The influence of liposome composition, size, lamellarity and charge on the (trans)dermal delivery of tretinoin (TRA) was studied. For this purpose we studied both multilamellar (MLV) or unilamellar (UV) liposomes. Positively or negatively charged liposomes were obtained using either hydrogenated (Phospholipon (R) 90H) or non-hydrogenated soy phosphatidylcholine (Phospholipon (R) 90) and cholesterol, in combination with stearylamine or dicetylphosphate. Liposomal formulations were characterized by transmission electron microscopy (TEM) and optical and light polarized microscopy for vesicle formation and morphology, and by dynamic laser light scattering for size distribution. In order to obtain more information about the stability and the thermodynamic activity of the liposomal tretinoin, TRA diffusion through a lipophilic membrane was investigated. The effect of the vesicular incorporation of tretinoin on its accumulation into the newborn pig skin was also studied. The experiments were performed in vitro using Franz cells in occlusive conditions and were compared to three different controls. The tretinoin amount delivered through and accumulated in the several skin layers was detected by HPLC. Furthermore, TEM in combination with osmium tetroxide was used to visualize the skin structure after the liposomal administration. Overall obtained results showed that liposomes may be an interesting carrier for tretinoin in skin disease treatment, when appropriate formulations are used. In particular, negatively charged liposomes strongly improved newborn pig skin hydration and TRA retention, though no evidence of intact vesicle penetration was found. (c) 2004 Elsevier B.V. All rights reserved.

Liposomes as carriers for denual delivery of tretinoin: in vitro evaluation of drug penneation and vesicle-skin interaction

MANCONI, MARIA;VALENTI, DONATELLA;LAI, FRANCESCO;FADDA, ANNA MARIA
2005-01-01

Abstract

The influence of liposome composition, size, lamellarity and charge on the (trans)dermal delivery of tretinoin (TRA) was studied. For this purpose we studied both multilamellar (MLV) or unilamellar (UV) liposomes. Positively or negatively charged liposomes were obtained using either hydrogenated (Phospholipon (R) 90H) or non-hydrogenated soy phosphatidylcholine (Phospholipon (R) 90) and cholesterol, in combination with stearylamine or dicetylphosphate. Liposomal formulations were characterized by transmission electron microscopy (TEM) and optical and light polarized microscopy for vesicle formation and morphology, and by dynamic laser light scattering for size distribution. In order to obtain more information about the stability and the thermodynamic activity of the liposomal tretinoin, TRA diffusion through a lipophilic membrane was investigated. The effect of the vesicular incorporation of tretinoin on its accumulation into the newborn pig skin was also studied. The experiments were performed in vitro using Franz cells in occlusive conditions and were compared to three different controls. The tretinoin amount delivered through and accumulated in the several skin layers was detected by HPLC. Furthermore, TEM in combination with osmium tetroxide was used to visualize the skin structure after the liposomal administration. Overall obtained results showed that liposomes may be an interesting carrier for tretinoin in skin disease treatment, when appropriate formulations are used. In particular, negatively charged liposomes strongly improved newborn pig skin hydration and TRA retention, though no evidence of intact vesicle penetration was found. (c) 2004 Elsevier B.V. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/95637
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 44
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 253
social impact