The aim of this work was to study the influence of β-cyclodextrin (β-CD) on the biopharmaceutic properties of diclofenac (DCF). To this purpose the physicochemical characterization of diclofenac-β-cyclodextrin binary systems was performed both in solution and solid state. Solid phase characterization was performed using differential scanning calorimetry (DSC), powder x-ray diffractometry (XRD), and Fourier transform infrared spectroscopy (FTIR). Phase solubility analyses, and in vitro permeation experiments through a synthetic membrane were performed in solution. Moreover, DCF/β-CD interactions were studied in DMSO by 1H nuclear magnetic resonance (NMR) spectroscopy. The effects of different preparation methods and drug-to-β-CD molar ratios were also evaluated. Phase solubility studies revealed 1: 1 M complexation of DCF when the freeze-drying method was used for the preparation of the binary system. The true inclusion for the freeze-dried binary system was confirmed by 1H NMR spectroscopy, DSC, powder XRD, and IR studies. The dissolution study re-yealed that the drug dissolution rate was improved by the presence of CDs and the highest and promptest release was obtained with the freeze-dried binary system. Diffusion experiments through a silicone membrane showed that DCF diffusion was higher from the saturated drug solution (control) than the freeze-dried inclusion complexes, prepared using different DCF-β-CD molar ratios. However, the presence of the inclusion complex was able to stabilize the system giving rise to a more regular diffusion profile.

Diclofenac-beta-cyclodextrin binary systems: physicochemical characterization and in vitro dissolution and diffusion studies

MANCA, MARIA LETIZIA;ENNAS, GUIDO;VALENTI, DONATELLA;SINICO, CHIARA;FADDA, ANNA MARIA
2005-01-01

Abstract

The aim of this work was to study the influence of β-cyclodextrin (β-CD) on the biopharmaceutic properties of diclofenac (DCF). To this purpose the physicochemical characterization of diclofenac-β-cyclodextrin binary systems was performed both in solution and solid state. Solid phase characterization was performed using differential scanning calorimetry (DSC), powder x-ray diffractometry (XRD), and Fourier transform infrared spectroscopy (FTIR). Phase solubility analyses, and in vitro permeation experiments through a synthetic membrane were performed in solution. Moreover, DCF/β-CD interactions were studied in DMSO by 1H nuclear magnetic resonance (NMR) spectroscopy. The effects of different preparation methods and drug-to-β-CD molar ratios were also evaluated. Phase solubility studies revealed 1: 1 M complexation of DCF when the freeze-drying method was used for the preparation of the binary system. The true inclusion for the freeze-dried binary system was confirmed by 1H NMR spectroscopy, DSC, powder XRD, and IR studies. The dissolution study re-yealed that the drug dissolution rate was improved by the presence of CDs and the highest and promptest release was obtained with the freeze-dried binary system. Diffusion experiments through a silicone membrane showed that DCF diffusion was higher from the saturated drug solution (control) than the freeze-dried inclusion complexes, prepared using different DCF-β-CD molar ratios. However, the presence of the inclusion complex was able to stabilize the system giving rise to a more regular diffusion profile.
2005
Diclofenac-β-cyclodextrin inclusion complex, Dissolution, Permeation
File in questo prodotto:
File Dimensione Formato  
Diclofenac_2005b.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 254.77 kB
Formato Adobe PDF
254.77 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/43896
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 15
social impact