Pharmacokinetics, biodistribution, and biological activity are key parameters that determine the success or failure of therapeutics. Many developments intended to improve their in vivo performance, aim at modulating concentration, biodistribution, and targeting to tissues, cells or subcellular compartments. Erythrocyte-based drug delivery systems are especially efficient in maintaining active drugs in circulation, in releasing them for several weeks or in targeting drugs to selected cells. Erythrocytes can also be easily processed to entrap the desired pharmaceutical ingredients before re-infusion into the same or matched donors. These carriers are totally biocompatible, have a large capacity and could accommodate traditional chemical entities (glucocorticoids, immunossuppresants, etc.), biologics (proteins) and/or contrasting agents (dyes, nanoparticles). Carrier erythrocytes have been evaluated in thousands of infusions in humans proving treatment safety and efficacy, hence gaining interest in the management of complex pathologies (particularly in chronic treatments and when side-effects become serious issues) and in new diagnostic approaches.

Engineering erythrocytes for the modulation of drugs' and contrasting agents' pharmacokinetics and biodistribution

PEIRETTI, ENRICO;
2016-01-01

Abstract

Pharmacokinetics, biodistribution, and biological activity are key parameters that determine the success or failure of therapeutics. Many developments intended to improve their in vivo performance, aim at modulating concentration, biodistribution, and targeting to tissues, cells or subcellular compartments. Erythrocyte-based drug delivery systems are especially efficient in maintaining active drugs in circulation, in releasing them for several weeks or in targeting drugs to selected cells. Erythrocytes can also be easily processed to entrap the desired pharmaceutical ingredients before re-infusion into the same or matched donors. These carriers are totally biocompatible, have a large capacity and could accommodate traditional chemical entities (glucocorticoids, immunossuppresants, etc.), biologics (proteins) and/or contrasting agents (dyes, nanoparticles). Carrier erythrocytes have been evaluated in thousands of infusions in humans proving treatment safety and efficacy, hence gaining interest in the management of complex pathologies (particularly in chronic treatments and when side-effects become serious issues) and in new diagnostic approaches.
2016
Delivery of vascular contrasting agents; Dexamethasone; Drug delivery by red blood cells; Enzyme replacement therapy; Erythrocytes; Immunophilins; Tacrolimus
File in questo prodotto:
File Dimensione Formato  
paper eritrociti.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/183481
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 44
social impact