Inflammatory bowel diseases (IBD) are the most common gastrointestinal inflammatory pathologies. Previous work evidenced a lower content of nicotinic acid (NA) in feces of IBD patients compared to healthy subjects. In the present study, we aimed to understand the effects of NA on intestinal inflammation, as several studies reported its possible beneficial effect, and investigate its influence on inflammation-driven metabolism. NA was tested on a Caco-2 in-vitro model in which inflammation was induced with interleukin-1β (IL-1β) and lipopolysaccharide (LPS), two mayor proinflammatory compounds produced in IBD, that stimulate the production of cytokines, such as interleukin 8. A metabolomics approach, with gas chromatography–mass spectrometry (GC-MS) and nuclear proton magnetic resonance (1H-NMR), was applied to study the metabolic changes. The results showed that NA significantly reduced the level of IL-8 produced in both LPS and IL-1β stimulated cells, confirming the anti-inflammatory effect of NA also on intestinal inflammation. Moreover, it was demonstrated that NA treatment had a restoring effect on several metabolites whose levels were modified by treatments with IL-1β or LPS. This study points out a possible use of NA as anti-inflammatory compound and might be considered as a promising starting point in understanding the beneficial effect of NA in IBD.

Modulatory effect of nicotinic acid on the metabolism of Caco-2 cells exposed to IL-1β and LPS

Santoru M. L.;Piras C.;Murgia F.;Tronci L.;Leoni V. P.;Serreli G.;Deiana M.;Atzori L.
2020-01-01

Abstract

Inflammatory bowel diseases (IBD) are the most common gastrointestinal inflammatory pathologies. Previous work evidenced a lower content of nicotinic acid (NA) in feces of IBD patients compared to healthy subjects. In the present study, we aimed to understand the effects of NA on intestinal inflammation, as several studies reported its possible beneficial effect, and investigate its influence on inflammation-driven metabolism. NA was tested on a Caco-2 in-vitro model in which inflammation was induced with interleukin-1β (IL-1β) and lipopolysaccharide (LPS), two mayor proinflammatory compounds produced in IBD, that stimulate the production of cytokines, such as interleukin 8. A metabolomics approach, with gas chromatography–mass spectrometry (GC-MS) and nuclear proton magnetic resonance (1H-NMR), was applied to study the metabolic changes. The results showed that NA significantly reduced the level of IL-8 produced in both LPS and IL-1β stimulated cells, confirming the anti-inflammatory effect of NA also on intestinal inflammation. Moreover, it was demonstrated that NA treatment had a restoring effect on several metabolites whose levels were modified by treatments with IL-1β or LPS. This study points out a possible use of NA as anti-inflammatory compound and might be considered as a promising starting point in understanding the beneficial effect of NA in IBD.
2020
IBD; Inflammation; Metabolomics; Nicotinic acid
File in questo prodotto:
File Dimensione Formato  
metabolites-10-00204.pdf

accesso aperto

Tipologia: versione editoriale
Dimensione 2.55 MB
Formato Adobe PDF
2.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/304390
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact