Brains affected by Alzheimer's disease (AD) show a large spectrum of mitochondrial alterations at both morphological and genetic level. The causal link between amyloid beta peptides (AP) and mitochondrial dysfunction has been established in cellular models of AD using Abeta concentrations capable of triggering massive neuronal death. However, mitochondrial changes related to sublethal exposure to Abeta are less known. Here we show that subtoxic, 1 microM Abeta(1-42) exposure does not change the mitochondrial shape of living cells, as visualized upon the uptake of the non-potentiometric fluorescent probe Mitotracker Green and enhanced yellow fluorescent protein (EYFP)-tagged cytochrome c oxidase expression. Immunolocalization of oxidative adducts 8-hydroxy-2'-deoxyguanosine, 8-hydroxyguanine and 8-hydroxyguanosine demonstrates that one-micromolar concentration of Abeta(1-42) is also not sufficient to elicit dramatic qualitative changes in the RNA/DNA oxidative products. However, in comparison with controls, semi-quantitative analysis of the overall mitochondrial mass by integrated fluorescence intensity reveals an ongoing down-regulation in mitochondrial biosynthesis or, conversely, an enhanced autophagic demise of Abeta treated cells. Furthermore, a significant increase of the full-length mitochondrial DNA (mtDNA) from Abeta-treated versus control cells is found, as measured by long range polymerase chain reaction (PCR). Such up-regulation is accompanied by extensive fragmentation of the unamplified mtDNA, probably due to the detrimental effect of Abeta. We interpret these results as a sequence of compensatory responses induced by mtDNA damage, which are devoted to repression of oxidative burst. In conclusion, our findings suggest that early therapeutic interventions aimed at prevention of mitochondrial oxidative damage may delay AD progression and help in treating AD patients.

Mitochondria morphology and DNA content upon sublethal exposure to beta-amyloid(1-42) peptide

DIANA, ANDREA;PICHIRI, GIUSEPPINA;
2008-01-01

Abstract

Brains affected by Alzheimer's disease (AD) show a large spectrum of mitochondrial alterations at both morphological and genetic level. The causal link between amyloid beta peptides (AP) and mitochondrial dysfunction has been established in cellular models of AD using Abeta concentrations capable of triggering massive neuronal death. However, mitochondrial changes related to sublethal exposure to Abeta are less known. Here we show that subtoxic, 1 microM Abeta(1-42) exposure does not change the mitochondrial shape of living cells, as visualized upon the uptake of the non-potentiometric fluorescent probe Mitotracker Green and enhanced yellow fluorescent protein (EYFP)-tagged cytochrome c oxidase expression. Immunolocalization of oxidative adducts 8-hydroxy-2'-deoxyguanosine, 8-hydroxyguanine and 8-hydroxyguanosine demonstrates that one-micromolar concentration of Abeta(1-42) is also not sufficient to elicit dramatic qualitative changes in the RNA/DNA oxidative products. However, in comparison with controls, semi-quantitative analysis of the overall mitochondrial mass by integrated fluorescence intensity reveals an ongoing down-regulation in mitochondrial biosynthesis or, conversely, an enhanced autophagic demise of Abeta treated cells. Furthermore, a significant increase of the full-length mitochondrial DNA (mtDNA) from Abeta-treated versus control cells is found, as measured by long range polymerase chain reaction (PCR). Such up-regulation is accompanied by extensive fragmentation of the unamplified mtDNA, probably due to the detrimental effect of Abeta. We interpret these results as a sequence of compensatory responses induced by mtDNA damage, which are devoted to repression of oxidative burst. In conclusion, our findings suggest that early therapeutic interventions aimed at prevention of mitochondrial oxidative damage may delay AD progression and help in treating AD patients.
2008
amyloid toxicity; oxidative stress; neuroblastoma cell culture
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/104222
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 26
social impact