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Abstract—This paper presents a new approach to the distri-
bution system state estimation in wide-area networks. The main
goal of the paper is to present a two step procedure designed
to accurately estimate the status of a large scale distribution
network, relying on a distributed measurement system in a
multiarea framework. First of all, the network is divided into sub-
areas, according to geographical and/or topological constraints
and depending on the available measurement system. Then, in
the first step of the estimation process, for each area, a dedicated
estimator is used, exploiting all the measurement devices available
on the field. In the second step, data provided by local estimators
are further processed to refine the knowledge on the operating
conditions of the network. To improve the accuracy of the
estimation results, correlation arising in the first step estimations
has to be suitably evaluated and considered during the second
step. Performed analysis shows that existing correlations can be
included in the estimation process with very low data exchange
among areas, thus involving minimum communication costs. Both
first and second steps can be performed in a decentralized way
and with parallel processing, thus leading to reduced overall
execution times. Test results, obtained on the 123-bus IEEE test
network and proving the goodness of the proposed method, are
presented and discussed.

Index Terms—Correlation, decentralized architecture, dis-
tributed state estimation (SE), distribution system SE (DSSE),
multiarea SE (MASE), phasor measurement unit (PMU), wide-
area monitoring systems.

I. INTRODUCTION
The distribution grid is the infrastructure used to transfer the

electrical energy from the surroundings of inhabited areas, the
limit of the transmission grid, to final customers. In modern
power grids, such networks are operated through specifically
designed distribution management systems (DMSs), which
need an accurate knowledge of the network state to correctly
apply active control [1]. Transmission systems have a redun-
dant number of measurement devices and thus are generally
fully observable. On the contrary, the distribution systems
usually have a very limited number of measurement and
monitoring devices, basically limited to high voltage/medium
voltage (HV/MV) substations. As a consequence, monitoring
of distribution networks requires estimators able to deal with
nonredundant distributed measurement systems and to con-
sider the peculiarities of such systems.
The so called distribution system state estimation (DSSE)

is therefore a crucial module for each DMS application.
The DSSE has to estimate the state of the network, in
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terms of node voltages or branch currents (BCs), starting
from a few measurement data collected from heterogeneous
instruments, which measure several electrical quantities with
different accuracies and reporting rates. Thus, the ability to
deal with several measurement sources in a fast way, leading
to accurate estimations, is one of the main characteristics of a
DSSE algorithm. This is crucial above all considering the new
measurement devices. Recently, but only in some countries,
power quality meters have been placed in the networks, mainly
on the HV/MV substations. In addition, the development of a
new generation of electronic measurement systems, measuring
different quantities, and able to communicate with control cen-
ters, has encouraged new research activities on state estimation
(SE) [2]–[4]. In particular, it is possible to mention the phasor
measurement units (PMUs), measuring synchrophasors at high
reporting rate with really high accuracy. It is therefore clear
that DSSE is a complex measurement methodology, whose
characterization in terms of accuracy of the measurement
results is decisive for downstream decisions. It is worth noting
that an incorrect evaluation of the accuracy of the DSSE results
has a significant impact on all the advanced procedures that
are based on these data. The crucial role of DMS actions based
on DSSE results in operating distribution systems is a prime
example of the sensitivity of this issue.
Several DSSE techniques, mostly based on a weighted least

squares (WLSs) formulation, have been presented in literature
(see, for instance, [5]–[9]). Each of them focuses on specific
characteristics of the estimation method and of the distribution
networks. To achieve an accurate knowledge of the network
state, due attention must be paid to the proper modeling of the
estimation problem. A detailed description of the measurement
model is needed [10] and possible correlation existing in the
measurements should be duly considered [11].
A particularly important problem for distribution networks

is that, due to the large number of nodes and to the possibly
unbalanced three-phase structure, long calculation times, and
large data storage requirements can be required. Multiarea
SE (MASE) methods address this issue [12]. However, in the
literature, only a few works deal with the problem of MASE
applied to distribution systems. In [13], an MASE approach
based on a differential evolution algorithm is proposed. The
network state is obtained using local estimators that need
to exchange information with the adjacent subareas at each
iteration of the estimation algorithm. In [14], a method based
on local WLS estimators is presented. The voltage profile
of the whole network is obtained in a second step through
a central coordinator, which exploits the results of the local
estimations.
In [15], a study on different MASE approaches, critically

analyzed and tested for applicability in distribution systems, is
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proposed. For all the considered cases, the DSSE problem is
split into independent estimators working in parallel on local
subnetworks; then, their outputs are coordinated to improve the
whole wide-area estimation. The need to exchange information
between subareas is inherently met in the case of a single
distribution system operator (DSO) managing all the subnet-
works. However, in a future scenario the roles of the DSOs
are expected to change, so data exchange with external entities
(e.g. aggregators) can be foreseen, possibly regulated or en-
forced by a supervisory authority. For this reason, the proposed
multiarea approach is designed for minimum data exchange
among the adjacent subareas, which supports applicability
even in a competitive scenario. Starting from the results shown
in [15], in this paper, a new approach for a two-step procedure
for an accurate decentralized DSSE is presented. One crucial
point in this approach is that different sub-areas need to
share measurement devices to guarantee accurate estimation
in most conditions. This requirement depends on the scarcity
of measurement devices with respect to the number of the
quantities to be estimated. At least one measurement device is
necessary in each area, so that, even in case of communication
problems, a sufficiently accurate estimation could be obtained.
Sharing measurement devices among different areas leads to
the presence of correlations among the local estimations. To
properly refine the estimation results, existing correlations
have to be suitably evaluated and considered in the estimation
process. In this paper, the assessment of such correlations has
been performed and the benefits coming from their use in the
multiarea approach are shown. In the following, the funda-
mentals of the method are presented and the most significant
results, obtained on the 123-bus IEEE distribution network,
are presented and discussed. This test network is a standard
passive distribution grid, and it has been chosen because it
represents a common IEEE benchmark for this kind of studies.
However, there is no conceptual limitation in applying the
approach to active distribution systems.

II. DISTRIBUTION SYSTEM STATE ESTIMATION

SE methods are complex measurement methodologies that
evaluate the state of grids from heterogeneous sets of measure-
ments. SE techniques, developed and used for transmission
systems, cannot be directly applied to distribution grids, due
to their peculiarities. To mention some of them, the number
of nodes is very large with respect to the real-time measure-
ments, and information on the behavior of the loads can be
really limited. For this reason, any kind of available a priori
information has to be used to make the system observable.
This prior information, which is necessary but also highly
uncertain because it is obtained above all from historical data
of the power drawn by the loads, is commonly referred to as
pseudomeasurements.
The general measurement model used for SE problem is:

z = h(x) + e (1)

where z = [z1 . . . zM ]
T is the vector of the M measurements

of the network (including the chosen pseudo-measurements);
h = [h1 . . . hM ]

T is the vector of measurement functions, in

general nonlinear (depending on the type of measurements
and on the network topology, which is assumed to be known);
x = [x1 . . . xN ]

T is the vector of the N state variables; and
e is the measurement noise vector, assumed to be zero mean
and Gaussian, with known covariance matrix Σz. Starting from
this measurement model, different estimation algorithms can
be derived.
In this paper, the three-phase version of the efficient BC-

DSSE presented in [9] is used, since it allows for easy integra-
tion of any kind of electrical measurement. According to [9],
the state vector x includes the reference (or slack) bus voltage,
as well as the currents in the Nbr branches, in rectangular co-
ordinates. The state x is thus

[
Vslack, i

r
1 . . . i

r
Nbr

, ix1 . . . i
x
Nbr

]T
(where Vslack � |vslack| is the absolute value of the complex
slack bus voltage) if the measurement system is composed
of only traditional measurements (voltage and current mag-
nitudes, active and reactive powers and power injections),
whereas x is

[
vrslack, v

x
slack, i

r
1 . . . i

r
Nbr

, ix1 . . . i
x
Nbr

]T if the
synchrophasor measurements (voltage and current provided by
PMUs) are also available.
The branch currents are estimated iteratively by means of

WLS step and forward sweep step (see [9] for further details).
In the WLS step, the equations are solved as follows:

Δxn = xn+1 − xn = G−1
n HT

nWΔzn (2)

where xn is the state vector at iteration n; Δzn = [z−h(xn)]
is the vector of the measurement residuals; Hn is the Ja-
cobian of the measurement functions with respect to the
state variables; W is the weighting matrix, usually chosen
as the inverse of the measurement error covariance matrix Σz;
Gn = HTWH is the so-called Gain matrix and its inverse
corresponds to the covariance matrix of the estimated vector
(see [16] for details).
A forward sweep step is then performed at each iteration

to compute, starting from the estimated branch currents, the
network voltages for each node.

III. MULTI-AREA DISTRIBUTION SYSTEM STATE
ESTIMATION

MASE methods address the problem of performing SE
on wide-area systems. The major aims are to exploit the
characteristics of the computational nodes distributed over
the grid and to reduce the computing time [12]. MASE
methods can be categorized according to the methodology
adopted to define the subareas, the type of estimator, and
the harmonization process carried out in the estimator [12]–
[14], [17]–[20]. MASE methods, in general developed for
transmission systems, have to be designed in a different way
to be suitable for the features of the distribution grids. In the
following, the proposed procedure is presented.

A. Definition of the Subareas

In Fig. 1 a sketch of the distributed measurement system
organization for multiarea DSSE is shown. The proposed
solution is based on the following assumptions.

• The division into areas can be based on topological or
geographical criteria but, in general, it should be handled
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so that areas have similar number of nodes, to minimize
the execution time of the individual DSSE.

• Adjacent areas are overlapped and share at least one
node; this node is fully monitored through a suitable
measurement point and can be shared by more than two
subareas.

• Each measurement point includes a voltage measurement
and as many flow measurements (power or current) as
the branches converging to the node of interest.

• Each area has a mini-control center where the local
estimation is carried out; such computing nodes work in
parallel and communicate with the intelligent nodes of
adjacent areas.

Fig. 1. Multiarea network division schema.
The proposed solution with overlapping nodes has different

advantages. First of all, if the pseudomeasurements of power
injection on the nodes are available, observability and at least
one measurement point are guaranteed in each area. This is
crucial for robustness to communication failure. In addition,
measurements on the branches connected to the shared node,
but not belonging to the area of interest, can be used to
obtain the equivalent power injection of the adjacent subaeras,
thus increasing the measurement redundancy in the area itself.
Finally, in case of traditional measurements, the phase angles
of each area can be simply sequentially shifted, starting from
the area with the absolute phase-angle reference, using the
difference in the phase-angle estimation on the overlapped
nodes, to achieve consistent angle information on the whole
network.
The same kind of architecture has been used in [15],

where the two-step procedure was introduced. In the first step,
the estimation is performed locally, in each area, by means
of BC-DSSE; in the second step, the results provided by
the previous step are harmonized to obtain a more accurate
estimation. This second step can be implemented in different
ways: three possibilities were analyzed in [15]. In this paper,
a new solution (MA-DSSE henceforth) is proposed, which is
an enhancement of method 3 in [15].

B. Proposed Multiarea DSSE Approach

In the following, the bases of the proposed MA-DSSE
approach are described. In particular, the estimated quantities
are indicated with the hat symbol. The algorithm operates as
follows.

1) First Step: All the measurements internal to the con-
sidered area are exploited to perform a local estimation.
Moreover, flow measurements on the branches converging to
each shared node, but external to the considered area, are used
as equivalent injection measurements. The BC-DSSE for all
the areas is performed in parallel and in a totally independent

manner, obtaining for each area i the estimated state x̂i. Each
area must be ready to provide, in addition to the values of the
estimates, their corresponding variances.

2) Second Step: A second SE is performed on each area
using as measurements the results of the previous estimation
and the estimates of the border quantities provided by adjacent
areas. For each area i, defining as Γi the set of adjacent areas
and vs the voltage of the generic shared node between two
areas i and j, the following data inputs are used.

• The output x̂i of the first step estimation in the considered
area i.

• For each area j ∈ Γi, the estimate of the shared node
voltage from area j and the estimates of the currents in
the branches connecting the shared node to the rest of
area j (lumped up to a single equivalent current injection
for area i).

If only traditional measurements are used, the estimated ab-
solute value V̂sj = |v̂sj | of the shared node is considered. For
the currents, a realignment of their phase angle is performed
(exploiting the mismatch of the phase-angle estimation on
the shared node) to refer them to the same reference phase
angle of area i. Instead, if PMU measurements are present,
the absolute phase angles can be estimated in all the areas and
then the voltages v̂sj in rectangular coordinates contribute to
the refinement of the phase-angle estimation. In addition, no
alignment process is needed for the currents.
The second step is therefore implemented by another BC-

DSSE applied to the following equivalent measurement model
(referred to a generic area i):

y =

⎡
⎢⎣
x̂i

yj

...

⎤
⎥⎦ =

⎡
⎢⎣

xi

fj(xi)
...

⎤
⎥⎦+

⎡
⎢⎣
εi

ηj

...

⎤
⎥⎦ (3)

where y is the vector of second step measurements, yj is the
vector of the estimates coming from area j, fj(xi) is the vector
of the measurement functions linking the estimates from area
j to the state of area i, and εi and ηj are, respectively, the
vectors of estimation errors in the first step, in area i and area
j (limited to the border quantities of interest). Similarly to the
first step, these errors can be modeled through a covariance
matrix Σy and its inverse should be considered as weighting
matrix for the second step.
In method 3 of [15], the matrix Σy was built, in a first ap-

proximation, using the variances of all the estimated quantities
involved in (3), obtained at the end of the first step, whereas
the correlation was not considered. However, correlation in
the measurement process exists because the measurements
on the overlapped nodes are shared by different zones. For
this reason, in this paper, an analysis of such correlations
has been performed. Section IV describes the calculation of
the covariance terms to be included in Σy in the second
step of the estimation. This calculation does not require the
communication of additional data between areas i and j.

IV. CORRELATION AMONG STATES ESTIMATED IN
DIFFERENT AREAS

This section reports the analysis of the correlation among
the states estimated in the first step with shared available
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measurements. To formalize this correlation, it is necessary
to relate the state estimates with the measurements.
Considering only the last iteration of the estimation algo-

rithm and with the linearized measurement functions (2), the
solution yields:

Δx̂ = BΔz (4)

where B = (HTWH)−1HTW is the pseudoinverse matrix
linking the estimated states to the measurement residuals.
Two generic areas A and B, characterized by Ni states and

Mi measurements, (with i = [A,B]), have an [Ni × 1] state
vector xi and an [Mi×1] measurement vector zi. Hence, each
area has an [Mi ×Ni] Jacobian matrix Hi and an [Mi ×Mi]
weighting matrix Wi.
If the measurements shared between the two areas areMAB,

then the total number of measurements available in the two
areas is:M = MA+MB−MAB. It is possible to create a [M×
1] measurement vector zTOT and a [M×M ] weighting matrix
WTOT including all the available measurements. For each
area, it is also possible to create an expanded Jacobian matrix
HiTOT

involving the relationship among all the measurements
of the network and the state of the area: in this case, all the
measurements not belonging to the considered area will have
null elements in the corresponding rows of the Jacobian.
Let us define the measurement vector zTOT as follows:

zTOT =

⎡
⎣zAA

zAB

zBB

⎤
⎦ (5)

where zAA is the subvector of the MAA measurements be-
longing only to area A, zBB is the subvector of the MBB

measurements belonging only to area B, and zAB is the
subvector of the MAB measurements shared between the two
areas. Then the expanded Jacobians for the two areas are:

HATOT
=

[
HA

0

]
, HBTOT

=

[
0

HB

]
(6)

According to the construction of the measurement vector,
the overall weighting matrix can be expressed as:

WTOT =

⎡
⎣WAA 0 0

0 WAB 0

0 0 WBB

⎤
⎦ (7)

where WAA, WAB, and WBB are the diagonal submatrices
composed of the weights associated to the MAA, MAB,
and MBB measurements (considered as uncorrelated), respec-
tively.
Considering the gain matrix of area i:

Gi = HT
i WiHi (8)

the following relationship holds:

Gi = HT
iTOT

WTOTHiTOT
(9)

Since the inverse of each area gain matrix gives the covariance
matrix Σi = G−1

i of the state estimated in the first step of
the multiarea procedure for the corresponding area, from (9)
it follows that:

BiTOT
= ΣiH

T
iTOT

WTOT (10)

where BiTOT
is the matrix linking the estimates of area i to

the measurement vector zTOT .
Considering (6) for the Jacobian matrices and (7) for the

overall weighting matrix, the following two matrices can be
defined:

BATOT
=

[
BA 0

]
, BBTOT

=
[
0 BB

]
(11)

where BA and BB are, respectively:

BA = ΣAH
T
AWA, BB = ΣBH

T
BWB (12)

The covariancesΣx̂A,x̂B
among the estimated states of areas

A and B can thus be found as follows:

Σx̂A,x̂B
= BATOT

ΣzTOT
BT

BTOT
(13)

where ΣzTOT
is the covariance matrix of all the measurement

errors. Considering that the weighting matrix is chosen as
the inverse of the measurement error covariance matrix, (13)
becomes:

Σx̂A,x̂B
= BATOT

W−1
TOTB

T
BTOT

(14)

and using (11), after some simplifications (mathematical de-
tails can be found in Appendix A) it is possible to obtain the
following expression for the covariance matrix:

Σx̂A,x̂B
= ΣAH

T
ABWABHBAΣB (15)

where HAB , HBB , HBA, and HBB are matrices obtained
by splitting (in the Jacobians) the contribution of the shared
measurements and of the measurements that are exclusively
pertaining to each area (Appendix A).
In the following sections more details are given for the

covariance computation in case that either traditional or syn-
chronized measurements are used.

A. Covariance Among Voltages Estimated in Different Areas
With Traditional Measurements

Equation (15) provides the covariances existing among all
the state variables estimated in areas A and B. However,
it is worth highlighting that in the case of interest for this
paper, the searched covariance is limited to that between the
voltage magnitudes of the overlapping node estimated in the
two subareas.
According to [9], as briefly recollected in Section II, the

state vector of a branch-current estimator is composed by the
currents of all the branches and the voltage in the slack bus.
Since the uncertainty of the estimation does not depend on
the choice of the slack bus (in [21], the possibility to avoid a
reference bus without drawbacks in the estimation is discussed
for transmission systems), in the following, for presentation
simplicity, the overlapping node is chosen as the reference
bus for both the areas.
In particular, if only traditional measurements are present,

only the voltage amplitude at the shared node has to be
considered. Thus, assuming the organisation of the state is the
same for both states xA and xB , with the voltage magnitude of
the shared node at index 1, only the element (1, 1) of Σx̂A,x̂B

has to be computed. Such element is obtained considering
only the first row of ΣA and the first column of ΣB in
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(15). Furthermore, it is HAB = HBA = [1, 0, . . . , 0] and
WAB = wzVs

, where wzVs
= 1/σ2

zVs
is the weight associated

to the measurement zVs
(with variance σ2

zVs
) of the voltage

magnitude in the overlapped node. The only contribution to
the sought covariance of the first estimation step is given by
the variances of the estimated overlapping node voltages. The
resulting covariance term is therefore:

σVsA
,VsB

= σ2
VsA

wzVs
σ2
VsB

(16)

where σ2
Vsi

is the variance of the overlapping node voltage
estimated in the area i.

B. Covariance Among Voltages Estimated in Different Areas
With Phasor Measurements

When PMU measurements are used, many of the aforemen-
tioned considerations for the case of traditional measurements
still hold. The main difference with respect to the previous
case is that the reference node voltage included into the state
vector is given in terms of real and imaginary parts. As
a consequence, there are two shared measurements between
areas A and B, which are the real and the imaginary parts of
the voltage phasor measurement in the overlapping node.
According to these assumptions, it is possible to compute

the correlation matrix from (15), considering that HAB and
HBA have two rows. Four correlation terms have to be
included in the second step of the multiarea estimator needed
in this case, because of the two state variables that are common
to both areas, and it is possible to show that it can be obtained
with a simple generalization of (16) to two variables. The
mathematical passages are detailed in Appendix B.

V. TESTS AND RESULTS

The unbalanced IEEE 123-bus network is considered as test
system. Data about the network were obtained from [22]. Fig.
2 shows the grid topology and the chosen decomposition in
overlapping areas. Several tests have been performed, with
different measurement systems, to establish the accuracy per-
formance of the proposed method. In the following, the most
significant results in terms of root mean square errors (RMSEs)
of the node voltage magnitude and phase-angle estimations are
presented and discussed.
According to the proposed method, a measurement point is

considered in each one of the resulting shared nodes (18 and
67) to guarantee the local area observability. In addition, a
measurement point in the primary station (node 150) has been
considered. The starting measurement configuration is thus
composed by measurement devices on the nodes 18, 67, and
150. Each one of the measurement points includes a voltage
magnitude measurement on the node and power measurements
on all the branches connected to it. The alternative of having
PMU measurements has been also considered. In this case, the
available measurements are the voltage phasor on the node and
the current phasors on the branches. In addition to the real
measurements, pseudomeasurements of the power injections
on all the nodes are supposed to be known.
To evaluate the accuracy performance of the proposed MA-

DSSE method, several tests have been performed using Monte

Fig. 2. IEEE 123-bus test network

Carlo (MC) simulations. At the beginning, true values of the
electrical quantities in the network are obtained by means of a
load flow calculation. Then, starting from such reference val-
ues, for each MC trial, measurements are randomly extracted
according to their probability density function. In particular,
the following assumptions have been considered.

• Number of MC trials NMC = 50000.
• Pseudomeasurements of node power injection with Gaus-
sian distribution and 3σ = 50% of the nominal value.

• Real measurements with Gaussian distribution and 3σ
equal to accuracy values. As for the traditional measure-
ments, accuracy equal to 1% and 3% are used for voltage
magnitude and power flow measurements, respectively. In
case of PMU measurements, accuracy of 0.7% and 0.7
crad (0.7 · 10−2 rad) is considered for magnitude and
phase-angle measurements, respectively.

To assess the performance of the proposed MA-DSSE
method, its results have been compared with those obtained
with the BC-DSSE carried out on the whole network [inte-
grated SE, (ISE)], the first step estimation on the different
areas [local SE, (LSE)] and the method 1 of [15], indicated
as MASE 1 in the following. MASE 1 compares voltage
estimations at the shared nodes, as calculated by the estimators
of the overlapping areas and uses the most accurate estimate to
correct the voltage profiles on the zones with worse estimates.
In the first test series, the starting measurement configura-

tion has been considered. First of all, the validity of the math-
ematical approach developed for computing the covariances to
be used in the second step of the MA-DSSE has been checked.
Table I shows the comparison between the correlation factors
evaluated according to Section IV and the ones obtained by
means of the MC simulations. Results show that there is a
good match between the correlation factors, confirming the
validity of the found relationships. It is also worth noting that,
depending on the measurement configuration, there could be
situations in which two estimations are fully correlated (in this
example, the estimations coming from areas C and D): in this
case, only one of them is included in the second step.
Fig. 3 shows the results, in terms of RMSE, obtained for

the voltage magnitude estimation in case of voltage and power
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TABLE I
CORRELATION BETWEEN ESTIMATED VOLTAGES

Voltage Theoretical Monte Carlo

estimations calculation calculation

V A
150

- V B
18

0.581 0.581

V
A
150

- V C
67

0.585 0.583

V A
150

- V D
67

0.585 0.583

V
C
67

- V D
67

1.000 1.000

measurements. Here and in the following, results refer to only
one phase of the system, but equivalent results and the same
considerations were found to hold for all the three phases.
The node numeration of Fig. 3 does not match the one of
Fig. 2 because the nodes have been renumbered to aggregate
the results related to same areas. Moreover, the shown nodes
are only 80 because several of the laterals are single-phase
branches. To avoid a complex representation, each node is
reported only once and the shared nodes are represented only
in area A section of the figure. For LSEs and MASE methods,
the shared nodes’ voltages present, for each area, RMSEs that
are similar to those of the other nodes, as can be deduced by
the flatness of the profile. As an example, the RMSE of LSE
in node 18 is 0.199% for area A while it is 0.333% for area
B. Similar considerations hold for the following tests.

Fig. 3. RMSE of voltage magnitude estimation with starting measurement
configuration

An important aspect is highlighted by the LSE results. In
case of area A, the LSE has accuracy performance equal to
the ISE: this is an expected result because area A includes all
the measurements available on the network. In the other areas,
instead, the LSEs have significantly less accurate estimations
with respect to the ISE, since LSEs can rely only on one
measurement point. This underlines the importance of using
suitable two-step techniques to improve the local estimations.
As for the multi-area approaches, both MA-DSSE and

MASE 1 exhibit the same accuracy of ISE in all the areas.
In MA-DSSE, the reason is that the second step allows
integrating in the estimation the information coming from the
voltage estimated in the adjacent areas. In particular, areas B,
C, and D can exploit the accurate estimation coming from area
A to achieve a better estimation. It is important to highlight
that such accuracy results can be obtained only through a
proper modeling of the correlations among the voltages used in

the second step. In [15], where covariances were not included
in the second step of this approach, in the same test conditions,
the proposed method provided worse results than the ISE in
all the areas. As for MASE 1, instead, the voltage correction
performed in the second step leads to propagate the best
accuracy of area A also to the adjacent areas. Thus, since
the first step estimation in area A is similar to the ISE, this
similarity is also propagated to the other areas. Analogous
results have been found also in case of PMU measurements.
Different considerations apply to the voltage phase-angle

estimation. In this case, a distinction between the use of
traditional and phasor measurements is needed. Indeed, us-
ing traditional measurements, the voltage phase angles are
computed as phase-angle differences with respect to a chosen
reference bus; instead, when PMUs are available, absolute
phase angles with respect to the coordinated universal time
(UTC) reference can be estimated. In case of traditional
measurements, to assume node 150 as universal slack bus (and
to allow comparison with the ISE results) an alignment of the
phase angles is needed, using the phase-angle mismatch at the
shared nodes. Results show that all the estimators provide very
similar results, with RMSEs largely lower than 1 mrad in all
the nodes. In case of PMU measurements, the alignment step
is not needed, since all the phase-angle estimations already
refer to the UTC. The RMSEs, in this case, show the same
trend as shown in Fig. 3 for the voltage magnitude, with lower
accuracies for the LSEs of areas B, C, and D (the mean RMSE
obtained averaging among the nodes is 2.3 mrad in each area)
and similar accuracies for the ISE and the multiarea methods
(with a mean RMSE of 1.4 mrad in all the areas). It is worth
to highlight that if, starting from the absolute phase angles,
the phase-angle differences with respect to a reference node
are calculated, even in this case the achievable RMSEs are
largely lower than 1 mrad.
This first test shows that the MA-DSSE (but also the

MASE 1 method) is able to achieve accuracy performance
similar to the ISE, for both voltage magnitude and phase-angle
estimation, when there is an area including all the available
measurements and all the other areas are adjacent to this
one. Different results can be instead expected when differing
measurement scenarios are assumed.
As an example, a second test has been performed adding

a measurement point at nodes 86 (area C) and 105 (area D).
Fig. 4 shows the RMSEs obtained for the voltage magnitude
estimation in case of traditional measurements.
In this case, obviously, the ISE provides the best estimation

results, since it can simultaneously process all the available
measurements. As in the previous test, instead, the LSE results
are significantly less accurate. In particular, it is possible to
observe that the achieved estimation accuracy is strictly related
to the number of voltage measurements available in each area:
thus, area A provides the best results, since it can rely on three
voltage measurements, while area B, having only one voltage
measurement, gives the worst estimation.
Looking at the multiarea approaches, both of them allow

to improve the accuracy of the LSE. However, in this mea-
surement scenario, the advantages coming from the use of the
MA-DSSE become evident. MASE 1 exploits the best local
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Fig. 4. RMSE of voltage magnitude estimation with additional measurement
points

estimation of area A to correct the results in the adjacent
areas: thus, the maximum achievable accuracy level is that
of area A. In case of MA-DSSE, instead, the second step
estimation allows to integrate the information coming from all
the adjacent areas with the local one. Thus, the estimation in
area A is significantly improved, since the second step includes
the useful voltage estimates of areas C and D (where the
additional measurement points have been placed). In the same
way, even the estimation in areas C and D are significantly
refined. In case of area B, the enhancement is of course
meaningful with respect to the LSE, even though it cannot
reach the same level of the other areas because the voltage
estimations of areas C and D cannot be involved in the second
step.
The same considerations reported for the traditional mea-

surements still hold for the case of synchronized measure-
ments. The only difference concerns the phase-angle estima-
tions. Again, also in this test, the phase-angle differences
estimated with traditional measurements are really similar for
all the estimators and close to the best estimation given by
the ISE (with RMSEs lower than 1 mrad). The absolute phase
angles computed in case of PMUs, instead, repeat the trend
shown in Fig. 4 for the voltage magnitude estimation.
An additional test has been performed to confirm all the

drawn conclusions. In this case, some other measurements
have been deployed, simulating a future scenario with an im-
proved measurement system. In particular, additional measure-
ment points with respect to the previous test have been placed
in nodes 25, 42, 48 (area B), and 91 (area C). Summarizing, in
this augmented measurement system, four measurement points
are present in area B, three in areas A and C, and two in area
D.
Fig. 5 shows the results of the voltage magnitude estimation

with traditional measurements. As it can be observed, area B
provides the best local estimation as it has the larger number
of voltage measurements. The MASE 1 method, as observed
in the previous tests, allows the propagation of the best
estimations in the close areas. Thus, area A acquires the better
estimation coming from area B, and area D exploits that of
area C. However, with the increased number of measurements,
the enhancement coming from the use of the MA-DSSE is
evident: the estimations are more accurate than MASE 1
method in all the areas and the improvement in the accuracy

estimation is larger than in the previous tests. It is also
interesting to note that the most accurate estimation for the
MA-DSSE is obtained in area A, even if it does not have
the largest number of measurements, since it can integrate the
information coming from areas B, C, and D.
As aforementioned, when synchronized measurements are

employed instead of traditional ones, similar results can be
found. As an example, Fig. 6 reports the RMSE values of
voltage magnitude estimations obtained using PMU measure-
ments, under the same test conditions of Fig. 5. The RMSE
profiles are very similar. The main differences are in the
achievable accuracies, that in this case are, as can be expected,
higher because of the lower uncertainties attributed to PMU
measurements.

Fig. 5. RMSE of voltage magnitude estimation with augmented measurement
system in case of traditional measurements

Fig. 6. RMSE of voltage magnitude estimation with augmented measurement
system in case of PMU measurements

VI. CONCLUSIONS

In this paper a multi-area DSSE approach suitable for
wide-area networks has been presented. The proposed method
relies on the decomposition of the overall area in overlapping
zones, with one shared node equipped with a measurement
station. Such a solution allows the observability of each area,
thus guaranteeing a reliable local estimation even in case of
communication problems. The proposed multiarea architecture
allows for a parallel operation of the local estimators, thus
reducing the overall execution times. The estimation algorithm
is composed of a two-step procedure where the first step local
estimations are refined with a second step estimation that
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exploits the estimates coming from the neighboring areas and
suitably considers correlation in measurement process. A de-
tailed description of the measurement model to be used in the
estimation process has been presented. Performed tests confirm
the feasibility and effectiveness of the proposed method.

APPENDIX A
In the following, the simplification of the mutual covariance

matrix between two estimated state vectors of two adjoined
areas is obtained. Substituting the area estimation matrices (11)
into (14), it follows:

ΣxA,xB
=

[
BA 0

]
W−1

TOT

[
0 BB

]T (17)

and, considering (12), it results:

ΣxA,xB
=

[
ΣAH

T
AWA 0

]
W−1

TOT

[
0 ΣBH

T
BWB

]T
(18)

Since the weighting matrix and the covariance matrix are
symmetric, it is possible to rewrite the previous equation as
follows:

ΣxA,xB
=

[
ΣAH

T
AWA 0

]
W−1

TOT

[
0

WBHBΣB

]
(19)

In the Jacobians of the areas A and B indicated in (19), it
is possible to separate the contributions of the measurements
belonging only to a single area from those coming from the
shared measurements:

HA =

[
HAA

HAB

]
, HB =

[
HBA

HBB

]
(20)

and, thus, it is possible to rewrite (19) as follows:

ΣxA,xB
=

[
ΣAH

T
AAWAA ΣAH

T
ABWAB 0

]
×

×

⎡
⎣WAA 0 0

0 WAB 0

0 0 WBB

⎤
⎦
−1

×

⎡
⎣ 0

WABHBAΣB

WBBHBBΣB

⎤
⎦ (21)

Performing the matrix multiplication in (21), the covariance
matrix can be finally expressed as follows:

ΣxA,xB
= ΣAH

T
ABWABHBAΣB (22)

APPENDIX B
In this Appendix the derivation of the covariance matrix

between the estimates of two areas A and B is obtained for the
case of synchronized phasor measurements. The rectangular
coordinates formulation is used. In this case, there are two
shared measurements between the areas for the common
voltage measurement: the real part vrs and the imaginary part
vxs . Thus, HAB and HBA in (15) (the rows of the two
Jacobians corresponding to common measurements) become:

HAB = HBA =

[
1, 0, . . . , 0
0, 1, . . . , 0

]
(23)

Considering this, and considering that only the elements
ΣxA,xB

(h, k) with h = 1, 2 and k = 1, 2 are needed, the
following holds:

[ΣAH
T
AB]

∣∣∣∣
h=1,2

=

[
σ2
vr
sA

σvr
sA

vx
sA

σvx
sA

vr
sA

σ2
vx
sA

]
(24)

[HT
BAΣB ]

∣∣∣∣
k=1,2

=

[
σ2
vr
sB

σvr
sB

vx
sB

σvx
sB

V r
sB

σ2
vx
sB

]
(25)

where the notation P|h=..;k=.. indicates the rows h or columns
k to consider in the matrix P, σvr

si
and σvx

si
(with i = A,B)

are, respectively, the standard deviations of the real and
imaginary voltage of the slack bus estimated by area i, and
σvr

si
vx
si

is the covariance. As for the weighting matrix, since
PMUs provide the voltage phasor in polar coordinates, the
derived rectangular coordinates have a full covariance matrix
and its inverse WAB is:

WAB =

[
wvr

s
wvr

sv
x
s

wvx
s v

r
s

wvx
s

]
(26)

Finally, the submatrix of interest of (15) becomes:

ΣxA,xB

∣∣∣∣
h=1,2;k=1,2

=

[
σ2
vr
sA

σvr
sA

vx
sA

σvx
sA

vr
sA

σ2
vx
sA

]
×

[
wvr

s
wvr

sv
x
s

wvx
s v

r
s

wvx
s

]
×

[
σ2
vr
sB

σvr
sB

vx
sB

σvx
sB

V r
sB

σ2
vx
sB

]

=

[
σvr

sA
vr
sB

σvr
sA

vx
sB

σvx
sA

V r
sB

σvx
sA

vx
sB

]

(27)

where σvr
sA

vr
sB

is the covariance between the real part of
the voltage estimated in A and the real part of the voltage
estimated in B and the other elements have analogous inter-
pretations.
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