index, the
monomial xα is defined by xα = x

α1
1 x

α2
2 . . . xαn

n . In this language a polynomial of order k is a
function P(x) = ∑

|α|�k aαxα such that aα ∈ R.
Motivated by the Stone–Weierstrass theorem, Bernstein polynomials are considered by

Lorentz [23] who proves that any continuous function f (x) can be approximated by Bernstein
polynomials on the real interval [0, 1]. We are interested in multivariate Bernstein polynomials.
Let x = (x1, . . . , xn), k be a natural number and α = (α1, . . . , αn) be a multi-index such that
α � k. Then the Bernstein polynomial Bk,α(x) is defined as

Bk,α(x) =
n∏

i=1

(
k

αi

)
(1 − xi)

k−αi x
αi

i .

Theorem 2.1 ([2, 20]). Let x = (x1, . . . , xn) and k be a positive integer. For any continuous
function f : [0, 1]n → R the polynomials

Bk(f, x) =
∑
α�k

f
(α1

k
, . . . ,

αn

k

)
Bk,α(x)

4
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converge to f (x) uniformly on [0, 1]n when k → ∞. �

Let x = (x1, . . . , xn) and k be a natural number. We first introduce the set Dk(x) defined as

Dk(x) = {
(1 − x1)

α1x
β1
1 . . . (1 − xn)

αnxβn

n : αi + βi = k, i ∈ {1, . . . , n}}.
Let ρ ∈ D(C2) such that ρ = 1

2 (I + rxσx + ryσy + rzσz). Then it is clear that

ρ = 1

2

(
1 + rz rx − iry

rx + iry 1 − rz

)
=

(
1 − α β

β∗ α

)
.

Interestingly enough, any real number λ (0 � λ � 1) uniquely determines a density operator

ρλ = (1 − λ)P0 + λP1 = 1

2
(I + (1 − 2λ)σz) =

(
1 − λ 0

0 λ

)
.

It is easy to see that, if ρ ∈ D(C2), then p(ρ) = 1−rz

2 and p(ρλ) = λ. Thus each density
operator ρ in D(C2) can be written as

ρ =
(

1 − p(ρ) β

β∗ p(ρ)

)
.

Proposition 2.2. Let X1, . . . , Xn be a family of matrices such that

Xi =
(

1 − xi bi

b∗
i xi

)

and let us consider a tensor product X = (⊗kX1) ⊗ (⊗kX2) ⊗ · · · ⊗ (⊗kXn). Then we have

Diag(X) = Dk(x1, . . . , xn)

where Diag(X) denotes the set containing the diagonal entries of X.

Proof. By induction on k we can prove that Diag(
⊗k

Xi) = {h1h2 . . . hk : hj ∈
{(1 − xi), xi}, 1 � j � k} = {(1 − x1)

αx
β

1 : α + β = k}. Thus, Diag((⊗kX1) ⊗ (⊗kX2) ⊗
· · · ⊗ (⊗kXn)) = {(1 − x1)

α1x
β1
1 . . . (1 − xn)

αnx
βn
n : αi + βi = k, i ∈ {1, . . . , n}}. Whence

our claim follows. �

Proposition 2.3. Let x = (x1, . . . , xn) and k be a natural number. Given any monomial xα

such that | α | � k, there exist coefficients δy:

xα =
∑

y∈Dk(x)

δyy and 1 − xα =
∑

y∈Dk(x)

(1 − δy)y,

where δy ∈ {0, 1}.
Proof. For each i ∈ {1, . . . , n}, consider the matrix Xi given by

Xi =
(

1 − xi 0
0 xi

)
.

Let xα = x
α1
1 x

α2
2 . . . xαn

n such that | α | � k. Thus, there exist s1, . . . , sn such that αi + si = k.
Let W = (⊗s1 X1) ⊗ (⊗s2 X2) ⊗ · · · ⊗ (⊗snXn) and let us consider the matrix Wxα . In view of
lemma 2.2, Diag(Wxα) ⊆ Dk(x1, . . . , xn) since every element in Diag(Wxα) is a monomial
of order nk. Further, since tr(Wxα) = (trW)xα = 1xα = xα , we have that xα = tr(Wxα) is
the required polynomial expansion.

For the case 1 − xα , consider the matrix X = (⊗kX1) ⊗ (⊗kX2) ⊗ · · · ⊗ (⊗kXn). By
lemma 2.2 Diag(X) = Dk(x1, . . . , xn) and tr(X) = 1. Taking into account that

5
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xα = ∑
y∈Dk(x) δyy we have that 1 = tr(X) = ∑

y∈Dk(x) δyy +
∑

y∈Dk(x)(1 − δy)y =
xα +

∑
y∈Dk(x)(1 − δy)y. Thus 1 − xα = ∑

y∈Dk(x) γyy. �

Definition 2.4. A quantum operation P : L(⊗nk
C

2) → L(⊗nk
C

2) is called the polynomial
quantum operation iff there exists a polynomial P(x1, . . . , xn) such that for each n-tuple
(σ1, . . . , σn) in D(C2) we have that

p(P((⊗kσ1) ⊗ · · · ⊗ (⊗kσn))) = P(p(σ1), . . . , p(σn)).

Theorem 2.5. Let x = (x1, . . . , xn) be an n-tuple of variables and consider the set Dk(x). Let
P(x) = ∑

y∈Dk(x) ayy be a polynomial such that y ∈ Dk(x), 0 � ay and 0 � P(x) |[0,1]n � 1.
Consider M = maxy∈Dk(x){ay} and define

kM =
{
k, if M � 1
min z : M � 2nz−1, if M > 1.

(1)

Then there exists a polynomial quantum operation P : L(⊗nkM C
2) → L(⊗nkM C

2) such that
for each n-tuple σ = (σ1, . . . , σn) in D(C2)

p(P((⊗kM σ1) ⊗ · · · ⊗ (⊗kM σn))) = P(p(σM), . . . , p(σn)).

Moreover, P((⊗kσ1) ⊗ · · · ⊗ (⊗kσn)) = (
1

2nkM −1 ⊗nkM−1 I
) ⊗ ρP(p(σ1),...,p(σn)).

Proof. By lemma 2.3 we can consider the polynomial P(x) in the generator system DkM
(x),

i.e. P(x) = ∑
y∈DkM

(x) ayy. Let PM(x) be the polynomial given by

PM(x) = 1

2nkM−1
P(x) =

∑
y∈DkM

(x)

ay

2nkM−1
y =

∑
y∈DkM

(x)

byy.

By the definition of kM it is clear that 0 � by � 1 for each y ∈ DkM
(x). Let σ1, . . . , σn be the

density operators of C
2. Assume that for any σi

σi =
(

1 − xi bi

b∗
i xi

)
.

Hence, p(σi) = xi . It is clear that σ = (⊗kM σ1)⊗· · ·⊗(⊗kM σn) is a matrix of order 2nkM ×2nkM

and, by lemma 2.2, Diag(σ ) = DkM
(x1, . . . , xn). Thus, each y ∈ DkM

(x) can be seen as the

(i, i)th entry of Diag(σ ). Further, the polynomial PM(x) = ∑
y∈DkM

(x) byy = ∑2nkM

j=1 bj yj is
such that every yj is the (j, j)th entry of Diag(σ ). Let, now, yj0 ∈ Diag(σ ).

(a) We want to place bj0 yj0 in the (2s, 2s)th entries of a 2nkM ×2nkM matrix, for any s � 1.
Let us consider the 2nkM ×2nkM matrix A2s

j0
= √

bj0D
2s
j0

such that D2s
j0

has 1 just in the (2s, j0)th

entries and 0 in any other entry. It is not difficult to check that A2s
j0

σ
(
A2s

j0

)†
is the required

matrix. Moreover, one can verify that

∑
2s

A2s
j0

σ
(
A2s

j0

)† =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 . . .

0 bj0 yj0 0 0 . . .

0 0 0 0 . . .

0 0 0 bj0 yj0 . . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠ .

(b) Taking into account that 1 = ∑
y∈DkM

(x) y = ∑2nkM

j=1 yj , we have that

1

2nkM−1
−

2nkM∑
j=1

bj yj =
2nkM∑
j=1

yj

2nkM−1
−

2nkM∑
j=1

bj yj =
2nkM∑
j=1

(
1

2nkM−1
− bj

)
yj .

6
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By the definition of bj it is clear that 1
2nkM −1 � bj .

We want to place
(

1
2nkM −1 −bj0

)
yj0 in the (2s −1, 2s −1)st entries of a 2nkM ×2nkM matrix,

for all s � 1. Let us consider the 2nkM × 2nkM matrix A2s−1
j0

=
√

1
2nkM −1 − bj0D

2s−1
j0

such that

D2s−1
j0

have 1 just in the (2s − 1, j0)th entries and 0 in any other entry. It is not difficult to

check that A2s−1
j0

σ(A2s−1
j0

)† is the required matrix. Moreover, one can verify that

∑
2s−1

A2s−1
j0

σ(A2s−1
j0

)† =

⎛
⎜⎜⎜⎜⎜⎜⎝

(
1

2nkM −1 − bj0

)
yj0 0 0 0 . . .

0 0 0 0 . . .

0 0
(

1
2nkM −1 − bj0

)
yj0 0 . . .

0 0 0 0 . . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Thus, we have that P(σ ) = ∑
j0

∑
2s A2s

j0
σ
(
A2s

j0

)†
+

∑
j0

∑
2s−1 A2s−1

j0
σ
(
A2s−1

j0

)†
= (⊗nk−1I ) ⊗

(
1

2nkM −1 − ∑2nkM

j=1 bj yj 0

0
∑2nkM

j=1 bj yj

)
.

Let us consider A = ∑
j0

∑
2s

(
A2s

j0

)†
A2s

j0
+

∑
j0

∑
2s+1(A

2s+1
j0

)†A2s+1
j0

. Our task is now to
verify that A = I .

(c) First of all, note that the matrix
(
A2s

j0

)†
A2s

j0
has the value bj0 just in the (j0, j0)th entry

and 0 in any other entry. Therefore, the matrix
∑

2s

(
A2s

j0

)†
A2s

j0
has the value 2nkM−1bj0 in the

(j0, j0)th entry and all the other entries are equal to 0. Hence,

∑
j0

∑
2s

(
A2s

j0

)†
A2s

j0
=

⎛
⎜⎜⎜⎜⎜⎝

2nkM−1b1 0 0 . . .

0 2nkM−1b2 0 . . .

0 0 2nkM−1b3 . . .

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ .

(d) On the other hand, the matrix
(
A2s−1

j0

)†
A2s−1

j0
has the value 1

2nkM −1 − bj0 just in the (j0, j0)th

entry and 0 in any other entry. Therefore, the matrix
∑

2s−1

(
A2s−1

j0

)†
A2s−1

j0
has the value

2nkM−1
(

1
2nkM −1 − bj0

) = 1 − 2nkM−1bj0 in the (j0, j0)th entry and all the other entries are equal
to 0. Hence,

∑
j0

∑
2s−1

(
A2s−1

j0

)†
A2s−1

j0
=

⎛
⎜⎜⎜⎝

1 − 2nkM−1b1 0 0 . . .

0 1 − 2nkM−1b2 0 . . .

0 0 1 − 2nkM−1b3 . . .

...
...

...
. . .

⎞
⎟⎟⎟⎠ .

Thus
∑

j0

∑
2s

(
A2s

j0

)†
A2s−1

j0
+
∑

j0

∑
2s−1(A

2s−1
j0

)†A2s−1
j0

= I andP is a quantum operation.
Taking into account the matrix representation of P in σ = (⊗k1σ1) ⊗ · · · ⊗ (⊗kM σn), we have
that p(P(σ )) = tr(P1P(σ )) = 2nkM−1PM(x) = P(x) as is required. �

Theorem 2.6. Let f : [0, 1]n → [0, 1] be a continuous function. Then for each ε > 0 there
exists a quantum operation Pε : L(⊗nk

C
2) → L(⊗nk

C
2) such that for each σ = (σ1, . . . , σn)

in D(C2),

|p(Pε((⊗kσ1) ⊗ · · · ⊗ (⊗kσn))) − f (p(σ1) . . . p(σn))| � ε.

7
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Proof. Suppose that 0 < ε � 1. Consider the function (1 − ε
2 )f . By theorem 2.1,

there exists a natural number k ε
2

such that |Bk ε
2
(f, x) − (1 − ε

2 )f (x)| � ε
2 for x in [0, 1]n.

Consequently, and taking into account that the coefficient of Bk ε
2
(f, x) is positive, we can see

that 0 � Bk ε
2
((1− ε

2 )f, x) � 1 for all x in [0, 1]n. It is not very hard to see that Bk ε
2
((1− ε

2 )f, x)

can be represented in the generator system Dk(x) where k = nk ε
2
. Thus by theorem 2.5 there

exists a quantum operation Pε : L(⊗nk
C

2) → L(⊗nk
C

2) such that

p(Pε((⊗kσ1) ⊗ · · · ⊗ (⊗kσn))) = Bk ε
2

((
1 − ε

2

)
f, p(σ1) . . . p(σn)

)
.

On the other hand, |Bk ε
2
((1 − ε

2 )f, x) − f (x)| � |Bk ε
2
((1 − ε

2 )f, x) − (1 − ε
2 )f (x)| +∣∣(1 − ε

2

)
f (x) − f (x)

∣∣ = ε
2 +

∣∣ ε
2f (x)

∣∣ � ε in [0, 1]n. �

Remark 2.7. It is clear that theorem 2.6 is a kind of Stone–Weierstrass theorem since it
allows one to represent up to an ε any possible continuous function f : [0, 1]n → [0, 1] by
means of quantum operations. However, it is inefficient to implement this result for a large
n in view of the fact that it requires many copies of the involved states. In order to use this
kind of representation, thus, the key idea is finding a polynomial with a low degree which can
approximate the function itself minimizing the error.

3. Representing a product t-norm

Note that the product t-norm is given by a polynomial in the generator system D2(x, y)

satisfying the hypothesis of theorem 2.5. Thus it is representable as a polynomial quantum
operation. More precisely, it is not very hard to show this representation. In fact, let us
consider the following matrices:

G1 =

⎛
⎜⎜⎜⎝

1√
2

0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ G2 =

⎛
⎜⎜⎜⎝

0 1√
2

0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ G3 =

⎛
⎜⎜⎜⎝

0 0 1√
2

0

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠

G4 =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
1√
2

0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ G5 =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 1√

2
0 0

0 0 0 0

⎞
⎟⎟⎟⎠ G6 =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 1√

2
0

0 0 0 0

⎞
⎟⎟⎟⎠

G7 =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1√

2

⎞
⎟⎟⎟⎠ G8 =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 1√

2

0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ .

It is straightforward to check that
∑8

i=1 Gi(τ ⊗ σ)G
†
i = 1

2I ⊗ ρp(τ )p(σ ) where σ, τ ∈ D(C2).

Thus p(
∑8

i=1 Gi(τ ⊗ σ)G
†
i ) = p(τ ) · p(σ ) and

τ �P σ =
8∑

i=1

Gi(τ ⊗ σ)G
†
i

provide a representation of the product t-norm as a polynomial quantum gate.

8
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4. Representing Łukasiewicz and Gödel t-norms

Since the Łukasiewicz t-norm is not a polynomial, it is impossible to give a representation
of such in terms of polynomial quantum operations. But this function is a continuous
function in [0, 1]; hence, it can be uniformly approximated by a polynomial quantum
operation in the sense of theorem 2.6. Bernstein approximants of x�Ł y are pn(x, y) =∑

(α1,α2)�k(
α1
k
�Ł

α2
k
)Bk,(α1,α2)(x, y). Our proposal is to give an explicit form of the Bernstein

approximants and the error. For this we study another function in [0, 1] related to the
Łukasiewicz t-norm called Łukasiewicz sum or Łukasiewicz t-conorm, introduced as dual
operation of the Łukasiewicz t-norm, and we obtain the Bernstein approximants of this function
by using another argument. This method provides an estimation error in the approximation.
The Łukasiewicz sum is defined as the De Morgan dual of �:

x ⊕ y = 1 − ((1 − x) �Ł (1 − y)). (2)

Observe that in the standard model of the infinite-valued Łukasiewicz logic x ⊕ y =
min(1, x + y) and x�Ł y = 1 − ((1 − x) ⊕ (1 − y)).

To explicitly construct a family of approximant polynomials we introduce the auxiliary
function [0, 2] � z �→ g(z) = min(1, z). As x ⊕ y = g(x + y), the problem of approximating
the bivariate function ⊕ is changed into the easier problem of approximating the one-variable
function g(z) in [0, 2]. We observe that, by defining

[0, 2] � z �→ h(z) =
{

z
2 , if z ∈ [0, 1],

1 − z
2 , if z ∈ (1, 2],

we have g(z) = z
2 + h(z) and h(z) is symmetric with respect to the point z = 1, i.e.

h(2 − z) = h(z). For this reason we approximate h(z) using the symmetric functions
zi(2 − z)i . We look for some of the coefficients ci such that

z

2
=

∞∑
i=1

ciz
i(2 − z)i, z ∈ [0, 1]. (3)

If such coefficients exist and are positive, then the sequence of partial sums

hn(z) =
n∑

i=1

ciz
i(2 − z)i, z ∈ [0, 2], (4)

is monotonic and, by Dini’s theorem, it converges uniformly to h(z). It follows that
gn(z) = z

2 + hn(z) is monotonic, increasing with respect to n, and it converges uniformly
to g(z). The coefficients ci can be obtained by resorting to the binomial series. Indeed,
the change of variable w = z(2 − z) in [0, 1] shows that equation (3) can be rewritten
as 1−√

1−w
2 = ∑

i ciw
i , where w ∈ [0, 1]. The binomial series for the square root, i.e.√

1 − w = ∑∞
i=0(−1)i

(1/2
i

)
xi , uniformly convergent if |w| � 1, allows us to obtain c0 = 0

and ci = (−1)i+1

2

(1/2
i

)
> 0 for i > 0. Thus we can explicitly describe the approximant

Gn(x, y) = gn(x + y) of x ⊕ y as

Gn(x, y) = x + y

2
+

n∑
i=1

(−1)i+1

2

(
1/2

i

)
(x + y)i((1 − x) + (1 − y))i

and it can be interpreted in terms of Bernstein polynomials.
We now briefly obtain a bound for the approximation error

en = max
x,y∈[0,1]

|(x ⊕ y) − Gn(x, y)|.

9



J. Phys. A: Math. Theor. 43 (2010) 465306 H Freytes et al

Figure 1. Errors in the approximations l1, i.e. (x ⊕ y) − l1(x, y), for x, y ∈ [0, 1].

Indeed, it can be proved that 0 � g(z) − gn(z) � g(1) − gn(1) when z ∈ [0, 1], and en is
maximum when x + y = 1, so we can write

en = 1 − gn(1) =
∞∑

i=n+1

ci = 2(n + 1)cn+1 = 1

2
√

πn
+ O(n−3/2).

To obtain the approximant for x�Ł y we first consider the polynomial ln(x, y) =
1 − gn((1 − x) + (1 − y)). Note that |(x�Ł y) − (1 − gn((1 − x) + (1 − y)))| =
x�Ł y) − (1 − gn((1 − x) + (1 − y))) = en(x, y), i.e. the error is the same. Now we
consider a polynomial quantum operation Gn associated with gn((1 − x) + (1 − y)) and we
define the following composition of quantum operations:

Ln = σn
x Gn

(
σn

x

)†
,

where σn
x = (⊗n−2I ) ⊗ σx . With a similar argument we can exhibit a quantum operation for

the Gödel t-norm since min{x, y} = x�Ł ((1 − x) ⊕ y).
Taking into account remark 2.7 we construct the approximant in D2(x, y) and D4(x, y)

for the Łukasiewicz sum.
Case D2(x, y). Our Bernstein approximant for n = 1, i.e. G1(x, y), provides the error

2(n+1)cn+1 = 1
4 . Using numerical methods we can obtain a better approximation in D2(x, y).

In fact, by considering the following polynomial:

l1(x, y) = 5
12 (x + y)(1 − x) + 5

12 (x + y)(1 − y) + 1
2 (x + y),

we have that it approximates the Łukasiewicz sum with a maximum error bound of 0.08 as
show in figure 1.

Case D4(x, y). Our Bernstein approximant for n = 2, i.e. G1(x, y), provides the error
2(n + 1)cn+1 = 3

16 . Using numerical methods again, we can obtain the following polynomial
in the same generator system D4(x, y):

l2(x, y) = 1485
2970 (x + y) + 21

2970 (x + y)((1 − x) + (1 − y))

+ 1372
2970 (x + y)2((1 − x)2 + 2(1 − x)(1 − y) + (1 − y)2)

with a maximum error 0.04 as shown in figure 2.

10
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Figure 2. Errors in the approximations l2, i.e. (x ⊕ y) − l2(x, y), for x, y ∈ [0, 1].

This allows one to represent the standard operations associated with the Basic fuzzy logic
[16] as quantum operations, providing a physical interpretation to several systems of quantum
computational logic [7, 12, 15].
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