Phylogenetic analyses of three cpDNA markers (matK, rpl16, and trnL–trnF) were performed to evaluate previous treatments of Ruteae based on morphology and phytochemistry that contradicted each other, especially regarding the taxonomic status of Haplophyllum and Dictamnus. Trees derived from morphological, phytochemical, and molecular datasets of Ruteae were then compared to look for possible patterns of agreement among them. Furthermore, non-molecular characters were mapped on the molecular phylogeny to identify uniquely derived states and patterns of homoplasy in the morphological and phytochemical datasets. The phylogenetic analyses determined that Haplophyllum and Ruta form reciprocally exclusive monophyletic groups and that Dictamnus is not closely related to the other genera of Ruteae. The different types of datasets were partly incongruent with each other. The discordant phylogenetic patterns between the phytochemical and molecular trees might be best explained in terms of convergence in secondary chemical compounds. Finally, only a few non-molecular synapomorphies provided support for the clades of the molecular tree, while most of the morphological characters traditionally used for taxonomic purposes were found to be homoplasious. Within the context of the phylogenetic relationships supported by molecular data, Ruta, the type genus for the family, can only be diagnosed by using a combination of plesiomorphic, homoplasious, and autapomorphic morphological character states.

Phylogenetic relationships of Ruteae (Rutaceae): new evidence from the chloroplast genome and comparisons with non-molecular data

BACCHETTA, GIANLUIGI;
2008-01-01

Abstract

Phylogenetic analyses of three cpDNA markers (matK, rpl16, and trnL–trnF) were performed to evaluate previous treatments of Ruteae based on morphology and phytochemistry that contradicted each other, especially regarding the taxonomic status of Haplophyllum and Dictamnus. Trees derived from morphological, phytochemical, and molecular datasets of Ruteae were then compared to look for possible patterns of agreement among them. Furthermore, non-molecular characters were mapped on the molecular phylogeny to identify uniquely derived states and patterns of homoplasy in the morphological and phytochemical datasets. The phylogenetic analyses determined that Haplophyllum and Ruta form reciprocally exclusive monophyletic groups and that Dictamnus is not closely related to the other genera of Ruteae. The different types of datasets were partly incongruent with each other. The discordant phylogenetic patterns between the phytochemical and molecular trees might be best explained in terms of convergence in secondary chemical compounds. Finally, only a few non-molecular synapomorphies provided support for the clades of the molecular tree, while most of the morphological characters traditionally used for taxonomic purposes were found to be homoplasious. Within the context of the phylogenetic relationships supported by molecular data, Ruta, the type genus for the family, can only be diagnosed by using a combination of plesiomorphic, homoplasious, and autapomorphic morphological character states.
2008
Ruta; Citrus family; Morphology; Phytochemistry; Congruence; Shimodaira–Hasegawa test; Character mapping; Homoplasy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/14747
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 33
social impact