This study reports the assessment of helical coil-packed bed columns for Zn2+ adsorption on bone char. Zn2+ adsorption breakthrough curves have been obtained using helical coil columns with different characteristics and a comparison has been conducted with respect to the results of straight fixed-bed columns. Results showed that the helical coil adsorption columns may offer an equivalent removal performance than that obtained for the traditional packed bed columns but using a compact structure. However, the coil diameter, number of turns, and feed flow appear to be crucial parameters for obtaining the best performance in this packed-bed geometry. A mass transfer model for a mobile fluid flowing through a porous media was used for fitting and predicting the Zn2+ breakthrough curves in helical coil bed columns. Results of adsorbent physicochemical characterization showed that Zn2+ adsorption on bone char can be attributed to an ion-exchange mechanism. In summary, helical coil columns appear to be a feasible configuration for large-scale adsorption systems with high flow rates where a significant reduction on purification system size can be obtained without compromising the adsorbent performance.

Adsorption of zinc ions on bone char using helical coil-packed bed columns and its mass transfer modeling

MASCIA, MICHELE;ERRICO, MASSIMILIANO
2016-01-01

Abstract

This study reports the assessment of helical coil-packed bed columns for Zn2+ adsorption on bone char. Zn2+ adsorption breakthrough curves have been obtained using helical coil columns with different characteristics and a comparison has been conducted with respect to the results of straight fixed-bed columns. Results showed that the helical coil adsorption columns may offer an equivalent removal performance than that obtained for the traditional packed bed columns but using a compact structure. However, the coil diameter, number of turns, and feed flow appear to be crucial parameters for obtaining the best performance in this packed-bed geometry. A mass transfer model for a mobile fluid flowing through a porous media was used for fitting and predicting the Zn2+ breakthrough curves in helical coil bed columns. Results of adsorbent physicochemical characterization showed that Zn2+ adsorption on bone char can be attributed to an ion-exchange mechanism. In summary, helical coil columns appear to be a feasible configuration for large-scale adsorption systems with high flow rates where a significant reduction on purification system size can be obtained without compromising the adsorbent performance.
2016
Adsorption; Bone char; Helical coil-packed columns; Mass transfer model; Zinc; Pollution; Water Science and Technology; Ocean Engineering
File in questo prodotto:
File Dimensione Formato  
DesalWatTreat 2016.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 665.81 kB
Formato Adobe PDF
665.81 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/182376
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact