This paper presents a new approach to congestion management at traffic-light intersections. The approach is based on controlling the relative lengths of red/green cycles in order to have the congestion level track a given reference. It uses an integral control with adaptive gains, designed to provide fast tracking and wide stability margins. The gains are inverse-proportional to the derivative of the plant-function with respect to the control parameter, and are computed by infinitesimal perturbation analysis. Convergence of this technique is shown to be robust with respect to modeling uncertainties, computing errors, and other random effects. The framework is presented in the setting of stochastic hybrid systems, and applied to a particular traffic-light model. This is but an initial study and hence the latter model is simple, but it captures some of the salient features of traffic-light processes. The paper concludes with comments on possible extensions of the proposed approach to traffic-light grids with realistic flow models.

Infinitesimal perturbation analysis of stochastic hybrid systems: Application to congestion management in traffic-light intersections

SEATZU, CARLA
2014-01-01

Abstract

This paper presents a new approach to congestion management at traffic-light intersections. The approach is based on controlling the relative lengths of red/green cycles in order to have the congestion level track a given reference. It uses an integral control with adaptive gains, designed to provide fast tracking and wide stability margins. The gains are inverse-proportional to the derivative of the plant-function with respect to the control parameter, and are computed by infinitesimal perturbation analysis. Convergence of this technique is shown to be robust with respect to modeling uncertainties, computing errors, and other random effects. The framework is presented in the setting of stochastic hybrid systems, and applied to a particular traffic-light model. This is but an initial study and hence the latter model is simple, but it captures some of the salient features of traffic-light processes. The paper concludes with comments on possible extensions of the proposed approach to traffic-light grids with realistic flow models.
File in questo prodotto:
File Dimensione Formato  
C24_CDC_14b.pdf

Solo gestori archivio

Dimensione 135.93 kB
Formato Adobe PDF
135.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/106847
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact