This paper presents an adaptive Distribution System State Estimation (DSSE) which relies on a Cloud-based IoT paradigm. The methodology is adaptive in terms of the rate of execution of the estimation process which varies depending on the indications of the distributed measurement system. The system is composed, in particular, of Phasor Measurement Units (PMUs). PMUs are virtualized with respect to the physical devices and the corresponding virtualizing modules run in the communication network edge (i.e. Closer to the physical objects). PMUs are set at a higher measurement rate, while the estimation process works at a given slower rate, for example once per second, in normal operative conditions. A local decision algorithm implemented in the virtualized module, monitors the measured quantities in order to detect and address possible unexpected dynamics. In particular, different metrics can be applied: the variations and the trend of variation of the rms voltage values, but also the Rate Of Change Of Frequency (ROCOF) of the monitored signals can be used to trigger rate variation in the DSSE. In case dynamics are detected, the measurement data is sent to the DSSE at higher rates and the estimation process runs consequently on a finer time scale. In the considered system only application level entities are located in the Cloud, thus allowing to obtain a bandwidth-efficient and smart data transmission. The results obtained on a 13-bus systems prove the goodness of the proposed methodologies.

Adaptive PMU-based distribution system state estimation exploiting the cloud-based IoT paradigm

PEGORARO, PAOLO ATTILIO;MELONI, ALESSIO;ATZORI, LUIGI;CASTELLO, PAOLO;SULIS, SARA
2016-01-01

Abstract

This paper presents an adaptive Distribution System State Estimation (DSSE) which relies on a Cloud-based IoT paradigm. The methodology is adaptive in terms of the rate of execution of the estimation process which varies depending on the indications of the distributed measurement system. The system is composed, in particular, of Phasor Measurement Units (PMUs). PMUs are virtualized with respect to the physical devices and the corresponding virtualizing modules run in the communication network edge (i.e. Closer to the physical objects). PMUs are set at a higher measurement rate, while the estimation process works at a given slower rate, for example once per second, in normal operative conditions. A local decision algorithm implemented in the virtualized module, monitors the measured quantities in order to detect and address possible unexpected dynamics. In particular, different metrics can be applied: the variations and the trend of variation of the rms voltage values, but also the Rate Of Change Of Frequency (ROCOF) of the monitored signals can be used to trigger rate variation in the DSSE. In case dynamics are detected, the measurement data is sent to the DSSE at higher rates and the estimation process runs consequently on a finer time scale. In the considered system only application level entities are located in the Cloud, thus allowing to obtain a bandwidth-efficient and smart data transmission. The results obtained on a 13-bus systems prove the goodness of the proposed methodologies.
2016
9781467392204
Distribution System State Estimation; Internet of Things; Phasor Measurement Units; variable Reporting Rate; Electrical and Electronic Engineering
File in questo prodotto:
File Dimensione Formato  
07520461_I2MTC.pdf

Solo gestori archivio

Descrizione: File from proceedings
Tipologia: versione editoriale
Dimensione 325.15 kB
Formato Adobe PDF
325.15 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/191748
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 0
social impact