Two different control approaches for suppressing DC-link voltage unbalance in Three-Level Neutral-Point Clamped Converters (NPCs) are presented in this paper. They both guarantee DC-link voltage equalization over any NPC operating conditions, i.e. when the NPC feeds or is supplied by the main AC grid at different active and/or reactive power rates. The proposed control approaches consist of either a hysteresis or a proportional regulator, each of which synthesizes the most suitable control action based on the actual DC-link voltage unbalance. Particularly, two different PWM techniques have been developed in order to achieve DC-link voltage equalization successfully, preserving NPC voltage and current waveforms at the same time. The performances achievable by means of both the proposed control approaches have been compared to each other through an extensive simulation study in order to highlight their most important advantages and drawbacks, as well as their effectiveness over any operating conditions. Particularly, both control approaches are validated in the Matlab-Simulink environment referring to DC-link voltage equalization of an NPC that represents the point of common coupling between a DC microgrid and the main AC grid.

Suppression of DC-link voltage unbalance in three-level neutral-point clamped converters

Porru, M
Primo
;
Serpi, A
Secondo
;
Marongiu, I
Penultimo
;
Damiano, A.
Ultimo
2018-01-01

Abstract

Two different control approaches for suppressing DC-link voltage unbalance in Three-Level Neutral-Point Clamped Converters (NPCs) are presented in this paper. They both guarantee DC-link voltage equalization over any NPC operating conditions, i.e. when the NPC feeds or is supplied by the main AC grid at different active and/or reactive power rates. The proposed control approaches consist of either a hysteresis or a proportional regulator, each of which synthesizes the most suitable control action based on the actual DC-link voltage unbalance. Particularly, two different PWM techniques have been developed in order to achieve DC-link voltage equalization successfully, preserving NPC voltage and current waveforms at the same time. The performances achievable by means of both the proposed control approaches have been compared to each other through an extensive simulation study in order to highlight their most important advantages and drawbacks, as well as their effectiveness over any operating conditions. Particularly, both control approaches are validated in the Matlab-Simulink environment referring to DC-link voltage equalization of an NPC that represents the point of common coupling between a DC microgrid and the main AC grid.
File in questo prodotto:
File Dimensione Formato  
P77#2017#JFI#PWM-NPC#ElsevierPaper.pdf

Solo gestori archivio

Descrizione: Versione editoriale
Tipologia: versione editoriale
Dimensione 4.77 MB
Formato Adobe PDF
4.77 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/233675
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 10
social impact