A novel complex [Pt(C6F4(NH)2)2] (2), formed by a Pt(ii) cation bound to two molecules of the tetrafluorinated 1,2-phenylenediimine ligand, has been synthesized and characterized by electrochemical and XRD measurements, UV-vis-NIR spectroscopy as well as by DFT and TD-DFT calculations. The effect induced by the fluorine atoms has been highlighted by comparison with the corresponding Ni (1H) and Pt (2H) hydrogenated complexes. The cyclic voltammetry data show that the reduction and the oxidation processes of 2 are easier and more difficult (by about 0.5 V), respectively, compared to those of 1H and 2H, suggesting that the electron withdrawing ability of the fluorine atoms lowers the energy level of both the HOMO and the LUMO. UV-vis-NIR measurements are similar for all the three complexes, indicating similar HOMO-LUMO gaps and that the effects of fluorination on the frontier orbitals are roughly the same. Moreover, polymorphism in the powder form of 2 has been highlighted by XRD measurements while the film presents only one phase. Furthermore, this complex shows a field-effect for n-type carriers. All the experimental results are also supported by the calculations, which show the role played by the fluorine atoms in the electronic structure of 2.

Fluorination induced electronic effects on a Pt(II) square-planar complex of the o-phenylenediimine ligand

PILIA, LUCA;
2017-01-01

Abstract

A novel complex [Pt(C6F4(NH)2)2] (2), formed by a Pt(ii) cation bound to two molecules of the tetrafluorinated 1,2-phenylenediimine ligand, has been synthesized and characterized by electrochemical and XRD measurements, UV-vis-NIR spectroscopy as well as by DFT and TD-DFT calculations. The effect induced by the fluorine atoms has been highlighted by comparison with the corresponding Ni (1H) and Pt (2H) hydrogenated complexes. The cyclic voltammetry data show that the reduction and the oxidation processes of 2 are easier and more difficult (by about 0.5 V), respectively, compared to those of 1H and 2H, suggesting that the electron withdrawing ability of the fluorine atoms lowers the energy level of both the HOMO and the LUMO. UV-vis-NIR measurements are similar for all the three complexes, indicating similar HOMO-LUMO gaps and that the effects of fluorination on the frontier orbitals are roughly the same. Moreover, polymorphism in the powder form of 2 has been highlighted by XRD measurements while the film presents only one phase. Furthermore, this complex shows a field-effect for n-type carriers. All the experimental results are also supported by the calculations, which show the role played by the fluorine atoms in the electronic structure of 2.
2017
Chemistry (all); Materials Chemistry; Coordination Chemistry;
File in questo prodotto:
File Dimensione Formato  
NJC_2017_post-print.pdf

Open Access dal 01/08/2018

Descrizione: Articolo principale
Tipologia: versione post-print
Dimensione 874.99 kB
Formato Adobe PDF
874.99 kB Adobe PDF Visualizza/Apri
Pilia et al_NJC_2017.pdf

Solo gestori archivio

Descrizione: articolo
Tipologia: versione editoriale
Dimensione 2.18 MB
Formato Adobe PDF
2.18 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/225415
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact